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Tracking the phase-transition energy in the disassembly of hot nuclei
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In efforts to determine phase transitions in the disintegration of highly excited heavy nuclei, a popular
practice is to parametrize the yields of isotopes as a function of temperature in the formY(z)5z2t f „zs(T
2T0)…, whereY(z)’s are the measured yields andt, s, andT0 are fitted to the yields. HereT0 would be
interpreted as the phase transition temperature. For finite systems such as those obtained in nuclear collisions,
this parametrization is only approximate and hence allows for extraction ofT0 in more than one way. In this
work we look in detail at how values ofT0 differ, depending on methods of extraction. It should be mentioned
that for finite systems, this approximate parametrization works not only at the critical point, but also for
first-order phase transitions~at least in some models!. Thus the approximate fit is no guarantee that one is
seeing a critical phenomenon. A different but more conventional search for the nuclear phase transition would
look for a maximum in the specific heat as a function of temperatureT2. In this caseT2 is interpreted as the
phase transition temperature. IdeallyT0 andT2 would coincide. We invesigate this possibility, both in theory
and from the ISiS data, performing both canonical~T! and microcanonical (e5E* /A) calculations. Although
more than one value ofT0 can be extracted from the approximate parametrization, the work here points to the
best value from among the choices. Several interesting results, seen in theoretical calculations, are borne out in
experiment.

DOI: 10.1103/PhysRevC.66.044602 PACS number~s!: 25.70.2z, 25.75.Ld
o
th
s
nt
st

,

al

I
th

ap-
ex-

t be
on-
tion

of
ents
for

in-

a
tes
e

ific
ific

se in
ry
ses,

ch
ced

a

o

I. INTRODUCTION

In studies of phase transitions in the disintegration
highly excited heavy nuclei, a popular path for deducing
occurrence of a phase transition is to examine the yield
composites. These are readily available from experime
data and hence have been the focus of many theoretical
ies @1#. The usual practice is@2# to use a parametrization

Y~z!5z2t f „zs~T2T0!… ~1.1!

and extract values oft, s, andT0, which occur in models of
critical phenomena@2#. Herez is the charge of the composite
the parameterst ands are critical exponents, andT0 is the
critical temperature. Alternately, in a microcanonical form
ism one would write

Y~z!5z2t f „zs~e2e0!…. ~1.2!

Here e5E* /A, the excitation energy per nucleon, ande0
would be the phase transition energy. Formulas~1.1! and
~1.2! assume that the thermodynamic limit is reached.
practice, in the nuclear case we have a finite system
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disintegrates and thus the above parametrization is only
proximate. Hence the values of the parameters can be
tracted in more than one way and these values may no
the same. We point out that when the Coulomb force is c
sidered different methods of extracting the phase transi
energy yield dramatically different results.

Alternative but perhaps more common tools for studies
phase transition in other fields of physics are measurem
of compressibility, specific heat, etc. Experimental data
specific heat were studied in the nuclear case and were
deed the cause of great excitement@3#.

We have therefore two distinct ways of trying to deduce
phase transition energy: from the distribution of composi
as the excitation energy is varied~as explained, even her
there can be more than one value! or, what may be more
difficult but achievable, to locate an extremum of the spec
heat. We label the excitation energy at which the spec
heat maximises ase2. We will show that two ways of ex-
tractinge0 from Eq.~1.1! or ~1.2! lead to different values for
this parameter. We will label theme1 ande18 . It is not obvi-
ous that the values ofe1 , e18 , and e2 are close, although
from the seminal work of Coniglio and Klein@4# on cluster
formation this result could be anticipated.

We have compared both approaches in the nuclear ca
the framework of two models. Although the models are ve
different and each has its own strengths and weaknes
both reveal the following interesting features. If we swit
off the Coulomb interaction between protons, the dedu

en,
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phase transition energies,e1 , e18 , ande2, are close. With the
inclusion of the Coulomb force,e1 ande18 begin to diverge.
For a nucleus of the size of197Au, the case we study and fo
which fragmentation data exist, the difference in the valu
of e1 ande18 is significant. Furthermore, one of these valu
stays close to the value at which the specific heat maxim
and gives a good measure of the phase transition energ

The two models we use are the lattice gas model~LGM!
@1,5# and a thermodynamic model@6,7#. The second model is
close in spirit to the statistical multifragmentation model
Copenhagen@8#. We choose to use a microcanonical simu
tion for LGM. So here the primary quantity is the excitatio
energye per particle, and a temperature can be derived
terwards@9#. For the thermodynamic model, we do a cano
cal calculation so that the temperature is the primary par
eter and an excitation energye per particle can be derive
afterwards.

