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Improved nearside-farside method for elastic scattering amplitudes
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A simple technique is described that provides an improved nearside-fékdiglenethod for elastic scatter-
ing amplitudes. The technique, involving the novel resummation of a Legendre partial wave series, reduces the
importance of unphysical contributions to NF subamplitudes, which can arise in more conventional NF de-
compositions. Detailed applications are made to a strong absorption model ante O optical potential
at Ejp=145 MeV. We also discus&’0+ %0 at E\,,=480, 704, 1120 MeV, and+°C, «+4Ca, both at
E.=1370 MeV.
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[. INTRODUCTION e.g., using approximat§, replacing the PWS by integrals,
using stationary phase integration, etc.

In heavy-ion atomic and molecular collisions, an elastic The Fuller method is based on a splitting of the Legendre
differential cross sectiorr(6), where 6 is the scattering polynomialsP,(cosé) in the PWS off (6) into traveling an-
angle, is often characterized by a complicated interferencgular wave components, with the traveling angular waves
pattern. This complicated structure makes it difficult to un-consistent with detailed semiclassical analyses of scattering
derstand the physical phenomena involved in the scatterinffom impenetrable and transparent sphe¢&s
process, as well as the links betweaefy) and the properties The Fuller method wap4,5] and continues to be widely
of the model that describes the phenomenon. used; indeed the ISI Web of Science reports about 140 cita-

In some cases, semiclassical methfddsexplain the scat- tions since 1981 to Fuller’s seminal woffor more recent
tering pattern as the interference between simpler and slowlgxamples, see Refg6—11] and references thergiriThe suc-
varying subamplitudes. If we ignore the complication that, incess of the method depends, apart from its simplicity, on its
some angular regions uniform asymptotic techniques areemarkable capability of physically explaining the compli-
necessary, then the semiclassical subamplitudes arise mattated interference patterns in cross sections as arising from
ematically from saddle points or poles, which account physithe interference between NF subamplitudes having simple
cally for contributions from reflected, refracted, or general-properties. In particular, the NF cross sections are often less
ized diffracted semiclassical trajectoried2]. The  structured and more slowly varying with than is the full
subamplitudes can be conveniently grouped into two typescross section. Even though no semiclassical technique has
those arising from semiclassical trajectories which initiallybeen used, these NF subamplitudes can often be given a
move in the same half plane as the dete¢hror nearside physical interpretatior(in analogy with results from semi-
trajectorie$ and those from the opposite half plaffe or  classical methodsas contributions from simple scattering
farside trajectories mechanisms, which then allows a good understanding of the

The semiclassical methods are not always simple to applgngular scattering.
and sometimes they have a limited range of applicability. In the light of these unquestionable successes, it is desir-
Their limitations are determined by the range of validity of able to extend the validity of the Fuller approach to cases
the (presently knowhasymptotic techniques that are used towhere the original Fuller method is ngihysically satisfac-
approximate the original quantum mechanical problem.  tory, for example, it may produce oscillatory and rapidly

In order to overcome these difficulties, it is common prac-varying NF cross sections, when the full cross section is
tice to apply to the elastic scattering amplitut®), a NF  monotonic and slowly varying withd. Examples of these
method that was proposed by Full& more than 25 years shortcomings have been known for a long time. One classic
ago. The Fuller NF method has the merit of being simpleexample is pure Coulomb scattering. For repulsive Coulomb
and, although inspired by the semiclassical theories, it usgsotentials onf a N contribution is expected semiclassically
only scattering matrix elemeng calculatedor directly pa-  (Ref.[1], p. 56, whereas the Fuller NF method yields also a
rametrized by exact quantum mechanics. The NF subampli-F contribution[3]. As a result, the NF cross sections are less
tudes are obtained by exact summation of NF partial wavaimple than the full one. In this case, the unsatisfactorily
series(PWS), thereby bypassing problems associated witheffects are, however, confined to a restricted backward angu-
the applicability and validity of semiclassical techniques,lar region(Ref.[3], p. 1564. Another more striking example

is observed in the scattering by a uniformly charged sphere

(Ref. [4], p. 154, Fig. 26. In this case, the ratio of the full
*Electronic address: Raimondo.Anni@le.infn.it cross section to the Rutherford one decreases monotonically
TElectronic address: J.N.L.Connor@Manchester.ac.uk into the shadow of the Coulomb rainbow. In contrast, the N

0556-2813/2002/6@)/04461G11)/$20.00 66 044610-1 ©2002 The American Physical Society



R. ANNI, J. N. L. CONNOR, AND C. NOLI PHYSICAL REVIEW (66, 044610(2002

ratio closely follows the full ratio up t@~40° when it be- In Sec. I, we briefly outline the original Fuller NF
comes approximately constafie., independent of), being  method, and show that unsatisfactorily results are obtained
approximately equal to the F ratio. for seven collision systems, which are different from those

A similar effect is also observed in the angular distribu-considered in Ref.13]. In Sec. IIl, we discuss a modification
tions for a strong absorption modébAM) with a two pa-  of the Fuller NF technique proposed in Ref$6-19 and
rameter A\ andA) symmetricS matrix element and Fermi- present an improved modified method. Our new method is
like form factors[12]. For a fixed value of the cutoff very effective in cleaning unphysical contributions from NF
parameterA and for a sufficiently large value of the diffuse- cross sections for the seven examples where the usual Fuller
ness parametek, the Fuller NF cross sections show an al- technique gives usatisfactorily results. Our conclusions are in
most exponential decline up to a cert#riwhich decreases Sec. IV.
with increasingA). At larger angles, the NF cross sections
are greater then the full cross section, which continues its  II. LIMITATIONS OF THE FULLER NF METHOD
oscillatory exponential decline.

