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Tracking the phase-transition energy in the disassembly of hot nuclei
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In efforts to determine phase transitions in the disintegration of highly excited heavy nuclei, a popular
practice is to parametrize the yields of isotopes as a function of temperature in the/fajmz "f(z°(T
—Tg)), whereY(z)'s are the measured yields and o, and T, are fitted to the yields. Hergé, would be
interpreted as the phase transition temperature. For finite systems such as those obtained in nuclear collisions,
this parametrization is only approximate and hence allows for extractidiy @f more than one way. In this
work we look in detail at how values df, differ, depending on methods of extraction. It should be mentioned
that for finite systems, this approximate parametrization works not only at the critical point, but also for
first-order phase transition@t least in some modelsThus the approximate fit is no guarantee that one is
seeing a critical phenomenon. A different but more conventional search for the nuclear phase transition would
look for a maximum in the specific heat as a function of temperalyrdn this caserT, is interpreted as the
phase transition temperature. Ideally and T, would coincide. We invesigate this possibility, both in theory
and from the ISiS data, performing both canoni¢Bl and microcanonicalg=E*/A) calculations. Although
more than one value df, can be extracted from the approximate parametrization, the work here points to the
best value from among the choices. Several interesting results, seen in theoretical calculations, are borne out in

experiment.
DOI: 10.1103/PhysRevC.66.044602 PACS nuner25.70~z, 25.75.Ld
[. INTRODUCTION disintegrates and thus the above parametrization is only ap-

proximate. Hence the values of the parameters can be ex-
In studies of phase transitions in the disintegration oftracted in more than one way and these values may not be
highly excited heavy nuclei, a popular path for deducing thethe same. We point out that when the Coulomb force is con-
occurrence of a phase transition is to examine the yields ofidered different methods of extracting the phase transition
composites. These are readily available from experimentatnergy yield dramatically different results.
data and hence have been the focus of many theoretical stud- Alternative but perhaps more common tools for studies of
ies[1]. The usual practice if2] to use a parametrization phase transition in other fields of physics are measurements
of compressibility, specific heat, etc. Experimental data for
Y(z)=z""f(z°(T—Typ)) (1.1)  specific heat were studied in the nuclear case and were in-
deed the cause of great excitemg3it
We have therefore two distinct ways of trying to deduce a
phase transition energy: from the distribution of composites
as the excitation energy is varidds explained, even here
there can be more than one valu@, what may be more
difficult but achievable, to locate an extremum of the specific
Y(2)=2 "f(z%(e—ey)). (1.2) heat. Wella.bel the excitatiqn energy at which the specific
heat maximises as,. We will show that two ways of ex-
Here e=E*/A, the excitation energy per nucleon, aggl  tractinge, from Eq.(1.1) or (1.2) lead to different values for
would be the phase transition energy. Formulasl) and  this parameter. We will label theey ande; . It is not obvi-
(1.2) assume that the thermodynamic limit is reached. Inous that the values of,, e;, ande, are close, although
practice, in the nuclear case we have a finite system thg&tom the seminal work of Coniglio and Kleij#] on cluster
formation this result could be anticipated.
We have compared both approaches in the nuclear case in
*Present address: Laboratoire de Physique Corpusculaire de Caghge framework of two models. Although the models are very

and extract values of, o, andT,, which occur in models of
critical phenomeng2]. Herezis the charge of the composite,
the parameters and o are critical exponents, anf, is the
critical temperature. Alternately, in a microcanonical formal-
ism one would write

F-14050 Caen Cedex, France. different and each has its own strengths and weaknesses,
"Present address: Los Alamos National Laboratory, Los Alamosboth reveal the following interesting features. If we switch
NM 87545, off the Coulomb interaction between protons, the deduced

0556-2813/2002/6@)/0446027)/$20.00 66 044602-1 ©2002 The American Physical Society



C. B. DASet al. PHYSICAL REVIEW C 66, 044602 (2002

phase transition energies,, e; , ande,, are close. With the or otherwise[12]. The parametrization of Eq1.1) requires
inclusion of the Coulomb forces; ande; begin to diverge. that the chargéz) not extend to extremely small valugg|.

For a nucleus of the size df’Au, the case we study and for In the nuclear case it is also not too big since the disassem-
which fragmentation data exist, the difference in the value®ling system itself is quite small. We limit between 3 and

of e; ande] is significant. Furthermore, one of these valuesl?, which is similar to most published work on the subject.
stays close to the value at which the specific heat maximizeSince the fit is expected to be only approximate, there is
and gives a good measure of the phase transition energy. More than one prescription for getting the “best” parameters.

