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Ground state of finite nuclei evaluated from realistic interactions

Kh. Gad and H. Mu¨ther
Institut für Theoretische Physik, Universita¨t Tübingen, D-72076 Tu¨bingen, Germany

~Received 8 May 2002; published 3 October 2002!

Ground state properties of finite nuclei (16O and 40Ca) are evaluated from realistic nucleon-nucleon inter-
actions. The calculations are based on the Brueckner-Hartree-Fock approximation. Special attention is paid to
the role of the energy spectrum for the particle states, in particular, for those close to the Fermi energy.
Additional binding energy is obtained from the inclusion of the hole-hole scattering term within the framework
of the Green function approach. Results for the energy distribution of the single-particle strength and the
sensitivity to the nucleon-nucleon interaction are investigated. For that purpose three modern nucleon-nucleon
interactions are employed: the Argonne V18, the charge-dependent Bonn potential, and a realistic nucleon-
nucleon interaction which is based on chiral perturbation theory and which has recently been fitted by the Idaho
group.
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I. INTRODUCTION

One of the central aims of theoretical nuclear physics
the attempt to determine the bulk properties of nuclear s
tems such as their binding energy and their density or ra
from a realistic model of the nucleon-nucleon~NN! interac-
tion, i.e., aNN interaction which yields an accurate fit of th
NN scattering data below the threshold ofp production.
Quite some progress has been made during the last ten
in the determination of such realisticNN interaction models.
A family of charge-dependentNN potentials has been gene
ated, which all fit the empirical scattering data with hig
precision@1–3#. Nevertheless, using suchNN interactions in
nuclear structure calculations one obtains results which
hibit significant differences@4,5#.

TheNN interactions containing nonlocal terms such as
charge-dependent Bonn potential@3#, ~CDBonn!, or one of
the Nijmegen interaction models@1# tend to be ‘‘softer’’ than
the purely local interactions like the Argonne V18 potent
@2#. Here the expression ‘‘softer interaction’’ is used to ide
tify those interactions which induce weaker two-nucleon c
relations in the nuclear many-body wave function. This i
plies that the total energy of nuclear matter calculated a
given density without correlations, i.e., using the Hartre
Fock approximation, yields less repulsive results for a s
nonlocal potential as compared to the energy calculated f
stiffer, localNN interaction. As an example we mention th
Hartree-Fock calculations for nuclear matter at the empir
saturation density yield 4.6 MeV/nucleon using the CDBo
interaction while 30.3 MeV are obtained if the Argonne V1
potential is used@5#. Including effects ofNN correlation as is
done, e.g., in a Brueckner-Hartree-Fock~BHF! calculation
leads to results which are attractive and much closer to e
other.

All these modern interactions, however, tend to pred
too much binding energy for nuclear matter and satura
densities which are too large. This is the case for the B
approach but it is also observed if variational calculations
performed @6,7#. Softer nonlocal interaction yields large
binding energies and saturation densities than local inte
tions @5#. This over-binding is often compensated by a thre
0556-2813/2002/66~4!/044301~9!/$20.00 66 0443
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nucleon force, which can be adjusted in such a way that
empirical saturation point of nuclear matter is reproduc
@8–12#. These three-nucleon forces can be understood
simulate the relativistic effects as incorporated, e.g., in
Dirac-BHF approach@13–16#. These three-nucleon force
however, can also be interpreted to describe the effect
virtual excitations of nucleons to theD(3,3) @17,18# or N*
Roper resonance@8,19#.

Phenomenological three-nucleon forces are also
ployed to describe the properties of light nuclei with partic
numbers up toA58 using the Green function Monte Carl
method@20#. However, at first sight, the situation in calcu
lating bulk properties of finite nuclei seems to be differe
from the corresponding situation in nuclear matter. Wh
microscopic calculations for nuclear matter, using the m
ern NN interactions, yield too much binding energy, BH
calculations@21#, calculations using the coupled cluster a
proach@22#, and variational calculations using correlated b
sis functions@23# predict binding energies for finite nucle
which are too small as compared to the experimental da

It is the aim of the present work to investigate this situ
tion a bit more in detail. For that purpose we consider
BHF approximation paying special attention to the partic
particle excitations at low energies and including the effe
of hole-hole scattering terms. We are investigating the p
dictions originating from various models of realisticNN in-
teractions. These include local, such as the Argonne V18@2#,
and non-local models, such as the CDBonn interaction@3#,
but also the realistic meson-exchange models based on c
perturbation theory, which have recently been developed
the Idaho group@24#.

