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Lorentz boostedNN potential for few-body systems: Application to the three-nucleon bound state
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A Lorentz boosted two-nucleon potential is introduced in the context of equal time relativistic quantum
mechanics. The dynamical input for the boosted nucleon-nucleon (NN) potential is based on realisticNN
potentials, which by a suitable scaling of the momenta are transformed intoNN potentials belonging to a
relativistic two-nucleon Schro¨dinger equation in the c.m. system. This resulting Lorentz boosted potential is
consistent with a previously introduced boosted two-bodyt matrix. It is applied in relativistic Faddeev equa-
tions for the three-nucleon bound state to calculate the3H binding energy. Like in previous calculations the
boost effects for the two-body subsystems are repulsive and lower the binding energy.

DOI: 10.1103/PhysRevC.66.044010 PACS number~s!: 21.30.2x, 21.45.1v, 24.10.2i, 11.80.2m
D

o

un
s

m

he
al
e
b
is
in
.

to

rs
ot
en
ifi

of
ve

t
d
s

is a
ap-
me-

on
y,
the
l re-
ns

of
hey
m-

ich
n
in

of
ns
are

ing.
ear
tiv-
p-

cts

ny

of
ian

ntz

on.

ela-
tz-

of
I. INTRODUCTION

Modern realistic nucleon-nucleon (NN) potentials using a
sufficiently large number of parameters describe currentNN
phase shifts very well. The most prominent ones are C
Bonn@1#, Nijmegen 93, I,II@2#, and Argonne AV18@3#. They
predictNN observables up to about 350-MeV nucleon lab
ratory energy perfectly well with ax2/Ndata;1. This poten-
tial description is linked to a nonrelativistic Schro¨dinger
equation. Converged, nonrelativistic three-nucleon bo
state calculations based upon these potentials give value
the triton binding energy between 8.0 and 7.6 MeV@4–6#,
whereas the experimental result is 8.48 MeV. There is so
sensitivity to nonlocalities in theNN interactions, which in-
fluences the value of the triton binding energy. While t
Nijmegen 93 and I and the AV18 potential are loc
Nijmegen II and CD-Bonn incorporate nonlocalities eith
via a p2 dependence or the nonlocality structure given
Dirac spinors and so-called minimal relativity factors. It
well established by now that the purely local interactions
the above list lead to a triton binding energy of about 7
MeV, leaving about 0.8 MeV unexplained.

In general, the missing binding energy is attributed
some combination of nonlocality in theNN interactions,
three-nucleon force effects and relativistic effects. Of cou
these effects are often intermingled, i.e., relativity can m
vate specific nonlocalities, and negative energy compon
of a nucleon wave function could be viewed as a spec
subset of three-nucleon forces@7#.

The estimation of relativistic effects on the binding
three nucleons has been the focus of a lot of work. Howe
up to now there has not been reached closure even on
sign of a relativistic contribution to the three-nucleon bin
ing energy. There are essentially two different approache
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a relativistic three-nucleon bound state calculation, one
manifestly covariant scheme linked to a field theoretical
proach, the other one is based on relativistic quantum
chanics on spacelike hypersurfaces~including the light front!
in Minkowski space. Within the first scheme Rupp and Tj
@8# find attractive corrections to the triton binding energ
using separable interactions to facilitate the solution of
Bethe-Salpeter-Faddeev equations. A three-dimensiona
duction of this equation also finds attractive contributio
@9#. The calculations of Stadleret al. @10# are based on a
relativistic three-nucleon equation, incorporate the effects
Dirac spinors and include negative energy components. T
also incorporate off-shell effects of the negative energy co
ponents of the Dirac spinors, and by varying this part, wh
is not constraint by on-shellNN data, they can achieve a
attractive contribution to fit the experimental value. With
the second scheme the relativistic Hamiltonian consists
relativistic kinetic energies, two- and many-body interactio
including their boost corrections. The boost corrections
dictated by the Poincare´ algebra@11–13#. There exist already
applications for the three-nucleon bound state@14,15#, which
suggest a repulsive contribution to the three-nucleon bind
Thus, the relativistic effects found in the two schemes app
controversial, in the approach based on field theory, rela
istic effects increase the triton binding energy, in the a
proach based on relativistic Hamiltonians, relativistic effe
decrease the triton binding energy.