Similar striking effects appear at high energies and for
large scattering angles in the NF cross sections particles The Fuller NF decomposition is realized by splitting in
and light heavy-ions scattered by nuclei using optical potenEg. (1) P,(x), considered as a standing angular wave, into
tials. Less striking, but still disturbing, effects are also ob-traveling angular wave components,
served, at lower energies, in some N cross sections for the
optical potentials used to fit recent data of light heavy-ion Pi(x)=Q () +Q{"(x), ()
scattering[6,7,9,11. Typical N cross sections rapidly de-
crease from 0° and from 180°. The two branches meet in th
crossing region where an interference pattern appears, with 1
strong oscillations over an extended range of angles. fi)(x)zz

In this paper, we show how some of these shortcomings
can be removed using a new NF methd®] based on an
improved modified resummationf the PWS. The new
method is a development of Hatchell’s2] idea of incorpo-
rating the Yennie, Ravenhall, and WilsO¥iRW) [14] resum-
mation technique into the NF formalism. The limitations of
the NF Hatchell resummation technique have been discussed f(0)=f)(0)+1(H) (), (5)
[15-17 and amodifiedNF YRW resummation procedure,
depending on two parametarsandB, was proposefl8,19  with
to bypass the difficulties with the original NF YRW ap-

A. Introduction

g/here(for x#+1)

: 4

2i
P|(X)i;Q|(X)

with Q,(x) the Legendre function of the second kind of de-
greel.

Inserting Eq.(3) into Eq. (1) splits f(#) into the sum of
two subamplitudes

©

proach. The possibility of furtheimproving the modified NOW, _i () 6
YRW resummation procedure, using different resummation ( )_2ik =5 2Q17 (). ©)
parametersy,, a5, ... andB¢,8,, . . ., together with a rule

to fix the value of these parametdds3], is discussed in the Note that, by construction, the decompositi is exact
present work. Also, we will obtain an exact decomposition by using in

For all three NF methods, Fuller, Hatchell and ours, theplace of theQ{™)(x) in Eq. (3) any pair of functions whose
starting point ig the quantum mechanical PWS for the fullsum isP,(x). The property of th&{*)(x), which makes the
scattering amplitudé(6), splitting (3) important, is the asymptotic result

1 - _ 1 . T
f(0)= 55 2 aPi(coso), (1) Qf ’<X>~\/:sirwex+'(w_1”’ "

wherek is the wave numbeR,(cosé) is the Legendre poly- for | sing>1, wherex=1+3. In particular, Eq.(7) allows
nomial of degred, anda, is given in terms of the scattering (—) to be identified with N scattering and-() with F scat-
matrix elementS, by tering (Ref.[4], p. 12). In the semiclassical theory, the split-

ting of Py_1(x) into the sum on(;_);(x), or the related

- . 2 .
splitting obtained from the asymptotic expansions of these

In the following, we will write x=cosé. For future conve- functions[1], plays a crucial role in deriving the semiclassi-
nience. we reca{ll that the PW), considered as a distribu- cal subamplitudes. In particular, the NF semiclassical subam-

tion, converges to its exact value fo# 0 upon dropping the Pplitudes arise from terms originally containil@ii);(x), or

1 in the termS —1 on the right-hand sidé&hs) of Eq. (2).  their asymptotic expansiond). These facts raise the hope
The omitted amplitude is proportional to the Dirac functionthat the direct calculation of thé(*)(¢) from their PWS
8(1—x) (e.g., see Ref[1], p. 52. We also recall that the representation in Eq6) will separate the NF contributions
PWS (1), considered as a distribution, is convergengifis  to f(#), thereby avoiding problems connected with the ap-
asymptotically Coulombi¢20]. plicability or validity of the semiclassical theory.

a=(21+1)(S—-1). (2
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In order to make this hope mathematically rigorous, one B. Strong absorption model for elastic scattering
should prove that it is possible to perform on the PWS, writ- The first example is a simple SAM in which t& is
ten in terms of theQﬁ)(x), the same manipulations that are directly parametrized by
used in deriving the complete semiclassical decomposition of

f(0). These manipulations are essentially path deformations B B 1 1
in X of the integrals into which Eq.1) can be transformed, S=S(\)= An T A+ ®
using either the Poisson sum formuRef.[2], p. 45 or the 1+eXD( A 1+ ex;{ A )

Watson transformatio(Ref.[2], p. 49. The consequences of
these path deformations depend on the properties of the
terms in the PWS when they are continued to real or comg ..\, A=1+% A=10.0, andA=18.

plex values ofx from the initial phySi(i?l half integex val- The SAM [with modifications for the Coulomb interac-
ues. The splitting of|(x) into the Qj™’(x) modifies these o and in a slightly different form from Eq(8)] was
properties and can cause the appearance of unphysical cagigely used in early studies of heavy-ion elastic scattering
tributions in thef(*)(6), which cancel out inf(6) (these [21 27 At the present time, the SAM is not so popular,
contributions are not expected to be present in the semiclaggijng either simple forms such as E8) or more sophisti-
sical subamplitudgs cated functions. It has been found that the characteristics of
In spite of these possible limitations, extensive experienceavy-ion angular distributions, measured over wide angular
with the Fuller NF method has demonstrated that the methoghnges, are not accounted for by the simpler SAM models;
is usually reliable, in the sense that it often decompd$6y  instead the angular scattering is more easily described using
into simpler NF subamplitudes, apparently free from un-optical potentials, rather than attempting complicated exten-
physical contributions arising from the above mathematicakions of the SAM.
difficulties. However, for a few examples, some of which In spite of this, the SAM in its simple forr(8) continues
were mentioned in Sec. |, the Fuller NF subamplitudes carto be of interest, since it allows important tests of NF decom-
be directly compared with the corresponding exact analytifositions[12,16,17,19 This is because the PWS for the
cal, or semiclassical, results and disagreements are observégiM (8) can be evaluated easily by saddle point techniques
Fortunately, the Fuller NF subamplitudes contain infor-[12], or more simply, using the Watson transformation and
mation that allows one to recognize the unphysical nature oflémentary complex integration. Both methods allow a
the undesired contributions. SuppoEe’(8), or f()(8), S|mpl_e, mathematically correct, identification .of the NF sub-
contains a single semiclassical contribution from a stationar@MPplitudes. ForA>1, exp(-2mA)<1 and A sing>1, the
phase point ak (#). Then the derivative with respect tbof F subamplitudes areexp(-mA ¢=iA 6)/ysin6 to a good
the phase off()(6), or £-)(6), is equal tox(8), or degr_ee of appro_X|mat|o[_Ref. [4], Eq. (3.5]. The NF cross
—\(6), respectively(Ref. [1], p. 57. Following Fuller we sections, multiplied by sin, are equ_al apd have an exponen-
will call this derivative thelocal angular momenturLAM ) tial slope, whereas the phase derivatives of the NF subam-