After this introduction we will describe in Sec. II a tech
nique for the calculation of bulk properties of nuclei whic
accounts in a consistent way for short-range and long-ra
correlations. Results of such calculations for the nuclei16O
and 40Ca will be presented and discussed in Sec. III, which
followed by a short summary in Sec. IV.

II. CONSISTENT TREATMENT OF LONG- AND SHORT-
RANGE CORRELATIONS

The BHF approximation is one of the most popular a
proaches to account for effects of correlations beyond
©2002 The American Physical Society01-1
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KH. GAD AND H. MÜTHER PHYSICAL REVIEW C66, 044301 ~2002!
mean-field approximation in calculating bulk properties
infinite nuclear matter and finite nuclei from realisticNN
interactions. It is characterized by a solution of the Bet
Goldstone equation, leading to theG matrix G

8
,

G
8
~v!5V1V

Q0

v2Q0H0Q0
G
8
, ~1!

and the self-consistent evaluation of the BHF single-part
energies

« i5 K iU p2

2mU i L 1 (
j ,F

^ i j uG
8
~v5« i1« j !u i j &. ~2!

In these equationsV stands for the bareNN interaction,Q0
represents the Pauli operator, which restricts the propag
in the Bethe-Goldstone Eq.~1! to particle states with ener
gies above the Fermi energy, andi and j refer to hole states
i.e., the eigenstates of the BHF single-particle Hamilton
with energies« i and « j below the Fermi energy. The sel
consistent definition of the starting energyv in terms of the
single-particle energies is determined by the Bethe-Brand
Petschek~BBP! theorem@25#. Since, however, the BBP theo
rem can only be used to justify the definition of the sing
particle potential for the hole states, the optimal definition
the single-particle energies for the particle states, which
ters the Bethe-Goldstone Eq.~1! because energies define th
eigenvalues ofH0, has been discussed for many years in
literature. The conventional choice has been to ignor
single-particle potential or self-energy contributions for t
particle states completely and approximateH0 by the kinetic
energy only. This conventional choice is supported by
coupled cluster or exponentialS method@26#, which using
theS2 approximation essentially leads to the same approa
This conventional choice for the single-particle spectrum
nuclear matter is not very appealing as it leads to a large
at the Fermi surface.

Jeukenne and collaborators@27# argued that it would be
more natural to choose the propagator according to the G
function method, i.e., to define the single-particle propaga
with a single-particle energy which includes the real part
the self-energy as a single-particle potential for particle a
hole states. This leads to a spectrum which is continuou
the Fermi momentum, and which provided the name ‘‘co
tinuous choice’’ for this approach. This continuous cho
leads to an enhancement of correlation effects in the med
and tends to predict larger binding energies for nuclear m
ter than the conventional choice. Inclusion of a three-ho
line contribution@28,29# indicates that the continuous choic
seems to lead to a better convergence of the hole-line ex
sion and is therefore preferable. In fact, recent studies
nuclear matter show that the result is rather sensitive to
tails of the single-particle spectrum around the Fermi ene
@30,31#.

In order to investigate these effects of the low-ene
particle-particle excitations, which should correspond
long-range correlations, also in finite nuclei, we follow t
concept of a double partitioned Hilbert space, as has b
used before for the study of infinite nuclear matter~see, e.g.,
04430
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Refs. @32,33#! as well as finite nuclei~see, e.g., Refs
@34,35#!. The long-range correlations are taken into acco
by means of the Green function approach within a fin
model space. This model space shall be defined in term
shell-model configurations including oscillator singl
particle states up to a certain shell. For our studies of16O
and 40Ca we have chosen to include configurations up to
p f shell andsdg shell, respectively. It turned out that th
final results are not very sensitive to this choice. This is d
to the fact that the effect of short-range correlations, i
originating from configurations outside this model space,
not ignored but taken into account by means of an effec
interaction, aG matrix appropriate for this model space. Th
effective interactionG is determined as the solution of th
Bethe-Goldstone equation

G~v!5V1V
Qmod

v2QmodH0Qmod
G. ~3!

