
PHYSICAL REVIEW C 66, 044610 ~2002!
Improved nearside-farside method for elastic scattering amplitudes
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A simple technique is described that provides an improved nearside-farside~NF! method for elastic scatter-
ing amplitudes. The technique, involving the novel resummation of a Legendre partial wave series, reduces the
importance of unphysical contributions to NF subamplitudes, which can arise in more conventional NF de-
compositions. Detailed applications are made to a strong absorption model and to a16O116O optical potential
at Elab5145 MeV. We also discuss16O116O at Elab5480, 704, 1120 MeV, anda112C, a140Ca, both at
Elab51370 MeV.
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I. INTRODUCTION

In heavy-ion atomic and molecular collisions, an elas
differential cross sections(u), where u is the scattering
angle, is often characterized by a complicated interfere
pattern. This complicated structure makes it difficult to u
derstand the physical phenomena involved in the scatte
process, as well as the links betweens(u) and the properties
of the model that describes the phenomenon.

In some cases, semiclassical methods@1# explain the scat-
tering pattern as the interference between simpler and slo
varying subamplitudes. If we ignore the complication that,
some angular regions uniform asymptotic techniques
necessary, then the semiclassical subamplitudes arise m
ematically from saddle points or poles, which account phy
cally for contributions from reflected, refracted, or gener
ized diffracted semiclassical trajectories@2#. The
subamplitudes can be conveniently grouped into two typ
those arising from semiclassical trajectories which initia
move in the same half plane as the detector~N or nearside
trajectories! and those from the opposite half plane~F or
farside trajectories!.

The semiclassical methods are not always simple to ap
and sometimes they have a limited range of applicabil
Their limitations are determined by the range of validity
the ~presently known! asymptotic techniques that are used
approximate the original quantum mechanical problem.

In order to overcome these difficulties, it is common pra
tice to apply to the elastic scattering amplitudef (u), a NF
method that was proposed by Fuller@3# more than 25 years
ago. The Fuller NF method has the merit of being sim
and, although inspired by the semiclassical theories, it u
only scattering matrix elementsSl calculated~or directly pa-
rametrized! by exact quantum mechanics. The NF subam
tudes are obtained by exact summation of NF partial w
series~PWS!, thereby bypassing problems associated w
the applicability and validity of semiclassical technique
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e.g., using approximateSl , replacing the PWS by integrals
using stationary phase integration, etc.

The Fuller method is based on a splitting of the Legen
polynomialsPl(cosu) in the PWS off (u) into traveling an-
gular wave components, with the traveling angular wav
consistent with detailed semiclassical analyses of scatte
from impenetrable and transparent spheres@2#.

The Fuller method was@4,5# and continues to be widely
used; indeed the ISI Web of Science reports about 140 c
tions since 1981 to Fuller’s seminal work~for more recent
examples, see Refs.@6–11# and references therein!. The suc-
cess of the method depends, apart from its simplicity, on
remarkable capability of physically explaining the comp
cated interference patterns in cross sections as arising
the interference between NF subamplitudes having sim
properties. In particular, the NF cross sections are often
structured and more slowly varying withu than is the full
cross section. Even though no semiclassical technique
been used, these NF subamplitudes can often be give
physical interpretation~in analogy with results from semi
classical methods! as contributions from simple scatterin
mechanisms, which then allows a good understanding of
angular scattering.

In the light of these unquestionable successes, it is de
able to extend the validity of the Fuller approach to ca
where the original Fuller method is not~physically! satisfac-
tory, for example, it may produce oscillatory and rapid
varying NF cross sections, when the full cross section
monotonic and slowly varying withu. Examples of these
shortcomings have been known for a long time. One clas
example is pure Coulomb scattering. For repulsive Coulo
potentials only a N contribution is expected semiclassica
~Ref. @1#, p. 56!, whereas the Fuller NF method yields also
F contribution@3#. As a result, the NF cross sections are le
simple than the full one. In this case, the unsatisfacto
effects are, however, confined to a restricted backward an
lar region~Ref. @3#, p. 1564!. Another more striking example
is observed in the scattering by a uniformly charged sph
~Ref. @4#, p. 154, Fig. 26!. In this case, the ratio of the ful
cross section to the Rutherford one decreases monotoni
into the shadow of the Coulomb rainbow. In contrast, the
©2002 The American Physical Society10-1
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ratio closely follows the full ratio up tou'40° when it be-
comes approximately constant~i.e., independent ofu), being
approximately equal to the F ratio.

A similar effect is also observed in the angular distrib
tions for a strong absorption model~SAM! with a two pa-
rameter (L andD) symmetricS matrix element and Fermi
like form factors @12#. For a fixed value of the cutof
parameterL and for a sufficiently large value of the diffuse
ness parameterD, the Fuller NF cross sections show an a
most exponential decline up to a certainu ~which decreases
with increasingD). At larger angles, the NF cross sectio
are greater then the full cross section, which continues
oscillatory exponential decline.

Similar striking effects appear at high energies and
large scattering angles in the NF cross sections ofa particles
and light heavy-ions scattered by nuclei using optical pot
tials. Less striking, but still disturbing, effects are also o
served, at lower energies, in some N cross sections for
optical potentials used to fit recent data of light heavy-
scattering@6,7,9,11#. Typical N cross sections rapidly de
crease from 0° and from 180°. The two branches meet in
crossing region where an interference pattern appears,
strong oscillations over an extended range of angles.

In this paper, we show how some of these shortcomi
can be removed using a new NF method@13# based on an
improved modified resummationof the PWS. The new
method is a development of Hatchell’s@12# idea of incorpo-
rating the Yennie, Ravenhall, and Wilson~YRW! @14# resum-
mation technique into the NF formalism. The limitations
the NF Hatchell resummation technique have been discu
@15–17# and amodifiedNF YRW resummation procedure
depending on two parametersa andb, was proposed@18,19#
to bypass the difficulties with the original NF YRW ap
proach. The possibility of furtherimproving the modified
YRW resummation procedure, using different resummat
parametersa1 ,a2 , . . . andb1 ,b2 , . . . , together with a rule
to fix the value of these parameters@13#, is discussed in the
present work.