. = plitudes are expected to be equal®a\, respectively.
for the F(or N) suquphtude, |t.depends cm Usually, on'ly The results obtained by applying the Fuller NF method to
for a generalized diffracted trajectory, arising from a simple

; : the SAM with parameterd =10.0 andA =1.8 are shown in
pole, is the LAM expected to be constant, being equal to th‘TCig. 1. In the lower panel, we show a log plot of the dimen-

angul_ar momentum of the incoming particle responsible forg; iass quantity K2o(6)sin@ versus @ since the corre-

the diffraction. _ _ _ _ sponding NF quantities are expected to have an exponential
In the semiclassical regime, this constant value is exzjope. This is additionally shown in Fig. 1 by the thin dot-

pected to be large. Because of this, if we observe that, in gash line that represents lekexp(—27A 6)]. Furthermore,

certainé range, LAM~0, this can be considered as a warn-pecause th&, are real,f(6) has a constant phagand its

ing for the unphysical nature of the N or F subamplitudes inphase derivative is of no intergswhile the f(*)(6) have

that range offl. This occurs for the LAM of the Fuller Cou- identical moduli but opposite phases. Thus we need only

lomb F subamplitude, and for the NF subamplitudes of theshow the N(or F) LAM and similarly for the cross sections.

SAM in the angular region where the NF cross sections conk Fig. 1, the N and F quantities are shown by thick continu-

tain unphysical contributionsl3]. In both cases, this decou- ous and dashed curves, respectively.

pling of & from LAM, together with the fact that the full In a systematic notation explained in Sec. lll, the results
cross section is simpler then the NF ones, suggests the upbtained from the Fuller NF method, which substitutes Eq.
physical nature of the NF subamplitudes. (3) into Eq. (1), are indicated by RO. The thin curve, in the

We show below for seven collision systems, differentlower panel of Fig. 1, shows the full cross section. Figure 1
from those considered in RdfL3], how unphysical NF con- shows that, for R0, the unphysical contributions dominate
tributions manifest themselves. The seven collision systemthe R=N) cross section over most of the angular range, i.e.,
are (8 a simple SAM model; (b) ®0+%0 at E,, for 6=50°. In particular, the F curve is completely different
=145 MeV, using the Woods-Saxon squaf®dS2) optical  from the expected exponential decrease. Also the-FN)
potential of Ref[7], and(c) more briefly, %0+ 1%0 atE,, LAM ~0 for #=50°. At forward angles, oscillations in the
=480, 704, 1120 MeV, an&+'°C, a«+%Ca, both atE,, F LAM curve indicate that another F subamplitude is
=1370 MeV. present, which interferes with the unphysical one. This be-
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15 gence of the resulting NF subamplitudes, a YRW resumma-
tion is performed on them. This is explained in more detail in
10 & F(=-N) . Sec. lll, and, in a systematic notation developed there, is
denoted R=0y. Figure 1 shows that the ROy results are
rather good at forward angles§£€70°). Apart from a small
s region aroundd=0°, where the conditiorA sin#>1 is not
5 satisfied, the K=—F) LAM agrees closely with the expected
value of —A up to 6=~70° and the N=F) cross section
curve follows the expected exponential decrease. For
=120°, the N cross section is still dominated by an unphysi-
cal contribution. At intermediate angles, 29=<120°, in-
terference oscillations appear both in the N cross section and
in the N LAM curve. It is interesting to note that the NF
4 LAMs are more sensitive to interference effects in Fig. 1
5 . than are the NF cross sections. Also, in the interference re-
0l | gion, one cannot attach the meaning dbeal angular mo-
T P R v N mentumo the subamplitude phase derivative. In our case, in
g 2 T N this interference region, the N LAM curve oscillates around
T 4 NE=F A the expected semiclassical value -6fA in the region, 70°
Nz 6 , ] =6=90°, where the true semiclassical component domi-
= T \/ . nates the N subamplitude, and around the unphysical value
%‘g’ 8- ~. m of 0 at larger angles.
= .10 - log lexp(-2TA )] N
12 - full \\j \/ 7 C. Optical model for %0+1%0 elastic scattering
'140 6|O 1‘20 ' 180 Figure 2 shows our results for the phenomenological

(WS2) optical potential used to f{t7] the %0 +1%0 elastic
cross section &,,,= 145 MeV. The usual Fuller NF method
has been applied that employs an analytic formula for the NF
and F(thick dashed curvesross sectiongower panel and LAM  subamplitudes of the Coulomb scattering amplit{@f The
(upper panél calculated using the RO and R=0, NF methods. parameters for this potential are given in Table 1 of Ref.
The thin curve shows the full cross section. The thin dotted curven the upper panel we display LAM/ which we call the
(NF,) shows the F=N) cross section for the unphysical amplitudes local impact parametefLIP), and in the lower panel a log
ff;)(a) (displaced downward by one upifhe thin dot-dashed line  plot of o(#)sind. The thin continuous lines show tran-
shows the_ slope of the expected exponential behavior for the Ngymmetrizeaj cross section and LIP for the full amplitude.
cross sections. For #~20°, and at backward angles, the full cross section is
characterized by oscillations having approximately the same
havior does not support the conjecture that the F LAM of thisperiod. In the intermediate angular range 509<150°,
other subamplitude has the expected value;10.0. there are oscillations of longer period, which increase$ as
By comparing the lower panel of Fig. 1 with the cor- jncreases. These properties, which are typical of light heavy-
responding Fig. 1 of Ref[13], for which A=10.0 and ion scattering, are much more complicated than those for the

