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Lorentz boosted NN potential for few-body systems: Application to the three-nucleon bound state
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A Lorentz boosted two-nucleon potential is introduced in the context of equal time relativistic quantum
mechanics. The dynamical input for the boosted nucleon-nuclBiy) (potential is based on realistidN
potentials, which by a suitable scaling of the momenta are transformedNiNt@otentials belonging to a
relativistic two-nucleon Schrdinger equation in the c.m. system. This resulting Lorentz boosted potential is
consistent with a previously introduced boosted two-bbdyatrix. It is applied in relativistic Faddeev equa-
tions for the three-nucleon bound state to calculate®tiebinding energy. Like in previous calculations the
boost effects for the two-body subsystems are repulsive and lower the binding energy.
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[. INTRODUCTION a relativistic three-nucleon bound state calculation, one is a
manifestly covariant scheme linked to a field theoretical ap-
Modern realistic nucleon-nucleoiN{N) potentials using a proach, the other one is based on relativistic quantum me-
sufficiently large number of parameters describe curkét  chanics on spacelike hypersurfa¢esluding the light fronk
phase shifts very well. The most prominent ones are CDin Minkowski space. Within the first scheme Rupp and Tjon
Bonn[1], Nijmegen 93, I,1[2], and Argonne AV183]. They  [8] find attractive corrections to the triton binding energy,
predictNN observables up to about 350-MeV nucleon labo-using separable interactions to facilitate the solution of the
ratory energy perfectly well with 8%/Ng..a~1. This poten- Bethe-Salpeter-Faddeev equations. A three-dimensional re-
tial description is linked to a nonrelativistic Schklinger  duction of this equation also finds attractive contributions
equation. Converged, nonrelativistic three-nucleon bound9]. The calculations of Stadlest al. [10] are based on a
state calculations based upon these potentials give values foglativistic three-nucleon equation, incorporate the effects of
the triton binding energy between 8.0 and 7.6 Meg\-6), Dirac spinors and include negative energy components. They
whereas the experimental result is 8.48 MeV. There is somalso incorporate off-shell effects of the negative energy com-
sensitivity to nonlocalities in th&IN interactions, which in- ponents of the Dirac spinors, and by varying this part, which
fluences the value of the triton binding energy. While theis not constraint by on-sheN N data, they can achieve an
Nijmegen 93 and | and the AV18 potential are local, attractive contribution to fit the experimental value. Within
Nijmegen Il and CD-Bonn incorporate nonlocalities eitherthe second scheme the relativistic Hamiltonian consists of
via a p? dependence or the nonlocality structure given byrelativistic kinetic energies, two- and many-body interactions
Dirac spinors and so-called minimal relativity factors. It is including their boost corrections. The boost corrections are
well established by now that the purely local interactions indictated by the Poincamgebrg 11-13. There exist already
the above list lead to a triton binding energy of about 7.7applications for the three-nucleon bound s{d#, 15|, which
MeV, leaving about 0.8 MeV unexplained. suggest a repulsive contribution to the three-nucleon binding.
In general, the missing binding energy is attributed toThus, the relativistic effects found in the two schemes appear
some combination of nonlocality in thBIN interactions, controversial, in the approach based on field theory, relativ-
three-nucleon force effects and relativistic effects. Of courseistic effects increase the triton binding energy, in the ap-
these effects are often intermingled, i.e., relativity can motiproach based on relativistic Hamiltonians, relativistic effects
vate specific nonlocalities, and negative energy componentiecrease the triton binding energy.
of a nucleon wave function could be viewed as a specific To the best of our knowledge we are not aware of any
subset of three-nucleon forcgs). three-nucleon (Bl) scattering calculation including relativity
The estimation of relativistic effects on the binding of in one or the other scheme due to the increased difficulty of
three nucleons has been the focus of a lot of work. However scattering calculation. In order to extend the Hamiltonian
up to now there has not been reached closure even on tlseheme in equal time formulation td\3scattering it would
sign of a relativistic contribution to the three-nucleon bind-be a very convenient starting point to have the Lorentz
ing energy. There are essentially two different approaches tboostedNN potential which generates théN t matrix in a
moving frame via a standard Lippmann-Schwinger equation.
In this paper we work out th&IN potential in an arbitrary