For all three NF methods, Fuller, Hatchell and ours,
starting point is the quantum mechanical PWS for the
scattering amplitudef (u),

f ~u!5
1

2ik (
l 50

`

al Pl~cosu!, ~1!

wherek is the wave number,Pl(cosu) is the Legendre poly-
nomial of degreel, andal is given in terms of the scatterin
matrix elementSl by

al5~2l 11!~Sl21!. ~2!

In the following, we will write x5cosu. For future conve-
nience, we recall that the PWS~1!, considered as a distribu
tion, converges to its exact value foruÞ0 upon dropping the
1 in the termSl21 on the right-hand side~rhs! of Eq. ~2!.
The omitted amplitude is proportional to the Dirac functi
d(12x) ~e.g., see Ref.@1#, p. 52!. We also recall that the
PWS ~1!, considered as a distribution, is convergent ifSl is
asymptotically Coulombic@20#.
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In Sec. II, we briefly outline the original Fuller NF
method, and show that unsatisfactorily results are obtai
for seven collision systems, which are different from tho
considered in Ref.@13#. In Sec. III, we discuss a modificatio
of the Fuller NF technique proposed in Refs.@16–19# and
present an improved modified method. Our new method
very effective in cleaning unphysical contributions from N
cross sections for the seven examples where the usual F
technique gives usatisfactorily results. Our conclusions ar
Sec. IV.

II. LIMITATIONS OF THE FULLER NF METHOD

A. Introduction

The Fuller NF decomposition is realized by splitting
Eq. ~1! Pl(x), considered as a standing angular wave, i
traveling angular wave components,

Pl~x!5Ql
(2)~x!1Ql

(1)~x!, ~3!

where~for xÞ61)

Ql
(7)~x!5

1

2 FPl~x!6
2i

p
Ql~x!G , ~4!

with Ql(x) the Legendre function of the second kind of d
greel.

Inserting Eq.~3! into Eq. ~1! splits f (u) into the sum of
two subamplitudes

f ~u!5 f (2)~u!1 f (1)~u!, ~5!

with

f (7)~u!5
1

2ik (
l 50

`

alQl
(7)~x!. ~6!

Note that, by construction, the decomposition~5! is exact.
Also, we will obtain an exact decomposition by using
place of theQl

(7)(x) in Eq. ~3! any pair of functions whose
sum isPl(x). The property of theQl

(7)(x), which makes the
splitting ~3! important, is the asymptotic result

Ql
(7)~x!;A 1

2plsinu
expF7 i S lu2

p

4 D G , ~7!

for l sinu @1, wherel5 l 1 1
2 . In particular, Eq.~7! allows

(2) to be identified with N scattering and (1) with F scat-
tering~Ref. @4#, p. 121!. In the semiclassical theory, the spli

ting of Pl2
1
2
(x) into the sum ofQ

l2
1
2

(7)
(x), or the related

splitting obtained from the asymptotic expansions of the
functions@1#, plays a crucial role in deriving the semiclass
cal subamplitudes. In particular, the NF semiclassical sub

plitudes arise from terms originally containingQ
l2

1
2

(7)
(x), or

their asymptotic expansions~7!. These facts raise the hop
that the direct calculation of thef (7)(u) from their PWS
representation in Eq.~6! will separate the NF contribution
to f (u), thereby avoiding problems connected with the a
plicability or validity of the semiclassical theory.
0-2
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IMPROVED NEARSIDE-FARSIDE METHOD FOR . . . PHYSICAL REVIEW C 66, 044610 ~2002!
In order to make this hope mathematically rigorous, o
should prove that it is possible to perform on the PWS, w
ten in terms of theQl

(7)(x), the same manipulations that a
used in deriving the complete semiclassical decompositio
f (u). These manipulations are essentially path deformati
in l of the integrals into which Eq.~1! can be transformed
using either the Poisson sum formula~Ref. @2#, p. 45! or the
Watson transformation~Ref. @2#, p. 49!. The consequences o
these path deformations depend on the properties of
terms in the PWS when they are continued to real or co
plex values ofl from the initial physical half integerl val-
ues. The splitting ofPl(x) into the Ql

(7)(x) modifies these
properties and can cause the appearance of unphysical
tributions in the f (7)(u), which cancel out inf (u) ~these
contributions are not expected to be present in the semic
sical subamplitudes!.

In spite of these possible limitations, extensive experie
with the Fuller NF method has demonstrated that the met
is usually reliable, in the sense that it often decomposesf (u)
into simpler NF subamplitudes, apparently free from u
physical contributions arising from the above mathemat
difficulties. However, for a few examples, some of whi
were mentioned in Sec. I, the Fuller NF subamplitudes
be directly compared with the corresponding exact anal
cal, or semiclassical, results and disagreements are obse

Fortunately, the Fuller NF subamplitudes contain inf
mation that allows one to recognize the unphysical nature
the undesired contributions. Supposef (1)(u), or f (2)(u),
contains a single semiclassical contribution from a station
phase point atl(u). Then the derivative with respect tou of
the phase off (1)(u), or f (2)(u), is equal tol(u), or
2l(u), respectively~Ref. @1#, p. 57!. Following Fuller we
will call this derivative thelocal angular momentum~LAM !
for the F~or N! subamplitude; it depends onu. Usually, only
for a generalized diffracted trajectory, arising from a simp
pole, is the LAM expected to be constant, being equal to
angular momentum of the incoming particle responsible
the diffraction.

In the semiclassical regime, this constant value is
pected to be large. Because of this, if we observe that,
certainu range, LAM'0, this can be considered as a war
ing for the unphysical nature of the N or F subamplitudes
that range ofu. This occurs for the LAM of the Fuller Cou
lomb F subamplitude, and for the NF subamplitudes of
SAM in the angular region where the NF cross sections c
tain unphysical contributions@13#. In both cases, this decou
pling of u from LAM, together with the fact that the ful
cross section is simpler then the NF ones, suggests the
physical nature of the NF subamplitudes.

