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Algebraic solutions of mean-field plusTÄ1 pairing interaction
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A general procedure, based on the Bethe ansatz, is proposed for finding algebraic solutions for low-lying
J50 states of 2k nucleons interacting with one another through aT51 charge-independent pairing interaction.
The results provided by Richardson are shown to be valid for up to two pairs,k<2; expressions are given here
for up to three pairs,k<3. The results show that a set of highly nonlinear equations must be solved
for k>3.
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I. INTRODUCTION

Pairing has long been considered to be an important
teraction in nuclei. The concept was first introduced by R
cah within the context of a seniority coupling scheme@1#.
Various applications to realistic nuclear systems have b
carried out@2# following suggestions from Bohr, Mottelson
and Pines@3#. A lot of effort has been dedicated to the pu
neutron or pure proton pairing interactions using vario
techniques. Extensions to neutron-neutron, neutron-pro
and proton-proton pairing interactions have been formula
@4–7#. It is well known that theT51 charge-independen
pairing Hamiltonian can be built by using generators of
quasispin group Spj (4), wherej labels the orbits considere
in the model space, and from this it also follows that t
pairing Hamiltonian can be diagonalized within a given irr
ducible representation~irrep! of the direct product group
Sp1(4)3•••3Spp(4), wherep is the number of orbits. In
this case exact solutions—even if only genera
numerically—can be given@8#. It is also well known that
approximate numerical solutions can be obtained by us
the BCS formalism@9–11#.

A lot of effort has been devoted to finding exact analy
solutions of the nuclear pairing Hamiltonian@12–15#. Exten-
sions to a consideration of generalized and orbit-depen
pairing interactions have been the focus of recent work ba
on the algebraic Bethe ansatz and infinite-dimensional
algebraic methods@16–19#. A method for finding roots of the
Bethe ansatz equations for the equal strength pairing m
that was solved earlier by Richardson has also been prop
@20#. However, these exact solutions are for proton-proton
neutron-neutron pairing interactions only. In this paper, ex
solutions for the mean field plusT51 charge-independen
equal strength pairing interaction are revisited using the
the ansatz method. We find that the solutions offered by
chardson@21# and Chen and Richardson@22,23# are only
valid when the number of pairs is less than or equal to tw

In this paper we introduce a new formulism for solvin
the problem. Numerical routines for calculations a
follow-on applications will be introduced elsewhere. In Se
II, the mean field plusT51 pairing Hamiltonian and its
Sp(4) quasispin structure are reviewed. In Sec. III, a gen
procedure for solving theT51 charge-independent pairin
Hamiltonian is outlined and detailed results for seniori
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zero states for up to six nucleon are provided in Sec. IV. T
results show that a set of highly nonlinear equations w
enter whenever the number of nucleons is greater than
equal to six. Section V is reserved for a short discuss
regarding implications of our findings.

II. THE TÄ1 PAIRING HAMILTONIAN AND THE Sp „4…
QUASISPIN STRUCTURE

It is well known @8# that the mean field plusT51 charge
independent pairing Hamiltonian can be expressed in te
of generators of quasispin groups Spj (4), wherej labels the
total spin of the corresponding orbits. Generators of Spj (4)
are the pair creation,Aj

†(m), and the pair annihilation
Aj (m), operators withm51,2,0; the total nucleon numbe
operatorNj for orbit j; and the isospin operatorsTm( j ):

Aj
†~m!5 (

m.0
~21! j 2majm,m

† aj 2m,m
† for m51,2,

~2.1a!

Aj
†~0!5A1

2H (
m.0

~21! j 2majm,1
† aj 2m,2

†

1 (
m.0

~21! j 2majm,2
† aj 2m,1

† J , ~2.1b!

Aj~m!5 (
m.0

~21! j 2maj 2m,majm,m for m51,2,

~2.2a!

Aj~0!5A1

2H (
m.0

~21! j 2maj 2m,2ajm,1

1 (
m.0

~21! j 2maj 2m,1ajm,2J , ~2.2b!

Nj5(
mmt

ajm,mt

† ajm,mt
, T1~ j !5(

m
ajm,1

† ajm,2 ,

T2~ j !5(
m

ajm,2
† ajm,1 ,
©2002 The American Physical Society14-1
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T0~ j !5
1

2 (
m

~ajm,1
† ajm,12ajm,2

† ajm,2!, ~2.3!

where ajmmt

† (ajmmt
) is the creation~annihilation! operator

for a nucleon in the state with angular momentumj, angular
momentum projectionm, and isospin projectionmt with mt
51 1

2 , 21
2. These operators satisfy the following commu

tion relations:

@T2~ j !,Aj 8
†

~2 !#50, @T1~ j !,Aj 8
†

~1 !#50,

@T2~ j !,Aj 8
†

~0!#5d j j 8A2Aj
†~2 !,

@T1~ j !,Aj 8
†

~0!#52d j j 8A2Aj
†~1 !,

@T2~ j !,Aj 8
†

~1 !#52d j j 8A2Aj
†~0!,

@T1~ j !,Aj 8
†

~2 !#5d j j 8A2Aj
†~0!,

@V j2
1
2 Nj2T0~ j !,Aj 8

†
~2 !#50,

@Aj~0!,Aj 8
†

~2 !#52d j j 8

1

A2
T2~ j !,

@Aj~1 !,Aj 8
†

~1 !#5d j j 8S V j2
1

2
Nj2T0~ j ! D ,

@Aj~2 !,Aj 8
†

~1 !#50,

@Aj~0!,Aj 8
†

~1 !#5d j j 8

1

A2
T1~ j !,

@Aj~1 !,Aj 8
†

~0!#5d j j 8

1

A2
T2~ j !,

@Aj~2 !,Aj 8
†

~2 !#5d j j 8S T0~ j !1V j2
1

2
Nj D ,

@Aj~0!,Aj 8
†

~0!#5d j j 8S V j2
1

2
Nj D , @Aj~1 !,Aj 8

†
~2 !#50,

@Aj~2 !,Aj 8
†

~0!#52d j j 8

1

A2
T1~ j !,

@V j2
1
2 Nj ,Aj 8

†
~1 !#52d j j 8Aj

†~1 !,

@V j2
1
2 Nj ,Aj 8

†
~0!#52d j j 8Aj

†~0!,

@V j2
1
2 Nj ,Aj 8

†
~2 !#52d j j 8Aj

†~2 !,

@V j2
1
2 Nj1T0~ j !,Aj 8

†
~1 !#50,

@V j2
1
2 Nj1T0~ j !,Aj 8

†
~0!#52d j j 8Aj

†~0!,
04431
-

@V j2
1
2 Nj1T0~ j !,Aj 8

†
~2 !#52d j j 82Aj

†~2 !,

@V j2
1
2 Nj2T0~ j !,Aj 8

†
~1 !#52d j j 82Aj

†~1 !,

@V j2
1
2 Nj2T0~ j !,Aj 8

†
~0!#52d j j 8Aj

†~0!, ~2.4!

whereV j[ j 1 1
2 is the pair degeneracy of orbitj. According

to the Wigner-Eckart theorem, the pair creation operat
A j

†(m) with $A j
†(1)52Aj

†(1),A j
†(0)5Aj

†(0),A j
†(2)

5Aj
†(2)% and the pair annihilation operatorsAj (m) with

$Aj (1)5Aj (2),Aj (0)52Aj (0),Aj (2)52Aj (1)% are
T51 irreducible tensor operators, that satisfy the followi
conjugation relation:

Aj~m!5~21!12m@A j
1~2m!#†. ~2.5!

The mean field, with single-particle energies« j from the
spherical shell model, plusT51 charge-independent pairin
interaction Hamiltonian can be expressed as

Ĥ5(
j

« jNj2G(
j j 8m

Aj
†~m!Aj 8~m!, ~2.6!

whereG.0 is the overall pairing interaction strength. Sin
Ĥ is invariant under isospin rotation, both the isospin qua
tum numberT and its third componentT0 with eigenvalue
MT are good quantum numbers of the system.

III. THE ALGEBRAIC BETHE ANSATZ METHOD

Let $gi(a)%PGa , whereGa is a semisimple Lie algebra
satisfying

@gi~a!,gj~b!#5dab(
k

ci j
k gk~b! ~3.1!

for i , j 51,2, . . . ,dim(G), and a,b51,2, . . . ,p, where p is
the total number of the orbits considered in the problem, a
the ci j

k are the structure constants ofG. SupposeG can be
decomposed into three gradings with

Ga5ha
% n1

a
% n2

a , ~3.2!

whereha is the subalgebra ofGa containing the Cartan sub
algebra ofGa , and elements inn1

a and those inn2
a satisfy

the following relations:

@hi~a!,hj~b!#5dab(
k

ci j
k hk~a!;hi~a!Pha, hj~b!Phb,

~3.3a!

@h~a!,A~b!#}dabA~a!;h~a!Pha, A~b!Pn1
b ,

~3.3b!

@h~a!,B~b!#}dabB~a!;h~a!Pha, B~b!Pn2
b ,

~3.3c!

@A~a!,B~b!#}dabh~a!;A~b!Pn1
a , B~b!Pn2

b .
~3.3d!

A class of Hamiltonians with up to two-body interaction
andp orbits may be written in terms of theseG1^ G2^ •••

^ Gp generators as
4-2
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Ĥ5(
ia

eahi
0~a!2G(

ab
„A~a!3B~b!…0

(0) , ~3.4!

wherehi
0(a) are elements of the Cartan subalgebra ofGa ,

and the term„A(a)3B(b)…0
(0) , which should be an invarian

of the Cartan subalgebra, is a scalar with respect to the
algebrah. Then, one can express ak-particle excitation state
as

uz;@l#kM ,nh&5 (
PPSk

Q[l]~xP(1) ,xP(2) ,•••,xP(k)!„A~xP(1)!

3A~xP(2)!3•••3A~xP(k)!3u lw&…h
(n) ,

~3.5!

wherez represents additional quantum numbers that are
quired for a unique labeling of the states,n is an irrep of the
subalgebrah, h denotes a complete set of labels for the irr
n, @l#k is an irrep of the permutation groupSk containing
k-boxes in the corresponding Young diagram withM labeling
the basis of@l#, thexi ( i 51,2, . . . ,k) on the right-hand-side
are spectral parameters, theQ[l] (x1 ,x2 , . . . ,xk) are expan-
sion coefficients that may in general be spectral param
dependent,ulw& is the lowest-weight state satisfying

B~a!u lw&50;a, ~3.6!

andA(x) is an operator functional ofA~a! that is dependen
on the spectral parameterx.

To determine the operator functionalA(x), one can con-
struct the following affine Lie algebraĜ without central ex-
tension@16–19#:

gn
i 5(

a
ea

ngi~a!, gi~a!PGa , ~3.7!

with n50,1,2, . . . , which satisfy

@gm
i ,gn

j #5(
k

ci j
k gm1n

k . ~3.8!