A=2.0, one observes that the changaihas not altered the  sjmple SAM cross sections, and indicate the presence of sev-
magnitude of the unphysical contribution in the angular re-gra| interfering subamplitudes.

gion where it is dominant. The explanation for this observa- The oscillations in the LIP curve for the full amplitude
tion is straightforward. The amplitude obtained on droppingqualitatively follow those in the full cross section. In addi-
S from the term§—1 in Eq. (2) is f5(6)=i6(1—X)/k. tion, the change in sign of the full LIP fat~20° indicates a
Applying to f4(0) the same procedure used by Fuller tocrossover between one N subamplitude that is dominant at
derive the NF Coulomb subamplitudgRef. [3], Eq. (11)],  smaller anglegwhere the full LIP oscillates around negative
we find that the NF components dfy(6) are f$(6)=  values, with a F subamplitude that is dominant at larger
+[27k(1-x)]"*. The corresponding NF cross sections, angles(where the full LIP oscillates around positive values
shifted down by one vertical unit, are shown in Fig. 1 by theThe oscillations of a longer period in the intermediate angu-
thin dotted curve and labeled IYFThis curve shows that the lar range for the full cross section correspond to an oscillat-
major part of the unphysical contribution, when it dominatesing positive LIP. This indicates there is an interference be-
the FullerF subamplitude, is due t6}")(#) and does not tween two F subamplitudes with a crossover near the deep
depend on the properties 8f. minimum até~70°. The oscillations at backward angles in

A more satisfactory Fuller NF result is obtained by drop-the full cross section indicate an interference of one of these
ping 1 from the tern5,—1 in Eq.(2), and then considering F subamplitudes with its continuation to the opposite side of
the PWS thus obtained as a distribution. To ensure convethe target(N).

0 (deg)

FIG. 1. Strong absorption model; fthick continuous curves
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10 " Foller method between two interfering N subamplitudes. For 8%
8 I f =<145°, the N LIP curve is oscillatory around 0, which sug-
6 -F " | ! gests an unphysical origin for the N subamplitude dominant
4l Y in this angular range. Ab~145°, where there is a narrow
maximum in the N LIP curve, the unphysical N subampli-
£ 2r tude crosses a different N subamplitude that becomes domi-
g 0r 7 nant at backward angles. Oscillations, similar to those ob-
= 2= N served at backward angles in the N LIP curve, are present at
4 - . backward angles in the F LIP curve. The corresponding os-
6 - cillations in the F cross section are barely visible with the
8L ] scale used in the lower panel of Fig. 2. They can, however,
be observed in the inset where the thin rectangular area is
-10 plotted with a vertical scale magnified by a factor of 3.
4 In summary our detailed analysis of the NF LIP and NF

cross sections indicates the presence of an unphysical contri-
2r bution that makes the properties of these quantities unnec-
) cessarily complicated.

2 - \_ D. Additional optical model examples

In this section, we briefly discuss five additional examples
where the NF optical potential cross sections are dominated
by unphysical contributions over wide angular ranges.

Figure 3 shows N(upper pangl and F (middle panel

4

-6 ~Fuller method

log [6(8) sin(8) (fin” sr')]

-8 ~°0+'°0 cross sections obtained by the usual Fuller NF method for
Ejqp = 145 MeV e different optical potentials that describe the elastic scattering
o 0 120 g0 Of 0 by %0 atEy,,=480, 704, and 1120 MeVpotentials

labeled WS2 in Ref.7]), and ofa particles by*?C and“°Ca
at E;;p=1370 MeV (potentials labeled WSa in Ref10]).

FIG. 2. Fuller N(thick continuous curvesand F(thick dashed ~We used relativistically corrected kinemat[@3] in all these
curved cross sectionglower panel and LIP (upper panél for  optical potential calculations, and symmetrization effects
160 + 160 elastic scattering d,,= 145 MeV. The thin continuous were ignored for the'®0 + %0 system.
curves show the cross section and LIP using the full amplitude. The In the N and F panels, we have normalized the quantities
two thin dotted lines show interpolations of the average behavior ofog,{ o(#)sin 6] to the values of the corresponding N quan-
the N cross section in the ranges 506<90° and#=150°. The tities, indicated by N§,), at 6,=150°. Except for a re-
inset in the lower panel shows a vertical magnification by a factorstricted region at forward angles, whose width depends on
of 3 of the thin rectangular area. the system considered, the normalized Fuller NF cross sec-

tions are practically equal for different colliding partners

The results of the Fuller NF methdghick curves, con- and/or energies. In every case, the unphysical effects of the
tinuous for N and dashed for F quantifigs Fig. 2 confirm  Fuller NF method are as striking as those for the SAM dis-
this interpretation. The N cross section crosses the F one aussed in Sec. Il B. In the lower panel we have plotted, with-
0~20°; the F cross section oscillates in the intermediateout normalization factors, the full cross sections and, ffor
angular range before decreasing, almost monotonically, to=120°, the Fuller N&F) cross section. It is very apparent
wards backward angles where it meets the N cross sectiothat, at large angles, the behavior of the full cross sections is
For 6=60°, the behavior of the N cross section is characterquite different from that of the Fuller NF cross sections. In
ized by rather complicated oscillations. It is difficult to imag- particular, the'®0 + %0 full cross sections at 480 MeV and
ine that these oscillations arise only from interference be704 MeV possess a pronounced interference pattern in an
tween a N subamplitude that is dominant at forward anglesangular region where the Fuller NF cross sections are domi-
with a N subamplitude dominant at backward angles. Thenated by unphysical contributions. For completeness, we re-
thin dotted lines in Fig. 2 show interpolatiofgear fit9 of ~ mark that the NF LIP is practically null in the angular ranges
the average behavior of the N cross section in the rangeshere the NF cross sections show unphysical behavior for all
50°< #=<90° and #=150°. In the crossing region of the these cases.
dotted lines, the N cross section is about two orders of mag-
nitude larger then the crossing value. The contribution from || IMPROVED NF METHOD USING RESUMMATION
an additional N subamplitude is apparently necessary to ex- _
plain this behavior of the N cross section. The shape of the N A. Resummation of full and NF PWS
LIP curve supports this conjecture. The N LIP curve is 0s- In the preceding section, we have discussed examples
cillatory, with increasing oscillation amplitude, up t6  where the Fuller NF method resulted in unphysical contribu-
~85°, where the deep minimum corresponds to a crossoveions. We also clearly demonstrated that the Fuller method