The Pauli operatorQmod is defined to exclude two-particle
states with one of the particles below the Fermi level of
nucleus considered or with both nucleons in states inside
model space. With thisG matrix we solve the BHF Eq.~2!
using the self-consistent definition of the starting energyv
for hole states but also for the oscillator particle states, wh
are inside the model space. We consider two differ
choices for the spectrum of the high-lying particle states o
side the model space, defined byH0 in Eq. ~3!: The conven-
tional choice, i.e.,H0 is just the operator of the kinetic en
ergy for the interacting particles, and the continuous cho
for which we add an attractive constant to the kinetic ener
This constant is determined in such a way that it correspo
to the mean value of the potential energies of the low-ly
particle states inside the model space.

Note that this approximate BHF scheme only accounts
particle-particle correlations outside the model space.
will call these correlations short-range correlations in the d
cussion below. A measure for these short-range correlat
is given by the depletion coefficient

k i52 (
j ,F

K i j U ]G
]v U i j L ~4!

or the corresponding occupation probability

r i
sr512k i . ~5!

Using the single-particle energies we define an effect
interaction for the model space in terms of the oscilla
matrix elements,

^ i j uVukl&5
1

2
@^ i j uG~v5« i1« j !ukl&

1^ i j uG~v5«k1« l !ukl&#. ~6!

The effects of long-range correlations or correlations ins
the model space shall be evaluated by means of the G
function method. To determine the correlated single-part
Green function for a nucleon with isospint, orbital angular
1-2
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momentuml, and total angular momentumj one has to solve
a Dyson equation, which in the case of a finite system w
spherical symmetry and within a discretize model sp
takes the form

gt l j ~n,n8;v!5gt l j
(BHF)~n,n8;v!

1 (
n9,n-

gt l j
(BHF)~n,n9;v!DSt l j ~n9,n-;v!

3gt l j ~n-,n8;v!, ~7!

wheregt l j
(BHF)(n,n9;v) refers to the BHF propagator, whic

we assume to be diagonal in the radial quantum numbern,
n8,

gt l j
(BHF)~n,n8;v!5dn,n8

1

v2«nt l j 6 ih
. ~8!

The correction to the BHF self-energy in terms of tw
particle one-hole (2p1h) and two-hole one-particle (2h1p)
configurations inside the model space,

DSt l j ~n,n8,v!5St l j
(2p1h)~n,n8,v!1S l j

(2h1p)~n,n8,v!,
~9!

is defined in terms of the effective interactionV of Eq. ~6!.
As an example we consider the 2p1h contribution of second
order inV,

St l j
(2p1h)~n,n8,v!

5
1

2 (
h,F

(
p1 ,p2.F

^nhuVup1p2&^p1p2uVun8h&
v2~«p11«p22«h!1 ih

. ~10!
in
ul
e

d

04430
h
e

In order to evaluate the total energy of the system and
pectation values of one-body operators one has to rewrite
single-particle Green function in the Lehmann represen
tion:

gt l j ~n,n8;v!5(
a

St l j
p ~n,n8,vat l j !

v2vat l j 1 ih
1(

b

St l j
h ~n,n8,vbt l j !

v2vbt l j 2 ih
.

~11!

The single-particle density matrix is then defined in terms
the hole-spectral function

rt l j ~n,n8!5(
b

St l j
h ~n,n8,vbt l j ! ~12!

and the total energy can be evaluated from

E5 (
t l j bn,n8

~2 j 11!

2
St l j

h ~n,n8,vbt l j !K nU p2

2m
1vbt l jUn8L .

~13!

In order to obtain the spectral function and the positions
the poles in the single-particle Green function,vbt l j , we
reformulate the Dyson equation into an eigenvalue prob
@21,34#:
1
«1 0 a11 . . . a1P A11 . . . A1Q

� A A A A

0 «N aN1 . . . aNP AN1 . . . ANQ

a11 . . . aN1 e1 0

A A �

a1P . . . aNP 0 eP 0

A11 . . . AN1 E1

A A �

A1Q . . . ANQ 0 . . . 0 . . . EQ

2 1
X0,1

a

A

X0,N
a

X1
a

A

XP
a

Y1
a

A

YQ
a

2 5va1
X0,1

a

A

X0,N
a

X1
a

A

XP
a

Y1
a

A

YQ
a

2 , ~14!
in

e-
where for simplicity we have dropped the correspond
conserved quantum numbers for isospin, parity and ang
momentum (t l j ). The matrix to be diagonalized contains th
BHF Hamiltonian defined in terms of theN BHF single-
particle energies of the symmetry assumed within the mo
space, and the coupling to theP different 2p1h configura-
g
ar

el

tions andQ 2h1p states. These couplings are expressed
terms of the matrix elements

ami5^mhuVup1p2& and Am j5^mpuVuh1h2&. ~15!