*Email address: kamada@mns.kyutech.ac.jp frame, and thus place our work in the scheme based on rela-
TEmail address: walter.gloeckle@tp2.ruhr-uni-bochum.de tivistic quantum mechanics. As application of our Lorentz-
*Email address: ufgolak@cyf-kr.edu.pl boosted potential we restrict ourselves to the calculation of
SEmail address: elster@ohiou.edu the triton binding energy.
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The starting point for arlNN potential in an arbitrary andw(k)=2k?+m?. In Ref.[15] a boosted potential two-

moving frame is the interaction in the two-nucleon c.m. sysmycleon potentiaV/ [Eq. (3.4) of [15]] is naturally introduced
tem, which enters a relativisticNN Schralinger or zg

Lippmann-Schwinger equation. While realistdN poten-
tials are defined and fitted in the context of the nonrelativistic V= 0(K) + 012+ p2— Vo(K)2+p2, (2.2)
Schralinger equationNN potentials refitted with the same

accuracy in the framework of the relativisitN Schradinger wherep is the total momentum of the two-nucleon system.
equation do not yet exist. A first step in that direction has

been done in Ref14], where the AV18 potential has been CPYi0uslY. forp=0 one obtains/=v. For any application
. . e S to the three-nucleon system, one needs to be able to calculate
refitted to describ& N phase shifts in the relativistic context.

Here we prefer to use a different route and employ an anat-he matrix elements of explicitly. Thus we need an explicit

lytical scale transformation of momenta which relatéhl rgpresentatlon and use a momentum space form based on
potentials in the nonrelativistic and relativistic Sotirger ~ €i9enstates of the c.m. momentum operatdo obtain the
equations such that exactly the salél phase shifts are Matrix elements

obtained by both equatiori46]. Though this transformation

is not a substitute for aNN potential with proper relativistic (KIV(p)[K")=(kIN[w(k) +v]*+p*[K")
features and though it suffers from some conceptual defects - -
0 b — (Rl ZF 2K 23

[17], it can serve the purpose of this work, namely, to illus-
trate the effects of a Lorentz boosts NN potentials.

This paper is organized as follows. In Sec. Il we derive
and explicitly formulate the Lorentz-boosted potential re-
lated to a given nonrelativistic potential. In Sec. Il we apply
our formulation to the Reid Soft Core potential and discuss
features of the Lorentz boost. Then we solve the relativistic 1= g} | +f |E>(+)d3k(+)<l2|. (2.4)
3N Faddeev equation based on that Lorentz-boosted poten-
tial. We end with a brief summary and outlook in Sec. IV.

With the help of the eigenstates, and |k)(*) (bound and
scattering eigenstatesf the c.m. Hamiltoniarf (k) +v]
the completeness relation is given as

Inserting the completeness relation into E21.3) leads to

II. DERIVATION OF THE BOOSTED POTENTIAL > >0 - >
(KIV(P)IK")y= (Kl grp) (] k') M E+ p?
A formalism for treating the relativistic three-body Fad-
deev equations has been introduced in R&8]. There a +f d3K"(KIK"Y IV (k) 2+ p2EI(K7 K
Lorentz boosted matrix is constructed from the relativistic
two-nucleont matrix given in theNN center-of-mass$c.m.) S N A
system. TheNN t matrix obeys the relativistic Lippmann- — o(k=k") Vo (k)"+p%, (2.9
Schwinger equation: whereM,, is the bound state mass. Using the standard rela-
o . , v(IZ,IZ’)t(IZ’,IZO) tion between scattering states and plane wave states
t(k,kg)=v(k,kg)+ | d°k'—= ——, (2.1 . R .
w(Ko) —w(K') +ie kY= k) + Gt k), (2.6)

