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Algebraic solutions of mean-field plusT=1 pairing interaction
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A general procedure, based on the Bethe ansatz, is proposed for finding algebraic solutions for low-lying
J=0 states of R nucleons interacting with one another through-al charge-independent pairing interaction.
The results provided by Richardson are shown to be valid for up to two p&i®; expressions are given here
for up to three pairsk<3. The results show that a set of highly nonlinear equations must be solved
for k=3.
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I. INTRODUCTION zero states for up to six nucleon are provided in Sec. IV. The
results show that a set of highly nonlinear equations will

Pairing has long been considered to be an important inenter whenever the number of nucleons is greater than or
teraction in nuclei. The concept was first introduced by Raequal to six. Section V is reserved for a short discussion
cah within the context of a seniority coupling schefig. ~ regarding implications of our findings.
Various applications to realistic nuclear systems have been
carried out{2] following suggestions from Bohr, Mottelson, ||. THE T=1 PAIRING HAMILTONIAN AND THE Sp (4)
and Pineg3]. A lot of effort has been dedicated to the pure QUASISPIN STRUCTURE
neutron or pure proton pairing interactions using various ) )
techniques. Extensions to neutron-neutron, neutron-proton, !t is well known[8] that the mean field plu§=1 charge
and proton-proton pairing interactions have been formulatedndependent pairing Hamiltonian can be expressed in terms
[4-7]. It is well known that theT=1 charge-independent Of generators of quasispin groups;8p, wherej labels the
pairing Hamiltonian can be built by using generators of thetotal spin of the cor'resp;)ndmg orbits. Generators q{($p
quasispin group Sp4), wherej labels the orbits considered aré the pair creationAj(x), and the pair annihilation,
in the model space, and from this it also follows that theA;j(x), operators withu=+,—,0; the total nucleon number
pairing Hamiltonian can be diagonalized within a given irre-operatorN; for orbit j; and the isospin operatof,(j):
ducible representatiofirrep) of the direct product group

Spi(4)X---XSp,(4), wherep is the number of orbits. In TN _yi-mat ot -0 _
this case exgpct solutions—even if only generated Ajlr) n12>0 (=D 8 85, fOr w=+.,
numerically—can be givef8]. It is also well known that (2.19
approximate numerical solutions can be obtained by using
the BCS formalisn{9—-11]. N 1 ot "

A lot of effort has been devoted to finding exact analytic Aj(0)= 5{ mzo (=1 Maj, caj ;-

solutions of the nuclear pairing Hamiltonigh2—15. Exten-
sions to a consideration of generalized and orbit-dependent .
pairing interactions have been the focus of recent work based + > (- 1)'_ma;rm,—a;r— m,+ [ (2.1b
on the algebraic Bethe ansatz and infinite-dimensional Lie m=0

algebraic methodsl6-19. A method for finding roots of the

Bethe ansatz equations for the equal strength pairing model Aj(p)= 2 (—1))"™a;_8m, for u=+,—,

that was solved earlier by Richardson has also been proposed m>0

[20]. However, these exact solutions are for proton-proton or (2.29
neutron-neutron pairing interactions only. In this paper, exact

solutions for the mean field plu=1 charge-independent A(0)= \/E[ E (—1)i~ma a

equal strength pairing interaction are revisited using the Be- ] 2] o 1=m,=%jm,+

the ansatz method. We find that the solutions offered by Ri-

chardson[21] and Chen and Richardsdi22,23 are only

valid when the number of pairs is less than or equal to two.
In this paper we introduce a new formulism for solving

the problem. Numerical routines for calculations and

follow-on applications will be introduced elsewhere. In Sec. Nj=2> & m@jm.my T ()=2 alp+am, -

ll, the mean field plusT=1 pairing Hamiltonian and its mim m

Sp(4) quasispin structure are reviewed. In Sec. lll, a general

procedure for solving th&@=1 charge-independent pairing T ()= al _a

Hamiltonian is outlined and detailed results for seniority- momoTm

+ 2 (~1) "y B[ (22D
m>0
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1 [0 = 3N+ To()).AL(—)]=— 8 2AT(—),

To(i)=75 % (ajer,Jrajm,Jr_ajer,fajm,f)v 2.3 2 0 =

[Qj—gNj—TO(j),Aj,(-f—)]:—5“,2A]-T(+),

wherea (ajmm) is the creation(annihilation) operator
imm {%jmmy —IN=To()),AT(0)1=— 6, AT

for a nucleon in the state with angular momentyrangular (2= 2N;=To(1). A (0] S A (0), 24

morrlentulm projectiomn, and isospin projectiom with m¢  whereQ;=j + 3 is the pair degeneracy of orhjitAccording
=+3, —3 These operators satisfy the following commuta-to the ngner Eckart theorem, the pair creation operators

