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Methods for the study of particle production fluctuations
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We discuss various measures of net charge~conserved quantities! fluctuations proposed for the identification
of critical phenomena in heavy ion collisions. We show the dynamical component of fluctuations of the net
charge can be expressed simply in terms of integrals of two- and single-particle densities. We discuss the
dependence of the fluctuation observables on detector acceptance, detection efficiency and colliding system
size, and collision centrality. Finally, we present a toy model of particle production including charge conser-
vation and resonance production to gauge the effects of such resonances and finite acceptance on the net-charge
fluctuations.
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I. INTRODUCTION

The numbers of particles produced in relativistic nucle
collisions differ dramatically from collision to collision du
to the variation of impact parameter, energy depositi
baryon stopping, and other dynamical effects@1–3#. Such
fluctuations can also be influenced by novel phenomena s
as disoriented chiral condensate@4,5# or the appearance o
multiple event classes@6#. Even globally conserved quant
ties such as net charge, baryon number, and strangenes
fluctuate when measured, e.g., in a limited rapidity interv
The rapid hadronization of a quark-gluon plasma~QGP! can
reduce net-charge fluctuations compared to hadronic ex
tations@7,8#, while phase separation can increase net-bar
fluctuations@9#. Fluctuations of conserved quantities are po
sibly the best probes of such dynamics, because conserv
laws limit the degree to which final-state scattering can d
sipate them.

Many statistical measures have been suggested for
lyzing particle number fluctuations in experimen
@6,7,10,11#. Although these measures superficially appea
be different in nature and unrelated, closer examination
veals they are infact connected. On the other hand, each
sure exhibits different dependence on collision centrality,
tector acceptance~rapidity andpt region used to calculate th
observable!, particle detection efficiency, and susceptibili
to experimental biases. The utility of each measure depe
on the particle species measured and the physical phenom
one wishes to extract. For example, ‘‘robust’’ efficienc
independent measures are best for observing the correla
between neutral and charged-particles produced by dis
ented chiral condensate@12,13#.

Experimental efforts to measure event-by-event fluct
tions have followed two approaches. Many advocate a sta
tical approach in which fluctuations of particle numbers
characterized by variances, covariances or other mom
@6,7,10,11,14–16#. These moments can be compared to
pectations based on thermal equilibrium or other statist
models; any difference can be attributed to novel dynam
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Others emphasize the importance of the momentu
dependent correlation functions, such as the balance func
@17#. The correlation-function approach has yielded gr
success in the case of identical pion Hanbury Brown–Tw
~HBT! correlations.

In this paper, we discuss relations between correlat
functions and moment measures of net-charge fluctuation
study the dependence of these measures on collision cen
ity, experimental efficiency and acceptance. We focus
tially on the variancendyn suggested in Ref.@18#, which is
derived from integrals of the single- and two-particle dist
bution functions. Next, we compare these measures to a
natives suggested in Refs.@7,10#. Our correlation-function
based analysis complements a study by Mrowczynski usin
statistical point of view@10#. Specifically, we begin in Sec. I
by defining the fluctuation measurendyn in relation to the
microscopic correlation functions. In the following sectio
we determine the scaling properties ofndyn with system size
and, equivalently, collision centrality. We then introduce
ternative fluctuation measures, and discuss their relation
with ndyn in Sec. IV. A relation between the net-charge flu
tuations, and the balance function introduced by Basset al.
@17# is presented in Secs. VII and VIII is devoted to a d
cussion on the robustness of fluctuation observables,
whether and how fluctuation measures introduced in Sec
depend on detection efficiency. Finally, we consider a
compare, in Sec. IX, the various fluctuation measures in
context of simple particle production models.

II. NET-CHARGE FLUCTUATIONS AS A MEASURE
OF TWO-PARTICLE CORRELATIONS

In this section, we show that multiplicity fluctuations a
driven by intrinsic two-particle correlations. Statistical qua
tities that we discuss are constructed from the one-body
two-body densities:

r1~h!5
dN

dh
,

r2~h1 ,h2!5
d2N

dh1dh2
. ~1!
©2002 The American Physical Society04-1
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For simplicity, we focus on pseudorapidity dependence,
though results can be generalized to address transv
momentum and azimuthal-angular dependence. Our
proach and notation in this section follows Refs.@19,20#.

To extract statistical information from these microscop
densities, we use Eq.~1! to write the multiplicity in the ra-
pidity rangeDh as

^N&5E
Dh

r1~h!dh. ~2!

Here^N& represents an average of the observableN over an
event ensemble. Fluctuations of the particle number in
rapidity range are determined by integrating the two-part
density,

^N~N21!&5E
Dh

r2~h1 ,h2!dh1dh2 . ~3!

The ‘‘21’’ appears on the left side because the integral o
r2(h1 ,h2) counts the average number of particle pairs in
rapidity interval. Note that̂N& and ^N(N21)& are the first
and second order factorial moments of the multiplicity d
tribution.

A familiar statistical measure of particle number fluctu
tions is the variance

V5^~N2^N&!2&. ~4!

We can obtain the variance from Eqs.~2! and ~3!, sinceV
5^N(N21)&2^N&(^N&21). In the absence of particle
particle correlations, the two-body density factorizes into
product of two one-body densities. In that case, we find

^N~N21!&uncorr5E
Dh

r1~h1!r1~h2!dh1dh25^N&2.

~5!

The variance is thenV5^N&, as expected since the numb
of particles produced in a sequence of independent ev
follows Poisson statistics@21#. Note that the relative uncer
tainty in the mean number̂N& is AV/^N&51/A^N& for this
case. Observe that the particle number in a grand canon
ensemble in thermal equilibrium follows Poisson statistic

Information on net-charge fluctuations is contained in
two-body density for distinct particles with opposite charg
We determine these fluctuations from

^NaNb&5E
Dh

r2~ha ,hb!dhadhb , ~6!

where a and b label the particle species. In a statistic
framework, this average is related to the two-particle co
riance

Vab5^NaNb&2^Na&^Nb&. ~7!