We show below for seven collision systems, differe
from those considered in Ref.@13#, how unphysical NF con-
tributions manifest themselves. The seven collision syste
are ~a! a simple SAM model; ~b! 16O116O at Elab
5145 MeV, using the Woods-Saxon squared~WS2! optical
potential of Ref.@7#, and ~c! more briefly, 16O116O at Elab
5480, 704, 1120 MeV, anda112C, a140Ca, both atElab
51370 MeV.
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B. Strong absorption model for elastic scattering

The first example is a simple SAM in which theSl is
directly parametrized by

Sl[S~l!5
1

11expS L2l

D D 1
1

11expS L1l

D D , ~8!

with l5 l 1 1
2 , L510.0, andD51.8.

The SAM @with modifications for the Coulomb interac
tion, and in a slightly different form from Eq.~8!# was
widely used in early studies of heavy-ion elastic scatter
@21,22#. At the present time, the SAM is not so popula
using either simple forms such as Eq.~8! or more sophisti-
cated functions. It has been found that the characteristic
heavy-ion angular distributions, measured over wide ang
ranges, are not accounted for by the simpler SAM mod
instead the angular scattering is more easily described u
optical potentials, rather than attempting complicated ext
sions of the SAM.

In spite of this, the SAM in its simple form~8! continues
to be of interest, since it allows important tests of NF deco
positions @12,16,17,19#. This is because the PWS for th
SAM ~8! can be evaluated easily by saddle point techniq
@12#, or more simply, using the Watson transformation a
elementary complex integration. Both methods allow
simple, mathematically correct, identification of the NF su
amplitudes. ForL@1, exp(22pD)!1 andL sinu @1, the
NF subamplitudes are}exp(2pD u7iL u)/Asinu to a good
degree of approximation@Ref. @4#, Eq. ~3.5!#. The NF cross
sections, multiplied by sinu, are equal and have an expone
tial slope, whereas the phase derivatives of the NF sub
plitudes are expected to be equal to7L, respectively.

The results obtained by applying the Fuller NF method
the SAM with parametersL510.0 andD51.8 are shown in
Fig. 1. In the lower panel, we show a log plot of the dime
sionless quantity 4k2s(u)sinu versus u since the corre-
sponding NF quantities are expected to have an expone
slope. This is additionally shown in Fig. 1 by the thin do
dash line that represents log10@exp(22pD u)#. Furthermore,
because theSl are real,f (u) has a constant phase~and its
phase derivative is of no interest!, while the f (7)(u) have
identical moduli but opposite phases. Thus we need o
show the N~or F! LAM and similarly for the cross sections
In Fig. 1, the N and F quantities are shown by thick contin
ous and dashed curves, respectively.

In a systematic notation explained in Sec. III, the resu
obtained from the Fuller NF method, which substitutes E
~3! into Eq.~1!, are indicated by R50. The thin curve, in the
lower panel of Fig. 1, shows the full cross section. Figure
shows that, for R50, the unphysical contributions domina
the F~5N! cross section over most of the angular range, i
for u*50°. In particular, the F curve is completely differe
from the expected exponential decrease. Also the F~52N!
LAM '0 for u*50°. At forward angles, oscillations in th
F LAM curve indicate that another F subamplitude
present, which interferes with the unphysical one. This
0-3
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R. ANNI, J. N. L. CONNOR, AND C. NOLI PHYSICAL REVIEW C66, 044610 ~2002!
havior does not support the conjecture that the F LAM of t
other subamplitude has the expected value,L510.0.

By comparing the lower panel of Fig. 1 with the co
responding Fig. 1 of Ref.@13#, for which L510.0 and
D52.0, one observes that the change inD has not altered the
magnitude of the unphysical contribution in the angular
gion where it is dominant. The explanation for this obser
tion is straightforward. The amplitude obtained on dropp
Sl from the termSl21 in Eq. ~2! is f d(u)5 id(12x)/k.
Applying to f d(u) the same procedure used by Fuller
derive the NF Coulomb subamplitudes@Ref. @3#, Eq. ~11!#,
we find that the NF components off d(u) are f d

(7)(u)5
6@2pk(12x)#21. The corresponding NF cross section
shifted down by one vertical unit, are shown in Fig. 1 by t
thin dotted curve and labeled NFd . This curve shows that the
major part of the unphysical contribution, when it domina
the Fuller F subamplitude, is due tof d

(1)(u) and does not
depend on the properties ofSl .

A more satisfactory Fuller NF result is obtained by dro
ping 1 from the termSl21 in Eq. ~2!, and then considering
the PWS thus obtained as a distribution. To ensure con

FIG. 1. Strong absorption model; N~thick continuous curves!
and F~thick dashed curves! cross sections~lower panel! and LAM
~upper panel! calculated using the R50 and R50Y NF methods.
The thin curve shows the full cross section. The thin dotted cu
(NFd) shows the F~5N! cross section for the unphysical amplitud
f d

(7)(u) ~displaced downward by one unit!. The thin dot-dashed line
shows the slope of the expected exponential behavior for the
cross sections.
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gence of the resulting NF subamplitudes, a YRW resumm
tion is performed on them. This is explained in more detai
Sec. III, and, in a systematic notation developed there
denoted R50Y . Figure 1 shows that the R50Y results are
rather good at forward angles, (u&70°). Apart from a small
region aroundu50°, where the conditionL sinu@1 is not
satisfied, the N~52F! LAM agrees closely with the expecte
value of 2L up to u'70° and the N~5F! cross section
curve follows the expected exponential decrease. Fou
*120°, the N cross section is still dominated by an unphy
cal contribution. At intermediate angles, 70°&u&120°, in-
terference oscillations appear both in the N cross section
in the N LAM curve. It is interesting to note that the N
LAMs are more sensitive to interference effects in Fig.
than are the NF cross sections. Also, in the interference
gion, one cannot attach the meaning of alocal angular mo-
mentumto the subamplitude phase derivative. In our case
this interference region, the N LAM curve oscillates arou
the expected semiclassical value of2L in the region, 70°
&u&90°, where the true semiclassical component do
nates the N subamplitude, and around the unphysical v
of 0 at larger angles.