The two models we use are the lattice gas mgH&IM) In the following five steps, we outline the procedure for ex-
[1,5] and a thermodynamic modg8,7]. The second model is  tracting the values oé; ande; [13].
close in spirit to the statistical multifragmentation model of (1) If Eq. (1.2) were exact, then &=e, we would have
Copenhagefi8]. We choose to use a microcanonical simula-2[In Y(2)—In C+7In Z*=0, as each individual term in the
tion for LGM. So here the primary quantity is the excitation Sum would be zero. Of course Ed..2) is not exact and thus
energye per particle, and a temperature can be derived afthe sum above will not be zero at any valueeoHowever,
terwards[9]. For the thermodynamic model, we do a canoni-the following are valid questions. At any givenhow well
cal calculation so that the temperature is the primary pararrdoes the distribution fit a power law and what is the value of
eter and an excitation energyper particle can be derived 7 that gives a best fit to a power law? At eaghwe get a
afterwards. “best” 7 by a least-square fit, i.e., by minimizing[In Y(2)

In Sec. Il we give details of the LGM calculations. Re- —In C+7In zJ? with respect tor andC. The “goodness” of
sults of the thermodynamic model are presented in Sec. IIfit is given by the smallness of the sum, which we define to
In Sec. IV we investigate the ISiS data within those formal-be x? (there are other definitions gf?):
isms. We present the summary and conclusion in Sec. V.

X25£2 [INY(z)—InC+Inz]? (2.2)
Il. RESULTS FROM LGM N ' '
Numerical techniques for microcanonical simulations
with LGM have been publishef®]. Calculations are done
for fixed E=Ae, where e is the excitation energy per
nucleon. This is the primary quantity for simulations. The
temperature for each simulation can be calculated fiom : 9 . )
— (2E,;,)/3. This is discussed in detail in Rég]. For more While this is quite reasonable, it does not make use of the
discussions about the LGM with Coulomb force we refer toscalmg property”(e—&,). The property can be invoked via

Ref.[10], Sec. Il. Bonds due to nuclear forces are taken to b&" optimum chc_)ice obr afterwards.. The more complicated
—5.33 MeV between unlike particles and 0 between Iikeprocedure that is followed below is designed to give better

particles. The LGM has several drawbacks, the most notices-cal.in.g propertigs. The *bestf vs e curve will usually have
f minimum, which we callr,,.

able being the lack of quantum effects, which leads to arf . - ; .
incorrect caloric curve nedf=0. The LGM has the follow- (2) Defineq=z7(e—e); f(g) has a maximum for some
ing advantages not shared by several other models. It inlue ofq=q: fy,.=f(q). For eachz the yield Y(z) as a
cludes interactions between composites. It incorporates thénction of e has a maximum at some value @f,(2). At
Coulomb interaction in a much more basic fashian the this excitation energy () na=z "fax, Wheref a5, is a con-
nucleonic level than several other models. This is very im- stant independent af This allows us to choose values for
portant for us since this work points to a new effect broughtand f nax Using ay? test.
about solely by the Coulomb interaction. Also the LGM pro-  (3) The value ofr found above will be higher thaf, .
duces particle-stable compositgl®,11] so that the compli- This means if we look foe appropriate forr, two values are
cated problem of subsequent particle evaporation is circumavailable from ther vs e curve(see Fig. 1 The lower value
vented. is chosen as the value ef. The scaling property is badly
All calculations reported here are faf=79 and N  violated by the other choice. The value &f chosen by this
=118 (°’Au). At each total energy we compute averagesprescription will be labelee; .
after 50 000 simulated events. We use(9/p,=0.27) lat- (4) Now that we knowey=e; anden,(2), the excitation
tice sites. at which eactz is maximized, we find from a least squares fit
The extraction of parameters from yielg3q. (1.2)] mer-  the value ofo from the conditiorz’(ey,—e;) =const for all
its consideration. Discussions of this parametrization can ba
found in Ref.[2] where it is used to model a continuous  (5) The scaling law can now be tested by plottivifg) z”
phase transition in an infinite system. As already stated, ones z’(e—e;). Plots for allz should fall on the same graph.
does not expect the above parametrization to be exact except Figure 1 depicts grapHsteps(1) to (3)] with and without
in the thermodynamic limit. For very finite systems as is thethe inclusion of the Coulomb force. In the graphs we also
case with disintegrating nuclei formed in very energeticplot the specific heat per nucleon. We refer to the location of
nuclear collisions, the parametrization is only approximatehe maximum of specific heat @&. The lessons from LGM
and is by no means a signature of a critical phenomenon bubat we like to emphasize can be learned from Figs. 1 and 2.
rather that of a phase transition in a finite system, first ordem Fig. 1 consider first the left pan€ho-Coulomb casge