The covariance vanishes if there are no correlations betw
the speciesa andb, sincer2(ha ,hb)5r1(ha)r1(hb).

Following Refs.@19,20# we define the robust variance
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Raa5
V2^N&

^N&2 , ~8!

and the robust covariance

Rab5
Vab

^Na&^Nb&
~9!

for particle speciesa andb. These quantities have the sam
sensitivity to fluctuations as the variance~4! and covariance
~7! but have three significant advantages. First, these qua
ties vanish forV5^N& andVab50, so that they measure th
deviation from Poisson-statistical behavior. Second—and
greater practical importance—the ratios~8! and ~9! are ‘‘ro-
bust’’ in that they are independent of experimental efficien
To see why Eq.~8! is robust, let the probability of detectin
each charged particle bee and the probability of missing it
be 12e. For a binomial distribution the average number
measured particles iŝN&exp5e^N& while the average squar
is ^N2&exp5e2^N2&1e(12e)^N&. The variance Vexp

5^N2&exp2^N&exp
2 5e2(^N2&2^N&2)1e(12e)^N&, so that

Vexp2^N&exp5e2(V2^N&). We then find

Raa
exp5Raa , ~10!

independent ofe; the proof that Eq.~9! is robust is similar.
The ratios~8! and~9! are strictly robust only if the efficiency
e is independent of multiplicity. We discuss this point
more detail in Sec. VIII.

Third, Rab are directly related to the particle correlation
For aÞb, we combine Eqs.~2!, ~6!, ~7!, and~9! to obtain

Rab5

E
Dh

r2~ha ,hb!dhadhb

E
Dh

r1~ha!dhaE
Dh

r1~hb!dhb

21; ~11!

one can check that Eq.~11! also holds fora5b. As in an
HBT analysis, we define a correlation functionC by

r2~h1 ,h2!5r1~h1!r1~h2!@11C~h1 ,h2!#, ~12!

so that Eq.~11! yields

Rab5

E
Dh

r1~ha!r1~hb!Cab~ha ,hb!dhadhb

^Na&^Nb&
. ~13!

We use this result to illustrate how to extract microsco
information on the rapidity range of correlations from th
Dh dependence ofRab in Sec. VII.

To study net-charge fluctuations, one can measure the
bust covariance for charged hadronsR12 . On the other
hand, it would be better to isolate the potentially interest
net-charge fluctuations from factors that cause the num
of positive and negative hadrons to fluctuate together, s
as variations in energy deposition or collision volume. T
ward that end, we consider dynamic charge observable
fined as the linear combination
4-2
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ndyn5R111R2222R12 . ~14!

Ratio fluctuations considered by Jeon and Koch@7# are an
alternative, see, Sec. IV. This combination vanishes when
positive and negative hadrons fluctuate simultaneously, s
all the Rab are then the same. We also see thatndyn is both
robust ~see, Sec. VIII! and straightforwardly related to th
microscopic correlators~1!, as are theRab . We find an al-
ternative expression forndyn in terms of

n125 K S N1

^N1&
2

N2

^N2& D
2L , ~15!

whereN1 andN2 are respectively the multiplicities of pos
tive and negative hadrons. In the limit of independent p
ticle production,n becomes

nstat5
1

^N1&
1

1

^N2&
. ~16!

The dynamic charge observable is the difference,

ndyn5n2nstat , ~17!

as we see by expanding the square in Eq.~15!. Observe that
ndyn is nonzero when net-charge fluctuations are correla
~non-Poissonian!. Furthermore, Eqs.~15!–~17! are more use-
ful than Eq.~14! for extracting correlations from numerica
data since the net-charge fluctuations are typically sma
than the fluctuations of the total number of hadrons.

We examine the scaling properties of thendyn variance
with collision system size in the following section.

III. SCALING OF ndyn WITH SYSTEM SIZE
AND COLLISION CENTRALITY IN A¿A COLLISIONS

We now study the scaling of the observablesCab , Rab ,
and ndyn , with collision centrality, target and projectil
mass. For concreteness, we assume that nuclear collision
a superposition of independent nucleon-nucleon (NN) sub-
collisions and neglect the rescattering of the hadrons. Th
assumptions imply that charged-particle pairs can be co
lated only if produced in the same subcollision. We exp
the contribution to the two-body density from these rela
pairs to grow linearly with the number of subcollisionsM.
Related pairs will be diluted by random pairs. TheAA den-
sities are

r1
AA~h!5Mr1

NN~h!, ~18!

r2
AA~h1 ,h2!5Mr2

NN~h1 ,h2!1M ~M21!r1
NN~h1!r1

NN~h2!.
~19!

The first term of Eq.~19! describes the related pairs while th
second accounts for theM (M21) random pairs. These ex
pressions apply generally to particle production fromM
sources; we focus on the independent-collision model
simplicity. We apply these considerations to more realis
models at the end of this section.
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To compute the correlation function, we substitute theAA
densities Eqs.~18!–~19! in Eq. ~12! to find

Cab
AA~h1 ,h2!5

Cab
NN~h1 ,h2!

M
. ~20!

For independent subcollisions and in the absence of res
tering, we therefore expect theAA correlation function to
have the same rapidity dependence as inpp collisions, with
an overall scale that is reduced by a factorM 21.

Before turning to realistic experiments, we consider
the moment a collision with a fixed number of subcollision
The statistical observables then satisfy

Rab
AA5

Rab
NN

M
~21!

and

ndyn~AA!5
ndyn~pp!

M
. ~22!