Wherev(lz,IZ:) is the relativistic potential given in the c.m. the potential matrix element from E¢R.5) can be rewritten
system withk and — k the individual momenta in that system as

t* (k' ,K; @)

t(k,k"; 0’
Lk 5 ( )
w—w' —le

tlZ,IZ"; " t* |Z,,|Z”; "
+ [ aol ) g )

'—w+ie w'—w' —ie

(KIV(P)|K") = (k) VME+ P2y (K ) + Jo' 21 p?

o' —wt+ie

— Mwupz—w)m[tazl,g;w)]

(T = o)
31
[PJ Ao

=0 (K,K') + ¢hp(K) (VM 3+ p2—Myp) (k") +

t(IZ'IZ//; w")t* (IZ/ ,E”; w//)

—(\/m—w’)%[t(lz,l?;w’)]}—l— 1w,

w—
/w//2+ 2_ w//
[

R,E/r;wr/)t*(k’/,E//;wu)}_ (27)

044010-2



LORENTZ BOOSTEDNN POTENTIAL FOR FEW-BODY ... PHYSICAL REVIEW C 66, 044010 (2002

Here P denotes the principal value prescription, and  Note thatk=kk, k”=kk’, andk’ =kk’, where the quantities
=2\/k’2+_m2, and a_)”=2\/k”2+ mz._ Note that the matrix k. k. andk” are unit vectors.

elements is well defined fan=w’, since both brackets van-
ish in this case.

Thus, the boosted potential, which depends on the total
two-nucleon momentunﬁ, requires the knowledge of the In this section we would like to consider the Lorentz
NN bound state wave function and the half-siéM t ma-  boosted potential and use it to calculate the binding energy of
trices given in the R c.m. system. For any given potential ~ the triton.
those quantities can be calculated by standard methods. Once

Ill. APPLICATIONS

the matrix elementék|V(p)|k'Y=V(k,k’;p) are known, the A. Calculation of the boosted potential
boostedt-matrix eIementsTET(IZ,IZ’;p) can be calculated First we need to construct a suitable potential which en-
from the relativistic Lippmann-Schwinger equation, ters the relativistic Lippmann-Schwinger equation, Eql).

A standard nonrelativistic potential fulfills the nonrelativistic

T(K,E';ﬁ)zv(ﬁyﬁqﬁ) Lippmann-Schwinger equation for the nonrelativistima-
trix t("),
f o, VKK;p)T(K"K';p) o oy -
+1d . . . vnr(_’,-’rr)t nr("u, r)
Vo'?+p?—o"2+p’+ie t‘”r)(q,q’)zv(”r)(q,q’)Jrj d*q” ;zq o .97
28 mom e

- 3.1
For any given momenturp the bound state wave function @D

i, defined in the c.m. system obeys Using a relativistic propagator in E¢3.1) will not result in
the same phase shifts or observables. However, there is a
. 1 I . scale transformation, which generates a phase equivalent
(k)= —= > > zj dk'V(k,k';p) i (K'). relativistic potentialu from a nonrelativistic potentiah ("
\/MbJr pT— Vo + p [16]. This scale transformation is derived from requiring that
(29 the relativistic and nonrelativistic form of the kinetic energy
ive the same result. This requirement leads to analytic rela-
ons connecting the nonrelativistic momentugrwith the
orresponding relativistic momentukn