HereN is the number of terms in the sum. From this step we
have a “best”r and ay? vs e. One obvious choice af, is
that value ofe where x? is minimum (see Ref[14]). The
value ofe, deduced using this criterion will be calleg] .
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Heree, is 11.66 MeV,e, is 12.61 MeV, ance; [defined by  choice in deciding which marks the phase transition point
the minimum of Ref.y?; the prescription of Ref[14]; see  better. However, since an extremum in the value of specific
part (1) abovd is 13.88 MeV. The differences in values are heat is a standard signature of phase transition, our prefer-
small compared to the values themselves. With the CoulomBnce is withe,.
force e; drops well belowe, ande; ; e, ande; stay close.

In Fig. 3 we show that the scaling law is rather well

obeyed arouna;. It is very poorly obeyed aroune; . An IIl. CALCULATIONS WITH A THERMODYNAMIC

interesting plot is the scaling law aroured. This is also MODEL

shown in Fig. 3. O course the scaling arouzyds nowhere Details of the thermodynamic model can be found in sev-
as good as arouneh but it is still better than arounel; (not  eral placeq1,6,7. The physics assumption is that compos-
plotted. ites are formed at an appropriate temperature at a volume

Of the three energies,, e,, ande;, which one marks larger than normal nuclear volume dictated solely by consid-
phase transition better? Without the Coulomb force (2 eration of phase space. Thus the model is close in spirit to
curves have the same general shape, not displaying coexishe statistical multifragmentation model of Copenha@@h
ence and overlap in the charge region used in the analysisith the simplification that the freeze-out volume is assumed
But with the Coulomb forceg; is clearly in the phase coex- to be independent of the partitions. This allows for very
istence region and is below the phase transition en&sgg  quick computation without any Monte Carlo simulations.
Fig. 2. Looking at yields ae, ande;, there is no obvious The inputs for this calculation are the following. Apart from

ate,

ate, 1
/

ate, ]

ate (17.62)

FIG. 2. LGM simulations forY(z) vsz ate,
e,, ande; without the Coulomb forcétop panel
] and with the Coulomb forcébottom paneél In
the top panel botle; ande, are near the energy,
where a maximum in the yield at the highside
1 has just disappeared. Qualitatively, this marks the
phase transition point. But in the bottom panel
where the Coulomb force is included; marks
E an energy when there is still a large fragment.
Thus this is below the phase transition tempera-
ture. However,e, still marks the location when
the maximum at the higlz side has just disap-
] peared. At much largee values (shown arbi-
trarily ate=17.6 MeV ande=14.8 MeV), Y(2)
falls much more rapidly withz.

80
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15

FIG. 3. For different isotopez we plot
z"Y(z) againstz’(e—e;) in the LGM, where the
exponentr is the “best” r ate; and extraction of
o, e, is described in the text. By scaling one
means that curves for differeats coalesce into
one. This is approximately true for scaling around
e; (left pane) but not arounde, (right panel.
Scaling around; is worse(not shown.

50

neutrons and protons, experimental binding energies ankss, Fig. 4 shows thahe=e,—e; increases significantly
ground state spins are used for deuteron, trithle, and  with inclusion of the Coulomb forcérom 1.24 MeV to 5.28
“He. No excited states are included for these. For mass 5 arldeV). Again e; does not seem to mark the point of phase
higher we use the semiempirical formula for binding ener-transition at all(Fig. 5 ande, is a much better candidate.
gies with volume term, surface tension term, symmetry enThis is so in spite of the fact scaling is well obeyed with
ergy, and Coulomb energy. Excited states for composites an@spect tee; and not so well with respect &, or e; (Fig. 6).
included in the Fermi-gas approximation. The Coulomb in-

teraction between different composites is included in the IV. 8 GeV/C =~ ON Au DATA

Wigner-Seitz approximatiof8].