C. Optical model for 16O¿16O elastic scattering

Figure 2 shows our results for the phenomenologi
~WS2! optical potential used to fit@7# the 16O116O elastic
cross section atElab5145 MeV. The usual Fuller NF metho
has been applied that employs an analytic formula for the
subamplitudes of the Coulomb scattering amplitude@3#. The
parameters for this potential are given in Table 1 of Ref.@7#.
In the upper panel we display LAM/k, which we call the
local impact parameter~LIP!, and in the lower panel a log
plot of s(u)sinu. The thin continuous lines show the~un-
symmetrized! cross section and LIP for the full amplitude
For u'20°, and at backward angles, the full cross section
characterized by oscillations having approximately the sa
period. In the intermediate angular range 50°&u&150°,
there are oscillations of longer period, which increases au
increases. These properties, which are typical of light hea
ion scattering, are much more complicated than those for
simple SAM cross sections, and indicate the presence of
eral interfering subamplitudes.

The oscillations in the LIP curve for the full amplitud
qualitatively follow those in the full cross section. In add
tion, the change in sign of the full LIP foru'20° indicates a
crossover between one N subamplitude that is dominan
smaller angles~where the full LIP oscillates around negativ
values!, with a F subamplitude that is dominant at larg
angles~where the full LIP oscillates around positive values!.
The oscillations of a longer period in the intermediate an
lar range for the full cross section correspond to an oscil
ing positive LIP. This indicates there is an interference b
tween two F subamplitudes with a crossover near the d
minimum atu'70°. The oscillations at backward angles
the full cross section indicate an interference of one of th
F subamplitudes with its continuation to the opposite side
the target~N!.

e
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IMPROVED NEARSIDE-FARSIDE METHOD FOR . . . PHYSICAL REVIEW C 66, 044610 ~2002!
The results of the Fuller NF method~thick curves, con-
tinuous for N and dashed for F quantities! in Fig. 2 confirm
this interpretation. The N cross section crosses the F on
u'20°; the F cross section oscillates in the intermedi
angular range before decreasing, almost monotonically,
wards backward angles where it meets the N cross sec
For u*60°, the behavior of the N cross section is charac
ized by rather complicated oscillations. It is difficult to ima
ine that these oscillations arise only from interference
tween a N subamplitude that is dominant at forward angl
with a N subamplitude dominant at backward angles. T
thin dotted lines in Fig. 2 show interpolations~linear fits! of
the average behavior of the N cross section in the ran
50°<u<90° and u>150°. In the crossing region of th
dotted lines, the N cross section is about two orders of m
nitude larger then the crossing value. The contribution fr
an additional N subamplitude is apparently necessary to
plain this behavior of the N cross section. The shape of th
LIP curve supports this conjecture. The N LIP curve is o
cillatory, with increasing oscillation amplitude, up tou
'85°, where the deep minimum corresponds to a crosso

FIG. 2. Fuller N~thick continuous curves! and F~thick dashed
curves! cross sections~lower panel! and LIP ~upper panel! for
16O 116O elastic scattering atElab5145 MeV. The thin continuous
curves show the cross section and LIP using the full amplitude.
two thin dotted lines show interpolations of the average behavio
the N cross section in the ranges 50°<u<90° andu>150°. The
inset in the lower panel shows a vertical magnification by a fac
of 3 of the thin rectangular area.
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between two interfering N subamplitudes. For 85°&u
&145°, the N LIP curve is oscillatory around 0, which su
gests an unphysical origin for the N subamplitude domin
in this angular range. Atu'145°, where there is a narrow
maximum in the N LIP curve, the unphysical N subamp
tude crosses a different N subamplitude that becomes do
nant at backward angles. Oscillations, similar to those
served at backward angles in the N LIP curve, are presen
backward angles in the F LIP curve. The corresponding
cillations in the F cross section are barely visible with t
scale used in the lower panel of Fig. 2. They can, howe
be observed in the inset where the thin rectangular are
plotted with a vertical scale magnified by a factor of 3.

In summary our detailed analysis of the NF LIP and N
cross sections indicates the presence of an unphysical co
bution that makes the properties of these quantities unn
cessarily complicated.

D. Additional optical model examples

In this section, we briefly discuss five additional examp
where the NF optical potential cross sections are domina
by unphysical contributions over wide angular ranges.

Figure 3 shows N~upper panel! and F ~middle panel!
cross sections obtained by the usual Fuller NF method
different optical potentials that describe the elastic scatte
of 16O by 16O at Elab5480, 704, and 1120 MeV~potentials
labeled WS2 in Ref.@7#!, and ofa particles by12C and 40Ca
at Elab51370 MeV ~potentials labeled WSa in Ref.@10#!.
We used relativistically corrected kinematics@23# in all these
optical potential calculations, and symmetrization effe
were ignored for the16O116O system.

In the N and F panels, we have normalized the quanti
log10@s(u)sinu# to the values of the corresponding N qua
tities, indicated by N(u0), at u05150°. Except for a re-
stricted region at forward angles, whose width depends
the system considered, the normalized Fuller NF cross
tions are practically equal for different colliding partne
and/or energies. In every case, the unphysical effects of
Fuller NF method are as striking as those for the SAM d
cussed in Sec. II B. In the lower panel we have plotted, wi
out normalization factors, the full cross sections and, fou
>120°, the Fuller N('F) cross section. It is very apparen
that, at large angles, the behavior of the full cross section
quite different from that of the Fuller NF cross sections.
particular, the16O116O full cross sections at 480 MeV an
704 MeV possess a pronounced interference pattern in
angular region where the Fuller NF cross sections are do
nated by unphysical contributions. For completeness, we
mark that the NF LIP is practically null in the angular rang
where the NF cross sections show unphysical behavior fo
these cases.