Then, one can rewrite Eq.~3.4! in terms of generators ofĜ
as

Ĥ5(
i

h1
(0)i2G~A03B0!0

0 . ~3.9!

The k-particle wave functions can be expanded in terms
these operators as

uz;@l#kM ,nh&5 (
PPSk

Q[l]~xP(1) ,xP(2) ,•••,xP(k)!

3 (
n1•••nk

an1
an2

•••ank
xP(1)

n1 xP(2)
n2

•••xP(k)
nk

3~An1
3An2

3•••3Ank
3u lw&)h

(n) ,

~3.10!
04431
b-

e-

er

f

where

ani
Ani

5
1

2p i R0
xniA~x!dx ~3.11!

is the Fourier-Laurent expansion ofA(x) arounduxu50 on a
complex plane. The spectral parametersxi and the expansion
coefficientsQ[l] (x1 ,x2 , . . . ,xk) should then be determine
by the corresponding eigenvalue equation.

It can be seen that theT51 pairing Hamiltonian~2.6! can
be regarded as a special example of Eq.~3.4!, in which the
Lie algebra G is Sp(4) and the subalgebra of Sp(4)
U(2);SUT(2)% U(1), where SUT(2) is the isospin algebra
and U~1! is generated by the total number of nucleonsN. In
this paper, we only consider seniority-zero states. Hence,
lowest-weight state is an isospin scalar. Similar to Eq.~3.5!,
a k pair excitation eigenstate can be written as

uz;@l#kM ,TT0&5 (
PPSk

Q[l]~xP(1) ,xP(2) ,•••,xP(k)!

3„A †~xP(1)!3A †~xP(2)!3•••

3A †~xP(k)!T0

T
…u0&, ~3.12!

whereu0& is the seniority-zero and isospin scalar state sa
fying

Aj~m!u0&50 for m51,2,0, ~3.13!

and@l# is an irrep ofSk that can be constructed from theA j
†

operators of Eq.~3.12!.
It has been confirmed in exact solutions of the eq

strength pairing problem with only neutron-neutron
proton-proton pairing interaction@12–19# that the building
blocksAm

† (x) can be expressed as elements of the nonlin
Gaudin algebraG„SU(2)… with

Am
† ~x!5(

j

Aj
†~m!

12« j x
for m51,2. ~3.14!

It suffices to use the nonlinear Gaudin algebraG(Sp(4)) to
construct the eigenstates~3.12!, which is generated by

gm~x!5(
j 51

p
1

12« j x
gj~m!, ~3.15!

wherep is the total number of orbits,gj (m) are the Spj (4)
generators, and« j is the single-particle energy of thej th
orbit.

It should be noted that the possible irreps@l# occuring in
Eq. ~3.12! should be determined by properties of theA†(m)
operators. Becausem can only take on three different value
m51,2,0, Young diagrams constructed from thoseAm

† op-
erators can have at most three rows. Furthermore, bec
the Schur-Weyl duality relation between the permutat
group Sk and the unitary group U(N), the irrep @l# with
exact k boxes ofSk can be regarded as the same irrep
U(N). Since the irreps@l# contain at most three rows, in thi
4-3
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case they can be considered to be equivalent to the s
irreps of U~3!. Therefore, the possible isospin quantum nu
ber T for a given irrep@l# of Sk can be obtained by the
reduction@23#

U~3!.SO~3!,

@l# ↓ T. ~3.16!

The remaining problem is to find the expansion coefficie
Q[l] (x1 ,x2 , . . . ,xk) and to establish the Bethe ansatz eq
tions based on the corresponding eigenvalue equation, w
will be addressed in the next section.

IV. EXACT SOLUTIONS FOR UP TO SIX NUCLEONS

In this section, we use the algebraic Bethe ansatz me
established in the preceding section to derive exact solut
for the mean field plusT51 charge-independent equ
strength pairing Hamiltonian problem. The following el
ments of the Gaudin algebraG„Sp(4)… will be useful:

Am
† ~x!5(

j

Aj
†~m!

12« j x
, Am~x!5(

j

Aj~m!

12« j x
,

Tm~x!5(
j

Tm~ j !

12« j x
~4.1a!

for m51,2,0, and

N~x!5(
j

Nj

12« j x
. ~4.1b!

Then, the Hamiltonian~2.6! can be rewritten as

Ĥ5
]N~x!

]x
ux501GA †~0!•A~0!. ~4.2!

Solving the eigenvalue equation

Ĥuz;@l#kM ,TT0&5Ez
[l] kTuz;@l#kM ,TT0& ~4.3!

with the Bethe ansatz wave function~3.12! implies that one
simultaneously determines the expansion coefficie
Q[l] (x1 ,x2 , . . . ,xk) and the Bethe ansatz equations that
spectral parametersx1 ,x2 , . . . ,xk , should satisfy. In the fol-
lowing, we will list exact solutions fork<3.

The k51 case. Since thek50 case is trivial, correspond
ing to a zero eigenvalue with the seniority zero eigens
u0&, our derivation starts withk51. In this case, the eigen
state can be written, up to a constant, as

uz;@1#,T51, MT5m&5A m
† ~x(z)!u0&. ~4.4!

It follows that the expansion coefficientQ[1] (x) can be taken
simply as a constant. Using the commutation relations

F ]N~x!

]x U
x50

,A m
† ~x!G5

2

x
A m

† ~x!2
2

x
A m

† ~0! ~4.5!
04431
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-
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-
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@Ĥ,A m
† ~x!#5

2

x
A m

† ~x!2A m
† ~0!S 2

x
1G„V~x!2

1

2
N~x!…D

1G„A †~0!3T~x!…m
1 , ~4.6!

where„A †(0)3T(x)…m
1 are defined as follows:

„A †~0!3T~x!…m
1 5A2 (

m1m2

A m1

† ~0!Tm2
~x!^1m1,1m2u1m&,

~4.7!