To the best of our knowledge we are not aware of a
three-nucleon (3N) scattering calculation including relativity
in one or the other scheme due to the increased difficulty
a scattering calculation. In order to extend the Hamilton
scheme in equal time formulation to 3N scattering it would
be a very convenient starting point to have the Lore
boostedNN potential which generates theNN t matrix in a
moving frame via a standard Lippmann-Schwinger equati
In this paper we work out theNN potential in an arbitrary
frame, and thus place our work in the scheme based on r
tivistic quantum mechanics. As application of our Loren
boosted potential we restrict ourselves to the calculation
the triton binding energy.
©2002 The American Physical Society10-1
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The starting point for anNN potential in an arbitrary
moving frame is the interaction in the two-nucleon c.m. s
tem, which enters a relativisticNN Schrödinger or
Lippmann-Schwinger equation. While realisticNN poten-
tials are defined and fitted in the context of the nonrelativis
Schrödinger equation,NN potentials refitted with the sam
accuracy in the framework of the relativisticNN Schrödinger
equation do not yet exist. A first step in that direction h
been done in Ref.@14#, where the AV18 potential has bee
refitted to describeNN phase shifts in the relativistic contex
Here we prefer to use a different route and employ an a
lytical scale transformation of momenta which relatesNN
potentials in the nonrelativistic and relativistic Schro¨dinger
equations such that exactly the sameNN phase shifts are
obtained by both equations@16#. Though this transformation
is not a substitute for anNN potential with proper relativistic
features and though it suffers from some conceptual def
@17#, it can serve the purpose of this work, namely, to illu
trate the effects of a Lorentz boosts onNN potentials.

This paper is organized as follows. In Sec. II we der
and explicitly formulate the Lorentz-boosted potential
lated to a given nonrelativistic potential. In Sec. III we app
our formulation to the Reid Soft Core potential and discu
features of the Lorentz boost. Then we solve the relativi
3N Faddeev equation based on that Lorentz-boosted po
tial. We end with a brief summary and outlook in Sec. IV

II. DERIVATION OF THE BOOSTED POTENTIAL

A formalism for treating the relativistic three-body Fa
deev equations has been introduced in Ref.@15#. There a
Lorentz boostedt matrix is constructed from the relativisti
two-nucleont matrix given in theNN center-of-mass~c.m.!
system. TheNN t matrix obeys the relativistic Lippmann
Schwinger equation:

t~kW ,kW0!5v~kW ,kW0!1E d3k8
v~kW ,kW8!t~kW8,kW0!

v~kW0!2v~kW8!1 i e
, ~2.1!

wherev(kW ,kW8) is the relativistic potential given in the c.m
system withkW and2kW the individual momenta in that system
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andv(kW )52Ak21m2. In Ref. @15# a boosted potential two
nucleon potentialV †Eq. ~3.4! of @15#‡ is naturally introduced
as

V[A@v~kW !1v#21pW 22Av~kW !21pW 2, ~2.2!

wherepW is the total momentum of the two-nucleon syste
Obviously, forpW 50 one obtainsV5v. For any application
to the three-nucleon system, one needs to be able to calc
the matrix elements ofV explicitly. Thus we need an explici
representation and use a momentum space form base
eigenstates of the c.m. momentum operatorkW to obtain the
matrix elements

^kW uV~pW !ukW8&5^kW uA@v~k!1v#21p2ukW8&

2^kW uAv~k!21p2ukW8&. ~2.3!

With the help of the eigenstatescb and ukW & (1) ~bound and
scattering eigenstates! of the c.m. Hamiltonian@v(k)1v#
the completeness relation is given as

15ucb&^cbu1E ukW & (1)d3k(1)^kW u. ~2.4!

Inserting the completeness relation into Eq.~2.3! leads to

^kW uV~pW !ukW8&5^kW ucb&^cbukW8&AMb
21p2

1E d3k9^kW ukW9& (1)Av~k9!21pW 2(1)^kW9ukW8&

2d~kW2kW8!Av~k!21pW 2, ~2.5!

whereMb is the bound state mass. Using the standard r
tion between scattering states and plane wave states

ukW & (1)5ukW &1G0
(1)tukW &, ~2.6!

the potential matrix element from Eq.~2.5! can be rewritten
as
^kW uV~pW !ukW8&5cb~kW !AMb
21p2cb~kW8!1

t* ~kW8,kW ;v!

v2v82 i e
Av21p21

t~kW ,kW8;v8!

v82v1 i e
Av821p2

1E d3k9
t~kW ,kW9;v9!

v92v1 i e
Av921p2

t* ~kW8,kW9;v9!

v92v82 i e

5v~kW ,kW8!1cb~kW !~AMb
21p22Mb!cb~kW8!1

1

v2v8
F ~Av21p22v!R@ t~kW8,kW ;v!#

2~Av821p22v8!R@ t~kW ,kW8;v8!#G1 1

v2v8
FPE d3k9

~Av921p22v9!

v92v
t~kW ,kW9;v9!t* ~kW8,kW9;v9!