6 (deg)
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14 T T 1 o
. E. . (MeV) _ = (r
e g 150 e f(6)= 5 o0 |=Eo a("P(x), ©)
o\ Yo+l 704
% R 166 165 1120 | r=1,2,...; andsecond, in using a different s_plltt|_ng in the
> o+ 2C 1370 (rae”?]l;mwn;?lgstw) for the Legendre polynomials into trav-
g2 6N NN 40 .
qi: o+ "Ca 1370 The use of the resummed for(®) for f(6) was originally
g 4 proposed 14] by YRW in a different context. Equatiof®) is
;% 2 an exact resummation formula, of orderwhich is derived
=2 from the recurrence relation for Legendre polynomials.
0 Some mathematical properties of the resummed P@JS
2 ! have been investigated by Winig4]. The YRW resummed
form (9) can be derived by iterating times, starting from
14 F ' a{9=a,, the resummation identityx¢ 1)

12 = Fuller method .

= s 1 &

7 > al TP =2 a’P(x), i=12,...,
S =0 1-x1=o

z (10
8

z where

L

%% (i) | 6o, a0-n) 1 -1

2 =gt T g, (4

with a7 =0.

It is important to remark that the resummed coefficients
a{"), being linear combinations of tha{’’=a,, can have
very different properties from the original physi@al. How-

. ever, no information about the physialis lost on applying
the resummation procedure, and the valud (@) does not
depend in any way on the resummation order used. This is

log,,[6(6) sin 8 (fm” sr')]

N &F A true for Eq.(9) and for all the resummed forms fdi( 6)
Fuller method | derived in this paper and is a consequence of (gac)
\ mathematical properties of the Legendre polynomials.
-------------- Equation(9) does not hold for a PWS written in terms of
"""""""""""""" B a linear combination of Legendre functions of integer degree

of the first and second kinds¢ 1),

6 (deg) F(O)= |:20 aL(x), (12)

FIG. 3. Fuller N (upper pangl and F (middle panel optical
potential cross sections fof?0 +%0, @ +'°C, anda +*°Ca at  here
different energies. All the N and F curves are normalized to the
values of the corresponding N quantities &t 150°. The lower r _
X)=pP/(x)+ X), 13
panel shows the full cross sections and,er120°, the unphysical 00=PP0)+9Q(x) (13

behavior of the Fuller N&F) cross sections. . .
NEF) with p and g real or complex constants independent|of

has the capability to identify the unphysical contributionsRather, as a result of the propet,_,(x)—1 asl—0, the
through anomalous behavior in the NF LAM, or LIP. This extendedesummation identity holdsx& + 1) [25]
capability helps us to avoid misleading interpretations of the
full and NF cross sections obtained from the Fuller NF < 1 2 _
method. However, the problem of finding more satisfactory >, al "V, (x)= ——| >, a2, (x)—qal V|, (14
NF methods without unphysical contributions remains open. =0 1=x|r=o

A possible solution to this problem was proposed by 4
Hatchell[12], who used a modified NF method. The modi- Where the recurrence relatiofi1) gives a{’ in terms of
fications consisted of, first, in writing(#) in the resummed a{ ). By iterating Eq.(14) r times, F(6) can be written in
form (x#1), the extendedesummed formX# =1) [25]
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©

r
> alx)-q> aj b
(1—x)" =0 i=1

B. Improved resummation of full and NF PWS
F0)=

One possible solution to the intriguing puzzle discussed in
(15) Sec. lll A is to regard Eq(10) as a particular case of the
modified resummation identity18]

(1-x)"

0 0

It is important to note thaf(#) is independent of the value E al(ifl)pl(x): 2 al(i)pl(x), i=12,...,
used forr. =0 a;+ BiX =0
The Q{™)(x) used to splitP,(x) in the Fuller NF method (16)

are a particular caséwith p=1/2, andq= *i/w) of the .
more general linear combinatiofy(x) with @;+8ix#0 and
When the splitting(3) is made in the initial(1) or re- _ | . . | _
summed PWS9), different NF subamplitudes are obtained, al"=p, al M+ agal TP+ g all .
i.e., the NF subamplitudes depend on the onmdef the re- 21-1 21+3
summation. In particular, the last term on the rhs of @&) (17

is omitted from these dependent resummed NF subampli- For «;,B;#0, apart from a renormalization factor, the rhs of

s, Haeer o s of e N resuniied ubampitlsy (56 depands oy on e ra . T, it s
other. A different extended resummation identity occurs inéf generality, we can assumg=1 for alli. By iterating Eg.

the Hatchell approach, because the functions he used in pla 16) 1 times, we can writef () in the modified resummed