tion refations: Af(p) with {AT(+)——AT(+) A[(0)=A](0),Af(-)
ot ot —AT( )} and the pair ann|h|Iat|on operators (m) with
[T-()A;(=)]=0, [T+()).A;(+)]=0, {4 (+) Aj(=),A(0)=—A;(0),4;(—)=—A, (+)} are
T=1 |rredu0|ble tensor operators, that satisfy the following
[T,(j),AJ.T,(O)]: 5jj/\/§AjT(—), conjugation relation:
. =(—=1D)#AF(- T
[T+(j),A;r,(0)]=—5jjr\/§AJT(+), A](/-L) (-1 [A] (=)' (2.5
The mean field, with single-particle energigsfrom the
[T_(j),AJT,(+)]: —5“,\/EA]T(0), spherical shell model, plus=1 charge-independent pairing

interaction Hamiltonian can be expressed as
[T+().A](—)]=5;:2A](0),
: : A= E eiNj=G X Al(wA(p), (2.6)
[oj—%Nj—Tc)(j),A,-*,(—)]:o, i’w
whereG>0 is the overall pairing interaction strength. Since

A0 AT ST H is invariant under isospin rotation, both the isospin quan-
[A(0).A) (=)]= =4/ \/— (), tum numberT and its third component, with eigenvalue
M+ are good quantum numbers of the system.

1 .
[Aj(+),AjT,(+)]= Sijr| Q- ENJ. ~To(i) ], lll. THE ALGEBRAIC BETHE ANSATZ METHOD
Let{gi(a)} eG,, whereG,, is a semisimple Lie algebra,
[Ai(—),Al.(+)]=0, satisfying
1 [91(@),9j(B)]= 802 K B) (3.
[A(0).A],(+)]= 8 =T, e e

fori,j=1,2,...dim(G), and o,8=1,2,...p, wherep is
; the total number of the orbits considered in the problem, and
[Aj(+).A;,(0)]= 6/ \/—T (i), the cff are the structure constants Gf SupposeG can be
decomposed into three gradings with
. G,=h“@®ni{en®, (3.2
[Aj(_)-A]‘Tr(_)]:5jj’<T0(J)+Qj_EN]), "
whereh is the subalgebra d&, containing the Cartan sub-
1 algebra ofG,, and elements im¢ and those im® satisfy
[A,—(O),A].T,(O)]=5”,(Qj—ENJ-), [Aj(—l—),AJ.T,(—)]:O, the following relations:

[hi<a),h-<ﬁ>]=6a,3§ cihi(a)Vhi(a)eh®, hj(B)eh?,

[Ai(—),A](0)]=~ 5/ [ (i), (3.39
; ) [h(e),A(B)]=8,5A(a)VN(a) ch®, A(B)enf,

[Q;= 3N}, A (+)]= =8 Al (+), (3.3b
oc @ B

[0, 5N, AL(0)]= — 8 AT(0), [h(a),B(B)]*8,4B(a)¥h(a) eh®, B(ﬂ)en_,(a_gd

[Q;—$N; AL (—)]=—8;.Al(-), [A(a),B(B)]<d.gh(a)VA(B) en? | B(ﬁ)ené(.3 »

1IN i) Al -
L= 2Nj+ To] )’Ai’(+)] 0, A class of Hamiltonians with up to two-body interactions

+ andp orbits may be written in terms of the&®,®G,® - - -
[ = 2N+ To()), A (0)]=—&;.A;(0), ®G,, generators as
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where

F|=i2 eah?m)—GEB (A()XB(B)Y, (3.4

1
0 anAn=— fﬁ xMA(X)dx (3.11
whereh;'(«) are elements of the Cartan subalgebra3gf, v 2 Jo

and the tern(A(a) X B(8)){”), which should be an invariant _ _ B
of the Cartan subalgebra, is a scalar with respect to the sul the Fourier-Laurent expansion A{x) around|x|=0 on a

algebrah. Then, one can expresskgparticle excitation state COMPIex plan[% The spectral parametgrand the expansion
as coefficientsQ'™ (x4,X5, . .. X,) should then be determined

by the corresponding eigenvalue equation.
It can be seen that the=1 pairing Hamiltonian(2.6) can
|§?[)\]kM1W)>:PES QM (Xp(1y Xp(2)»+ - - Xp(i) (A(Xp(1)  be regarded as a special example of B34), in which the
o Lie algebraG is Sp(4) and the subalgebra of Sp(4) is
XA(Xp2) X - XA(Xpg) X[ W) U(2)~SUr(2)@U(1), where SY(2) is the isospin algebra,
and U1) is generated by the total number of nucledhdn
(3.9 this paper, we only consider seniority-zero states. Hence, the

where ¢ represents additional quantum numbers that are rd®West-weight state is an isospin scalar. Similar to &),
quired for a unique labeling of the statesis an irrep of the & K Pair excitation eigenstate can be written as
subalgebrdn, 7 denotes a complete set of labels for the irrep
v, [N]¢ is an irrep of the permutation groug, containing
k-boxes in the corresponding Young diagram withabeling
the basis of\], thex; (i=1,2, ... k) on the right-hand-side t t
are spectral parameters, " (x,,%,, ... X,) are expan- XA (Xp() X AT Xp) X - -

sion coefficients that may in general be spectral parameter XAT(Xp(k)ﬁ )|0), (3.12
dependent|lw) is the lowest-weight state satisfying 0