III. IMPROVED NF METHOD USING RESUMMATION

A. Resummation of full and NF PWS

In the preceding section, we have discussed exam
where the Fuller NF method resulted in unphysical contrib
tions. We also clearly demonstrated that the Fuller meth

e
f

r
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has the capability to identify the unphysical contributio
through anomalous behavior in the NF LAM, or LIP. Th
capability helps us to avoid misleading interpretations of
full and NF cross sections obtained from the Fuller N
method. However, the problem of finding more satisfact
NF methods without unphysical contributions remains op

A possible solution to this problem was proposed
Hatchell @12#, who used a modified NF method. The mod
fications consisted of, first, in writingf (u) in the resummed
form (xÞ1),

FIG. 3. Fuller N ~upper panel! and F ~middle panel! optical
potential cross sections for16O 116O, a 112C, and a 140Ca at
different energies. All the N and F curves are normalized to
values of the corresponding N quantities atu5150°. The lower
panel shows the full cross sections and, foru>120°, the unphysical
behavior of the Fuller N('F) cross sections.
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f ~u!5
1

2ik

1

~12x!r (
l 50

`

al
(r )Pl~x!, ~9!

r 51,2, . . . ; andsecond, in using a different splitting in th
resummed PWS~9! for the Legendre polynomials into trav
eling waves.

The use of the resummed form~9! for f (u) was originally
proposed@14# by YRW in a different context. Equation~9! is
an exact resummation formula, of orderr, which is derived
from the recurrence relation for Legendre polynomia
Some mathematical properties of the resummed PWS~9!
have been investigated by Wimp@24#. The YRW resummed
form ~9! can be derived by iteratingr times, starting from
al

(0)5al , the resummation identity (xÞ1)

(
l 50

`

al
( i 21)Pl~x!5

1

12x (
l 50

`

al
( i )Pl~x!, i 51,2, . . . ,

~10!

where

al
( i )52

l

2l 21
al 21

( i 21)1al
( i 21)2

l 11

2l 13
al 11

( i 21) , ~11!

with a21
( i 21)50.

It is important to remark that the resummed coefficie
al

(r ) , being linear combinations of theal
(0)5al , can have

very different properties from the original physicalal . How-
ever, no information about the physicalal is lost on applying
the resummation procedure, and the value off (u) does not
depend in any way on the resummation order used. Thi
true for Eq. ~9! and for all the resummed forms forf (u)
derived in this paper and is a consequence of the~exact!
mathematical properties of the Legendre polynomials.

Equation~9! does not hold for a PWS written in terms o
a linear combination of Legendre functions of integer deg
of the first and second kinds (xÞ61),

F~u!5(
l 50

`

alLl~x!, ~12!

where

Ll~x!5pPl~x!1qQl~x!, ~13!

with p and q real or complex constants independent ofl.
Rather, as a result of the propertylQl 21(x)→1 asl→0, the
extendedresummation identity holds (xÞ61) @25#

(
l 50

`

al
( i 21)Ll~x!5

1

12x F(
l 50

`

al
( i )Ll~x!2qa0

( i 21)G , ~14!

where the recurrence relation~11! gives al
( i ) in terms of

al
( i 21) . By iterating Eq.~14! r times,F(u) can be written in

the extendedresummed form (xÞ61) @25#

e
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F~u!5
1

~12x!r (
l 50

`

al
(r )Ll~x!2q(

i 51

r

a0
( i 21) 1

~12x! i
.

~15!

It is important to note thatF(u) is independent of the valu
used forr.

The Ql
(7)(x) used to splitPl(x) in the Fuller NF method

are a particular case~with p51/2, andq56 i /p) of the
more general linear combinationLl(x)

When the splitting~3! is made in the initial~1! or re-
summed PWS~9!, different NF subamplitudes are obtaine
i.e., the NF subamplitudes depend on the orderr of the re-
summation. In particular, the last term on the rhs of Eq.~15!
is omitted from theser dependent resummed NF subamp
tudes. However, the sum of the NF resummed subamplitu
remains f (u), because the differences exactly cancel e
other. A different extended resummation identity occurs
the Hatchell approach, because the functions he used in p
of the Ql(x) obey a ~inhomogeneous! recurrence relation
different from that forQl(x) ~see Ref.@16# for details!.

It is important to realize that the YRW resummation pr
cedure@which has been extended in Ref.@25# to treat PWS
like Eq. ~12!# can also be used to speed up the converge
of the PWS~1! or ~6!, or even to ensure their convergence
the PWS was originally defined only in a distribution
sense: in fact ifal;O( l 2p) then al

(r );O( l 2p22r). Indeed
the YRW resummation procedure was originally introduc
@14# to produce, forr>1, a convergent@26# PWS for the full
amplitude of high-energy electron-nucleus scattering
which Sl is asymptotically Coulombic, and also to speed
the convergence of this PWS.

Using his splitting forPl(x) into traveling angular waves
Hatchell has shown@12# that the unphysical contributions t
the SAM NF cross sections systematically decrease on
creasingr, i.e., on using the resummed PWS~9! before the
splitting of Pl(x), rather then the original unresummed PW
~1!. More recently@16,17#, it was shown that the same N
resummed method gives even better results if the Fu
Ql

(7)(x) functions are used. The superiority of theQl
(7)(x)

seems to be connected with the greater rapidity with wh
theQl

(7)(x) approach their asymptotic behavior~7! @15–17#,
compared to the Hatchell NF functions.

The success of using Eq.~9! before applying the NF split-
ting ~3! depends upon the properties of the resummed c
ficients al

(r ) . For the SAM at lowl values, theal
(r ) rapidly

decrease in magnitude@16# with increasingr. As a result, the
low l values, where the splitting into running angular wav
is physically less reasonable, give a smaller contribution
the resummed PWS.