We see that all quantities scale asM 21.
More realistically, suppose that one specifies a centrali

range by measuring the total charge multiplicity, the ze
degree energy, or some analogous global observable.
number of subcollisions will then fluctuate, adding to t
variance and covariance of particle numbers and chang
Eq. ~21!. Specifically, the fluctuations ofM contribute a term
^Na&^Nb&(^M2&2^M &2) to the variance and covariance,Vn
andVab , so that Eqs.~8! and ~9! give

Rab
AA5

Rab
NN

^M &
1

^M2&2^M &2

^M &2
. ~23!

See, the appendix for a full derivation. We remark that th
M fluctuations are essentially equivalent to the ‘‘volume flu
tuations’’ discussed in a local equilibrium framework@7,8#.

On the other hand, random changes in the number of
dependent subcollisions can change the total number of
ticles but not the net charge, so that Eq.~22! is effectively
unchanged. We find

ndyn~AA!5R111R2222R125
ndyn~pp!

^M &
. ~24!

The contributions from subcollision or volume fluctuatio
are the same for alla and b, so that Eq.~14! implies that
this contribution does not affectvdyn . The second term in
Eq. ~21! is of order 1/̂M & and comparable to the first, sinc
ISR and FNAL experiments suggest thatR11

NN ;R22
NN

;R12
NN /2, each of order unity inDh51 –2 at RHIC@19,20#.

We now extend these considerations to the wound
nucleon model, which sucessfully describes many global f
tures in SPS and AGS experiments. There, one assumes
only the first subcollision of each nucleon drives partic
production and neglects all subsequent interactions@22#.
Since Eqs.~18! and ~19! formally describe particle produc
tion from M independent sources, we can adapt Eqs.~18! and
4-3
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~19! to the wounded-nucleon scenario by replacing the nu
ber of subcollisionsM with the number of participant nucle
onsM. We must also replace the densitiesr1

NN andr2
NN in

Eqs.~18! and ~19! with coefficientsr1
0 andr2

0 that describe
the production per participant. Observe that nucleons
counted as particpants if they interact at least once and
there are two participants perNN collision.

Results of the form~23! and ~24! then follow from the
wounded-nucleon model if we replaceM with one half the
number of participantsM. The average number of partic
pants at impact parameterb for a symmetricAA collision is
^M(b)&52*dsT(s)$12e2sNNT(b2s)%, where T(b)
5*r(z,b)dz is the familiar nuclear thickness function andr
is the nuclear density. By comparison, the number of sub
lisions is ^M (b)&5sNN*dsT(s)T(b2s). We remark that
both wounded-nucleon and independent-collision appro
mations imply that the total multiplicity of pionsNp scales
as the respective number~participants or subcollisions!.
Therefore, both models implyndyn}Np

21 , albeit with differ-
ent coefficients.

We point out that particle production at RHIC energy h
contributions from soft interactions, which scale as the nu
ber of participants, and hard processes, which scale as
number of subcollisions@23,24#. In this case the scaling o
ndyn with Np can be more complex. Furthermore, final-sta
scattering effects can certainly modify this scaling.

IV. ALTERNATIVE MEASURES OF FLUCTUATIONS

In this section we consider the connection between
variancendyn and other fluctuations measures. We disc
some of the merits and problems associated with each
servable.

A. F measure

The F measure of the net-charge fluctuation was int
duced by Mrowczynski@10# and is based on statistical con
siderations. It consists of the difference between the mea
particle production variances calculated event-by-event
the variance calculated over the entire dataset. Considerx an
observable of interest, e.g., the net charge of produced
ticles. The inclusive mean ofx ~i.e., average over all particle
an events! is notedx̄. Deviation from the inclusive mean ar
notedDx5x2 x̄. By construction, one hasDx50. The root

mean square~RMS! deviation isDx25(x2 x̄)2. To investi-
gate the dynamics, one determines how the event-wise
value of ‘‘x, ’’ defined asX5( ixi , changes event-by-even
One definesDX5X2Nx̄ as the event deviation from th
inclusive mean~with N being the number of particles in th
given event!. By construction, its event average^DX& van-
ishes, whereaŝDX2& does not. TheF measure is defined a
@10#

F5A^DX2&

^N&
2ADx2. ~25!

For a system with particles of chargeq1 andq2 , the inclu-
sive standard deviation is
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Dx25~q12q2!2 ^N1&^N2&

^N&2
. ~26!

The magnitude of̂ DX2& is determined by both statistica
and dynamic fluctuations. DefiningQ as the net charge of a
event, one hasDX5Q2N^Q&/^N&, from which one finds
indeed^DX&50. The averagêDX2& is however nonzero.
One finds

^DX2&5~q12q2!2^N1&2^N2&2

^N&3 S ^N1
2 &2^N1&2

^N1&2

1
^N2

2 &2^N2&2

^N2&2
22

^N1N2&2^N1&^N2&

^N1&^N2& D ,

~27!

so that

F5~q12q2!H ^N1&^N2&

^N&3/2 S ^N1
2 &2^N1&2

^N1&2

1
^N2

2 &2^N2&2

^N2&2
22

^N1N2&2^N1&^N2&

^N1&^N2& D 1/2

2S ^N1&^N2&

^N&2 D 1/2J , ~28!

Examination of Eqs.~26!, ~27!, and ~28! reveals that they
can, in fact, be expressed as then and nstat variances as
follows @as also reported by Mrowczynski@10##:

^DX2&5~q12q2!2^N1&2^N2&2

^N&3
n, ~29!

Dx25~q12q2!2^N1&2^N2&2

^N&3
nstat , ~30!

so one can expressF as

F5
2^N1&^N2&

^N&
SA n

^N&
2Anstat

^N&
D . ~31!

In general, the dynamic component of the fluctuations
much smaller than the statistical component,ndyn!nstat im-
plying An/^N&2Anstat /^N&5Anstat /^N&(A11ndyn /nstat

21)'ndyn(2Anstat̂ N&)21. Substituting the value ofnstat
given by Eq.~16!, the above expression can thus be approx
mated by

F'
^N1&3/2^N2&3/2

^N&2
ndyn . ~32!