This eigenvalue equation is an excellent numerical test fog
the numerical calculation of the boosted potential, since iE
has to reproduce exactly the boosted eneVMbZJr p® of a
deuteron in motion. !
In Ref. [15] the Lorentz boosted-matrix was already g=VmvVw(k)—2m. (3.2
introduced but calculated in a different fashipsee Eq.
(3.27 therein. In the procedure we suggest here, we want tol he details of the derivation are given in REI6]. Here we
focus on the calculation of the boosted potential. We want t@®nly list the results necessary for the understanding of our
remark that despite the occurrence of complex valued halfPresent considerations. For a given nonrelativistic potential
shell t matrices in Eq.(2.7) the potential matrix element (" (q,q’) the corresponding phase equivalent relativistic
V(k,K”:p) is real. The proof is given in Appendix A. As a potential is obtained as
consequence of that and the manifest symmetry of
(k|V(p)|K’) it follows from Eq.(2.8) that one can define an (KK = Lv(nr)(a )
unitary S matrix. We define thé& matrix as ' h(q) '

1 3.3
h(q') '

... 4 — 5 ) = The corresponding relativistisN t matrix can be obtained
S(k,K';p)= ———=8(Vw?+p>*~Vo'?+p?»)S(K,K';p),  from the nonrelativistic one in a similar fashion,
kv w2+ p2

(2.10

- 1 . 1
t(kk";0")=——t"(q,q" ) —. (3.9
o o kJol+pZ .. . The Jacobian functioh(q) is defined as
S(k,k";p)=68(k—k")—=2im T(K,K";p).
4 (.10 \/ 92 9
) h(g)= 1+ — 1+ —. 3.
(a) Zmz) . 39

Then one can show in the standard way that
The results of Eg$3.3) and (3.4) can be derived from the
T PUr S scale transformation of Eq3.2). Of course, they are not
f dk"S(k,k";p)S* (k'K p) = (k—k’).  (2.12 equivalent to the introduction of a relativistic potentahnd
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FIG. 1. Contour plots for the Reid soft core potential
v("(q,q’) in the state'S, in momentum space. All values are
positive, decreasing from light to darker shades.

a correspondindNN t matrix based on a field theory. How-
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FIG. 2. The nonrelativistic potential™(q,q’) (solid ling), the
scale transformed potential(k,k’) (long dashed ling and the

ever, for our purposes, the scale transformation is a verpoosted potentiaV(k,k’;p) (short dashed lineas function of the

useful and simple parametrization of a relativigtidl poten-
tial, which conserve th&lN phase shifts exactly, and which
can enter Eq(2.2) for the boosted potential. We want to
remark here, that Eq2.2) is general and independent of the
way, the relativistic potential was obtained.

In order to study the effect of the boost on the potential in

more detail, we choose as the nonrelativistic potential th
Reid soft core potentidRSQO [18]. The RSC potential in the
15, state is given by

v(M(r)

e*p.r e*4/.Lr 677,4”
=| —10.463———1650.6—— +6484.2——|MeV,
ur ur ur

(3.6)

where is 0.7 fmi L.

In Fig. 1 a contour plot 0b(""(q,q’) is given for the'S,
state. It should be noted that this particular potential is pos
tive for all values ofg andq’. Next, we successively apply

momentumk and two fixed moment&’. All potentials are pro-
jected on the'S, partial wave state. The figure shows two groups of
lines: the upper groupM>0.6 fm 1) is calculated for a fixed’

=1 fm~! and the lower one for a fixekl =15 fm™ . The boosted

potentialV(k,k';p) is evaluated ap=20 fm 1.

tum p in order to show the effects of the boost. For two-
fucleon momenta in the order of about 5 A the boost
effects are much smaller. In fact, almost all of the difference
betweerv andv (" would be given by the scale transforma-
tion, i.e., by an underlying different scattering equation.

B. Calculation of the triton binding energy
Now let us move on to entering the boostédll potential
into the relativistic three-body Faddeev equation to calculate
the bound state ofH. The relativistic Faddeev equation as
already introduced in Refl5] reads
1