2]
of the Q,(x) obey a(inhomogeneouysrecurrence relation orm (1+ Bix#0)

different from that forQ,(x) (see Ref[16] for details. 1 1 o
It is imp.ortant to realize that thg YRW resummation pro- f(9)= W(H e > a"P(x), (18)
cedure[which has been extended in RE25] to treat PWS 1K\ i=1 Bix) =0
like Eqg. (12)] can also be used to speed up the convergence ) ]
of the PWS(]_) or (6)' or even to ensure their convergence ifr= 1,2, R | |SStra|ghtf0rWard to show that the extended

the PWS was originally defined only in a distributional modified resummed form for the PW32) is given by
sense: in fact ifa~O(I ) thena{?~O(I P~%). Indeed #*1 and I+ Bix+0),
the YRW resummation procedure was originally introduced
[14] to produce, for=1, a convergert26] PWS for the full
amplitude of high-energy electron-nucleus scattering in
which S, is asymptotically Coulombic, and also to speed up
the convergence of this PWS. S i 1
Using his splitting forP,(x) into traveling angular waves, +q§1 Biag 148X
Hatchell has showfl2] that the unphysical contributions to .
the SAM NF cross sections systematically decrease on inthe identity (18) is the key result for our improved NF
creasingr, i.e., on using the resummed PWS before the  method. The YRW resummation formuk®) is obtained
splitting of P|(x), rather then the original unresummed PWShen B1=Br=---=B,=—1.
(1). More recently[16,17, it was shown that the same NF  The resummed fornil8) with =p,="--- =g, is a par-
resummed method gives even better results if the Fulleficylar case of a more general ofit8], which uses a basis
Q{”)(x) functions are used. The superiority of t")(x)  set of reduced rotation matrix elements; this gives the ampli-
seems to be connected with the greater rapidity with whichude for more general scattering processes than those de-
the Q{*)(x) approach their asymptotic behavi@ [15-17,  scribed by Eq(1). For these general PWS, a Fuller-like NF
compared to the Hatchell NF functions. decomposition can be introduc€2l7—29, which allows the
The success of using E(R) before applying the NF split- scattering amplitude to be separated into NF subamplitudes.
ting (3) depends upon the properties of the resummed coefin some cases, the NF cross sections contained unexpected
ficients afr). For the SAM at lowl values, theafr) rapidly  (unphysical oscillations[18], that are enhanced if the gen-
decrease in magnitudé6] with increasing. As a result, the eralization of Eq(9) is used, but disappear for an appropriate
low | values, where the splitting into running angular waveschoice of the@ parameter in the generalization of EG9).
is physically less reasonable, give a smaller contribution to The considerable successes achieved by the original
the resummed PWS. Fuller NF method suggest that the modified resummed form
However, in some cases, this resummation technique act48) be used to diminish unphysical contaminations to the
in the opposite direction by enhancing the undesired unNF subamplitudes when they are present. To do this, we
physical contributions to the NF resummed subamplitudesmust give a practical rule to fix the values of tBe param-
We have found that this happens, for example, for pure Coueters. In Refs[19,18, it was proposed to select the value of
lomb scattering, for scattering by an impenetrable sphereg=g,=---=8,, so that (1 8x) " approximately mimics
and for the SAM(see Ref[19]) when the cross section is the shape of the angular distributiothe shape of the cross
calculated at an angler— 6, using the identityP,[cos@@  section can, however, be very different from that given by
—6)]=(—1)P,(cosb). (1+Bx)~". Itis therefore desirable to test a different recipe,

r

[]

i=1 1+BiX

o]

> aLi(x)

I=0

F(0)=

(19
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based on a simple rule. The quantitative recipe proposed hesdiminate unphysical contributions that have their origin in
is inspired by the observation that the modified resummatiomhe NF splitting of theP|(x) into running wave®Q{*)(x).
procedures produce a more physical NF understanding by The physical meaning of the NF splittif8) is based on

reducing the contribution from the lowvalues in the re-

the asymptotic properties d?(x) and Q{¥)(x), [see Eq.

summed PWS. This suggests that we select the7)]. The NF splitting(3) is not expected to be physically

.,B; In r repeated applications of E(L6), so as

Bl!BZ! e

meaningful for lowl values. For example, fdr=0, Eq.(3)

to eliminate as many low terms as possible from the re- states thaPy(x)=1 is the sum of

summed PWS in Eq18). The transformation fronaf'~ %)}
to {a("} is linear tridiagonal, with coefficients linear if; ,
which means that a resummation of ordeallows one to
equate to zero the leading coefficients a{”, with |
=0,1,...r—1, by solving a system of equations of de-
greer in the parameterg,,8,, ...,B;. We will call the
resummation defined in this way amproved resummation
of order .

_ 1 i
g”(x):Eizl—ﬂln[(lan)/(l—x)]. (23)

This decomposition of unity is undoubtly mathematically ex-
act, but it is difficult to think that it can be physically mean-
ingful. It is contributions of this type that the improved re-
summation omits from the resummed PWS, after having

It is straightforward to show that the improved resumma-moved to higher values of in the resummed PWS, the

tion of orderr=1 is obtained by choosing
,81=—3a0/a1, (20)

while the improved resummation of orde+ 2 is given by

B1,=(B=* \/Bz—4A)/2, (21
with A andB solutions of the linear equations
1 1
§ao+ 1532 A+§alB= —ag,
(22)
3 2
a1t 383 A+|apt £a B=-a;.

Higher-order improved resummations require the solution o

more complicated systems of equations.

Note that the improved resummation of order1 is,
obviously, not defined ifh;=0. Similarly the resummation
of orderr=2 is not defined for afaccidentally zero value
of the determinant of the linear equatio(®2). Analogous

limitations are expected to hold for higher-order resumma
tions. However, these pathological situations were never o
served in our calculations. In all the cases we have analyz
usingr=2, we find that the improved resummations consid-
erably reduce the width of the angular regions in which th
Fuller NF cross sections exhibit unphysical behavior. In

these analyses, we have us§dfrom simple parametriza-

b-
e

e

physical information contained in the origingl.