2PE d3k9
~Av921p22v9!

v92v8
t~kW ,kW9;v9!t* ~kW8,kW9;v9!G . ~2.7!
0-2
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LORENTZ BOOSTEDNN POTENTIAL FOR FEW-BODY . . . PHYSICAL REVIEW C 66, 044010 ~2002!
Here P denotes the principal value prescription, andv8
52Ak821m2, and v952Ak921m2. Note that the matrix
elements is well defined forv5v8, since both brackets van
ish in this case.

Thus, the boosted potential, which depends on the t
two-nucleon momentumpW , requires the knowledge of th
NN bound state wave function and the half-shellNN t ma-
trices given in the 2N c.m. system. For any given potentialv
those quantities can be calculated by standard methods. O
the matrix elementŝkW uV(pW )ukW8&[V(kW ,kW8;p) are known, the
boostedt-matrix elementsT[T(kW ,kW8;p) can be calculated
from the relativistic Lippmann-Schwinger equation,

T~kW ,kW8;pW !5V~kW ,kW8;pW !

1E d3k9
V~kW ,kW9;pW !T~kW9,kW8;pW !

Av821p22Av921p21 i e
.

~2.8!

For any given momentumpW the bound state wave functio
cb defined in the c.m. system obeys

cb~kW !5
1

AMb
21p22Av21p2

E d3k8V~kW ,kW8;pW !cb~kW8!.

~2.9!

This eigenvalue equation is an excellent numerical test
the numerical calculation of the boosted potential, sinc
has to reproduce exactly the boosted energyAMb

21p2 of a
deuteron in motion.

In Ref. @15# the Lorentz boostedT-matrix was already
introduced but calculated in a different fashion@see Eq.
~3.27! therein#. In the procedure we suggest here, we wan
focus on the calculation of the boosted potential. We wan
remark that despite the occurrence of complex valued h
shell t matrices in Eq.~2.7! the potential matrix elemen
V(kW ,kW9;pW ) is real. The proof is given in Appendix A. As
consequence of that and the manifest symmetry

^kW uV(pW )ukW8& it follows from Eq. ~2.8! that one can define a
unitary S matrix. We define theS matrix as

S~kW ,kW8;pW ![
4

kAv21p2
d~Av21p22Av821p2!Ŝ~kW ,kW8;pW !,

~2.10!

with

Ŝ~kW ,kW8;pW ![d~ k̂2 k̂8!22ip
kAv21p2

4
T~kW ,kW8;pW !.

~2.11!

Then one can show in the standard way that

E dk̂9Ŝ~kW ,kW9;pW !Ŝ* ~kW8,kW9;pW !5d~ k̂2 k̂8!. ~2.12!
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Note thatkW5kk̂, kW95kk̂9, andkW85kk̂8, where the quantities
k̂, k̂8, and k̂9 are unit vectors.

III. APPLICATIONS

In this section we would like to consider the Loren
boosted potential and use it to calculate the binding energ
the triton.

A. Calculation of the boosted potential

First we need to construct a suitable potential which
ters the relativistic Lippmann-Schwinger equation, Eq.~2.1!.
A standard nonrelativistic potential fulfills the nonrelativist
Lippmann-Schwinger equation for the nonrelativistict ma-
trix t (nr),

t (nr)~qW ,qW 8!5v (nr)~qW ,qW 8!1E d3q9
v (nr)~qW ,qW 9!t (nr)~qW 9,qW 8!

qW 82

m
2

qW 92

m
1 i e

.

~3.1!

Using a relativistic propagator in Eq.~3.1! will not result in
the same phase shifts or observables. However, there
scale transformation, which generates a phase equiva
relativistic potentialv from a nonrelativistic potentialv (nr)

@16#. This scale transformation is derived from requiring th
the relativistic and nonrelativistic form of the kinetic energ
give the same result. This requirement leads to analytic r
tions connecting the nonrelativistic momentumq with the
corresponding relativistic momentumk,

q[
!

AmAv~kW !22m. ~3.2!

The details of the derivation are given in Ref.@16#. Here we
only list the results necessary for the understanding of
present considerations. For a given nonrelativistic poten

v (nr)(qW ,qW 8) the corresponding phase equivalent relativis
potential is obtained as

v~kW ,kW8!5
1

h~q!
v (nr)~qW ,qW 8!

1

h~q8!
. ~3.3!

The corresponding relativisticNN t matrix can be obtained
from the nonrelativistic one in a similar fashion,

t~kW ,kW8;v8!5
1

h~q!
t (nr)~qW ,qW 8!

1

h~q8!
. ~3.4!

The Jacobian functionh(q) is defined as

h~q![AS 11
q2

2m2DA11
q2

4m2. ~3.5!