However, in some cases, this resummation technique
in the opposite direction by enhancing the undesired
physical contributions to the NF resummed subamplitud
We have found that this happens, for example, for pure C
lomb scattering, for scattering by an impenetrable sph
and for the SAM~see Ref.@19#! when the cross section i
calculated at an anglep2u, using the identityPl@cos(p
2u)#5(21)lPl(cosu).
04461
es
h

n
ce

ce

d

n

n-

r

h

f-

s
o

ts
-

s.
u-
e,

B. Improved resummation of full and NF PWS

One possible solution to the intriguing puzzle discussed
Sec. III A is to regard Eq.~10! as a particular case of th
modified resummation identity@18#

(
l 50

`

al
( i 21)Pl~x!5

1

a i1b ix
(
l 50

`

al
( i )Pl~x!, i 51,2, . . . ,

~16!

with a i1b ixÞ0 and

al
( i )5b i

l

2l 21
al 21

( i 21)1a ial
( i 21)1b i

l 11

2l 13
al 11

( i 21) .

~17!

For a i ,b iÞ0, apart from a renormalization factor, the rhs
Eq. ~16! depends only on the ratiob i /a i . Thus, without loss
of generality, we can assumea i51 for all i. By iterating Eq.
~16! r times, we can writef (u) in the modified resummed
form (11b ixÞ0)

f ~u!5
1

2ik S )
i 51

r
1

11b ix
D (

l 50

`

al
(r )Pl~x!, ~18!

r 51,2, . . . . It isstraightforward to show that the extende
modified resummed form for the PWS~12! is given by (x
Þ61 and 11b ixÞ0),

F~u!5S )
i 51

r
1

11b ix
D (

l 50

`

al
(r )Ll~x!

1q(
i 51

r

b ia0
( i 21))

j 51

i
1

11b j x
. ~19!

The identity ~18! is the key result for our improved NF
method. The YRW resummation formula~9! is obtained
whenb15b25•••5b r521.

The resummed form~18! with b[b15•••5b r is a par-
ticular case of a more general one@18#, which uses a basis
set of reduced rotation matrix elements; this gives the am
tude for more general scattering processes than those
scribed by Eq.~1!. For these general PWS, a Fuller-like N
decomposition can be introduced@27–29#, which allows the
scattering amplitude to be separated into NF subamplitu
In some cases, the NF cross sections contained unexpe
~unphysical! oscillations@18#, that are enhanced if the gen
eralization of Eq.~9! is used, but disappear for an appropria
choice of theb parameter in the generalization of Eq.~18!.

The considerable successes achieved by the orig
Fuller NF method suggest that the modified resummed fo
~18! be used to diminish unphysical contaminations to
NF subamplitudes when they are present. To do this,
must give a practical rule to fix the values of theb i param-
eters. In Refs.@19,18#, it was proposed to select the value
b[b15•••5b r , so that (11bx)2r approximately mimics
the shape of the angular distribution. The shape of the cros
section can, however, be very different from that given
(11bx)2r . It is therefore desirable to test a different recip
0-7
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based on a simple rule. The quantitative recipe proposed
is inspired by the observation that the modified resumma
procedures produce a more physical NF understanding
reducing the contribution from the lowl values in the re-
summed PWS. This suggests that we select
b1 ,b2 , . . . ,b r in r repeated applications of Eq.~16!, so as
to eliminate as many lowl terms as possible from the re
summed PWS in Eq.~18!. The transformation from$al

( i 21)%
to $al

( i )% is linear tridiagonal, with coefficients linear inb i ,
which means that a resummation of orderr allows one to
equate to zero the leadingr coefficients al

(r ) , with l
50,1, . . . ,r 21, by solving a system ofr equations of de-
gree r in the parametersb1 ,b2 , . . . ,b r . We will call the
resummation defined in this way animproved resummation
of order r.

It is straightforward to show that the improved resumm
tion of orderr 51 is obtained by choosing

b1523a0 /a1 , ~20!

while the improved resummation of orderr 52 is given by

b1,25~B6AB224A!/2, ~21!

with A andB solutions of the linear equations

5 S 1

3
a01

2

15
a2DA1

1

3
a1B52a0 ,

S 3

5
a11

6

35
a3DA1S a01

2

5
a2DB52a1 .

~22!

Higher-order improved resummations require the solution
more complicated systems of equations.

Note that the improved resummation of orderr 51 is,
obviously, not defined ifa150. Similarly the resummation
of order r 52 is not defined for an~accidentally! zero value
of the determinant of the linear equations~22!. Analogous
limitations are expected to hold for higher-order resumm
tions. However, these pathological situations were never
served in our calculations. In all the cases we have analy
usingr<2, we find that the improved resummations cons
erably reduce the width of the angular regions in which
Fuller NF cross sections exhibit unphysical behavior.
these analyses, we have usedSl from simple parametriza
tions, as well as from some of the optical potentials curren
employed to describe light heavy-ion scattering.

Note that, as for the YRW resummed form~9!, no physi-
cal information is lost on using our improved resumm
form ~18!, and the fullf (u) does not depend in any way o
the resummation order used. This might seem surprising,
cause our method omits the contribution from low values
l. For example, for the improved resummation of order
51, theresummedterm a0

(1) is set to zero in theresummed
PWS, but the information on thephysical value of a0 is
contained in theresummedterma1

(1) and in the resummation
parameterb1, and similarily for higher-order resummation
The improved resummation method only modifies the
~resummed! subamplitudes, not their sumf (u), as it tries to
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eliminate unphysical contributions that have their origin
the NF splitting of thePl(x) into running wavesQl

(7)(x).
The physical meaning of the NF splitting~3! is based on

the asymptotic properties ofPl(x) and Ql
(7)(x), @see Eq.