It is also interesting to understand the reasons for the suc-
cesses and failures of the Hatchell method for the SAM
[16,17,19 based on the use of the YRW resummed fd@n
for f(6) and the Fuller NF splitting3). In those cases where
the Hatchell method is successfull we find for ldwalues,
S~S.1, and theal(r) are made small in magnitude with the
choice B1~B,~---~pB,~—1. In those cases where the
Hatchell method fails, it happens that for [dwalues,S~
—S,,1, and the choicg;~ B,~ - - - ~B,~1 makes tha("
small in magnitude. Our improved method automatically
chooses appropriate values for the resummation parameters
using the exact values &, .

Finally, we summarize the procedure used by our new
improved resummation method. The calculations are per-
{ormed applyingfirst, an improved resummation of order
=0,1,2, withr=0 meaning no resummatiosecond the
Fuller NF splitting(3); andthird, an extended YRW resum-
mation(15) of the NF(resummeglsubamplitudes. This latter
YRW resummation is necessary to ensure the convergence of
the final NF PWS. This final resummation can, however, be
replaced with any other procedure that provides convergence
of the final NF PWS. The results obtained from these three
%teps will be indicated by the notation=Ry,1y,2y. The
notation R=0y is used in Fig. 1. Also, we use=F0 to indi-
cate the original Fuller method for the SAM case: no resum-
mation and no final YRW resummation, because in this case
the presence of the 1 in the te®+ 1 ensures rapid conver-

tions, as well as from some of the optical potentials currentlyqence of the PWS.

employed to describe light heavy-ion scattering.

Note that, as for the YRW resummed foi(®), no physi-
cal information is lost on using our improved resummed Qur results obtained after applying the=R ,2, proce-
form (18), and the fullf(#) does not depend in any way on dures to the SAM of Sec. Il B are shown in Fig. 4. The
the resummation order used. This might seem surprising, besfectiveness of the improved resummation procedure is im-
cause our method omits the contribution from low values ofpressive, both for the NF cross sections and for the NF LAM
|. For example, for the improved resummation of order curves. Using the R1, method (for which B;=
=1, theresummederm agl) is set to zero in theesummed —0.7621), the F& —N) LAM and the F(=N) cross section
PWS, but the information on thphysical value of a, is are in agreement with the expected results ug+e140°.
contained in theesummedermal® and in the resummation For R=2, (which hasB; ,= —0.8634-0.0723), the agree-
parameteiB;, and similarily for higher-order resummations. ment covers almost the whole angular range. The small ir-
The improved resummation method only modifies the NFregular oscillations appearing at largefor the N LAM
(resummedg subamplitudes, not their sufifd), as it tries to  curve, when R=2,, may arise from precision limitatiori§4

C. Strong absorption model for elastic scattering
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0 60 120 180 0 60 120 180
0 (deg) 0 (deg)
FIG. 4. Same as Fig. 1, except using the R/,2y resumma- FIG. 5. Same as Fig. 2 except using the R, NF resummation
tion methods. method, and the full LIP curve is not shown. Cross sections and LIP

calculated using classical mechanics are shown by thin clcoes

bit floating point representatiofin the calculations, or from tinuous for N and dashed for F contribution$he indices 1, 2, 3,
gp P ! and 4 identify the curves corresponding to different branches of the

residual unphysical contributions not completely removed by, |, <<ical deflection function.
our improved method.

If instead we apply the YRW resummation procedure, wesection and the N LIP curve are considerably simpler than
find that it gives worse results compared to our R,,2,  those from the Fuller method. The F curves are essentially
methods, although better results than the Fullee(R  the same as those in Fig. 2, although the R, method has
method. This is because the YRW choice@f=8,=—1 is suppressed the oscillations in the F cross section at backward
not too far from our improved estimate of these parameter@angles(compare the insets in the lower panels of Figs. 2 and

Note that, using our improved procedure, the value of thé), as well as the oscillations in the F LIP curve in the same
SAM cutoff parameterA = 10, is correctly identified in the angular range. This demonstrates that the1y method is
plots of the LAM. Also, no shift of the LAM occurs on more effective than the usual Fuller one in decomposing
changing the resummation order. We recall that resummatiof(6) into slowly varying NF subamplitudes. It also shows
does not change or translate in any way the physical propethat some oscillations in the Fuller NF cross sections in Fig.
tiesS,; nor does it alter the physical contentffd). It only 2 are artifacts, without any physical meaning, introduced by
changes the coefficients(") in the resummed PW$18).  the properties of the NF technique used. We have also ap-
Note that thea(” have a different meaning from the partial Plied the improved resummation methoe-Ry . The results
wave amplitudesa,, and the summation index of the re- @€ practically the same as those for-R, and are not
summed PWS(18) should not be identified as the orbital Shown. _ o
angular momentum quantum number. This is because the The cleaning by the R1y procedure in Fig. 5 of the
resummation extracts the factdif_,(1+8;x) ! from the original Fuller l\_lF sqpamphtgde&ﬁg. 2 is impressive and
Legendre polynomial PWS. allows a bet_ter identification in the F cross section and F LIP
of the dominance, fors=90°, of the contributions from
classical-like trajectories refracted from the internal part of
the nuclear interaction. In Fig. 5, this interpretation is dem-

Figure 5 shows our results for the WS2 optical potentialonstrated by the overall agreement, 32 90°, between the
of Sec. IIC using the R1y method (for which B,;= F curves and the classical mechanical res(ils$n curve,
—0.99970.0800i). The oscillations of the Fuller N curves labeled 1 corresponding to impact parameters smaller than
around #=90° are removed, and both the=Ry N cross the classical orbiting one.

D. Optical model for 60+10 elastic scattering
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being larger than-360°, are plotted for the LIP in the upper
panel of Fig. 5(shown by thin curvesand labeled from 1 to
4 for increasing values di. The LIP is assumed to be equal
to b for the F branche&hin dashed curves, with labels 1 and
4) and to—b in the N casdthin continuous curves, 2 and.3
In the lower panel, the thin curves, with the same labels,
show the contributions to the classical cross section from
these branches, in which we have included, in the usual 2k
simple way(Ref. [1], p. 49, the absorptive effects of the
imaginary part of the optical potential.