GINM ,TTO>=PZSk QM (Xp(1y Xp(2)* * *  Xpiy)

where|0) is the seniority-zero and isospin scalar state satis-
B(a)|W)=0Va, GO fying 0 Y P
andA(x) is an operator functional di(«) that is dependent
on the spectral parameter

To determine the operator function&(x), one can con-  anqM\]is an irrep ofS, that can be constructed from thk]
struct the following affine Lie algebr& without central ex-  operators of Eq(3.12.

A(p)|0)=0 for w=+,-0, (3.13

tension[16-19: It has been confirmed in exact solutions of the equal
strength pairing problem with only neutron-neutron or
gh=2> €elgi(@), gi(a@)eG,, (3.7)  Proton-proton pairing interactiofi2—19 that the building
a bIocksAL(x) can be expressed as elements of the nonlinear

Gaudin algebra&(SU(2)) with

Al(w)
T _ J
(o 1= i @8 A= 3 e

with n=0,1,2 .. ., which satisfy

for u=+,—. (3.19

It suffices to use the nonlinear Gaudin alget(&p(4)) to

Then, one can rewrite E¢3.4) in terms of generators & construct the eigenstaté3.12), which is generated by
as

p
1
A= h-G(AgxBy)Y. (3.9 9:0= 2 15 39K 319

%Nherep is the total number of orbitgy;(«) are the S4)
generators, and; is the single-particle energy of thgh
orbit.
It should be noted that the possible irrdpg occuring in
[ZIN M, vy) = st QM (Xp(1y Xp(2)+ * * Xp(ky) Eq. (3.12) should be determined by properties of N )
& operators. Because can only take on three different values,
pn=+,—,0, Young diagrams constructed from tho¢s§ op-
X 2 @pan, a0 Xph X2, Xpk erators can have at most three rows. Furthermore, because
1Mk the Schur-Weyl duality relation between the permutation
X(An XA, X+ XA, ><|Iw))(”), group S, and the unitary group W), the irrep[\] v_vith
1 2 k K exactk boxes ofS, can be regarded as the same irrep of
(3.10 U(N). Since the irrep§\] contain at most three rows, in this

The k-particle wave functions can be expanded in terms o
these operators as
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case they can be considered to be equivalent to the sanaad
irreps of U3). Therefore, the possible isospin quantum num-
ber T for a given irrep[\] of S, can be obtained by the

reduction[23] [&AL(x)] AL(0)—AL(0) +G(9(x)——N(x))
U(3)DSQ(3), +G(AT(0)XT(x))?, (4.6)
[N] ] T. (3.16  where(A'(0)x7(x))}, are defined as follows:

The remaining problem is to find the expansion coefficients +

Q™M(x4,x,, . .. X and to establish the Bethe ansatz equa- (AT(0) X T(x));, \/—z AL (00T, ()11, dpo|1u),

tions based on the corresponding eigenvalue equation, which 4.7

will be addressed in the next section.
(Lpq,luo|1u) is the SU2) CG coefficient, the SH(2)
IV. EXACT SOLUTIONS FOR UP TO SIX NUCLEONS rank-1 tensor Operatoff with T+: — \/g T+’ ’TO: TO!

In this section, we use the algebraic Bethe ansatz methdd_ = @T_, and
established in the preceding section to derive exact solutions
for the mean field plusT=1 charge-independent equal Q _2 j 48
strength pairing Hamiltonian problem. The following ele- (x)= T 1-gx’ (4.8
ments of the Gaudin algeb&(Sp(4)) will be useful:

One can easily derive that the eigenvalue is given by

T .
AT( ) 2 (,LL), AM(X):E AJ(ILL),

— e _ 2
1=ex EMT= 4.9
T.(j) o
Tu(x)= 2 1—ex (4.1a  where the spectral parametf) satisfies
2 09]
for u=+,—,0, and X7?5+GQ(X )=0. (4.10
N.
N(x)=>, 1 ; = (4.1  The additional quantum numbérin this case indicates the
I

solutionx(?) is the {th root of Eq.(4.10).