One thus finds that indeed theF measure is determine
~mostly! by the dynamical fluctuations of the system
i.e., by the particle correlations implicit in the sum
R111R2222R12 .
4-4
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Equation ~32! further simplifies, as follows, for case
where^N1&5^N2&:

F'
^N&
8

ndyn . ~33!

Given, as we discussed in Sec. III, that the variancendyn
should vary inversely to the multiplicity of charge particl
in the limit of independent particle collisions and absence
rescattering of the secondaries, one should expect thaF
'ndyn,pp/8 in that limit, and independent of the collisio
centrality if the collision dynamic do not vary with collisio
centrality. Note, however, one must exercise caution wh
comparingF measured by experiments with different acce
tances~see, Sec. VI for details!. Note finally that unlike
ndyn , the F measure is a nonrobust observable given it
plicitly depends on the detection efficiency of positive a
negative particles through the factor^N1& and ^N2& as we
shall discuss in more detail in Sec. VIII.

B. Particle ratios

Another approach advocated in Ref.@8# focuses on the
variance of the ratio of positive and negative particle mu
plicities, R5^N1&/^N2&. As shown in Ref.@8#, the fluctua-
tions of the ratio offer the advantage that ‘‘volume’’ fluctu
tion effects cancel to first order. This is also true forndyn
~see, Sec. III! andF @10#.

For small fluctuations, the variance of the ratio can
related to the charge variancen ~15!. A small fluctuation of
R5^N1&/^N2& satisfies

DR

R
5

DN1

N1
2

DN2

N2
, ~34!

so that

^DR2&

^R&2 5
^DN1

2 &

^N1&2 1
^DN2

2 &

^N2&2 22
^DN1DN2&

^N1&^N2&
. ~35!

Expanding the square in Eq.~15!, we see that

^DR2&5^R&2n. ~36!

Observe that neithern nor ^DR2& are robust. Also, note tha
this equivalence holds only when̂DN6

2 &1/2!^N6&; an ap-
proximation, which breaks down at small multiplicitie
Problems with these quantities for small multiplicities a
discussed in Ref.@15#. The D measure used by Koch, Ble
icher, and Joen@8#

D[^N&^DR2&5^N11N2&^R&2n ~37!

is also efficiency dependent.

C. Reduced variance

Last, we consider the reduced variancevQ used by au-
thors @6,8,11,15,25#. If we write N5N11N2 and Q5N1

2N2 , then the reduced variance is
04490
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vQ5
^DQ2&

^N&
. ~38!

As before, we expand the square to find

vQ5
^DN1

2 &1^DN2
2 &22^DN1DN2&

^N1&1^N2&
. ~39!

This ratio is unity for Poissonian fluctuations or for a therm
ensemble in chemical equilibrium; any measured multiplic
dependence would be interesting. In terms of robust rat
we obtain

vQ511
^N1&2

^N&
R111

^N2&2

^N&
R2222

^N1&^N2

^N&
R12 .

~40!

Generally, this quantity has a complicated dependence on
correlatorsRab . However, for^N1&'^N2&, the above ex-
pression reduces to

vQ'11
^N11N2&

4
ndyn , ~41!

indicating that this quantity has the same efficiency dep
dence as the total number of charged particles.

We note, in closing this section, that the reduced varia
vQ unlike ndyn , andF, has an explicit dependence on co
lision volume fluctuations, as given by the following expre
sion:

vQ5vQ,V1
~^N1&2^N2&!2

^N1&1^N2&

^DV2&

^V&2
, ~42!

wherevQ,V corresponds to the reduced variance at fixed v
ume, while^V&, and ^DV&2 are respectively the mean an
variance of the collision volume. The importance of volum
fluctuations was pointed out by Jeon and Koch@26#. Follow-
ing their work, it is straightforward to show thatndyn , andF
are independent of volume fluctuations.

V. CHARGE CONSERVATION EFFECTS

The total charge of the system is fixed due to the cha
conservation. It implies some ‘‘trivial’’ correlation in particle
production regardless of other dynamical effects. As such
only affects the two-particle densityr12(h1 ,h2). We pro-
ceed to study the effect of charge conservation on the
charge fluctuation by calculating the correlation functi
C12(h1 ,h2) as a function of single- and two-particle de
sity expressed in terms of probability distributions of po
tive and negative particle in order to emphasize the role
charge conservation. One writes, for fixed numberN6 of
positive and negative particles:

r6~h6!5N6P6~h6!, ~43!
4-5
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r12~h1 ,h2!

5N2P12~h1 ,h2!1~N2N12N2!P1~h1!P2~h2!.
~44!

P6(h6) are probabilities to find one1 or 2 particle at
rapidity h6 . P12 is the probability to find one positive
particle and one negative particles at rapiditiesh1 andh2 ,
respectively.N2 andN1 are, respectively, the total numbe
of negative and positive particles produced~over 4p solid
angle! by a collision. By virtue of charge conservation, a
given the total chargeQ>0, one hasQ5N12N2 , and
N1>N2 . The first term of Eq.~44! accounts for correlations
between positive and negative particles. As there areN2 1-
pairs created, one has a contributionN2P12 . The second
term arises because there areN1N22N2 ways to pair the
uncorrelated1- particles. In general, at a fixed impact p
rameter~or number of nn collisions!, the multiplicitiesN2

andN1 shall fluctuate event-by-event. One must then av
age over such fluctuations and rewrite the above expres
as

r6~h6!5^N6&4pP6~h6!, ~45!

r12~h1 ,h2!5^N2&4pP12~h1 ,h2!1~^N2N1&4p

1^N2&4p!P1~h1!P2~h2!, ~46!

where the notation̂O&4p represents an average taken ov
4p acceptance. In the absence of dynamical correlations,
by virtue of charge conservation, one has

^N2
2 &4p2^N2&4p

2 5^N2&4p ,
~47!