^1m1,1m2u1m& is the SU~2! CG coefficient, the SUT(2)

rank-1 tensor operatorT with T152A 1
2 T1 , T05T0,

T25A 1
2 T2, and

V~x!5(
j

V j

12« j x
. ~4.8!

One can easily derive that the eigenvalue is given by

Ez
[1]T515

2

x(z) , ~4.9!

where the spectral parameterx(z) satisfies

2

x(z) 1GV~x(z)!50. ~4.10!

The additional quantum numberz in this case indicates the
solutionx(z) is thezth root of Eq.~4.10!.

The k52 case. In this case, there are two irreps ofS2 with
@2,0,0# and @1,1,0#. The allowed values ofT are T52 and
T50 for @2,0,0#, andT51 for @1,1,0#. Using the operators
A m

† (x), one can construct symmetric and antisymmetric o
erators with respect to the spectral parameter permuta
x1↔x2 . The symmetric ones are

BMT52
T52 ~x1 ,x2!5A1

† ~x1!A1
† ~x2!, ~4.11a!

and

BT50~x1 ,x2!52A †~x1!•A †~x2!5A1
† ~x1!A2

† ~x2!

1A2
† ~x1!A1

† ~x2!1A0
†~x1!A0

†~x2!. ~4.11b!

The antisymmetric one is

Pm
T51~x1 ,x2!5A2„A †~x1!3A †~x2!…m

1 , ~4.12!

which is similar to the definition given in Eq.~4.7!. Using
these operators, one can easily obtain the correspon
wave function for thek52 cases. It can be proven that th
eigenenergies for both symmetric and antisymmetric case
all given by

Ez
[l] 2T

5
2

x1
(z) 1

2

x2
(z) . ~4.13!
4-4
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For @2,0,0# and T52, spectral parametersx1 and x2 should
satisfy

2

xi
(z) 1GV~xi

(z)!1G
2xj

(z)

xi
(z)2xj

(z) 50, ~4.14!

wherei 51,2 with j 52,1. Up to a constant, the correspon
ing wavefunction can be expressed as

uz;@2#, T52, MT52&5A1
† ~x1

(z)!A1
† ~x2

(z)!u0&. ~4.15!

Wave functions withMTÞT can be obtained by applyin
T25( jT2( j ) consecutively on Eq.~4.15! because the tota
spinT is conserved. For@2,0,0# andT50, by using the com-
mutation relation

@Ĥ,B0~x1 ,x2!#5(
i

2

xi
B0~x1 ,x2!2(

iÞ j
B0~0,xj !

3S 2

xi
1GS V~xi !2N~xi !/22

xj

xi2xj
D D

1G„A †~0!•@A †~x1!3T~x2!#

1A †~0!•@A †~x2!3T~x1!#…, ~4.16!

it can be proven that the spectral parametersx1
(z) and x2

(z)

should satisfy

2

x1
(z) 1GS V~x1

(z)!2
x2

(z)

x1
(z)2x2

(z)D 50,

2

x2
(z) 1GS V~x2

(z)!2
x1

(z)

x2
(z)2x1

(z)D 50. ~4.17!

Up to a constant the corresponding wave function is

uz;@2,0,0#, T50, MT50&5B0~x1 ,x2!u0&. ~4.18!

For the antisymmetric case with@1,1,0# and T51, using
the commutation relation

@Ĥ,Pm
1 ~x1 ,x2!#5S 2

x1
1

2

x2
D Pm

1 ~x1 ,x2!2Pm
1 ~x1,0!

3S 2

x2
1G„V~x2!2

1

2
N~x2!…D2Pm

1 ~0,x2!

3S 2

x1
1G„V~x1!2

1

2
N~x1!…D1GA m

† ~0!

3@A †~x1!•T~x2!2A †~x2!•T~x1!#

1G„B0~x1,0!Tm~x2!2B0~0,x2!Tm~x1!…,

~4.19!

one can easily prove that the parametersx1
(z) andx2

(z) should
satisfy
04431
2

x1
(z) 1GV~x1

(z)!50,
2

x2
(z) 1GV~x2

(z)!50. ~4.20!

The solutions should be valid only forx1
(z)Þx2

(z) because the
wave fucntion is totally antisymmetric with respect to a spe
tral parameter permutation, which, up to a constant, can
written as

uz;@1,1,0#,T51,MT51&5P1
1~x1

(z) ,x2
(z)!u0&. ~4.21!

The k53 case. For k53, we need to consider all term
occurring in Eq.~3.12! due to the permutations involved
Using the building blocksA †(x), one can construct the Be
the ansatz wave function~3.12! for different irreps of the
permutation groupS3 by using the induced representatio
method@24,25#. Therefore, the wave functions for the sym
metric k53 andT51 case should be written as

uz;@3,0,0#, T51,MT51&5~11g21g1g2!Q[3]

3~x1x2 ;x3!B0~x1x2!A1
† ~x3!u0&, ~4.22!

wheregi ( i 51,2) are generators ofS3 , which are nothing
but nearest-neighbor permutations defined bygi5( i ,i 11)
for i 51,2, . . . ,k21. It is obvious thatx1 and x2 in the
primitive vectorB0(x1x2) are symmetric with respect to th
x1↔x2 permutation. Up to a constant, the coefficients
(11g21g1g2) are taken from the induction coefficien
@24,25# ~IDCs! of S23S1↓S3 for the coupling @2#
^ @1#↓@3#. It should be emphasized that, general
Q[3] (x1x2 ;x3)ÞQ[3] (x1x3 ;x2)ÞQ[3] (x2x3 ;x1), where

Q[3]~x1x3 ;x2!5g2Q[3]~x1x2 ;x3!,

Q[3]~x2x3 ;x1!5g1g2Q[3]~x1x2 ;x3!. ~4.23!