The agreement between the quantum R, F curves and
the classical curve labeled 1 is overall good fgr 90°, and
is impressive forf=120°. This shows that the Rly F

For the WS2 potential the collision energy is, in fact, 4 |

slightly below the critical energy at which orbiting disap- ) 1 Epp (MeV) |
pears for the classical deflection functiémhen it is trans- = |} Qoo w0
formed into a nuclear rainbow minimymBecause of this, % 0 16O+160 704
the dependence of the impact paraméten ¢ is that of an E 2 O+ 120 12
infinitly many-valued functior(Ref.[30], p. 127—129. Four ° . °°+40C 1370
of these branches, corresponding to the deflection function ‘% o+ "Ca 1370

D

g

<

&

N
<

—
)

log,[6(6) sin § (fm* sr')]

subamplitude, calculated by an exact quantum method, is 6 180
dominated for 6=90° by a classical contribution corre- -8 -
sponding to trajectories with small impact parametesss 10 |
fm, which are refracted by the nuclear interaction. The con-

tribution from F branch 1 continues at 180° into the contri- -12 180

bution from N branch 2. However, #&sdecreases from 180°,
there is an increasing disagreement with the average quan-
tum N contribution. Evidently, for impact parameters that 5 6 same as for the upper and middle panels of Fig. 3
approach the orbiting oneb(,,=6.001 fm), diffractive ef-  gycent without normalization factors and the=®, NF resumma-

fects start to become significant. Finally, we note that there igion method has been used. The inset shows the full cross sections.
a large disagreement between the classical F curve 4 and the

average behavior of the quantum F cross section at forwardf the cross sections to the Rutherford one, the unphysical
angles. This suggests that the other F subamplitude respogentributions will appear independent éf i.e., a constant.
sible for the interference pattern in the F quantum cross sec- Figure 6 clearly shows that the=RLy method has cleaned
tion cannot be considered a classical-like refractive contributhe Fuller NF cross sections of unphysical contributions. The
tion. R=1y and Fuller NF cross sections agree closely at forward
angles, with the R 1y curves providing the correct continu-

E. Additional optical model examples ation of the Fuller NF curves to larger angles, where the
unphysical Fuller NF contributions become dominant over
I:the R=1, results. In addition, the R1 procedure clearly
identifies the oscillatory pattern of th€0+ 10 full cross
sections aE,,,=480 MeV and 704 MeV as an interference
between the NF resummed subamplitudes.

6 (deg)

In Fig. 6, we show the Nupper panel and F (lower
pane) cross sections calculated using the improved N
method, R=1y, for the optical potentials considered in Sec.
[I D. In contrast to Fig. 3, no normalization factors are used
in Fig. 6. The comparison of Fig. 6 with Fig. 3 shows that the As a final curiosity, we note that a “suspect’ behavior

R=1y NF resummation method has removed the unphysicaéppe‘,ir‘,s in the R1, NF cross sections for+12C at 6

contributions that dominate the Fuller NF cross sections OVEL 4o We find that the corresponding=RL, NF LIP are~0
most of the angular range.

o - B for =60°. However, the LIP for the full amplitude is also
_0F8;13th_e8%99§%e(5)’155__ 0158(5)(8)—1000.8323’ 1'0223 ~0 for =60°, indicating that the full cross section is domi-
—0.9985-0.0010 in descending order for the collision sys- Peaéieodnby contributions from low partial waves in this angular
tems listed in the I_ege_nd of the upper panel of Fig. 6. In all We have repeated the calculations, substituting the WS
casesfs; ~ _1’.Wh'Ch Is a consequence of the fact thal, forform factors used in Ref.10], with symmetrized WS-like
these five collision systems, at loWwvalues we haveS

~S ;1. TheresuliB;~ —1 also explains why the unphysical form factors defined by
contributions in the Fuller NF cross sections of Fig. 3 have R R r

very similar shapes. Indeed f@; = — 1, the angular depen- fsym(rrRad):Sinha/ coshy +coshy|, (24
dence of the unphysical cross sections dg1—x) 2

«sin”4(6/2), which is the same as the Rutherford cross secwhere R and d are the radius and diffuseness parameters,
tion. This implies that on making th@isua) plot of the ratio  respectively. We find that the full cross section decreases for
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6=60° by more than five orders of magnitude, which ex-utility of NF methods for gaining insight into the properties
ceeds the precision limits of our optical potential computerof the subamplitudes responsible for complicated structures
code. At forward angles, the effect of the substitution is veryin cross sections. On the other hand, they remind us of the
small. This supports the conjecture that the suspect behaviempirical origin of NF methods, and suggest caution in the
in the R=1y NF and full cross sections arises from the interpretation of results obtained from NF techniques. Using
“cusp,” that the usual WS potentials have at the origin. Thedifferent NF methods, we can check what parts of the result-
cusp is expected to produce diffraction scattering for the lowng NF subamplitudes are independent of the particular tech-
partial waves, which is equally distributed between the Nnique used. Only properties stable with respect to different
and F subamplitudes. It is this effect that we observe, anédN\F methods can be considered as manifestations of some
which disappears on removing the cusp. Similar effects, alphysical phenomenon.

though masked by the limited range of the scale along the In addition, we have shown that in all NF analyses, it is
ordinate, are also observed in th%+ %0 collision atE,, desirable to investigate the behavior of the LAM. This quan-
=1120 MeV, as well as tentatively in the =RLy N « ity is more sensitive to interference effects than are the NF

+4%Ca cross section. cross sections, and a null valger an oscillatory behavior
around zerpof the NF LAM in a certain angular range may
IV. CONCLUSIONS indicate the dominance of an unphysical contribution.

Our new NF resummation procedure clearly improves the
original Fuller NF method, as is evident from the seven ex- ACKNOWLEDGMENTS
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