~7!#. The NF splitting~3! is not expected to be physicall
meaningful for lowl values. For example, forl 50, Eq. ~3!
states thatP0(x)51 is the sum of

Q0
(7)~x!5

1

2
6

i

2p
ln@~11x!/~12x!#. ~23!

This decomposition of unity is undoubtly mathematically e
act, but it is difficult to think that it can be physically mean
ingful. It is contributions of this type that the improved re
summation omits from the resummed PWS, after hav
moved to higher values ofl in the resummed PWS, th
physical information contained in the originalSl .

It is also interesting to understand the reasons for the s
cesses and failures of the Hatchell method for the SA
@16,17,19# based on the use of the YRW resummed form~9!
for f (u) and the Fuller NF splitting~3!. In those cases wher
the Hatchell method is successfull we find for lowl values,
Sl'Sl 11, and theal

(r ) are made small in magnitude with th
choice b1'b2'•••'b r'21. In those cases where th
Hatchell method fails, it happens that for lowl values,Sl'
2Sl 11, and the choiceb1'b2'•••'b r'1 makes theal

(r )

small in magnitude. Our improved method automatica
chooses appropriate values for the resummation param
using the exact values ofSl .

Finally, we summarize the procedure used by our n
improved resummation method. The calculations are p
formed applying:first, an improved resummation of orderr
50,1,2, with r 50 meaning no resummation,second, the
Fuller NF splitting~3!; and third, an extended YRW resum
mation~15! of the NF~resummed! subamplitudes. This latte
YRW resummation is necessary to ensure the convergenc
the final NF PWS. This final resummation can, however,
replaced with any other procedure that provides converge
of the final NF PWS. The results obtained from these th
steps will be indicated by the notation R50Y ,1Y ,2Y . The
notation R50Y is used in Fig. 1. Also, we use R50 to indi-
cate the original Fuller method for the SAM case: no resu
mation and no final YRW resummation, because in this c
the presence of the 1 in the termSl21 ensures rapid conver
gence of the PWS.

C. Strong absorption model for elastic scattering

Our results obtained after applying the R51Y ,2Y proce-
dures to the SAM of Sec. II B are shown in Fig. 4. Th
effectiveness of the improved resummation procedure is
pressive, both for the NF cross sections and for the NF LA
curves. Using the R51Y method ~for which b15
20.7621), the F(52N) LAM and the F(5N) cross section
are in agreement with the expected results up tou'140°.
For R52Y ~which hasb1,2520.863460.0723i ), the agree-
ment covers almost the whole angular range. The smal
regular oscillations appearing at largeu for the N LAM
curve, when R52Y , may arise from precision limitations~64
0-8



b

w

er
th

tio
pe

al
-

al
t

tia

s

an
ally

ard
nd

me

ing
s
ig.
by
ap-

IP

of
m-

an

LIP

the

IMPROVED NEARSIDE-FARSIDE METHOD FOR . . . PHYSICAL REVIEW C 66, 044610 ~2002!
bit floating point representation! in the calculations, or from
residual unphysical contributions not completely removed
our improved method.

If instead we apply the YRW resummation procedure,
find that it gives worse results compared to our R51Y ,2Y
methods, although better results than the Fuller R50Y
method. This is because the YRW choice ofb15b2521 is
not too far from our improved estimate of these paramet

Note that, using our improved procedure, the value of
SAM cutoff parameter,L510, is correctly identified in the
plots of the LAM. Also, no shift of the LAM occurs on
changing the resummation order. We recall that resumma
does not change or translate in any way the physical pro
tiesSl ; nor does it alter the physical content off (u). It only
changes the coefficientsa l

(r ) in the resummed PWS~18!.
Note that thea l

(r ) have a different meaning from the parti
wave amplitudesal , and the summation index of the re
summed PWS~18! should not be identified as the orbit
angular momentum quantum number. This is because
resummation extracts the factor) i 51

r (11b ix)21 from the
Legendre polynomial PWS.

D. Optical model for 16O¿16O elastic scattering

Figure 5 shows our results for the WS2 optical poten
of Sec. II C using the R51Y method ~for which b15
20.999720.0800i ). The oscillations of the Fuller N curve
aroundu.90° are removed, and both the R51Y N cross

FIG. 4. Same as Fig. 1, except using the R51Y ,2Y resumma-
tion methods.
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section and the N LIP curve are considerably simpler th
those from the Fuller method. The F curves are essenti
the same as those in Fig. 2, although the R51Y method has
suppressed the oscillations in the F cross section at backw
angles~compare the insets in the lower panels of Figs. 2 a
5!, as well as the oscillations in the F LIP curve in the sa
angular range. This demonstrates that the R51Y method is
more effective than the usual Fuller one in decompos
f (u) into slowly varying NF subamplitudes. It also show
that some oscillations in the Fuller NF cross sections in F
2 are artifacts, without any physical meaning, introduced
the properties of the NF technique used. We have also
plied the improved resummation method R52Y . The results
are practically the same as those for R51Y and are not
shown.

The cleaning by the R51Y procedure in Fig. 5 of the
original Fuller NF subamplitudes~Fig. 2! is impressive and
allows a better identification in the F cross section and F L
of the dominance, foru*90°, of the contributions from
classical-like trajectories refracted from the internal part
the nuclear interaction. In Fig. 5, this interpretation is de
onstrated by the overall agreement, foru*90°, between the
F curves and the classical mechanical results~thin curve,
labeled 1! corresponding to impact parameters smaller th
the classical orbiting one.