For the symmetrick53 case withT53 rather thanT51, the
wave function can be written as

uz;@3,0,0#, T53,MT53&5A1
† ~x1!A1

† ~x2!A1
† ~x3!u0&

~4.24!

because it has to be symmetric with respect to any perm
ton of the spectral parameters.

Solutions for the spectral parameters in this stretcheT
53 case are the same as for the neutron-neutron or pro
proton pairing problem derived previously@12–15#, which
are given by

2

xi
(z) 1GV~xi

(z)!1G(
j Þ i

2xj
(z)

xi
(z)2xj

(z) 50 ~4.25!

for i 51,2,3. The corresponding eigenenergy is given by

Ez
[30] T535(

i 51

3
2

xi
(z) . ~4.26!

For the @3,0,0# and T51 case, we need the following
commutation relation:
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†@H,B0~x1 ,x2!#,A1
†~x3!‡u0&5H 2GA1

†~x1!B0~0,x2!S x2

x22x3
2

x1

x12x3
D2GA1

†~x2!B0~x1,0!S x1

x12x3
2

x2

x22x3
D

1GA1
†~0!B0~x1 ,x2!S x1

x12x3
1

x2

x22x3
D1GA1

†~0!B0~x1 ,x3!
x3

x32x2

1GA1
†~0!B0~x2 ,x3!

x3

x32x1
2GA1

†~x1!B0~0,x3!
x3

x32x2
2GA1

†~x2!B0~0,x3!
x3

x32x1

1GA1
†~x3!B0~0,x1!

x3

x32x2
1GA1

†~x3!B0~0,x2!
x3

x32x1
J u0&. ~4.27!
ve
at
c-

gh
-

f

Using Eq. ~4.27! with Eq. ~4.22!, one can prove that the
eigenenergies are given by

Ez
[30]T515(

i 51

3
2

xi
(z) . ~4.28!

However, in this case, there are nine independent basis
tors in the final expression. Except for the original eigenst
Eq. ~4.22!, all other coefficients in front of these basis ve
tors should vanish. Therefore, 2/xi1V(xi) should be chosen
to satisfy the same condition,

2

xi
(z) 1GV~xi

(z)!5GFi
[3]~x1

(z) ,x2
(z) ,x3

(z) ;a [3] ,b [3] ,g [3] !

~4.29!

for i 51,2,3, where

a [3]5Q[3]~x1 ,x2 ;x3!, b [3]5Q[3]~x1 ,x3 ;x2!,

g [3]5Q[3]~x2 ,x3 ;x1! ~4.30!

are functions ofxi ( i 51,2,3) satisfying conditions~4.23!,
andFi

[3] (x1 ,x2 ,x3 ;a [3] ,b [3] ,g [3] ) for i 51,2,3, is a function
of xi . After symmetrization, we get

F1
[3]5

x2

x22x1

b [3]1g [3]2a [3]

a [3]1b [3]1g [3] 1
x3

x32x1

a [3]1g [3]2b [3]

a [3]1b [3]1g [3] ,

F2
[3]5

x1

x12x2

b [3]1g [3]2a [3]

a [3]1b [3]1g [3] 1
x3

x32x2

a [3]1b [3]2g [3]

a [3]1b [3]1g [3] ,

F3
[3]5

x2

x22x3

a [3]1b [3]2g [3]

a [3]1b [3]1g [3] 1
x1

x12x3

a [3]1g [3]2b [3]

a [3]1b [3]1g [3] .

~4.31!

The cancellation of unwanted terms requires thata [3] ,
b [3] , andg [3] satisfy the following equations:

a [3]F1
[3]1

x2

x22x1
~g [3]1a [3]1b [3] !2

x3

x32x1
~g [3]1a [3] !

50,
04431
c-
e,

a [3]F2
[3]1

x1

x12x2
~g [3]1b [3]1a [3] !2

x3

x32x2
~b [3]1a [3] !

50, ~4.32a!

a [3]F3
[3]2

x2

x22x3
~a [3]1b [3] !2

x1

x12x3
~g [3]1a [3] !50,

b [3]F1
[3]1

x3

x32x1
~g [3]1b [3]1a [3] !2

x2

x22x1
~b [3]1g [3] !

50,

b [3]F3
[3]1

x1

x12x3
~g [3]1a [3]1b [3] !2

x2

x22x3
~b [3]1a [3] !

50, ~4.32b!

b [3]F2
[3]2

x3

x32x2
~a [3]1b [3] !2

x1

x12x2
~g [3]1b [3] !50,

g [3]F2
[3]1

x3

x32x2
~b [3]1g [3]1a [3] !2

x1

x12x2
~b [3]1g [3] !

50,

g [3]F3
[3]1

x2

x22x3
~b [3]1a [3]1g [3] !2

x1

x12x3
~g [3]1a [3] !

50, ~4.32c!

g [3]F1
[3]2

x3

x32x1
~a [3]1g [3] !2

x2

x22x1
~b [3]1g [3] !50.