The k=2 case In this case, there are two irreps®f with
[2,0,0] and[1,1,0. The allowed values of are T=2 and
&N( ) T=0 for[2,0,0, andT=1 for [1,1,0. Using the operators

— |40+ G.AT(0)- A(0). 4.2 AL(X), one can construct symmetric and antisymmetric op-
erators with respect to the spectral parameter permutation
X1<>X,. The symmetric ones are

Then, the Hamiltoniari2.6) can be rewritten as
H=

Solving the eigenvalue equation

= N T
H|§,[)\]kM,TT0>:E[;\]kT|§,[}\]kM,TT0> (43) B-II\;ITiZ(XlYXZ)_A+(X1)A+(X2)1 (4113

with the Bethe ansatz wave functi¢.1? implies that one  21d
simultaneously determines the expansion coefficients ,t-g _ + + At T
QM (xy,%,, ... ) and the Bethe ansatz equations that the B0 %)= = AT (xy) - AT () = As (X AZ ()
spe_ctral parameters Xz, . . . X, should satisfy. In the fol- +At(x1)A1(x2)+A$(x1)A$(x2). (4.11H
lowing, we will list exact solutions fok<3.
The k=1 case Since thek=0 case is trivial, correspond- The antisymmetric one is
ing to a zero eigenvalue with the seniority zero eigenstate
|0, our derivation starts witk=1. In this case, the eigen- PI 7 (x1.X) = V2(AT(x) X AT(Xp))}, (412
state can be written, up to a constant, as
which is similar to the definition given in Eq4.7). Using
|£;[1],T=1, MT=M)=AL(X(5))|O>. (4.4  these operators, one can easily obtain the corresponding
wave function for thek=2 cases. It can be proven that the
It follows that the expansion coefficie@!*(x) can be taken  eigenenergies for both symmetric and antisymmetric case are
simply as a constant. Using the commutation relations all given by

N(X) Ll2 . 2, bt 2 2
X _ !AM(X) _;AM(X)_;AM(O) (45) E 2 ;:(sz"-szzj (4.13
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For [2,0,0] and T=2, spectral parameters andx, should 2 2
satisfy ;@5+GQ(X(15))=O, ;(5+GQ(x<24>)=o. (4.20
1 2

%JFGQ(Xi(g)HG f)ilm -=0, (4.14  The solutions should be valid only fak"# x4 because the
X XF ) XJ-E ) wave fucntion is totally antisymmetric with respect to a spec-
tral parameter permutation, which, up to a constant, can be
wherei=1,2 with j=2,1. Up to a constant, the correspond- written as
ing wavefunction can be expressed as
601,10, T=1M7=1)=P1x{? x§)[0). (4.2
|;[2], T=2, M=2)=AT (xX{)AT (x§9)]0).  (4.15
The k=3 case For k=3, we need to consider all terms
Wave functions withM#T can be obtained by applying occurring in Eq.(3.12 due to the permutations involved.
T_=Z,T_(j) consecutively on Eq4.15 because the total Using the building bIocksAT(x), one can construct the Be-
spinT is conserved. Fdr2,0,0 andT=0, by using the com- the ansatz wave functio(8.12 for different irreps of the
mutation relation permutation groupS; by using the induced representation
method[24,25. Therefore, the wave functions for the sym-
N 2 metrick=3 andT=1 case should be written as
[A.B%x1.%2)]= 20 --B%(x1.,%z) ~ 2, BY(0,))
I I i |§1[310!O]! T:11MT:1>:(1+g2+glg2)Q[3]

Q(x) = N(xj)/2— % ) X (X1%23%3)BY(X1X2) AL (x3)[0),  (4.22

Xi = Xj

X

2
—+G
X
teav.r 4t whereg; (i=1,2) are generators &;, which are nothing
FEAN0)-[AT X)X TX)] but nearest-neighbor permutations defineddpy: (i,i+1)
+ AT(0)-[AT(x,) X T(x1)]), (4.1 for i=1,2,... k—1. It is obvious thatx; and x, in the
primitive vectorB%(x;x,) are symmetric with respect to the
it can be proven that the spectral parametdf$ and x{) ~ X1<>X, permutation. Up to a constant, the coefficients in

should satisfy (1+9,+9:,0,) are taken from the induction coefficients
[24,29 (IDCs) of S,XS;]S; for the coupling [2]
2 X(zz) ®[1]l[3]. It should be emphasized that, generally,
o+G Q(x) - X—(zrx(zy) =0, QPI(x1x2;%3) # QP (x1x3:%5) # QP (xx3; %), where
1 1 2
© QB(x;1%3:%X2) = 92QP (X1%25%3),
X
@y_ _ L -
@+G Q07 sz—xlm 0. (4.17 QB (x2%3:%1) = 9192Q (X1 X2 X3). (4.23

For the symmetrik= 3 case withT =3 rather thaT=1, the

Up to a constant the corresponding wave function is ) )
wave function can be written as

61200, T=0, Mr=0)=B%x1,%2)[0). (418 | 3601 T=gM=3)=A" (x)AT (x) AT (x5)[0)