As long as we are still ignoring any residual interaction b
1-3
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TABLE I. Single-particle energies (« i) and occupation probabilities (r i) for protons in16O and the total
energy per nucleon (E/nucleon! as calculated from various approximations~see discussion in the text! are
compared to experimental data. The calculations have been performed using the CDBonn interact
considering a model space defined in terms of oscillator functions with a parametera50.4. The numbers in
parentheses refer to energies and occupation probabilities of the dominant quasiparticle contribution
Green function approach. All energies are given in MeV.

BHF~conv! BHF~cont! BHF0 BHF~mod! Green Experiment

«s1/2 -38.19 -42.78 -40.74 -43.72 -44.00~-47.01! -4068
«p3/2 -18.14 -22.40 -20.40 -23.99 -24.29~-20.68! -18.45
«p1/2 -14.50 -19.02 -16.86 -20.86 -21.26~-17.44! -12.13
rs1/2 0.928 0.854 0.904 0.871 0.867~0.276!
rp3/2 0.926 0.855 0.898 0.829 0.823~0.730!
rp1/2 0.916 0.857 0.900 0.818 0.802~0.725!
E/nucleon -4.61 -6.67 -5.66 -7.57 -7.78 -7.98
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tween the various 2p1h and 2h1p configurations the corre
sponding parts of the matrix in Eq.~14! are diagonal with
elements in terms of single-particle energies and denote
ei (Ej ) for 2p1h (2h1p) configurations, respectively. On
can easily improve this approach and incorporate the eff
of residual interactions between the 2p1h configurations or
2h1p configurations. One simply has to modify the corr
sponding parts of the matrix in Eq.~14! and replace where
H2p1h and H2h1p contain the residual interactions in th
2p1h and 2h1p subspaces,

S e1 . . . 0

A �

0 . . . eP
D ⇒H2p1h

and S E1 . . . 0

A �

0 . . . EQ
D ⇒H2h1p . ~16!

For the calculations which we are going to discuss here,
only consider the matrix elements for the particle-parti
interaction inH2p1h and the hole-hole interaction forH2h1p .
This implies that the corresponding particle-particle a
hole-hole ladder diagrams are taken into account. A m
complete treatment of the residual interaction requires
treatment of three-body terms and has recently been
cussed, e.g., by Barbieri and Dickhoff@37#.

The eigenvaluesva of Eq. ~14! correspond to the poles o
the single-particle Green function in Eq.~11! and the spectra
function is given in terms of the components of the eige
vectors by

Sh~n,n8;va!5X0,n
a X0,n8

a ~17!

for eigenvaluesva below the Fermi energyEF , while a
corresponding equation holds for the spectral functionSp for
energies aboveEF .
04430
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III. RESULTS AND DISCUSSION

As a first example we would like to consider some resu
displayed in Table I evaluated for the nucleus16O using the
CDBonn potential@3# supplemented by the Coulomb inte
action between protons. For the results displayed in this ta
the single-particle wave functions have been constraine
wave functions of the harmonic oscillator defined in terms
a harmonic oscillator constant

b5
1

A2a
, ~18!

with a50.4 fm21. This corresponds to an oscillator fre
quency of

\v5
~\c!2

mc2b2
~19!

of 13.27 MeV and leads to a radius for16O, assuming simple
shell-model occupancies, of 2.65 fm, which is close to
empirical value. The first two columns of Table I refer
BHF calculations assuming the conventional@BHF~conv!#
and a continuous@BHF~cont!# choice for the spectrum of the
particle states in the Bethe-Goldstone Eq.~1!. It should be
recalled that we define the continuous spectrum in terms
the kinetic energy shifted by a constant such that the sin
particle energies for low-lying particle states is identical
the mean value of the corresponding BHF single-particle
ergies calculated according to Eq.~2!. Beside the single-
particle energies also the occupation probabilitiesr i