^N2N1&4p5^N2&4p
2 1^N2&4p2^N2&4pQ.

The correlation functionC12(h1 ,h2) can then be calcu
lated and written as

C12~h1 ,h2!5
r12~h1 ,h2!

r1~h1!r2~h2!
21

5
1

^N1&4p

P12~h1 ,h2!

P1~h1!P2~h2!
. ~48!

This result is fairly generic and includes the possibility
dynamical spatial~or rapidity! correlations between the pa
ticles of a created pair. Neglecting such a correlation ho
ever, and for the purpose of evaluating the role of cha
conservation alone, one setsP125P1P2 . One then finds
that charge conservation implies

C12~h1 ,h2!52
1

^N1&4p
'2

2

^N&4p
, ~49!

where^N&4p stands for the meantotal number of charged-
particles produced in the event. Obviously, at large mu
plicities one can neglect the difference betweenN1 andN/2.

The correlatorR12 is obtained by integration@see, Eq.
~11!# of C12(h1 ,h2) over the experimental acceptanc
Given thatC12(h1 ,h2) is actually independent ofh6 ,
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R12 is independent of the experimental acceptance. O
thus finds that the charge conservation contribution tondyn
amounts to

Dndyn52
4

^N&4p
. ~50!

It is independent of the experimental acceptance, and o
determined by the total charge-particle multiplicity at a giv
impact parameter.

We emphasize thatndynÞ0 for a 4p acceptance becaus
charge conservation imposes a correlation on the system.
total n12 given by~15! is strictly zero when all particles ar
detected. However, Eq.~16! implies that nstatÞ0 in this
case, since the Poisson distributions used to calculatenstat do
not incorporate a global charge conservation constrain
follows thatndyn5n2nstat→2nstat for a 4p acceptance, as
seen in Eq.~50!. This estimate of the effect of charge co
servation is in agreement with a correction reported in R
@27#. Note, however, that the correction is additive not m
tiplicative as stated in Ref.@27#.

VI. RAPIDITY DEPENDENCE OF FLUCTUATIONS
AND DETECTOR ACCEPTANCE

Measuring the dependence ofRab andndyn on the rapid-
ity window Dh can yield information on the rapidity rang
of correlations, as well as their magnitude. Information
the rapidity dependence ofRab is also needed to compar
data from experiments with different geometric acceptan
The microscopic correlations themselves can and ind
must be determined from balance function and similar m
surements@17#; such experiments have different practical
sues. We relatendyn and balance function measurements
the following section.

To exhibit the rapidity dependence ofRab , we assume
that r1 are h independent and thatC5Cab(0)exp$2(h1
2h2)

2/2s2%. ISR and FNAL data@19,20# show that charged-
particle correlation are functions of the relative rapidityh1
2h2 with only a weak dependence on the average rapid
of the pair. Data can be roughly characterized as Gaus
near midrapidity. Using Eq.~13! we find

Rab'
Cab~0!

x2
$Apx erf~x!2~12e2x2

!%, ~51!

wherex5A2Dh/s. The functionRab is shown as a function
of Dh in Fig. 1. ISR and FNAL data suggest that the rapid
range of correlations is roughly from one to two rapidi
units.

Both R and the microscopic correlatorC depend on the
value Cab(0) at h15h2 and the rapidity range of correla
tions, s. Equation ~51! carries the same value—an
caveats—as does the Gaussian parametrization of HBT
relations. The ranges depends on the dynamics and m
vary with centrality, as well as target and projectile mass

One must account for this rapidity dependence when co
paring experiments of different geometrical acceptance.
estimate, for instance, that the difference between of the fl
4-6
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tuations measured by the STAR (uhu<1.5,Df52p) and
PHENIX (uhu<0.35,Df5p/2) experiments to be roughl
;10% for s;122. While this is a rather small correction
we emphasize that the experiments should measure th
pidity dependence. In generals can differ frompp to AA
collisions and, moreover, is expected to depend on centra

VII. RELATION BETWEEN THE BALANCE
FUNCTION AND ndyn

The balance function was proposed by Basset al. @17# as
a technique to study the dynamics of hadronization in re
tivistic heavy ion collisions. The idea is that the rapidi
range of correlations is changed when a collisions for
quark-gluon plasma. Specifically, charged hadrons form
in the reaction, after hadronization, resulting in short
ranged correlations in rapidity space for charge/anticha
pairs than expected in the absence of plasma.

The balance function as defined by Basset al. @17# is
written ~here again focusing, without loss of generality
the rapidity dependence!

B~Dh2uDh1!

5
1

2
$D~2,Dh2u1,Dh1!

2D~1,Dh2u1,Dh1!1D~1,Dh2u2,Dh1!

2D~2,Dh2u2,Dh1!%, ~52!

where

D~b,Dh2ua,Dh1!

5

E
h12Dh1/2

h11Dh1/2E
h22Dh2/2

h21Dh2/2

dhadhbr2~hb ,ha!

E
h22Dh1/2

h21Dh1/2

dhar1~ha!

.

~53!

The ratioD(b,Dh2ua,Dh1) is essentially a conditional prob
ability for finding a number of particles of typeb in the
phase space binDh2 of centroidh2 given the presence o
particles of typea in the phase space binDh1 of centroidh1,
i.e.,

FIG. 1. Rapidity dependence of the robust covarianceR12 as-
suming a Gaussian correlation function of widths.
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D~b,Dh2ua,Dh1!5
N~b,Dh2 ;a,Dh1!

N~a,Dh1!
. ~54!

The bins need not overlap. Experimentally, evaluations of
balance function can be restricted to a determination of
correlation of particlea andb as a function of their relative
rapidity Dh. In this case, particlea can be anywhere within
the full detector acceptanceY, and particleb is at a rapidity
Dh relative to a. This leads to a one-dimensional balan
function B(DhuY) defined as

B~DhuY!5
1

2
$D~2,Dhu1,Y!2D~1,Dhu1,Y!