In Sec. II we give details of the LGM calculations. R
sults of the thermodynamic model are presented in Sec.
In Sec. IV we investigate the ISiS data within those form
isms. We present the summary and conclusion in Sec. V

II. RESULTS FROM LGM

Numerical techniques for microcanonical simulatio
with LGM have been published@9#. Calculations are done
for fixed E5Ae, where e is the excitation energy pe
nucleon. This is the primary quantity for simulations. T
temperature for each simulation can be calculated fromT
5^2Ekin&/3. This is discussed in detail in Ref.@9#. For more
discussions about the LGM with Coulomb force we refer
Ref. @10#, Sec. II. Bonds due to nuclear forces are taken to
25.33 MeV between unlike particles and 0 between l
particles. The LGM has several drawbacks, the most not
able being the lack of quantum effects, which leads to
incorrect caloric curve nearT50. The LGM has the follow-
ing advantages not shared by several other models. It
cludes interactions between composites. It incorporates
Coulomb interaction in a much more basic fashion~at the
nucleonic level! than several other models. This is very im
portant for us since this work points to a new effect brou
about solely by the Coulomb interaction. Also the LGM pr
duces particle-stable composites@10,11# so that the compli-
cated problem of subsequent particle evaporation is circ
vented.

All calculations reported here are forZ579 and N
5118 (197Au). At each total energy we compute averag
after 50 000 simulated events. We use 93 (r/r050.27) lat-
tice sites.

The extraction of parameters from yields@Eq. ~1.2!# mer-
its consideration. Discussions of this parametrization can
found in Ref. @2# where it is used to model a continuou
phase transition in an infinite system. As already stated,
does not expect the above parametrization to be exact ex
in the thermodynamic limit. For very finite systems as is t
case with disintegrating nuclei formed in very energe
nuclear collisions, the parametrization is only approxim
and is by no means a signature of a critical phenomenon
rather that of a phase transition in a finite system, first or
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or otherwise@12#. The parametrization of Eq.~1.1! requires
that the charge~z! not extend to extremely small values@2#.
In the nuclear case it is also not too big since the disass
bling system itself is quite small. We limitz between 3 and
17, which is similar to most published work on the subje
Since the fit is expected to be only approximate, there
more than one prescription for getting the ‘‘best’’ paramete
In the following five steps, we outline the procedure for e
tracting the values ofe1 ande18 @13#.

~1! If Eq. ~1.2! were exact, then ate5e0 we would have
(@ ln Y(z)2ln C1t ln z#250, as each individual term in the
sum would be zero. Of course Eq.~1.2! is not exact and thus
the sum above will not be zero at any value ofe. However,
the following are valid questions. At any givene how well
does the distribution fit a power law and what is the value
t that gives a best fit to a power law? At eache we get a
‘‘best’’ t by a least-square fit, i.e., by minimizing(@ ln Y(z)
2ln C1t ln z#2 with respect tot andC. The ‘‘goodness’’ of
fit is given by the smallness of the sum, which we define
be x2 ~there are other definitions ofx2):

x2[
1

N ( @ ln Y~z!2 ln C1 ln z#2. ~2.1!

HereN is the number of terms in the sum. From this step
have a ‘‘best’’t and ax2 vs e. One obvious choice ofe0 is
that value ofe wherex2 is minimum ~see Ref.@14#!. The
value of e0 deduced using this criterion will be callede18 .
While this is quite reasonable, it does not make use of
scaling propertyzs(e2e0). The property can be invoked vi
an optimum choice ofs afterwards. The more complicate
procedure that is followed below is designed to give be
scaling properties. The ‘‘best’’t vs e curve will usually have
a minimum, which we calltmin .

~2! Defineq5zs(e2e0); f (q) has a maximum for some
value of q5q̃: f max5f(q̃). For eachz the yield Y(z) as a
function of e has a maximum at some value ofemax(z). At
this excitation energyY(z)max5z2tfmax, wheref max is a con-
stant independent ofz. This allows us to choose values fort
and f max using ax2 test.

~3! The value oft found above will be higher thantmin .
This means if we look fore appropriate fort, two values are
available from thet vs e curve~see Fig. 1!. The lower value
is chosen as the value ofe0. The scaling property is badly
violated by the other choice. The value ofe0 chosen by this
prescription will be labelede1.

~4! Now that we knowe05e1 andemax(z), the excitation
at which eachz is maximized, we find from a least squares
the value ofs from the conditionzs(emax2e1)5const for all
z.