sr calcu-
lated according to Eq.~5! are listed. Comparing these tw
columns one can see that the use of a continuous sin
particle spectrum leads to more attractive single-particle
ergies and a binding energy, which is enhanced by abo
MeV/nucleon. This enhancement of the attraction is acco
panied by lower occupation probabilitiesr i

sr, which implies
larger values for the corresponding depletion coefficien
This demonstrates that the lowering of the particle-st
spectrum, going from the conventional to the continuo
choice, leads to a substantial enhancement of correlation
1-4
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The third and fourth columns of Table I, labeled BHF
and BHF~mod!, refer to the model space approach as int
duced in the preceding section. The BHF0 approach ide
fies the BHF calculation using theG matrix defined in Eq.
~3! with a continuous choice for the particle-state spectru
This means that due to the Pauli operatorQmod the contribu-
tion of low-lying particle states~for the present example
those in the 1s0d and 1p0 f shells! to theG-matrix are sup-
pressed. This leads to larger occupation probabilities@com-
pare BHF0 with BHF~cont!# and less attractive single
particle energies. Also the binding energy per nucleon
reduced by about 1 MeV.

The contribution of the low-lying particle-particle con
figurations are again included in the BHF~mod! approach by
considering the corresponding (2p1h) component in the
definition ofDS in Eq. ~9! and solving Eq.~14!, ignoring the
coupling to the (2h1p) configurations but allowing for the
residual interaction between the particle states accordin
Eq. ~16!. In this way the effects of the low-lying particle
particle configurations are taken into account allowing
individual single-particle energies«nl j for all subshells with
quantum numbersnl j and not just a replacement of the
single-particle energies with the kinetic energy shifted b
global constant, as was done in the BHF~cont! approach dis-
cussed above. This more sophisticated treatment of the
lying particle spectrum leads to some additional attraction
the single-particle energies ranging from 0.9 MeV in the c
of the s1/2 shell over 1.6 MeV (p3/2) to 1.8 MeV in the case
of the p1/2 shell. The effect is obviously larger for state
closer to the Fermi energy since these states are more s
tive to the details of the long-range correlations. The sa
feature can also be observed in the occupation probabil
r l j . It should be pointed out that the results listed for t
BHF~mod! approach account for depletion due to the exc
tion of particle-state configurations inside the model sp
by means of Eq.~12! while the depletion due to short-rang
correlations leading to excitations outside the model sp
are accounted for by means of Eq.~5!. The more specific
treatment of the low-lying particle-particle configuration r
duces the spin-orbit splitting for the protons in thep shell
from 3.4 MeV in the case of BHF~cont! to 3.1 MeV in the
BHF~mod! approach, both values being much smaller th
the experimental one~6.3 MeV!.

For all approaches discussed so far, the single-par
strength for the hole states is just concentrated in one qu
particle state. The corresponding Green functions exh
only one pole below the Fermi energy. A distribution of th
hole strength is obtained if we also account for the 2h1p
contribution in the definition of the self-energy in Eq.~9!.
This distribution is defined in terms of the eigenvaluesva in
Eq. ~14! and the strength defined in Eq.~17!. Results for the
spectral distribution are displayed in Fig. 1. In the upp
panel of this figure, referring to the removal of protons w
s1/2 quantum numbers, the strength is widely distributed.
the column labeled ‘‘Green’’ of Table I we give the mea
value of this spectral distribution defined by

«t l j 5
Sbnvbt l j St l j

h ~n,n,vbt l j !

Snrt l j ~n,n!
, ~20!
04430
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but also the energy of the quasiparticle state~in parentheses!,
which is defined by that eigenvaluevbt l j , which carries the
largest strength. Inspecting Fig. 1 and the correspond
numbers in Table I, one finds that the quasiparticle state
the s1/2 state carries only rather little strength.

The quasiparticle contribution is much more important
the p3/2 andp1/2 states. For these more weakly bound sta
the quasiparticle states are also those which are closest t
Fermi energy, which means that they correspond to the
moval of a nucleon leading to the ground state or low
excited state of the daughter nucleus of given parity~l! and
angular momentum (j ). Therefore one should consider tho
quasiparticle energies in comparing with experimental
moval energies for these states~values presented in the las
column of Table I!. The spin-orbit splitting resulting from
these quasiparticle energies is slightly larger than the
derived from the BHF~mod! approximation but still too
small as compared with the experimental value. Here
should be recalled that a substantial enhancement of the s
orbit splitting is obtained if the relativistic features of th
Dirac-Brueckner-Hartree-Fock approximation are taken i
account@36#.