Ep—&(k,p)

o(k,p)=

first the scale transformation and then the boost to

v("(q,q"). In Fig. 2 we compare the projections on tH,
state of the three potential functions, namel{?"(q.,q’),

v(k,k"), andV(k,k’;p) as a function ok. Since the scale
transformation of Eq(3.2) changes the momentum scale, we

expres»("(q,q’) in terms ofk andk’, in order to compare

it with the other two potential functions. We choose two
fixed values fork’, namely,k’=1 fm~! andk’=15 fm 1.
The total two-nucleon momentum is chosen g5
=20 fm~ . First, we would like to make some more general
remarks. For small momentg i.e., in a very nonrelativistic
regime, on hag~ k. Furthermore, since the functidr{q) is
always larger than Iy will be always smaller than("". At
larger momentay differs fromk, and the relation betwean
andv (" depends in general on the shape oin our case

is always smaller than (™. The boost effect leads to an-
other overall decrease of the values\6fexcept for small
momenta, wher#/ is larger tharv andv("™. We also want

Ta(k,<(p',—p=p');p)
N(p',—p=p )M —p—p’,p)
X $(k(=p=p',p),p"), 3.7
where ¢ is the Faddeev component akg the three-body

binding energy. The indea at the boosted matrix indicates

a properly antisymmetrized two-bodymatrix. The vectok
represents the relative momentum in the two-body c.m. sub-

system as in the nonrelativistic case, gmdtands for the
momentum of the corresponding third particle. At the same

time p is the (negative total momentum of the two-body
subsystem, and thus is responsible for the boosts of that sub-
system. Clearly, the three individual nucleon momenta sum
up to zero. Ifp andp’ are the momenta of two individual
nucleons, then their relative momentuhalf the momentum
difference in their c.m. system is obtained through a Lorentz

to point out that we chose quite a large two-nucleon momentransformation, which is explicitly given as

04401
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1 TABLE I. The relativistic €,) and nonrelativistic E{"") triton
;(5, 5!)5 —p-p' —(p+p) binding energies in megavolt obtained from different nonrelativistic
2 potentials. The quantity is defined as\=E,—E{"” . For compa-
rision we also list the results of the relativistic calculation when the

Q-0 Jacobian function\V'is set to 1.
>< 1
(Q+0)+V(Q+Q)2—(p+p)? Interaction Es E{™ A Ep(N-1)
(3.8 RSC[18] -6.59 —7.02[25] 0.43 —6.63
CD-Bonn[1] —7.98 —8.33 0.35 —8.03
where Q(p)=m?+p?=Q and Q' =m’+p’>. The last  Njmegen I1[2] -722 -765 043 -7.27
term in Eq.(3.8) reflects the relativistic effect in the defini-  njimegen 1[2] ~771  —8.00 029 -776
tion of a [elat|v§ momentum. When going from individual Nijmegen 93[2] —7.46 ~776 030 —751
momentap andp’ of the subsystem to the relative momen- ay1g [3] —~7.23 —7.66 043 —7.27
tum and the total two-body momentupt-p’ one has to  Yamaguchi I[21] —-9.93 —10.13 0.20 —10.04
consider the Jacobian of that transformation. The square rootvamaguchi 1I[21]  —8.30 —8.48 0.18 —8.40
of the Jacobian is given byl5] expt. —8.48
&(» »,) 112
N(ﬁ p')= L Eq. (3.7). We also want to point out that the relativistic po-
ak,p+p’) tential used in Ref[15] is only approximately phase shift

equivalent to the nonrelativistic one.

Our results for the relativistic Faddeev calculations based
on five channels are displayed in Table I. For comparison, we
also list the binding energies{"" obtained from a nonrela-

(3.9 tivistic five-channel calculation. We want to emphasize that
the underlying relativistic and nonrelativisti¢N forces are

400’ 1/2

VQ+07)2— (p+p)HQ+Q")

The kinetic energy’ is given by strictly phase equivalent and give the same deuteron binding
R energy. Only under these conditions it is reasonable to pin
Ek,p)=Vw(k)+m*+Q—-3m=0+0Q'+Q"-3m. down relativistic effects in the triton binding energy. From

(3.10  Table | we see that the difference between the relativistic and
nonrelativistic binding energies span a range of about 0.29—