Due to relations~4.23!, the three sets of Eqs.~4.32a!,
~4.32b!, and~4.32c! can be changed into one another throu
the permutationg2 andg1g2 . Therefore, they are not inde
pendent. Substituting Eq.~4.31! into Eq. ~4.32!, one can get
relations amonga [3] , b [3] , andg [3] . There are three sets o
solutions with
4-6
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a [3]52
~b [3]1g [3] !~b [3]x2~x12x3!1g [3]x1~x22x3!!

g [3]~3x1x222x2x32x1x3!1b [3]~3x1x22x2x322x1x3!
, ~4.33!

b1
[3]5

1

9x1x2~x12x3!~x32x2!
@x1

2~3x2
212x2x323x3

2!14x1x2x3~x322x2!12x2
2x3

21h3 /~h12h2!1/31~h12h2!1/3#g [3] ,

~4.34a!

b2
[3]5

1

36~x1x2~x12x3!~x22x3!
@h422~A3i 11!h5 /~h11h2!1/312~211A3i !~h11h2!1/3#g [3] , ~4.34b!

b3
[3]5

1

36~x1x2~x12x3!~x22x3!
@h412~A3i 21!h5 /~h11h2!1/322~11A3i !~h11h2!1/3#g [3] , ~4.34c!

where

h159x1x2x3~x12x2!~x12x3!~x22x3!A3D, ~4.35a!

D5x1
6~29x2

6127x2
5x3279x2

4x3
21113x2

3x3
3279x2

2x3
4127x2x3

529x3
6!1x1

5x2x3~x21x3!~27x2
424x2

3x3219x2
2x3

224x2x3
3

127x3
4!2x1

4x2
2x3

2~79x2
4123x2

3x3269x2
2x3

2123x2x3
3179x3

4!1x1
3x2

3x3
3~x21x3!~113x2

22136x2x31113x3
2!

2x1
2x2

4x3
4~79x2

2223x2x3179x3
2!127x1x2

5x3
5~x21x3!29x2

6x3
6 , ~4.35b!

h25x1
6~216x2

62783x2
5x311152x2

4x3
22899x2

3x3
31414x2

2x3
42135x2x3

5127x3
6!23x1

5x2x3~171x2
52537x2

4x31637x2
3x3

3

2347x2
2x3

3151x2x3
419x3

5!13x1
4x2

2x3
2~159x2

42437x2
3x31435x2x3

3148x3
4!1x1

3x2
3x3

3~2199x2
31441x2

2x3

2135x2x3
2153x3

3!13x1
2x2

4x3
4~13x2

2251x2x322x3
2!13x1x2

5x3
5~5x2111x3!28x2

6x3
6 , ~4.35c!

h3536x1
4x2

423x1
3x2

3x3~29x1119x2!1x1
2x2

2x3
2~76x1

21109x1x2131x2
2!2x1x2x3

3~30x1
3162x1

2x2147x1x2
215x2

3!

1x3
4~9x1

426x1
3x2140x1

2x2
2211x1x2

314x2
4!, ~4.35d!

h4524~x1
2~3x2

212x2x323x3
2!14x1x2x3~x322x2!12x2

2x3
2!, ~4.35e!

h55x1
4~36x2

4287x2
3x3176x2

2x3
2230x2x3

319x3
4!2x2x3~57x2

32109x2
2x3162x2x3

216x3
3!

1x1
2x2

2x3
2~31x2

2247x2x3140x3
2!2x1x2

3x3
3~5x2111x3!14x2

4x3
4 , ~4.35f!

andb i
[3] ( i 51,2,3) are three different solutions in terms ofg [3] . By substituting each solutionsa [3] (b i

[3] ),b i
[3] into Eq.~4.31!,

the final expressions forFi
[3] will be g [3] independent; and the corresponding Eq.~4.29! provides solutions for the spectra

parametersx1 , x2 , andx3 of the problem.
For theS3 irrep @21# andT51, the wave function can be written as

uz;@2,1,0#1 , T51,MT51&5~22g22g1g2!Q[21]~x1x2 ;x3!B[0]~x1 ,x2!A1
† ~x3!u0&. ~4.36!
Up to a constant, the coefficients in (22g22g1g2) are taken
from the IDCs @24,25# of S23S1↓S3 for the coupling
@2#^@1#↓@21#. The excitation energy is given by

Ez
[21]T515(

i 51

3
2

xi
(z) . ~4.37!

In this case the Bethe ansatz equations can be written

2

xi
(z) 1GV~xi

(z)!5GFi
[21]~x1

(z) ,x2
(z) ,x3

(z) ;a [21],b [21],g [21]!

~4.38!
04431
as

for i 51,2,3, which determines the spectral parametersxi ,
where the parametersa [21], b [21], andg [21] in Eq. ~4.38! are

a [21]5Q[21]~x1 ,x2 ;x3!, b [21]5Q[21]~x1 ,x3 ;x2!,

g [21]5Q[21]~x2 ,x3 ;x1! ~4.39!

and are functions ofxi ( i 51,2,3) satisfying the conditions

Q[21]~x1x3 ;x2!5g2Q[21]~x1x2 ;x3!,

Q[21]~x2x3 ;x1!5g1g2Q[21]~x1x2 ;x3!. ~4.40!
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After symmetrization, we get

F1
[21]52

x2

x22x1

b [21]1g [21]12a [21]

2a [21]2b [21]2g [21]

1
x3

x32x1

2a [21]2g [21]1b [21]

2a [21]2b [21]2g [21] ,

F2
[21]52

x1

x12x2

b [21]1g [21]12a [21]

2a [21]2b [21]2g [21]

1
x3

x32x2

2a [21]2b [21]1g [21]

2a [21]2b [21]2g [21] ,

F3
[21]5

x2

x22x3

2a [21]2b [21]1g [21]

2a [21]2b [21]2g [21]

1
x1

x12x3

2a [21]2g [21]1b [21]

2a [21]2b [21]2g [21] . ~4.41!