Comparing the results of the Green function approa
with those obtained in the BHF~mod! approximation, one
finds that the hole-hole terms which are included in t
Green function approach tend to reduce the binding ene
of the quasiparticle state but lead to more attractive m
values of the spectral distribution for the hole states. Si
these mean values enter the evaluation of the total bind
energy@see Eq.~13!# we also get a slightly larger binding
energy in the Green function approach as compared to
BHF~mod! approximation. It is worth mentioning that th

FIG. 1. The spectral function for proton hole strength in thes1/2

~upper panel! and p3/2 channels. The results are calculated for16O
using the CDBonn interaction. The distributions of the compl
Green function approach are obtained by folding the discrete di
bution with Gaussian functions assuming a width of 1 MeV. Al
given are the positions of the single-particle states evaluated in
BHF~mod! approximation~straight lines!.
1-5
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Green function approach with inclusion of 2h1p terms in the
self-energy also provides nonvanishing occupation proba
ties for states which are unoccupied in the simple sh
model. Also these occupancies contribute to the total bind
energy.

At this stage it is useful to make a first comparison w
the situation in corresponding calculations of nuclear mat
It has been observed also for nuclear matter that the re
of BHF calculations are rather sensitive to the choice of
spectrum for the particle states, in particular, for those w
momenta close to the Fermi momentum@30,31#. Using the
precise single-particle spectrum rather than a quadratic
rametrization leads to an increase of the binding energ
nuclear matter around saturation density of about 1.5 M
nucleon @31#. This is even more than the gain in bindin
energy from the BHF~cont! to the BHF~mod! approach dis-
played in Table I. Also in nuclear matter one observes t
the inclusion of the 2h1p terms in the self-energy leads t
less attractive quasiparticle energies. The spread of
single-particle strength to lower energies, however, lead
additional binding energy. This feature, less attractive qu
particle energies but more binding energy per nucleon, h
to fulfill the Hugenholtz–Van Hove theorem@38,39# for
nuclear matter. The gain in binding energy due to the 2p
components in the self-energy is about 0.5 MeV/nucleon
nuclear matter at saturation density@31#. Also this is a result
rather similar to the difference between the BHF~mod! ap-
proach and the result of the complete Green function liste
Table I.

For a first comparison of results originating from differe
NN interactions, we list in Table II results of the Green fun
tion calculation for 16O using the charge-dependent Bo
interaction@3# ~CDBonn!, the version A of the Idaho inter
action @24# ~Idaho A!, which is based on features of chir
perturbation theory, and the Argonne V18 interaction@2#. All
interaction models yield quasiparticle energies which
more attractive than the experimental removal energies
they have total binding energy which is slightly smaller th
the empirical energy of 7.98 MeV/nucleon.

The prediction for the spectral strength of thep3/2 andp1/2
quasiparticle states ranges between 0.71 and 0.75. These
ues are larger than spectroscopic factors deduced f
nucleon knockout experiments, (e,e8)p, which are around
0.6 @40#. The local NN interaction Argonne V18 is stiffer

TABLE II. Results for single-particle energies, occupation pro
abilities, and total energy per nucleon of16O calculated from the
Green function approach using the CDBonn, the Idaho A, and
Argonne V18 interaction modes. For further details see Table I

CDBonn Idaho A Argonne V18

«s1/2 -44.00~-47.01! -44.00~-47.43! -42.38~-45.63!
«p3/2 -24.29~-20.68! -24.00~-20.64! -23.12~-19.77!
«p1/2 -21.26~-17.44! -20.87~-17.28! -20.26~-16.62!
rs1/2 0.867~0.276! 0.873~0.284! 0.830~0.265!
rp3/2 0.823~0.730! 0.833~0.747! 0.806~0.723!
rp1/2 0.802~0.725! 0.821~0.741! 0.794~0.715!
E/nucleon -7.78 -7.65 -7.15
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than the nonlocal meson-exchange interaction models
Bonn and Idaho A~see also the comparison in nuclear mat
@31#!. This means that it predicts stronger correlations,
indicated by the smaller spectroscopic factors, and sma
binding energy.