Since this is a canonical calculation, calculations are done It is of interest to check if the conclusions reached in the
for fixed temperatures. For each temperature, the averagBeoretical models are verified in experimental ddt,16).
excitation energy per partide can be calculated. For ComparSeveraI nontrivial issues need to be clarified before this can
sons with LGM, figures are drawn with energy as the abbe attempted. Because the power-law fit is not exact, the
scissa. Table | gives both the temperature and energy fd@Xxtraction ofr from data or theoretical calculation has some
relevant quantities. ambiguity. In previous sections we calculatethy minimiz-

There is no reason to expect results close to the one8d the quantity defined ag® in Eq. (2.1) at eache. But one
calculated using LGM. For example; is lower thane, in  could also minimize
the thermodynamic model but higher in the LGM. Nonethe-

X’=2 [Y(2-Cz T~ (4.9)

TABLE |. The values of the parametees, e,, ande;, corre-
spondingT,, T,, andT;, and 7's at thesee,, e,, e; ate; as : : : :
obtained in LGM and thermodynamic models, for the freeze-ouRch?Js :Jselizlr:gineixmp;g;rln%ntal data, a more standard practice
density of 0.2p,. Values are shown for calculations witt/C) and

without (NC) Coulomb interactions. A [Y(z)-Cz T]z
=2 ——G 4.2
LGM LGM THDM THDM a(2)

Parameters (NC) (WC) (NC) (WC)

where often thes’s are statistical errors. The difference in
e 11.66 3.60 6.77 0.75 the value ofr extracted by minimizing Eq2.1) or Eq.(4.2)
T 4.46 1.95 7.53 2.94 can be significant or small. In theoretically calculated values
7(ey) 1.964 1771 2.77 2.36 of Y(z) the difference is small. But if we take the experi-
€ 12.61 8.38 8.01 6.03 mental values ofr(z), a more significant difference in val-
T, 4.62 3.38 7.715 6.445 ues is found depending on whether we use @dl) or Eq.
7(ey) 1.824 1.251 2.44 1.55 (4.1). For the experimental data of 8 Ge#r~ on gold, the
e; 13.88 10.5 7.54 4.94 results of using Eqg2.1), (4.1), and(4.2) are shown in Fig.
T 4.88 3.82 7.65 6.05 7. One can give crude arguments that minimizing &91)
(e}) 2.544 1.851 253 1.42 rather than Eq(4.1) means thatY(z)'s of higher z's are

preferentially fitted. 1M 18], Eq. (4.2 was chosen.
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FIG. 4. Similar to Fig. 1 except the calcula-
tion is with the thermodynamic modéSec. Il)),
with a freeze-out density 0.24. Again note that
with the inclusion of the Coulomb forceNC),
Ae=e,—e; increases substantially compared to
no Coulomb(NC) case.

In order to compare the experimental results to the theo- We also test the scaling aroued (Fig. 8 although some
retical calculations we have taken the experimental yieldgualifying comments need to be made about this figure. In
Y(2)’s, ignored all errors and repeated the calculations deexperiments, the source size as well as the charge of the
scribed in Sec. Il. We show in Fig. 7 the results of thisthermal source depend upenThe scaling law, which spans
analysis. Qualitatively, the results are similar to the theorete values on either side &f; , assumes constant sources size
ical results(Figs. 1 and % In those two figures the minimum as well as constant charge. Thus the scaling law cannot be
in 7 occurs at very low excitation energy for the WC case.directly tested without additional corrections renormalizing
For the experimental data the minimum, if it exists, is also athe yieldsY(z) to compensate for changes in the source size
a low value, below 1.5 MeV. More interesting is the right and charge. This was not done heftdowever, ther values
panel of Fig. 7 where we plot the experimental specific heatind the values o§? should be insensitive to such changes
and find the maximum in specific heat coincides quite wellalthough we do require that for a giventhe source size and
with the minimum ofy? (this ise}). This agreement is also charge remain unchanged. This last condition is approxi-
quite close to the theoretical predictions. The specific heamately obeyed.

was extracted by differentiating with respectlicthe experi-

We can summarize the results of the comparison with

mental caloric curve obtained for the same data set by Ruexperimental data as follows. In the data the maximum of

angmaet al. [19].
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specific heat ¢,) and the minimum ofy?, e; both aree