1D~1,Dhu2,Y!2D~2,Dhu2,Y!%.

~55!

To understand this expression better, observe that for a
ficiently narrow binDh we can write

D~b,Dhua,Y!'
Dh

^Na&
E

2Y/2

Y/2

dhar2~ha ,h!, ~56!

where ^Na& is the number in the full domain2Y/2<h
<Y/2. For a boost invariant system the pair correlation fun
tion C is a function only of the rapidity difference, so tha
this integral is essentiallyC averaged over the system vo
ume, plus a constant term that cancels in Eq.~55!.

The integral of this function over the entire acceptanceY
is notedB(YuY). By virtue of Eq.~54!, it amounts to

B~YuY!5E
0

Y

dDhB~DhuY!

5
1

2 H ^N1N2&Y

^N1&Y

^N1N2&Y

^N2&Y

^N1~N121!&Y

^N1&Y

3
^N2~N221!&Y

^N2&Y
J . ~57!

The four terms of this equation are part of the expression
the correlatorsRab given in Eqs.~8! and ~11!. The integral
B(YuY) can thus be rewritten as

B~YuY!5
1

2
$R12^N2&1R12^N1&

2R11^N1&2R22^N2&%, ~58!

which establishes a relationships between the inte
B(YuY) of the balance function, and the correlatorsR11 ,
R22 , andR12 .

At RHIC, one observes that̂N2&'^N1&5^N&/2 near
central rapidities in Au1Au collisions @28#. The above ex-
pression simplifies

B~YuY!5
^N&
4

$2R122R112R22%52
^N&
4

ndyn .

~59!
4-7
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The integralB(YuY) of the balance functionB(DyuY) is
thus indeed proportional to the variancendyn and the total
multiplicity ^N& when ^N2&'^N1&.

VIII. FINITE RECONSTRUCTION EFFICIENCY EFFECTS

We consider the effect of finite reconstruction efficien
on measurements of fluctuations studied as a function of
lision centrality. We assume the centrality is experimenta
determined based on the total multiplicity of charge
particles detected in a reference acceptance,VM whereas the
multiplicity fluctuations of interest are measured in a fiduc
acceptanceVN . We account for the finite detection effi
ciency, in a given acceptance,Va , by introducing a detecto
response functionPD(nauNa) expressing the probability o
detecting a multiplicityna given a produced multiplicity
Na . In general,PD(nauNa) shall account for finite efficiency
effects as well as measurements of ghost tracks. We s
calculate, quite generally, momentsMk,a and factorial mo-
mentsFka , of the particle multiplicity distribution defined
respectively, as

Mk,a5^Na
k &5

1

Nev
( Na

k ,

Fk,a5^Na~Na21!~Na2k!&

5
1

Nev
( Na~Na21!•••~Na2k!, ~60!

where Nev is the number of events studied. The mean
ma5M1,a and the variance,V5^dNa

2&5M2,a2M1,a
2 . Here

we will restrict our calculation to these lowest moments, b
the calculation can easily be generalized to higher mome

We shall use lower case letter~e.g.,mk,a) to distinguish
measured moments from the intrinsic or actual momen
the produced particles~i.e., that one wishes to infer! repre-
sented with capital letters~e.g.,Mk,a).

We assume that moments of the multiplicity distributio
are measured as a function of the collision centrality e
mated based on the total multiplicitym measured in the ref
erence acceptance. The moments can then be expresse~ne-
glecting for simplicity the particle type labela) as

mk5 (
n50

`

nkP~num!, ~61!

where the sum is taken over all relevant multiplicities, a
P(num) is the probability to measure ‘‘n’’ given the central-
ity estimator ‘‘m. ’’ We emphasize that both ‘‘n’’ and ‘‘ m’’ are
influenced by the finite efficiency of the detector. We in fa
seek to extract the intrinsic moments of the particle prod
tion

Mk5 (
N50

`

NkP~NuM !, ~62!
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whereP(NuM ) is the probability ‘‘N’’ particles are produced
at a given centrality ‘‘M . ’’ The measured distribution
P(num) can be expressed as a function of the intrinsic d
tribution as follows:

P~num!5 (
N,M

PD~nuN!P~NuM !PD~M um!, ~63!

with the sum extending over all relevant produced multipli
tiesN andM. The factorPD(M um) corresponds to the prob
ability of having a produced multiplicityM given the mea-
sured valuem. It is evaluated using Bayes rule

PD~M um!5
PD~muM !P~M !

P~m!
, ~64!

whereP(M ) and P(m) are, respectively, the probability o
the producedM and measuredm multiplicities. The mea-
sured probability distribution is thus

P~num!5
1

P~m! ( P~nuN!P~NuM !P~muM !P~M !.

~65!

Measured moments can be calculated as function of
intrinsic ~produced! moment by inserting the above expre
sion in Eq.~62!. Introducing for convenience the function
hs(N) andgs(M ) defined as follows:

hs~N!5(
n

nsP~nuN!, ~66!

gs~M !5(
N

hs~N!P~NuM !. ~67!

one finds a general expression for the moments as follow

^mk&5
1

P~m! (
M

P~muM !P~M !gk~M !. ~68!

AssumingP(nuN) can be appropriately approximated by
binomial distribution, the above expressions can be rea
simplified. The momentshs(N) yield

h1~N!5«N,
~69!

h2~N!5«2N21«~12«!N,

where«n is the detection efficiency achieved in the measu
ment of ‘‘n. ’’ Substituting these quantities in Eq.~67! leads
to

g1~M !5«n^N&,
~70!

g2~M !5«n
2^N2&1«n~12«n!^N&.