Altogether one may argue that the bulk properties of16O
are very well reproduced. All interactions reproduce the to
energy within 1 MeV/nucleon and predict a radius for t
proton distribution of 2.72 fm, which is in very good agre
ment with the experiment. Here, however, one should m
tion that this close agreement for the calculated energy co
be accidental. Our calculational scheme is not a variatio
method and therefore it may predict a value for the ene
which is below the exact value for the considered Ham
tonian. In fact, Green function Monte Carlo calculations e
ploying the Argonne V18 interaction yield an energy p
nucleon which is about 1.4 MeV less attractive than the e
pirical value for nuclei withA510 @41#. So one would ex-
pect that such calculations performed for16O would provide
less attraction than the value listed in table I for this inter
tion. This argument is supported by the fact that the calcu
tions of Heisenberg and Mihaila@22# using the coupled clus
ter approach and the Argonne V18 interaction yield
energy of only25.9 MeV/nucleon for16O.

Furthermore one must keep in mind that the radius is t
large extent determined by the choice of the oscillator
rameter for the model space. The choice ofa50.4 has been
made to obtain a radius of 2.65 fm for the uncorrelated sh
model wave function. Correlations within the model spa
lead to small enhancements, only. In order to test the se
tivity of the calculation on the oscillator parameter, we ha
performed calculations for various values ofa. Results for
the binding energy of16O obtained in the Green functio

FIG. 2. Binding energy per nucleon calculated in the Gre
function approach as a function of the oscillator parametera @see
Eq. ~18!, which is used to define the basis of the model spac#.
Results are displayed for variousNN interactions.
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GROUND STATE OF FINITE NUCLEI EVALUATED . . . PHYSICAL REVIEW C66, 044301 ~2002!
approach are displayed in Fig. 2 as a function of the osc
tor parametera. These figures show that an energy min
mum is obtained fora around 0.475 fm21 (0.45 fm21,
0.44 fm21) using the CDBonn, the IdahoA, and the Argonne
V18 interaction, respectively. The corresponding radii of

TABLE III. Results for single-particle energies, occupatio
probabilities, and total energy per nucleon of40Ca calculated from
the Green function approach using the CDBonn, the Idaho A,
the Argonne V18 interaction modes. For further details see Tab

CDBonn Idaho A Argonne V18

«s1/2 -38.30~-57.26! -38.81~-58.44! -37.92~-55.53!
~-17.63! ~-17.94! ~-16.84!

«p3/2 -37.59~-23.22! -38.06~-23.76! -36.37~-22.52!
«p1/2 -35.17~-22.16! -35.60~-22.59! -34.12~-21.42!
«d5/2 -22.27~-18.35! -22.42~-18.70! -21.33~-17.61!
«d3/2 -18.88~-15.08! -18.96~-15.34! -18.13~-14.46!
rs1/2 1.658~0.160! 1.674~0.177! 1.592~0.142!

~0.697! ~0.715! ~0.682!
rp3/2 0.834~0.123! 0.844~0.141! 0.800~0.151!
rp1/2 0.826~0.301! 0.838~0.309! 0.794~0.292!
rd5/2 0.813~0.691! 0.824~0.709! 0.795~0.679!
rd3/2 0.796~0.701! 0.808~0.717! 0.780~0.688!
E/nucleon -8.77 -8.91 -8.22

FIG. 3. The spectral function for proton hole strength in thes1/2

~upper panel!, p1/2 ~middle!, andd3/2 channels. The results are ca
culated for 40Ca using the CDBonn interaction. For further deta
see Fig. 1.
04430
-

e

proton distribution are 2.29 fm, 2.41 fm, and 2.48 fm, all
them too small as compared to the experimental va
Therefore the situation for calculating bulk properties of16O
is similar to the attempts of evaluating the saturation poin
nuclear matter. The calculations tend to predict a rad
which is too small or a density which is too large. It is wor
noting, however, that the disagreement for nuclear matte
larger.

d
I.

FIG. 4. Binding energy per nucleon for40Ca calculated in the
Green function approach as a function of the oscillator parametea.
Results are displayed for various approximation schemes~for no-
menclature see Table I!.