For the antisymmetric case wifli,1,0] and T=1, using (4.24
the commutation relation because it has to be symmetric with respect to any permuta-
) ton of the spectral parameters.
A PL (X, o)==+ —|PY(x;.%,) — PL(x,,0 Solutions for the spectral parameters in this stretched
[H.PL(x1x2)] X1 Xo u(Xa:X2) =P, (0,0 =3 case are the same as for the neutron-neutron or proton-

5 1 proton pairing problem derived previous[§2—15, which
X—2+G(Q<x2)—§N(x2>)) —PL(0,x,)  aregiven by

X
2 o 2x{9
2 1 + @y + = .
x| =+ 6(Q0x) 5N | +GAL0) X PN TS S m =0 (425
1
X[AT(X1) - T(X) — AT(X,) - T(x1)] for i=1,2,3. The corresponding eigenenergy is given by
0 _Ro 3
+G(B"(X1,0)7,,(X2) = B®(0,X3) 7,,(X1)), £ T-o_ 2 | 426
(4.19 £ <= x@
one can easily prove that the paramebéfé andx(f) should For the[3,0,0] and T=1 case, we need the following
satisfy commutation relation:
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X1 X2

—X3 X7 X3

[[H,B%(x x2)1,AL(x:)110) = —GAI<x1>B°<o,x2>(X2X_2X3— Xlx_lxg) —GAI<x2>B°<x1,0>(X1

X
+GA*<0>B°<x1,x2>( +GAI(0>B°(x1,x3>X3_3

X137 X3 Xp—X3 X2

X3 X3
+GAI<0>B°<x2,x3>X3_ GAI<x1>B°<o,x3>X3_X2—GAI<x2>B°(o,x3>

X3~ Xy
+GAl(x3)B%0, xl) +GA T(x3)B%(0, x2) J|O) (4.27
|
Using Eq.(4.27) with Eq. (4.22, one can prove that the S 3 . . .
eigenenergies are given by alBIFS 5 (7 I+ B+ a B4 o130
3
2 =0, (4.329
30]T 1_ 2 X_(IZ)_ (428)
X2
However, in this case, there are nine independent basis vec-al¥'F&! - (at ,8[3])— (7[3 +al¥l)=0,
) ! . i . Xo— X3
tors in the final expression. Except for the original eigenstate,
Eq. (4.22, all other coefficients in front of these basis vec-
tors should vanish. Therefore x4 Q)(x;) should be chosen (3] (3] (3], 3]
to satisfy the same condition, BRI+ S (7’ +9)
2 :O!
o +GO(XD)=GFRI(x(D X0 x©: 31 gI31 4131
I
(4.29
BRIFL] = (7 (314 1314 gi3l) — 314 131
fori=1,2,3, where
3 3 3 3 =0, (4.32h
alBl=Ql ](Xl,Xz;Xs)y ,3[ I=ql ](X1,X3;X2),
8= QB (x,,x3:%;) (4.30 BIFL3! X3 3], pl3] 1 131 pl3]) —
1431 : - + - + =
B s (@B = = (P B =0,
are functions ofx; (i=1,2,3) satisfying condition$4.23),
andFPl(x;,x,,x5;al®, B 18]y for i=1,2,3, is a function
of x; . After symmetrization, we get [31F[3]+ (,8[3 + 8+ o (314 131y
% B34 4181 o131 L% 314 4131 gi3l o,
LIRSV ) Iy IR ) B VIRV ) B ) IRV I
X1
FBl__ %1 BB+ Y131 53] L% al3l4 g3l — 3] [31,:[31jL (3[3 +a31+y[3])_ X3(7[3]+a[3])
2 T =%y alTF BRI T T X Tx, ol BT BT
=0, (4.329
Pl e e o + 5 e e
Xo— X3 +B +’)/ X1— X3 «a +B +’)/ X3 2
[381E[3] _ 3] + 131y — 3] 4+ [3]) =
(4.32) D oy Xs_xl(a ) Xz_xl(ﬂ ¥y =0.

The cancellation of unwanted terms requires thét,
BBl and %! satisfy the following equations: Due to relations(4.23, the three sets of Eqs4.323,
(4.32h, and(4.329 can be changed into one another through

the permutatiorg, andg,g,. Therefore, they are not inde-

3 2 ¢ .
alPIFE+ XZ_X1(7[3]+01[3]+,3[3])— XS_X1(7[3]+01[3]) pendent. Substituting E¢4.31) into Eq.(4.32), one can get
relations amongy!®!, B3 andy[3l. There are three sets of
=0, solutions with
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Q13— (B + BN (BBIxo(x1 = X3) + Y1¥Ixq (X2~ X3)) 4.33
Y (BX 01X — 2XoX3— X1 X3) + B (BX X — XoX3— 2X;X3) '
B = = xa) = xg) DXA(BXe 2xaXs = 31G) F 4xaXaXs(Xg — 20) + 25+ g/ (g —ho) M2+ (g —hp) 12,
(4.34a
1
[3] = _ ; 1/3 _ ; 1/31 . [3]
B = St —xa (=g L1a ™ 2(V3I+ D /(1 1) 24 2(= 14 3 (hy +hp) ]y, (4.34D
1
[3] — P 1/3_ ; 1/371 .. [3]
B = St —xa) (=) LM 2(V3i = Dhs /(1 +hp)¥2-2(1 4+ 3i) (hy +hy) Y], (4.349
where
1= 9X1XX3(X1 = X2) (X1 = X3) (X2 —X3) V3D, (4.353