A detailed derivation of the above relations is given in Ref.qg 43 MeV. The Yamaguchi potentials do not fall into this
[15]. ~range. From Table | we can conclude that the relativistically
~ In our calculation of the triton binding energy the relativ- cajculated triton binding energy is reduced in magnitude
istic Faddeev equation, E€B.7) is solved in a partial wave compared to the one calculated nonrelativistically. A related
basis. The explicit representation of EQ.7) in a partial  jnyestigation was carried out in R¢fl4] based on the AV18
wave decomposition is given in Appendix B. Since we arepotential. There the nonrelativistiiN potential was aug-
here only interested to test the feasibility of our approach, wenented by relativistic corrections of low orders following the
only perform a five-channel calculatlon_ at present. Thisyork of Ref. [12] and was refitted to th&IN phase shifts.
means we allow théN forces to act only in the statéSS,  The final relativistic correction to the binding energy
and °S,—°D, (see, e.g., Table 3.4 in RéR0]). We want o given in Ref.[14] is 0.33 MeV, which is comparable to our
point out that in contrast to a nonrelat|V|§t|c calculation Notpresent findings. It is interesting to notice, that in the case of
only the Faddeev component and thenatrix depend on the  the Yamaguchi potentials, which are purely attractive, the
angle betweemp andp’ but also the Jacobiai. In this first  relativistic, repulsive effect is weaker, namely, only about 0.2
approach we ignore the Lorentz transformation of the sping/eV. This is presumably connected to the absence of short
states. ASNN potentials we employ the high-precision po- range repulsive force components, i.e., high momentum
tentials CD-Bonri1], Nijml,Il, 93 [2], and AV18[3], as well  components, which are presumably mostly affected by the
as the Reid Soft Core potentigll8] and two different relativistic effects. However, it will be difficult to provide
Yamaguch{21] potentials. For all potentialsvith the excep- general arguments on the relative size of the relativistic ef-
tion of RSQ we use np forces only. With those potentials fects under consideration, since they most likely depend on
given, our calculation proceeds as follows. First, we performhe specific functional form of the potential. We also want to
the scale transformation of Ed3.2) to obtain a phase mention, that for nonrelativistic calculations the contribu-
equivalent potential obeying the relativistic two-body tions of the higher partial waves in the two-body subsystem
Lippmann-Schwinger equation. Then we boost this potentiaare attractive and range from about 0.04—0.24 MeV.
and solve for the relativistic, boostddmatrix, which enters In order to shed some more light on the different contri-
the relativistic Faddeev equation, E@®.7). This is in con-  butions to our relativistic calculation, we want to expose the
trast to the approach given in R¢il5] where a relativistic  effect of the normalization factor separately. To do so, we
NN t matrix in theNN c.m. frame was calculated first, and solve Eq.(3.7) under the assumption that=1, which is the
this t matrix was boosted to the obtain tfiematrix entering  nonrelativistic limit of that quantity. The resulting binding
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FIG. 3. The relativistic Faddeev componeptk,p) linked to FIG. 5. The relativistic Faddeev component. From Fig. 3, where
the 1S, state in the two-body subsystem. k is expressed in terms @f Contour lines are as in Figs. 3 and 4.

IV. SUMMARY AND OUTLOOK
energies are listed in the last column of Table I. replaced by

1, which is the nonrelativistic limit of that quantity. We see

thal';_/\f glgllves Z.r epluIS|t\;]e colnttr.lb.u'il_on n:jall caslef_. istic Fad mine the two-bodyT matrix in a frame, in which the total
inally we dispiay the refativistic and nonrelaivistic -ad- g mentym of the two particles is different from zero. The