~5! The scaling law can now be tested by plottingY(z)zt

vs zs(e2e1). Plots for allz should fall on the same graph
Figure 1 depicts graphs@steps~1! to ~3!# with and without

the inclusion of the Coulomb force. In the graphs we a
plot the specific heat per nucleon. We refer to the location
the maximum of specific heat ase2. The lessons from LGM
that we like to emphasize can be learned from Figs. 1 an
In Fig. 1 consider first the left panel~no-Coulomb case!.
2-2
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FIG. 1. In this figure we show ‘‘best’’t and
x2 vs e @step~1!, Sec. II# and alsoCV vs e for the
LGM calculation. The horizontal line below 2 is
straight line drawn at the value oft from step~2!,
Sec. II. The locationse1 , e2, ande18 are the val-
ues ofe for the scaling fit, maximum of specific
heat, and the minimum ofx2. The left panel is a
LGM calculation without any Coulomb force; th
right panel is with the inclusion of the Coulom
force. Notice the increase ofDe5e22e1 when
Coulomb is included.
re
m

ll

x
ys
-

int
ific
fer-

ev-
s-
me
id-
t to

ed
ry
s.
m

Heree1 is 11.66 MeV,e2 is 12.61 MeV, ande18 @defined by
the minimum of Ref.x2; the prescription of Ref.@14#; see
part ~1! above# is 13.88 MeV. The differences in values a
small compared to the values themselves. With the Coulo
force e1 drops well belowe2 ande18 ; e2 ande18 stay close.

In Fig. 3 we show that the scaling law is rather we
obeyed arounde1. It is very poorly obeyed arounde18 . An
interesting plot is the scaling law arounde2. This is also
shown in Fig. 3. Of course the scaling arounde2 is nowhere
as good as arounde1 but it is still better than arounde18 ~not
plotted!.

Of the three energiese1 , e2, and e18 , which one marks
phase transition better? Without the Coulomb force, theY(z)
curves have the same general shape, not displaying coe
ence and overlap in the charge region used in the anal
But with the Coulomb force,e1 is clearly in the phase coex
istence region and is below the phase transition energy~see
Fig. 2!. Looking at yields ate2 ande18 , there is no obvious
04460
b
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choice in deciding which marks the phase transition po
better. However, since an extremum in the value of spec
heat is a standard signature of phase transition, our pre
ence is withe2.

III. CALCULATIONS WITH A THERMODYNAMIC
MODEL

Details of the thermodynamic model can be found in s
eral places@1,6,7#. The physics assumption is that compo
ites are formed at an appropriate temperature at a volu
larger than normal nuclear volume dictated solely by cons
eration of phase space. Thus the model is close in spiri
the statistical multifragmentation model of Copenhagen@8#
with the simplification that the freeze-out volume is assum
to be independent of the partitions. This allows for ve
quick computation without any Monte Carlo simulation
The inputs for this calculation are the following. Apart fro
,

he
el

t.
ra-
FIG. 2. LGM simulations forY(z) vs z at e1 ,
e2, ande18 without the Coulomb force~top panel!
and with the Coulomb force~bottom panel!. In
the top panel bothe1 ande2 are near the energy
where a maximum in the yield at the highz side
has just disappeared. Qualitatively, this marks t
phase transition point. But in the bottom pan
where the Coulomb force is included,e1 marks
an energy when there is still a large fragmen
Thus this is below the phase transition tempe
ture. However,e2 still marks the location when
the maximum at the highz side has just disap-
peared. At much largere values ~shown arbi-
trarily at e517.6 MeV ande514.8 MeV), Y(z)
falls much more rapidly withz.
2-3
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FIG. 3. For different isotopesz we plot
ztY(z) againstzs(e2e1) in the LGM, where the
exponentt is the ‘‘best’’ t at e1 and extraction of
s, e1 is described in the text. By scaling on
means that curves for differentz’s coalesce into
one. This is approximately true for scaling aroun
e1 ~left panel! but not arounde2 ~right panel!.
Scaling arounde18 is worse~not shown!.
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neutrons and protons, experimental binding energies
ground state spins are used for deuteron, triton,3He, and
4He. No excited states are included for these. For mass 5
higher we use the semiempirical formula for binding en
gies with volume term, surface tension term, symmetry
ergy, and Coulomb energy. Excited states for composites
included in the Fermi-gas approximation. The Coulomb
teraction between different composites is included in
Wigner-Seitz approximation@8#.

Since this is a canonical calculation, calculations are d
for fixed temperatures. For each temperature, the ave
excitation energy per particle can be calculated. For comp
sons with LGM, figures are drawn with energy as the a
scissa. Table I gives both the temperature and energy
relevant quantities.