The first and second moments, are thus in general

^n&5
1

P~m! (
M

PD~muM !P~M !«n^N&,
4-8
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^n2&5
1

P~m! (
M

PD~muM !P~M !~«n
2^N2&

1«n~12«n!^N&!, ~71!

with the momentŝ Ns& evaluated at a fixed value ofM.
Clearly, the measured moments are determined by the in
sic moments smeared over the response function of the
tiplicity, M. Assuming the efficiency of the total multiplicity
detection process is near unity, one can approximate the
sponse functionPD(muM ) with a delta functiondm,M , and
the above expressions simplifies as follows:

^n&5«n^N&,
~72!

^n2&5«n
2^N2&1«n~12«n!^N&.

We show in Appendix the above results holds for fin
efficiency, as long as ‘‘n’’ has a linear dependence on th
total multiplicity ‘‘ m’’ over the range of the response fun
tion PD(muM ).

We now proceed to use these for the calculation of
various fluctuation measures introduced in Sec. IV. We
subindices ‘‘1,’’ ‘‘ 2,’’ ‘‘ Q, ’’ and ‘‘ CH’’ to denote positively
and negatively charged particles, net charge, and total ch
particle multiplicity, respectively. We use overlined symbo
to represent the intrinsic measures. We find using Eqs.~72!,
~32!, and~41!

v6512«61«6v̄6 ,

vQ512«61«6v̄Q ,
~73!

vCH512«61«6v̄CH ,

F5
e1

3/2e2
3/2

e2
F̄.

The above fluctuation measures display an explicit dep
dence on the charged-particle detection efficiencies«6 or the
total efficiency «. The F observable, in particular, has
nontrivial dependence on the detection efficiencies of p
tively and negatively charged particles. This dependen
however, simplifies to a single factor« if the positive, nega-
tive, and global efficiencies are equal~i.e., «15«25«). By
contrast, one finds that the dynamic variancendyn5 n̄dyn, i.e.,
it is independent of the detection efficiencies, and is thus
that sense, a robust observable. Note that this conclu
remains strictly correct as long as the Gaussian approxi
tion is valid. See, the Appendix for a discussion of t
Gaussian approximation.

IX. SIMPLE PRODUCTION MODELS

A. Poissonian particle production

We first consider a multiparticle production model whe
no correlation are involved. Specifically, we assume that
average, particle speciesi are produced in fixed fractionsf i
04490
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of the total particle production. We consider cases where
fluctuation measures are evaluated over kinematic ran
that might be identical~caseA) or smaller~caseB) than the
kinematic range used to calculate the total~charge! particle
production.

The probability to produce speciesi with multiplicities Ni
is evaluated with a multinomial distribution. In general, o
has

P~N1 ,N2 , . . . ,NkuM !5
1

M ! )a51

k f a
Na

Na!
. ~74!

In caseA, one shall haveM5(Na and( f a51, whereas in
caseB, M>(Na , and( f a,1.

The multiplicity moments, and variance are calculated
fixed total multiplicityM assumed to be representative of t
collision impact parameter

^Na&m5 f aM ,

^Na
2&m5 f aM1 f a

2M ~M21!,

^NaNb&m5M ~M21! f a f b , ~75!

^Na~Na21!&m5 f a
2M ~M21!,

Va5M f a~12 f a!.

Consider now the specific case of net-charge fluctuati
with the indexa taking values1 and 2. One has in case
‘‘ B’’

VQ5M @ f 11 f 22~ f 12 f 2!2#,

vQ512
~ f 12 f 2!2

f 11 f 2
,

vch512~ f 12 f 2!, ~76!

n125
f 12 f 2

M f 1 f 2
,

ndyn50,

F50.

CaseA is easily calculated from the above by settingf 1

2 f 251.
The coefficientsf 6 can be experimentally determined.

is thus straightforward to determine the normalized varian
expected for particle independent production and comp
with measured values to seek for the presence of sub
super-Poissonian fluctuations. Note additionally that both
ndyn andF variables have null expectation values irrespe
tive of the fraction of the fractionsf 6 . They thus constitute
a more reliable measure of the dynamic fluctuations.
4-9
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B. Simple resonance production model

Two-particle correlations are determined by a host of p
nomena such as collective~flow! effects, production of reso
nances, jet production, Fermi/Bose statistics, as well as
trinsic phenomena related to the underlying collisi
dynamics. Here we examine the role of resonance dec
~e.g., ro, Do) on measurements of the net-charge fluct
tions. We show that the production of neutral resonances
decay into pairs of positively and negatively charge
particles produce an effective dynamical correlation.

We formulate a simple toy model, where we include on
three types of particles:p1, p2, and ro. The ro shall be
viewed as a generic neutral resonance, which decays intop1

andp2. Obviously, this is an oversimplification of the prob
lem and a fuller treatment shall account for other species
relevant resonances, and the finite acceptance of the d
tion apparatus.

We consider thep1, p2, andro to be produced indepen
dently ~neglecting Bose effects! at freeze out in relative frac
tions f 1 , f 2, and f 3 respectively, and model the multiplicit
production according to a multinomial distribution~as in the
previous section!. The probability of producingn1 p1, n2
p2, andn3 ro is expressed

P~n1 ,n2 ,n3 ;N!5
N!

n1!n2!n3!
f 1

n1f 2
n2f 3

n3 . ~77!

Given our assumption that allro decay into a pairp1 and
p2, the probability of measuringn1 positive n2 negative
particles respectively can be written as

P~n1 ,n2 ;N!

5 (
n1 ,n2 ,n3

P~n1 ,n2 ,n3 ;N!dn1 ,n11n3
dn2 ,n21n3

. ~78!

One then writes the moment generating function of the pr
ability P(n1 ,n2 ;N) as

G~ t1 ,t2 ;N!5~p1et11p2et21p3et11t2!N, ~79!

which one uses to computes the moments of the pion m
plicity distributions. One finds

^N1&5N~ f 11 f 3!,

^N2&5N~ f 21 f 3!,

^N1~N121!&5N~N21!~ f 11 f 3!2,

^N2~N221!&5N~N21!~ f 21 f 3!2,

^N1N&5N~N21!~ f 11 f 3!~ f 21 f 3!1N f3 . ~80!