Hence,a [21], b [21], and g [21] should satisfy the following
equations:

2a [21]F1
[21]1

x2

x22x1
~2a [21]2g [21]2b [21]!

2
x3

x32x1
~2a [21]2g [21]!50,

2a [21]F2
[21]1

x1

x12x2
~2a [21]2g [21]2b [21]!

2
x3

x32x2
~2a [21]2b [21]!50, ~4.42a!

2a [21]F3
[21]2

x2

x22x3
~2a [21]2b [21]!

2
x1

x12x3
~2a [21]2g [21]!50,

2b [21]F1
[21]1

x3

x32x1
~2a [21]2g [21]2b [21]!

1
x2

x22x1
~b [21]1g [21]!50,

2bF3
[21]1

x1

x12x3
~2a [21]2b [21]2g [21]!

2
x2

x22x3
~2a [21]2b [21]!50, ~4.42b!

2bF2
[21]2

x3

x32x2
~2a [21]2b [21]!

1
x1

x12x2
~g [21]1b [21]!50,
04431
2g [21]F2
[21]1

x3

x32x2
~2a [21]2b [21]2g [21]!

1
x1

x12x2
~b [21]1g [21]!50,

2g [21]F3
[21]1

x2

x22x3
~2a [21]2b [21]2g [21]!

2
x1

x12x3
~2a [21]2g [21]!50, ~4.42c!

2g [21]F1
[21]2

x3

x32x1
~2a [21]2g [21]!

1
x2

x22x1
~b [21]1g [21]!50,

In comparison of Eq.~4.42! with Eq. ~4.32!, it is clear that
the functions

a [21]5
1

2
a [3] , b [21]52b [3] , g [21]52g [3] . ~4.43!

Therefore, substituting Eqs.~4.33! and~4.34! into Eq.~4.43!,
and then substituting the resultants of Eq.~4.43! into Eq.
~4.41!, one gets the final expression forFi

[21] in terms the
spectral parametersx1 , x2 , andx3 . Finally, substituting the
functionsFi

[21] into Eq. ~4.38!, one obtains the Bethe ansa
equations that determine the possible spectral parameterxi .

For theS3 irrep @21# andT52, the wave function can be
written as

uz;@2,1,0#2 ,T52,MT52&

5~21g22g1g2!QA
[21]~x1x2 ;x3!P1

1~x1 ,x2!A1
† ~x3!u0&,

~4.44!

where QA
[21](x1x2 ;x3) is antisymmetric with respect to

x1↔x2 permutation becauseP1
1(x1 ,x2) is antisymmetric

with x1↔x2 permutation. Again, up to a constant, the coe
ficients in (21g22g1g2) are taken from the IDCs@24,25# of
S23S1↓S3 for the coupling@12# ^ @1#↓@21#. The excitation
energy is given by

Ez
[21]T525(

i 51

3
2

xi
(z) . ~4.45!

In this case the Bethe ansatz equations can be written

2

xi
(z) 1GV~xi

(z)!

5GFi
[21](A)~x1

(z) ,x2
(z) ,x3

(z) ;a [21](A),b [21](A),g [21](A)!

~4.46!

for i 51,2,3, which determines the spectral parametersxi .
After symmetrization, we get
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F1
[21](A)5

x3

x32x1

2~2a [21](A)1g [21](A)!

2a [21](A)1b [21](A)1g [21](A) ,

F2
[21](A)5

x3

x32x2

2~2a [21](A)1b [21](A)!

2a [21](A)1b [21](A)1g [21](A) ,

F3
[21](A)5

x1

x12x3

2~2a [21](A)1g [21](A)!

2a [21](A)1b [21](A)1g [21](A)

1
x2

x22x3

2~2a [21](A)1b [21](A)!

2a [21](A)1b [21](A)1g [21](A) . ~4.47!

Hence,a [21](A), b [21](A), andg [21](A) should satisfy the fol-
lowing equations:

2a [21](A)F1
[21](A)2

x3

x32x1
~2a [21](A)1g [21](A)!50,

2a [21](A)F2
[21](A)2

x3

x32x2
~2a [21](A)1b [21](A)!50, ~4.48a!

2a [21](A)F3
[21](A)2

x1

x12x3
~2a [21](A)1g [21](A)!

2
x2

x22x3
~2a [21](A)1b [21](A)!50,
04431
b [21](A)F1
[21](A)1

x2

x22x1
~b [21](A)2g [21](A)!50,

b [21](A)F32
x2

x22x3
~2a [21](A)1b [21](A)!50, ~4.48b!

b [21](A)F2
[21](A)2

x3

x32x2
~2a [21](A)1b [21](A)!

2
x1

x12x2
~b [21](A)2g [21](A)!50,

g [21](A)F2
[21](A)2

x1

x12x2
~g [21](A)2b [21](A)!50,

g [21](A)F3
[21](A)2

x1

x12x3
~2a [21](A)1g [21](A)!50 ~4.48c!

g [21](A)F1
[21](A)1

x2

x22x1
~b [21](A)2g [21](A)!

2
x3

x32x1
~2a [21](A)1g [21](A)!50,

There are two sets of solutions:
b1
[21](A)5g [21](A)

~x22x1!x32Ax3
2~x12x2!22~x32x2!~x12x3!x1x2

x1~x32x2!
, a [21](A)5

1

2
~b1

[21](A)1g [21](A)!. ~4.49!