D=x5(— x5+ 27x3x5— 7HEx5+ 1133X3 — THEX5+ 27X X5 — 9X5) + X3XoX5(Xp+ X3) (27X5— 4X3X5 — LKEX5 — 4X,Xx3
+ 27%3) — XIX5X3(79x5 + 23K3x3 — BIXEXS+ 23K X5+ 7IXG) + X XEX3 (X5 + X3) (1133 — 136K X3+ 113¢3)
—X3xoX53(T9X5— 23K Xg+ THX3) + 2TX X5X5(Xp + X3) — 9X5XS, (4.35h
h,=x5(2165 — 783Gx5+ 1152X3x5— 89K3X3+ 414x5x3— 135¢,X3+ 27%3) — 3X3XoX5( 171x5— 533X 3+ 63X
— B4TEX3+ 51X x5+ 9X3) + BXxEXE( 1595 — 433X 3+ 435K,X5 + 48K3) +X5xax3( — 199G+ 441x3x4
— 135,53+ 53x3) + 3x2X5X5( 13X — 51XpX3— 2X3) + 3XX5X3( 5Xo+ 11x5) — 8x5xS, (4.350
hy=36x7x5— 3x3x3x3(29%; + 19X,) + Xaxaxa( 76x3 + 10K X, + 31X3) — X1 XoX3(30x3 + 622X, + 47X, X5+ 5X3)
+X3(9X] — 6x3x,+ 40K2X3 — 11X, X5+ 4X5), (4.350
ha=— 4(X3(3X5+ 2XpX3— 3X3) + 4X; XoX5( X3 — 2X,) + 2X5X3), (4.35¢
hs=X7(36x3— 87X3x3+ 76x5x5— 30,X3+ 9X3) — XpX3( 575 — 109K5X5+ 62X, x5+ 6X3)
+X3X5xX5(31X5— ATX X5+ A0X3) — X X5X3(5Xp+ 11X3) + 4X5X3, (4.35

andgl® (i=1,2,3) are three different solutions in terms)&#. By substituting each solutiong®!(8l*!), 8I*! into Eq.(4.31),

the final expressions dei[sl will be y1! independent; and the corresponding E429 provides solutions for the spectral
parameters,, X,, andx; of the problem.

For theS; irrep[21] and T=1, the wave function can be written as

1£:02,1,0];, T=1M7=1)=(2— g~ 0:192) QP (X1X5;%3) Bl (x;,X2) Al (x3)[0). (4.36

Up to a constant, the coefficients in{2),—g,9,) are taken for i=1,2,3, which determines the spectral parameigers
from the IDCs[24,25 of S,XS;|S; for the coupling where the parameters®!!, g2 and[?!lin Eq.(4.39 are
[2]®[1]l[21]. The excitation energy is given by

s al?=QI(xy xz:%5), B =QPH(x1,x5:%y),
[21]T=1_

i 2, x@ “.39 Y= QMU (x,, x3;%,) (4.39
In this case the Bethe ansatz equations can be written aand are functions of; (i=1,2,3) satisfying the conditions
2 21 (x,%5:%,) =g,QPU (XX, 1 Xa),

@+GQ(X§{)):GF!2”(X¥),X(zg),ng);a[zu,,B[Zl],y[z”) QM (X1X3:%2) =g2Q (X1 X2 X3)

I
(4.39 QI (Xx3:%1) = 9192QPH (X1 X X3). (4.40

044314-7
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After symmetrization, we get

X, B4 4214 24021

Flall=
' Xo—Xq 2al?H— gleH— o [21]
X3 224 7[211+ﬁ[21]
T Xa—x; 2470 g2
(21] X, B4 2y 24020
P X1—Xp 202 — gl — 4 121]
X3 2a[21]—ﬁ[21]+ 7[21]
i X3— X 2al?t— gl2H— 121
Fl2_ X 2021 — ,3[21] + 7[21]

3 Xp— X3 2a[21]_ B[Zl] _ ,y[21]

X,  2al2— 21 gley
+ 21— A — 2 (4.41
Xl_ X3 2a - B -

Hence,a?!!, B2l and y1?Y should satisfy the following
equations:

2a2UFRU (221 — 121 gl21ly

X2— X1

3 [21] _ [21]y —
X3_X1(2a yeH)=0,

2a[21]|:[221]+ (2a[21]— ,y[21]_B[21])

X1 X2

X
3X (2a121— gl21) =, (4.423
A2

2a,[21]|:!321]_ X_2X(2a[21]_ﬁ[21])
A3

1
[21] _ Jf21y =
o (2a =) =0,

X3
— g2 ol 2a121— 1211 _ gl21ly

X3_

X2
+ ) (B4 412y =,

Xo—X

X1
— prlu F(hm]_ gl 121

3

2X3 (2al21— gl2y =0 (4.420

X2_

— BFRI_ 2 (24021 gla1)
2

X3—X

+ ( [21]+B 21]) O

xx2

PHYSICAL REVIEW (6, 044314 (2002

21]F [21] +

X3
= — 3 (2421 gl21_ J21])

1
% (B + 4121y =,

X1—
2
_ y[zl]ngl]Jr m(20[[21] — gl 121
27 X3
X1 [21] _ . [21]
T X 2e T =0, (4.429
7/[21],:[21] X_(Za[Zl — 121
LoXg—x

2 [21] 4 o [21]y —
Xz_xl(ﬁ +y) =0,
In comparison of Eq(4.42 with Eq. (4.32), it is clear that
the functions

1
al?U="al3,  pRll—— gl Rl ol3]

(4.43

Therefore, substituting Eq&4.33 and(4.34) into Eq.(4.43),
and then substituting the resultants of E4.43 into Eq.
(4.41), one gets the final expression f6?Y in terms the
spectral parameters,, X,, andxs. Finally, substituting the
functionsFim] into Eqg. (4.38), one obtains the Bethe ansatz
equations that determine the possible spectral parameters

For theS; irrep[21] andT=2, the wave function can be
written as

1£:02,1,00,, T=2M7=2)

= (24 92— 0192) QP (x1%2;X3) P1(X1 , X2) Al (x3)|0),
(4.44

where QA 1](xlxz X3) IS antlsymmetrlc with respect to
X1<>X, permutation becaus@l(xl,xz) is antisymmetric
with X, X, permutation. Again, up to a constant, the coef-
ficients in (2+g,—g19,) are taken from the IDC24,25 of
S,X S, | S; for the coupling[12]®[1]|[21]. The excitation
energy is given by
° 2
EFTT=2 0

(4.49
In this case the Bethe ansatz equations can be written as

2 6
7GR
I
— GFHA (x(0 (D) 30 o[21(A) pl21I(A) [21](A))
(4.4

for i=1,2,3, which determines the spectral parameters
After symmetrization, we get

044314-8
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Fl211(A) X3 2(2a21(A) ¢ 4 [211(A)

1 - X3— X1 Za[Zl](A) 4 B[Zl](A) T ’Y[Zl](A) ,
F1211(A) X3 2(2a121") 4 gl211(A)

2 =

X3~ Xy za[Zl](A)+ﬁ[21](A)+ 7[21](A) ,

X1 2(2al2H(A) 4 [211(A))
— X3z 212U 4 gI2AA) 4 [2T](A)

21](A) _
FR2UA =

x,  2(2al2008) 4 gl
~xq 2o A w447

Hence,a!?HA - gI2UMA) " and y121(A) should satisfy the fol-
lowing equations:

X3
22 (24200 4 210 — g

2[ZIAELRUA) _ —
3 1

2P [211(A) 3X (241210 4 gI2IUA) — 0 (4.483
2

X3—

22U ERIA) _ (2121(A) 4 [211(A))

X317 X3

2
[21](A) = gl21](A)y =
oy (2alPNO 4 ) o,

Y

PHYSICAL REVIEW C 66, 044314 (2002

3[21](A)|:[21](A)+ (B[21](A)_ [21(A)y =,

Xz

X
BRUNE 2X3(2a[2”‘A)+B[2”‘A))=0, (4.48b

Xo—

BEIMELRUA) _ (2121 4 gl21(A))

X3~ Xz

(3[21](A) — y[21](A)) =0,

Xq1—
YRUAERU®) _ — (y121(A) _ gl21(A)) =,
[22(A)E21(A) xl—l 3(2a[211(A)+ Y[210(A) =0 (4.480
YRUWERIA) 4 (BL2UA) — y21](A))

Xo—Xq

(2120 4 (2114 = o,
X3~ X1

There are two sets of solutions:

B

X1(X3—Xz)