There is no reason to expect results close to the o
calculated using LGM. For example,e18 is lower thane2 in
the thermodynamic model but higher in the LGM. Noneth

TABLE I. The values of the parameterse1 , e2, ande18 , corre-
spondingT1 , T2, and T18 , and t ’s at thesee1 , e2 , e18 at e1 as
obtained in LGM and thermodynamic models, for the freeze-
density of 0.27r0. Values are shown for calculations with~WC! and
without ~NC! Coulomb interactions.

Parameters
LGM
~NC!

LGM
~WC!

THDM
~NC!

THDM
~WC!

e1 11.66 3.60 6.77 0.75
T1 4.46 1.95 7.53 2.94
t(e1) 1.964 1.771 2.77 2.36
e2 12.61 8.38 8.01 6.03
T2 4.62 3.38 7.715 6.445
t(e2) 1.824 1.251 2.44 1.55
e18 13.88 10.5 7.54 4.94
T18 4.88 3.82 7.65 6.05
t(e18) 2.544 1.851 2.53 1.42
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less, Fig. 4 shows thatDe5e22e1 increases significantly
with inclusion of the Coulomb force~from 1.24 MeV to 5.28
MeV!. Again e1 does not seem to mark the point of pha
transition at all~Fig. 5! and e2 is a much better candidate
This is so in spite of the fact scaling is well obeyed wi
respect toe1 and not so well with respect toe2 or e18 ~Fig. 6!.

IV. 8 GeVÕC pÀ ON Au DATA

It is of interest to check if the conclusions reached in t
theoretical models are verified in experimental data@15,16#.
Several nontrivial issues need to be clarified before this
be attempted. Because the power-law fit is not exact,
extraction oft from data or theoretical calculation has som
ambiguity. In previous sections we calculatedt by minimiz-
ing the quantity defined asx2 in Eq. ~2.1! at eache. But one
could also minimize

x̃2[( @Y~z!2Cz2t#2. ~4.1!

If one is using experimental data, a more standard prac
would be to minimize@17#

x̂2[(
@Y~z!2Cz2t#2

s~z!2
, ~4.2!

where often thes ’s are statistical errors. The difference
the value oft extracted by minimizing Eq.~2.1! or Eq.~4.1!
can be significant or small. In theoretically calculated valu
of Y(z) the difference is small. But if we take the exper
mental values ofY(z), a more significant difference in val
ues is found depending on whether we use Eq.~2.1! or Eq.
~4.1!. For the experimental data of 8 GeV/c p2 on gold, the
results of using Eqs.~2.1!, ~4.1!, and~4.2! are shown in Fig.
7. One can give crude arguments that minimizing Eq.~2.1!
rather than Eq.~4.1! means thatY(z)’s of higher z’s are
preferentially fitted. In@18#, Eq. ~4.2! was chosen.

t

2-4
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FIG. 4. Similar to Fig. 1 except the calcula
tion is with the thermodynamic model~Sec. III!,
with a freeze-out density 0.27r0. Again note that
with the inclusion of the Coulomb force~WC!,
De5e22e1 increases substantially compared
no Coulomb~NC! case.
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In order to compare the experimental results to the th
retical calculations we have taken the experimental yie
Y(z)’s, ignored all errors and repeated the calculations
scribed in Sec. II. We show in Fig. 7 the results of th
analysis. Qualitatively, the results are similar to the theo
ical results~Figs. 1 and 4!. In those two figures the minimum
in t occurs at very low excitation energy for the WC cas
For the experimental data the minimum, if it exists, is also
a low value, below 1.5 MeV. More interesting is the rig
panel of Fig. 7 where we plot the experimental specific h
and find the maximum in specific heat coincides quite w
with the minimum ofx2 ~this is e18). This agreement is also
quite close to the theoretical predictions. The specific h
was extracted by differentiating with respect toT, the experi-
mental caloric curve obtained for the same data set by
angmaet al. @19#.
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We also test the scaling arounde18 ~Fig. 8! although some
qualifying comments need to be made about this figure
experiments, the source size as well as the charge of
thermal source depend upone. The scaling law, which span
e values on either side ofe18 , assumes constant sources s
as well as constant charge. Thus the scaling law canno
directly tested without additional corrections renormalizi
the yieldsY(z) to compensate for changes in the source s
and charge. This was not done here.~However, thet values
and the values ofx2 should be insensitive to such chang
although we do require that for a givene, the source size and
charge remain unchanged. This last condition is appro
mately obeyed.!