deev components in Figs. 3 and 4. We choose the channghscription of two-body systems with nonzero total momen-
related to the two-body statéS;, which is one of the five tum is relevant for calculating properties in an interacting
channels. The figures show that the relativistic Faddeev conthree-body system in a relativistic framework. The gen@ral
ponent is more extended into the hilgihegion than the non- matrix was inserted into a relativistic three-body Faddeev
relativistic one. As a reminder, the corresponding two-bodyequation for the bound state, which was proposed in Ref.
relative momentum is denoted ly see Eq(3.2. However, [15]. The dynamical input consisted NN potentials used in
when the momenturk of the relativistic Faddeev component & relativistic two-body Schdinger equation which are ex-
is expressed in terms af according to Eq(3.2) and the actly phase equivalent to nonrelativisiitN potentials used
component is replotted as a function@fthen the shape of 1N the nonrelativistic Schuinger equation. The phase

this Faddeev component is very close to the nonreIativisti%qu“'a‘lence of the two differeriiN potentials is achieved
S y a momentum scale transformatipb6]. We applied this
one, as shown in Fig. 5.

scheme to various modern high precisii potentials, and
compared resulting three-nucleon binding energies from the
nonrelativistic and relativistic [§ Faddeev equations. In all
case the relativistic effects turned out to be repulsive and of
the order of 400 keV.
The effect of the boost turns out to be relatively small for

moderate total momenta of the two nucleons, however at
high momenta they are quite visible. If one compares the

We derived and presented an explicit expression for a
Lorentz boostedN potential, which can be used to deter-

‘_"_‘ relativistic and nonrelativistic Faddeev components one no-
I tices some enhancement for high momentum components in
é the two-body subsystem.

—_— The access to boostedN potentials opens the door to
o considering the relativistic Faddeev equations for three-

nucleon scattering. The need for a relativistic description of
three-nucleon scattering became already apparent when mea-
surements of the total cross section for neutron-deuteron
= scattering 22] were analyzed within the framework of non-
a relativistic Faddeev calculatioig3]. Here,NN forces alone
= were not sufficient to describe the data above about 100
O 5 1 1. 5 2 2. 5 MeV. The discrepancy is most likely due to missing correc-
tions from three-nucleon forces and relativistic effects. The
-1 relativistic corrections considered in R¢23] were only of
p [fm ] kinematic nature, but they lead to an increase of the total
cross section by about 3% at 100 MeV and about 7% at 250
FIG. 4. The nonrelativistic Faddeev componeltiy,p) corre- ~ MeV. This estimate, though very crude, emphasizes the im-
sponding to Fig. 3. The contour lines carry the same values as ifortance of a consistent treatment of relativistic effects espe-

Fig. 3. Note the difference in the two-nucleon subsystem momeneially in scattering. The availability of a boost&N poten-
tum g to k in Fig. 3. tial is one step in that direction. Additional technical steps in

o NN o0 0 O
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relation to the relativistic free three-body propagator and its

singularity structure have already been worked [@4]. We K(K,K"; ") E Ki (kK" 0") Yim(K) Yie (k7). (A5)
expect that the Wigner rotations of the spin states can be
performed along the line given in RefL3]. Inserting these partial wave expressions into &@g) leads

Note added in proofAfter the submission of this manu- to a partial wave representation oés
script we learned about the work by Wallal@6], where a - v
simple, approximate boost rule is derived, relating interac- ti(k,K" ") =Ki(k k" o)
tions of the two-body problem in an arbitrary frame to those ><[1—iwmk”u(k”,k”;w”)]. (AB)
in the c.m. frame. It will be interesting to compare this with
our scheme in a future work. Thus, the half-shell matrixt,(k,k”; ") receives its complex
parts only from the factof1—imk"?+m?k"t,(k".k"; »")]
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sions of Eqs(A4) and(A5) leads to
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f df("t(lz,ﬁ"; (U")t* (IZI 7IZH; wu)

for Computing(NIC) at the Forschungszentrumlidgh, Ger- :z £k, K" ")t (K K" 0")Y, (R)Y* (k)
many. — K@)t (KK m(K) Yim
APPENDIX A: PROOF OF THE REALITY OF THE = 21+ 1)K (kK" 0")K, (K K": ")
BOOSTED POTENTIAL [
The boosted potential is given in EQ.8). Obviously, the X[1+ w2(k"2+m?)k"?|t, (K" K" 0")| 1P, (k- k).