FIG. 5. Binding energy per nucleon calculated in the Gre
function approach as a function of the oscillator parametera. Re-
sults are displayed for variousNN interactions.
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KH. GAD AND H. MÜTHER PHYSICAL REVIEW C66, 044301 ~2002!
As a second example we also consider the nucleus40Ca.
In this case we consider a model space, which is define
terms of harmonic oscillator wave functions including
shells up to the 2s1d0g shell. For a first comparison we fi
the oscillator constant toa50.35 fm21. This corresponds to
a simple shell-model prediction for the radius of 3.5 fm,
reasonable agreement with the empirical value of 3.48 fm

Examples for the spectral distribution are displayed
Fig. 3 ~assuming the CDBonn interaction! and numerical re-
sults obtained in the Green function approach are listed
Table III. Since we have two quasiparticle states for thes1/2
channel in the BHF approximation~see upper panel of Fig
3!, we also list two energies and occupation probabilities
this partial wave in Table III. Also for this nucleus one o
tains a broad distribution of the spectral strength. A w
defined quasiparticle peak only shows up for the states in
1s0d shell.

Also in this case, the predictions for the removal ene
~absolute value of the quasiparticle energy ford3/2) are larger
than the experimental value of 8.3 MeV. Note, however, t
the inclusion of 2h1p contributions in the Green functio
approach reduces the discrepancy by more than 3 MeV
compared to the BHF~mod! approximation. On the othe
hand, the calculated binding energies are in good agreem
with the experimental value of 8.55 MeV/nucleon. So aga
the calculation of bulk properties of40Ca yields results in
fair agreement with the empirical data, if one fixes the rad
with the appropriate choice of the oscillator constanta,
which defines the basis of the model space.

If one releases this constraint and considers various va
for a one obtains results as displayed in Figs. 4 and 5. A
in this case we observe that the minima occur for oscilla
parameters which are larger thana50.35 fm21, which
means that the corresponding radii are smaller than the
pirical one. This is true for the various approximations~see
Fig. 4! but also for the various interactions~see Fig. 5!.

The comparison of the various approximation scheme
Fig. 4 confirms the conclusions, which have been giv
above for the case of16O. In the case of40Ca, however, all
interactions predict too much binding energy and a rad
which in the case of CDBonn interaction is about 25 perc
smaller than the experimental value. This corresponds to
average density, which is too large by about a factor of 2
situation which is approaching the situation of nuclear m
ter. Also in this case, the stiffer interaction Argonne V
yields less energy and smaller densities than the softer in
actions~Idaho A and CDBonn!.
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IV. CONCLUSIONS

Starting from the Brueckner-Hartree-Fock~BHF! ap-
proach various approximation schemes have been inv
gated to derive bulk properties of finite nuclei from realis
NN interactions. It is observed that the results of BHF calc
lations, for finite nuclei as well as infinite nuclear matt
@31#, are rather sensitive to the spectrum of particle states
particular, those with energies close to the Fermi ene
Therefore a technique has been applied to separate a de
description of the low-energy excitations corresponding
long-range correlations from the treatment of short-ran
correlations. While the effects of short-range correlations
taken into account by means of theG-matrix approximation
of the BHF scheme, the long-range correlations are con
ered within the framework of the self-consistent evaluat
of single-particle Green function. This approach includes
effects of particle-particle correlations but also correspo
ing hole-hole scattering terms.

If the basis of the model space is constrained to obtain
empirical value for the radius, one obtains results for
binding energy of nuclei~we consider16O and 40Ca) which
are by 1 to 2 MeV/nucleon more attractive than the cor
sponding value obtained in the BHF approximation. This a
ditional attraction is obtained from the careful treatment
the low-lying particle-particle excitations but is also due
the inclusion of two-hole one-particle configurations in t
definition of the self-energy for the single-particle propag
tor. These terms yield a distribution of the single-partic
strength and a shift of the quasiparticle energy. The repuls
shift of the quasiparticle energy for states close to the Fe
level improves the agreement with the experimental remo
energies. The distribution of the strength, on the other ha
allows a gain in binding energy although the quasiparti
energies are less attractive. This helps to improve the ful
ment of the Hugenholtz–Van Hove theorem. The calcula
spectroscopic factors for the quasiparticle states~around 0.7!
are slightly above the empirical values~around 0.6! derived
from (e,e8)p experiments.

If the constraining condition for the radius is released,
minima for the calculated energies lead to radii which are
small and densities which are too large. The calculated b
ing energies tend to be larger than the empirical values. T
is more pronounced for the nucleus40Ca than for16O.
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