The corresponding expressions forFi
[21](A) are

F1
[21](A)5

2x2x32x1~x21x3!1Ax3
2~x12x2!21~x22x3!~x12x3!x1x2

~x12x2!~x12x3!
, ~4.50a!

F2
[21](A)5

x1~x222x3!1x2x32Ax3
2~x12x2!21~x22x3!~x12x3!x1x2

~x12x2!~x22x3!
, ~4.50b!

F3
[21](A)5

x3~x11x2!22x1x22Ax3
2~x12x2!21~x22x3!~x12x3!x1x2

~x12x3!~x32x2!
. ~4.50c!

b2
[21](A)5g [21](A)

~x22x1!x31Ax3
2~x12x2!22~x32x2!~x12x3!x1x2

x1~x32x2!
, a [21](A)5

1

2
~b2

[21](A)1g [21](A)!. ~4.51!

The corresponding expressions forFi
[21](A) are

F1
[21](A)5

x1~x21x3!22x2x31Ax3
2~x12x2!21~x22x3!~x12x3!x1x2

~x12x2!~x12x3!
, ~4.52a!

F2
[21](A)5

x1~x222x3!1x2x31Ax3
2~x12x2!21~x22x3!~x12x3!x1x2

~x12x2!~x22x3!
, ~4.52b!

F3
[21](A)5

x3~x11x2!22x1x21Ax3
2~x12x2!21~x22x3!~x12x3!x1x2

~x12x3!~x32x2!
. ~4.52c!
4-9
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Substituting Eq.~4.50! or ~4.52! into Eq. ~4.46!, one obtains
the corresponding Bethe ansatz equations for determining
spectral parametersxi .

Finally, for theS3 irrep @13# with T50 the wave function
can be written as

uz;@13#,T50,MT50&5~12g21g1g2!QA
[13]~x1 ,x2 ;x3!

3„P1~x1 ,x2!A †~x3!…0
0u0&,

~4.53!

whereQA
[13] (x1x2 ;x3) is also antisymmetric with respect to

x1↔x2 permutation. Up to a constant, the coefficients
(12g21g1g2) are taken from the IDCs@24,25# of S2
3S1↓S3 for the coupling@12# ^ @1#↓@13#. The excitation
energy is given by

Ez
[13]T525(

i 51

3
2

xi
(z) . ~4.54!

It can be proven that the three expansion coefficientsQA
[13]

can be taken to be the same in this case. Hence, Eq.~4.53!
can be simplified to

uz;@13#,T50,MT50&

5~12g21g1g2!„P1~x1
(z) ,x2

(z)!3A 1~x3
(z)!…0

0u0&.

~4.55!

In this case the Bethe ansatz equations are simply

2

xi
(z) 1GV~xi

(z)!50 ~4.56!

for i 51,2,3. Because the wave function~4.54! is antisym-
metric with any permutation amongx1

(z) , x2
(z) , andx3

(z) , the
solutions ofxi should be those satisfying Eq.~4.56! with
x1

(z)Þx2
(z)Þx3

(z) .

V. DISCUSSION

A general procedure, based on the Bethe ansatz, for b
ing algebraic solutions for seniority-zeroJ50 states of 2k
nucleons interacting through aT51 charge-independen
pairing interaction has been introduced. The method sho
also work for finding solutions of a quantum many-bo
problem with a Lie algebra symmetryG other than Sp(4).
We used the procedure to generate explicit results
04431
he

d-

ld

r

seniority-zeroJ50 states for up to six nucleons.
The results derived in this paper fork<2 as well as for

2k nucleons for symmetric irreps ofSk with T5k agree with
those given by Richardson@21# and by Chen and Richardso
@22,23#. However, in Sec. IV, we showed that the resu
given in Refs.@21–23# are not valid for six or more nucleon
in nonsymmetric irreps of the permutation group. The m
difference lies in the fact that in the present work the exp
sion coefficientsQ[l] are considered to be functions of th
spectral parameterxi and different from one another for non
symmetric irreps of the permutation groups, while the exp
sion coefficients in the work of Richardson and of Chen a
Richardson were assumed to be independent of the spe
parameter. In fact, for 2k nucleon configuratons, the prese
calculation shows that the expansion coefficientsQ[l] k can
be taken to be the same only for totally symmetric irreps@k#
of the permutation groupsSk with T5k or totally antisym-
metric irreps@1k# with k51,2,3. One can verify that the
results given by Eqs.~4.29!, ~4.38!, and ~4.46! reduce to
those given in Refs.@21–23# if one takesa [3]5b [3]5g [3] in
Eq. ~4.31!, a [21]52b [21]52g [21] in Eq. ~4.41!, and
a [21](A)5b [21](A)5g [21] in Eq. ~4.47!. But for other cases
general solutions of the type introduced here are requi
those offered in Refs.@21–23# as solutions for general irrep
are not possible.

The nonsymmetric@2,1# irrep of Sk is two-dimensional.
The results derived in Sec. IV are for only one of the tw
but a similar procedure can be applied to determine the
other one. In this regard, note that the eigenenergies fo
given Sk irrep are degenerate because the Hamiltonian
invariant with respect to any permutations ofSk . The most
important outcome of the present analysis is the algeb
expression of the Bethe ansatz equations given in Sec
which is a set of highly nonlinear equations. For examp
there are three sets of solutions for theb function for the
irreps (@3#, T51) and (@2,1#, T51), and there are two set
of solutions for theb function for the @2,1# irrep with T
52. Numerical calculations and analyses that are part of
other study will be presented elsewhere.
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