The corresponding expressions l*1* are

[21](A) [21(A)(X2 X1)Xg— VX5(X1—X2)? = (X3—Xz) (X1~ Xs)Xlxz
=Y

a[zu(A):%( BRIM 208 (449

2
2XXg— X1 (Xg+ Xa) + VX5(X1— X2) 2+ (Xa— X3) (X — X3) X1 X,

21](A) _
FR2UM -

(X1—

R X1(Xa— 2X3) + XX~ X5(X1—X) 2+ (Xo— X3) (X1 = X3) X1 X

(X1—

F3

2178y X3(X1HX2) = 2X1Xp— VXE(X1—X2) 2+ (Xo— X3) (Xq — X3)X1X2

X2)(X1—X3) ' (4.503
X2) (Xo—Xa) ' (4508
(4.500

(X4

—X3)(X3—X2)

B

X1(X3=X3)

The corresponding expressions ¥ are

[21](A)_7[21(A)(X2 X1) X3+ VX5(X1—X)? — (X3 = Xp) (X — X3)X1X2 #1211

=%<ﬁ¥”“\)+~y[2”<’“>. (4.50

21](A) _
FL2A) =

Vi
X1(Xz+ X3) —2X X3+ \/XS(Xl_ X2)2+ (Xa— X3) (X1 = X3) X1 Xz

(X1—

F[221](A) _

(X1~

Fng](A) _ (X

044314-9

—X3)(X3—Xy)

X2) (X1~ X3) | o
X1(Xp— 2Xg) T XoXg + VX5(Xg— X2) *+ (Xo— Xg) (X1~ Xg) X1Xo , (4.52h
X2)(X2—X3)
X3(Xq +Xp) — 2X %o+ VX5(X1— X2) 2+ (Xp— X3) (X1 — X3)X1X2 (4.520
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Substituting Eq(4.50 or (4.52) into Eq.(4.46), one obtains

PHYSICAL REVIEW (6, 044314 (2002

seniority-zeraJ=0 states for up to six nucleons.

the corresponding Bethe ansatz equations for determining the The results derived in this paper fa2 as well as for

spectral parameters .
Finally, for theS; irrep[13] with T=0 the wave function
can be written as

16131, T=0M=0)=(1—0p+9102) QW (X1, Xz X3)

X (P(xq,%2) AT(x3))5]0),
(4.53

2k nucleons for symmetric irreps & with T=k agree with
those given by Richardsd21] and by Chen and Richardson
[22,23. However, in Sec. IV, we showed that the results
given in Refs[21-23 are not valid for six or more nucleons
in nonsymmetric irreps of the permutation group. The main
difference lies in the fact that in the present work the expan-
sion coefficientsQ! are considered to be functions of the
spectral parametes; and different from one another for non-
symmetric irreps of the permutation groups, while the expan-

whereQEja](xlxz;xs) is also antisymmetric with respect to a sion coefficients in the work of Richardson and of Chen and
XX, permutation. Up to a constant, the coefficients inRichardson were assumed to be independent of the spectral

(1-g,+g:.9,) are taken from the IDC424,25 of S,
X S,]S; for the coupling[12]®[1]/[1%]. The excitation
energy is given by

(4.59

> 2
E[13]T=2: _

It can be proven that the three expansion coeffici@{jss]
can be taken to be the same in this case. Hence(4&53)
can be simplified to

|£;[1%],T=0M1=0)
=(1—0gp+09102) (P (X xE) x A+ (x§9))5)0).
(4.55

In this case the Bethe ansatz equations are simply

2
X—(i25+GQ(xi(§))=O (4.56
for i=1,2,3. Because the wave functig#.54) is antisym-
metric with any permutation amongd® , x{¥, andx{", the
solutions ofx; should be those satisfying E¢4.56) with
{9 # xE = x§)

V. DISCUSSION

parameter. In fact, for R nucleon configuratons, the present
calculation shows that the expansion coefficie@fdlk can
be taken to be the same only for totally symmetric irrgds
of the permutation groupS, with T=k or totally antisym-
metric irreps[1X] with k=1,2,3. One can verify that the
results given by Eqgs(4.29, (4.38, and (4.46 reduce to
those given in Ref§21-23 if one takesa®!= g31= Bl in
Eq. (4.3D), ol?l=-—pglRl=_y2 in Eq. (4.41), and
alPUA) = gl2L(A) = 41211 in Eq. (4.47). But for other cases,
general solutions of the type introduced here are required,;
those offered in Ref§21-23 as solutions for general irreps
are not possible.

The nonsymmetri¢2,1] irrep of S, is two-dimensional.
The results derived in Sec. IV are for only one of the two,
but a similar procedure can be applied to determine the an-
other one. In this regard, note that the eigenenergies for a
given S, irrep are degenerate because the Hamiltonian is
invariant with respect to any permutations ®f. The most
important outcome of the present analysis is the algebraic
expression of the Bethe ansatz equations given in Sec. 1V,
which is a set of highly nonlinear equations. For example,
there are three sets of solutions for tBefunction for the
irreps (3], T=1) and (2,1], T=1), and there are two sets
of solutions for thepB function for the[2,1] irrep with T
=2. Numerical calculations and analyses that are part of an-
other study will be presented elsewhere.
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