first three terms are real. Here we show that the remaining
fourth term,

(N - o)
3y,
[Pf P

(A7)

HereP, is the Legendre polynomial. The expression given in
Eq. (A7) is manifestly real and consequently the expression
given in Eq.(Al) is real.

t(lZ,IZ”; wn)t* (R’/ ,k’/r;wn)

w—w

f dgk,,( / n2+p2_w t(k k" )t*(k)/ El'-w") APPENDIX B: PARTIAL WAVE REPRESENTATION
Y ' In a partial wave representation the relativistic Faddeev
(A1) Eq. (3.7) is explicitly given as

is also real. This term contains the complex expression ba(k.p)
t(IZ,IZ";w")t*(IZ',IZ”;“’")' which we will have to rewrite in 1 / ,2 aoz (k Kl,p )
order to show that the integration over it results in a real E E(k D) f

number. First, we note that only the half-shethatrix enters
the integration in Eq(A1). Via the Heitler equation it can be

/lr

G ’a”(p!plax) d)a”(KZ!pl)

related to theK matrix, 2 , (B1)
Nl(pyplyx)NZ(pvplvx) K|2
t(E,lZ";w”):K(E,R";w")—iwmk"J dk” where
><K(E,lZ”’;w")t(lZ”’,lZ”;w”), (AZ) Gaa,(p,p’,X)
Where|I2”’| =k" is on-energy shell. Th& matrix is real and =2 PL(X 2 2 {(1+y1)p}'2+'§
defined in the standard fashion as £ o=l =1
.. .. lZ'IZ/// K R///’E//; ” < I(1+ , |1+|’ Llllzlilé B2
K(k,k”;w”)=v(k,k")+PJ ar! Z)Ew ) (A2 g, o (B2)
(A3) and
2
In order to carry out the angular integration in E43), we _ \/ )2 y1)
use the partial wave representations of tlad K matrix, 1=\ P + — PP (ty)pp'x,
= . . 2
tkK 0" =2 (kK 0" Vin(K)Yi(KY), - (A4) Ko= \/p2+ e p'2+(1+y,)pp'x,  (B3)

and and
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Vm2+ p'2—\m?+ p2+p'2+2pp’x

ylzyl(p’p"x)—

. (B4

M2+ p’ 2+ Jm2+ p2+p’ 2+ 2pp’ X+ \/(\/m2+ p’'24+ \Jm2+ p2+p’'2+2pp’x)2— p?

Y2=Y1(p",p,X).

When explicitly calculating the normalization factd(p’,—p—p’), it turns out thatM(p’,—p—p’)—Ny(p,p’,X) with

ANmM2+ p’2m?+ p2+p’ 2+ 2pp’x

1/2

Ni(p,p’'.x)=

In a similar vein A{—p—p’,p)—Na(p,p’,X), with

The indexa summarizes a set of quantum numbérkan-
nels

1
@)=1009) 25

total angular momentu and total isospin in the two-body
subsystem. The indices,|, J, and T stand for the orbital

(B5)
VM4 24 P+ p2 4 p' 2+ 2pp'x)2— p(\m?+ p' 2+ \mP+ p?+ 2+ 2pp'x)
|

Finally, when taking the limits

No(p.p! )= NP p.X)- (B6) Y1.y2—0,
Ny No—1, (B8)

(DI T, (B7) one obtains the nonrelativistic res{i5]
wherel,s,j, andt are orbital angular momentum, total spin, &(k,p)— _2+ 3_'32
m 4m

angular momentum, the total angular momentum of the third Tt (B9)

particle, the total three-body angular momentum, and the to-

e’
Iqlo0415

represents the and the relativistic Faddeev equation, E8.7), reduces to
the nonrelativistic one.

|
'

tal isospin[19,20). The quantitygﬁa
standard permutation operator coefficient.
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