FIG. 5. Similar to Fig. 2 except the calcula-
tion is with the thermodynamic modéSec. Il)).
Again with (WC) and without(NC) the Coulomb
interaction,e, continues to be a better mark for
the point of phase transition energy. Without the
Coulomb bothe; ande, are acceptable. At higher
energies(chosen arbitrarily ae=10.8 MeV and
13.45 Me\) the drops of yields witle are much
faster.
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FIG. 6. Similar to Fig. 3 except that the ther-
modynamic model is used and scaling is tested
arounde;, e,, ande; .
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~4MeVwith a value ofr about 2.1 andr about 0.53. Thisis Eqg.(1.2) (e; is the value ok, that gives the best scaling and
very close to to the results of Ellioét al.[20] for the same  e; is the value ofe, where deviation from the power law is
data set using Fisher’s droplet model approach and Berkenhe leasy, and the thirdge,, is obtained from an extremum in
buschet al. [21] using a percolation model. For percolation, the specific heat. In an ideal situation, all three would have
the excitation energy was defined as the critical excitationhe same value. In theoretical models they are close if the
energy in the sense of a second order phase transition. Tk®ulomb force is omitted. The Coulomb force makes a sub-
thermodynamic model, which has no adjustable parametergantial splitting betweee; ande}, indicating the sensitiv-

and only a first order phase transition, reproduces trends Gfy of the extracted thermodynamic quantities to this interac-
the data very well although bot#y ando are higher, 6 MeV

) tion. We find thate; gives a better measure of the phase
and 0.96, respectively. , L _ transition energy and it stays closed@ In the experimental
Since source sizes change with excitation per particle, W@ .- hat we considerez| ande, follow this pattern

tested the sensitivity of model calculations with regard to The quantitative results aré dependent upon .freeze-out

size usir_lg _the thermodynamic_ ”.‘Ode'- Table 1l gives the "€ densities and the source sizes but not sensitively so.

sultls. Within the range of variation of relevance to the_ ex Lastly, we have not discussed the order of phase transition

perimental data the changes are small, though not r]eg'“g'bl"?fiut the model calculations in Secs. Il and Il imply a first-
V. SUMMARY AND CONCLUSION order phase transition. In this interpretation, depending upon

the excitation energy, most fragments are emitted while in-
We have discussed three characteristic excitation energiesde the coexistence region of the phase diagt@md possi-
(equivalently, temperaturggwo of them have their origin in  bly the spinodal regionand the extracted “critical” excita-

275 °
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+

[

|

+
T

25| 075 |

=T

FIG. 7. The left panel shows the values of
- extracted from the ISiS data using three different
B fomulas:(a) by minimizing the right hand side of
T e Eq. (2.1) at eache value, (b) by minimizing the
i right hand side of Eq(4.1), and(c) by minimiz-
A ing the right hand side of Eq4.2). In the right
panelC, from data andy? [Eg. (2.1)] calculated
from data are plotted. The minimum gf and

maximum of Cy coincide within experimental
uncertainty.
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5 ‘ ‘ TABLE Il. The values of the parameters for two different sizes
of the fragmenting source as obtained in the thermodynamic model,
4 .5 for a freeze-out density of 0.24.
. " ? N=118 N=101
- 8 Parameters Z=79 Z=68
g . ?o e 0.75 1.01
N [ 11 T, 2.94 3.46
7(ey) 2.36 2.35
e, 6.03 5.90
' T, 6.445 6.40
7(ey) 1.55 1.49
er 4.94 4.91
1 ) ‘ T 6.05 6.05
-10 - / 10 20 ,
2(e-e,) 7(eq 1.42 1.41

FIG. 8. Scaling behavior associated with the ISiS data

arounde, . crease in fragment emission time, and the onset of collective

radial expansion aboveAdMeV of excitation energy, which
were interpreted as signatures for bulk emission. It is also
consistent with the flattening of the caloric curve from which
the heat capacity was extractgib].

tion energy indicates the boiling point. As pointed out earlier,
the boiling point is at a similar excitation energy as the criti-
cal point found by Elliottet al. [20] from an analysis based
on the Fisher droplet model and Berkenbusathal. [21]
based on percolation theory. Further discussions of critical
phenomen420,2]] in disassembly of hot nuclei as opposed  This work was supported in part by the Natural Sciences
to first-order phase transition in the disassembly can band Engineering Research Council of Canada andieby
found in Refs[12,22,23. Fonds pour la Formation de Chercheurs et I'aidelaaRe-

A first-order phase transition is consistent with recent obcherche du Queec Experiment E900 was supported by the
servations by the ISiS collaboratiqi6,24,29 of a strong U.S. Department of Energy and the National Science Foun-
increase in fragment production probability, a strong de-dation.
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