FIG. 5. Same as Fig. 2 except using the R51Y NF resummation
method, and the full LIP curve is not shown. Cross sections and
calculated using classical mechanics are shown by thin curves~con-
tinuous for N and dashed for F contributions!. The indices 1, 2, 3,
and 4 identify the curves corresponding to different branches of
classical deflection function.
0-9
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For the WS2 potential the collision energy is, in fa
slightly below the critical energy at which orbiting disa
pears for the classical deflection function~when it is trans-
formed into a nuclear rainbow minimum!. Because of this,
the dependence of the impact parameterb on u is that of an
infinitly many-valued function~Ref. @30#, p. 127–129!. Four
of these branches, corresponding to the deflection func
being larger than2360°, are plotted for the LIP in the uppe
panel of Fig. 5~shown by thin curves! and labeled from 1 to
4 for increasing values ofb. The LIP is assumed to be equ
to b for the F branches~thin dashed curves, with labels 1 an
4! and to2b in the N case~thin continuous curves, 2 and 3!.
In the lower panel, the thin curves, with the same labe
show the contributions to the classical cross section fr
these branches, in which we have included, in the us
simple way ~Ref. @1#, p. 49!, the absorptive effects of th
imaginary part of the optical potential.

The agreement between the quantum R51Y F curves and
the classical curve labeled 1 is overall good foru*90°, and
is impressive foru*120°. This shows that the R51Y F
subamplitude, calculated by an exact quantum method
dominated for u*90° by a classical contribution corre
sponding to trajectories with small impact parametersb&5
fm, which are refracted by the nuclear interaction. The c
tribution from F branch 1 continues at 180° into the con
bution from N branch 2. However, asu decreases from 180°
there is an increasing disagreement with the average q
tum N contribution. Evidently, for impact parameters th
approach the orbiting one (borb56.001 fm), diffractive ef-
fects start to become significant. Finally, we note that ther
a large disagreement between the classical F curve 4 an
average behavior of the quantum F cross section at forw
angles. This suggests that the other F subamplitude res
sible for the interference pattern in the F quantum cross
tion cannot be considered a classical-like refractive contri
tion.

E. Additional optical model examples

In Fig. 6, we show the N~upper panel! and F ~lower
panel! cross sections calculated using the improved
method, R51Y , for the optical potentials considered in Se
II D. In contrast to Fig. 3, no normalization factors are us
in Fig. 6. The comparison of Fig. 6 with Fig. 3 shows that t
R51Y NF resummation method has removed the unphys
contributions that dominate the Fuller NF cross sections o
most of the angular range.

For these cases, b1521.000120.0283i ,21.0001
20.0218i ,20.999120.0102i ,20.995820.0021i , and
20.998520.0010i in descending order for the collision sy
tems listed in the legend of the upper panel of Fig. 6. In
cases,b1'21, which is a consequence of the fact that,
these five collision systems, at lowl values we haveSl
'Sl 11. The resultb1'21 also explains why the unphysica
contributions in the Fuller NF cross sections of Fig. 3 ha
very similar shapes. Indeed forb1521, the angular depen
dence of the unphysical cross sections is}(12x)22

}sin24(u/2), which is the same as the Rutherford cross s
tion. This implies that on making the~usual! plot of the ratio
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of the cross sections to the Rutherford one, the unphys
contributions will appear independent ofu, i.e., a constant.

Figure 6 clearly shows that the R51Y method has cleaned
the Fuller NF cross sections of unphysical contributions. T
R51Y and Fuller NF cross sections agree closely at forw
angles, with the R51Y curves providing the correct continu
ation of the Fuller NF curves to larger angles, where
unphysical Fuller NF contributions become dominant ov
the R51Y results. In addition, the R51Y procedure clearly
identifies the oscillatory pattern of the16O116O full cross
sections atElab5480 MeV and 704 MeV as an interferenc
between the NF resummed subamplitudes.

As a final curiosity, we note that a ‘‘suspect’’ behavio
appears in the R51Y NF cross sections fora112C at u
*40°. We find that the corresponding R51Y NF LIP are'0
for u*60°. However, the LIP for the full amplitude is als
'0 for u*60°, indicating that the full cross section is dom
nated by contributions from low partial waves in this angu
region.

We have repeated the calculations, substituting the
form factors used in Ref.@10#, with symmetrized WS-like
form factors defined by

f sym~r ,R,d!5sinh
R

dY S cosh
R

d
1cosh

r

dD , ~24!

where R and d are the radius and diffuseness paramete
respectively. We find that the full cross section decreases

FIG. 6. Same as for the upper and middle panels of Fig.
except without normalization factors and the R51Y NF resumma-
tion method has been used. The inset shows the full cross sect
0-10
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u*60° by more than five orders of magnitude, which e
ceeds the precision limits of our optical potential compu
code. At forward angles, the effect of the substitution is v
small. This supports the conjecture that the suspect beha
in the R51Y NF and full cross sections arises from th
‘‘cusp,’’ that the usual WS potentials have at the origin. T
cusp is expected to produce diffraction scattering for the
partial waves, which is equally distributed between the
and F subamplitudes. It is this effect that we observe,
which disappears on removing the cusp. Similar effects,
though masked by the limited range of the scale along
ordinate, are also observed in the16O116O collision atElab
51120 MeV, as well as tentatively in the R51Y N a
140Ca cross section.

IV. CONCLUSIONS

Our new NF resummation procedure clearly improves
original Fuller NF method, as is evident from the seven
amples discussed here and from those presented elsew
@13,31#. In all these cases, we obtain NF resummed cr
sections that are more slowly varying and less structu
than the Fuller ones. On one hand, our results confirm
us
d
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d

A.
.E

r,

.
.
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utility of NF methods for gaining insight into the propertie
of the subamplitudes responsible for complicated structu
in cross sections. On the other hand, they remind us of
empirical origin of NF methods, and suggest caution in
interpretation of results obtained from NF techniques. Us
different NF methods, we can check what parts of the res
ing NF subamplitudes are independent of the particular te
nique used. Only properties stable with respect to differ
NF methods can be considered as manifestations of s
physical phenomenon.

In addition, we have shown that in all NF analyses, it
desirable to investigate the behavior of the LAM. This qua
tity is more sensitive to interference effects than are the
cross sections, and a null value~or an oscillatory behavior
around zero! of the NF LAM in a certain angular range ma
indicate the dominance of an unphysical contribution.
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