We can summarize the results of the comparison w
experimental data as follows. In the data the maximum
specific heat (e2) and the minimum ofx2, e18 both aree
-

r
e

r

FIG. 5. Similar to Fig. 2 except the calcula
tion is with the thermodynamic model~Sec. III!.
Again with ~WC! and without~NC! the Coulomb
interaction,e2 continues to be a better mark fo
the point of phase transition energy. Without th
Coulomb bothe1 ande2 are acceptable. At highe
energies~chosen arbitrarily ate510.8 MeV and
13.45 MeV! the drops of yields withz are much
faster.
2-5
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FIG. 6. Similar to Fig. 3 except that the the
modynamic model is used and scaling is test
arounde1 , e2, ande18 .
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'4MeVwith a value oft about 2.1 ands about 0.53. This is
very close to to the results of Elliottet al. @20# for the same
data set using Fisher’s droplet model approach and Ber
buschet al. @21# using a percolation model. For percolatio
the excitation energy was defined as the critical excitat
energy in the sense of a second order phase transition.
thermodynamic model, which has no adjustable parame
and only a first order phase transition, reproduces trend
the data very well although bothe2 ands are higher, 6 MeV
and 0.96, respectively.

Since source sizes change with excitation per particle,
tested the sensitivity of model calculations with regard
size using the thermodynamic model. Table II gives the
sults. Within the range of variation of relevance to the e
perimental data the changes are small, though not neglig

V. SUMMARY AND CONCLUSION

We have discussed three characteristic excitation ener
~equivalently, temperatures!: two of them have their origin in
04460
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Eq. ~1.2! (e1 is the value ofe0 that gives the best scaling an
e18 is the value ofe0 where deviation from the power law i
the least!, and the third,e2, is obtained from an extremum in
the specific heat. In an ideal situation, all three would ha
the same value. In theoretical models they are close if
Coulomb force is omitted. The Coulomb force makes a s
stantial splitting betweene1 ande18 , indicating the sensitiv-
ity of the extracted thermodynamic quantities to this inter
tion. We find thate18 gives a better measure of the pha
transition energy and it stays close toe2. In the experimental
data that we considerede18 ande2 follow this pattern.

The quantitative results are dependent upon freeze
densities and the source sizes but not sensitively so.

Lastly, we have not discussed the order of phase transi
but the model calculations in Secs. II and III imply a firs
order phase transition. In this interpretation, depending u
the excitation energy, most fragments are emitted while
side the coexistence region of the phase diagram~and possi-
bly the spinodal region! and the extracted ‘‘critical’’ excita-
nt
f

FIG. 7. The left panel shows the values oft
extracted from the ISiS data using three differe
fomulas:~a! by minimizing the right hand side o
Eq. ~2.1! at eache value, ~b! by minimizing the
right hand side of Eq.~4.1!, and~c! by minimiz-
ing the right hand side of Eq.~4.2!. In the right
panelCV from data andx2 @Eq. ~2.1!# calculated
from data are plotted. The minimum ofx2 and
maximum of CV coincide within experimental
uncertainty.
2-6
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TRACKING THE PHASE-TRANSITION ENERGY IN THE . . . PHYSICAL REVIEW C 66, 044602 ~2002!
tion energy indicates the boiling point. As pointed out earl
the boiling point is at a similar excitation energy as the cr
cal point found by Elliottet al. @20# from an analysis base
on the Fisher droplet model and Berkenbuschet al. @21#
based on percolation theory. Further discussions of crit
phenomena@20,21# in disassembly of hot nuclei as oppos
to first-order phase transition in the disassembly can
found in Refs.@12,22,23#.

A first-order phase transition is consistent with recent
servations by the ISiS collaboration@16,24,25# of a strong
increase in fragment production probability, a strong d

FIG. 8. Scaling behavior associated with the ISiS da
arounde18 .
l.

e

d
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crease in fragment emission time, and the onset of collec
radial expansion above 4A MeV of excitation energy, which
were interpreted as signatures for bulk emission. It is a
consistent with the flattening of the caloric curve from whi
the heat capacity was extracted@19#.
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TABLE II. The values of the parameters for two different siz
of the fragmenting source as obtained in the thermodynamic mo
for a freeze-out density of 0.27r0.

N5118 N5101
Parameters Z579 Z568

e1 0.75 1.01
T1 2.94 3.46
t(e1) 2.36 2.35
e2 6.03 5.90
T2 6.445 6.40
t(e2) 1.55 1.49
e18 4.94 4.91
T18 6.05 6.05
t(e18) 1.42 1.41
er-

,
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