The variancendyn , in the presence of resonances, is th
simply

ndyn5
22p3

N~p11p3!~p21p3!
. ~81!
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One finds that the variancendyn increases with the frac
tion of resonances,p3 produced in the final state. One als
finds it to scale inversely to the number of particles produc
in the initial state. Note that in the limitp350, ndyn vanishes
by our assumption of independent production. The sim
treatment done here does not account for finite accepta
effects on the decay of resonances. Obviously, if too sma
rapidity region is integrated, one of the decay partners m
on average be missed, andundynu shall be increased accord
ingly.

In AA collisions, one does not expect resonance prod
tion to be the sole cause of correlation, i.e.,ndyn,0, but it is
yet to be determined what fraction of the observed fluct
tions may be attributed to resonance production or to tr
dynamic correlations. In that respect, it shall be interesting

consider fluctuations of specific particle species suchp/ p̄ in
contrast top6 or K6 given no known resonance decay in

p1 p̄ whereas many resonances exist that decay intop1

1p2 or K11K2.

X. SUMMARY AND CONCLUSIONS

We introduced the net-charge fluctuation measurendyn on
the basis of two-particle correlation functions. We show
that for heavy ion collisions involving independent-nucle
collision and negligible rescattering of secondaries,ndyn

scales as the multiplicative inverse of the produced charg
particle multiplicity. We also showed thatndyn is simply re-
lated to other observables used or proposed for fluctua
measurement by various authors. We found, however,
the different fluctuation measures have different depende
on the experimental acceptance, detector efficiency, and
lision centrality. We showed thatndyn has a weak depen
dence on the rapidity range used experimentally to mea
the fluctuations provided the rapidity range is of the order
smaller than the two-particle correlator width, whereas o
servables such asF have basically a linear dependence
the size of the acceptance. We found also thatndyn is, by
construction, independent, to first order, of the detection
ficiency whereas measures such asF, vQ have a explicit
dependence on the detection efficiency. We also found
charge conservation has a finite, and actually sizable ef
on the charge fluctuation measurendyn determined by the
total charge-particle multiplicity~over 4p and independen
of the detector acceptance used to measure the net-ch
fluctuations. We further showed, as also pointed out
Mrowczynski@10# , that theF measure shall be independe
of the collision centrality provided the collision dynamic
also independent of the collision centrality. Note, howev
that because the detection efficiency may be a subtle func
of the detector occupancy, and hence the collision centra
caution has to be exercised when interpreting uncorrec
measurement ofF vs collision centrality. Finally, we pre-
sented, as an example, a simple particle production mo
that can be used to account for the production of resonan
as well as charge conservation.
4-10
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APPENDIX: FINITE EFFICIENCY EFFECTS
ON THE MEASUREMENT OF ndyn

A range of collision impact parameters is selected in
periments using a measured multiplicitym ~or a similar ob-
servable!. This introduces additional fluctuations because
singlem corresponds to a range of impact parameters. In
appendix we estimate the effect of centrality selection.
use these results in Secs. III and VIII.

We assume, in the Gaussian approximation, that the
ments scale with the true multiplicityM as

^Na&5maM ,

^Na
2&5ma

2M21sa
2M ,

^NaNb&5mambM21jabM , ~A1!

where ma and mb are average branching fractions for th
production of species ‘‘a’’ and ‘‘b,’’ respectively, whilesa

2

andjab are their variance and covariance. These relations
strictly true in the independent-collision model or th
wounded-nucleon model, where bothM andNa are, respec-
tively, proportional to the number of subcollisions or th
number or strings. The first moment~71! is then

^na&5
1

P~m! (
M

PD~muM !P~M !«amaM

5«ama

1

P~m! (
M

M PD~muM !P~M !5«ama^M &m ,

~A2!

where we have introduced the expectation value ofM at
fixed m defined as

^M &m5
1

P~m! (
M

M PD~muM !P~M !. ~A3!

The factorea is the probability that a particle of type ‘‘a’’ is
detected. One gets similarly for the second moment
cross term:
e
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^na
2&5

1

P~m! (
M

PD~muM !P~M !@«a
2~ma

2M21sa
2M !

1«a~12«a!maM #,

^na
2&5@«a

2~sa
221!1«a#^M &m1«a

2ma
2^M2&m , ~A4!

and

^nanb&5«a«bmamb~^M2&m2^M &m
2 !1«a«bjab^M &m .

~A5!

The correlatorsRaa andRab are therefore,

Raa5
sa

22ma

ma
2

1

^M &m
1

^M2&m2^M &m
2

^M &m
2

~A6!

and

Rab5
jab

ma
2

1

^M &m
1

^M2&m2^M &m
2

^M &m
2

. ~A7!

The variancendyn5Raa1Rbb22Rab measured at a givenm
is then

ndyn~m!5
n0

^M &m
, ~A8!

where

n05
sa

22ma

ma
2

1
sb

22mb

mb
2

22
jab

mamb
. ~A9!

This expression amounts to the value ofndyn evaluated at
M5^M &m . One finds that the correlatorsRab exhibit a con-
tribution from the variancêM2&m2^M &m

2 whose magnitude
depends on the detector response function width. The v
ancendyn , however, does not have such a contribution a
as such is also independent of the detection efficiency
measuringM.

Note that the above result implies thatndyn is robust, i.e.,
independent of detection efficiencies, in the Gaussian
proximation ~A1!. An explicit dependence on efficiencie
would arise if the Gaussian approximation is not valid, e
if the detector response functions differ markedly from B
nomial or Gaussian functions, or if the efficiencies exhi
very large variations with detector occupency.
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