The results of Eqs.~3.3! and ~3.4! can be derived from the
scale transformation of Eq.~3.2!. Of course, they are no
equivalent to the introduction of a relativistic potentialv and
0-3
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a correspondingNN t matrix based on a field theory. How
ever, for our purposes, the scale transformation is a v
useful and simple parametrization of a relativisticNN poten-
tial, which conserve theNN phase shifts exactly, and whic
can enter Eq.~2.2! for the boosted potential. We want t
remark here, that Eq.~2.2! is general and independent of th
way, the relativistic potential was obtained.

In order to study the effect of the boost on the potentia
more detail, we choose as the nonrelativistic potential
Reid soft core potential~RSC! @18#. The RSC potential in the
1S0 state is given by

v (nr)~r !

5S 210.463
e2mr

mr
21650.6

e24mr

mr
16484.2

e27mr

mr DMeV,

~3.6!

wherem is 0.7 fm21.
In Fig. 1 a contour plot ofv (nr)(q,q8) is given for the1S0

state. It should be noted that this particular potential is po
tive for all values ofq andq8. Next, we successively appl
first the scale transformation and then the boost
v (nr)(q,q8). In Fig. 2 we compare the projections on the1S0

state of the three potential functions, namely,v (nr)(qW ,qW 8),

v(kW ,kW8), andV(kW ,kW8;pW ) as a function ofk. Since the scale
transformation of Eq.~3.2! changes the momentum scale, w
expressv (nr)(qW ,qW 8) in terms ofk andk8, in order to compare
it with the other two potential functions. We choose tw
fixed values fork8, namely,k851 fm21 andk8515 fm21.
The total two-nucleon momentum is chosen asp
520 fm21. First, we would like to make some more gene
remarks. For small momentaq, i.e., in a very nonrelativistic
regime, on hasq' k. Furthermore, since the functionh(q) is
always larger than 1,v will be always smaller thanv (nr). At
larger momentaq differs from k, and the relation betweenv
andv (nr) depends in general on the shape ofv. In our casev
is always smaller thanv (nr). The boost effect leads to an
other overall decrease of the values ofV except for small
momenta, whereV is larger thanv andv (nr). We also want
to point out that we chose quite a large two-nucleon mom

FIG. 1. Contour plots for the Reid soft core potent
v (nr)(q,q8) in the state1S0 in momentum space. All values ar
positive, decreasing from light to darker shades.
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tum p in order to show the effects of the boost. For tw
nucleon momenta in the order of about 5 fm21, the boost
effects are much smaller. In fact, almost all of the differen
betweenv andv (nr) would be given by the scale transform
tion, i.e., by an underlying different scattering equation.

B. Calculation of the triton binding energy

Now let us move on to entering the boostedNN potential
into the relativistic three-body Faddeev equation to calcu
the bound state of3H. The relativistic Faddeev equation a
already introduced in Ref.@15# reads

f~kW ,pW !5
1

Eb2E~kW ,pW !
E d3p8

3
Ta„kW ,kW ~pW 8,2pW 2pW 8!;pW …

N~pW 8,2pW 2pW 8!N~2pW 2pW 8,pW !

3f„kW ~2pW 2pW 8,pW !,pW 8…, ~3.7!

wheref is the Faddeev component andEb the three-body
binding energy. The indexa at the boostedT matrix indicates
a properly antisymmetrized two-bodyT matrix. The vectorkW
represents the relative momentum in the two-body c.m. s
system as in the nonrelativistic case, andpW stands for the
momentum of the corresponding third particle. At the sa
time pW is the ~negative! total momentum of the two-body
subsystem, and thus is responsible for the boosts of that
system. Clearly, the three individual nucleon momenta s
up to zero. IfpW and pW 8 are the momenta of two individua
nucleons, then their relative momentum~half the momentum
difference! in their c.m. system is obtained through a Loren
transformation, which is explicitly given as

FIG. 2. The nonrelativistic potentialv (nr)(q,q8) ~solid line!, the
scale transformed potentialv(k,k8) ~long dashed line!, and the
boosted potentialV(k,k8;p) ~short dashed line! as function of the
momentumk and two fixed momentak8. All potentials are pro-
jected on the1S0 partial wave state. The figure shows two groups
lines: the upper group (V.0.6 fm21) is calculated for a fixedk8
51 fm21 and the lower one for a fixedk8515 fm21. The boosted
potentialV(k,k8;p) is evaluated atp520 fm21.
0-4
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LORENTZ BOOSTEDNN POTENTIAL FOR FEW-BODY . . . PHYSICAL REVIEW C 66, 044010 ~2002!
kW ~pW ,pW 8![
1

2F pW 2pW 82~pW 1pW 8!

3
V2V8

~V1V8!1A~V1V8!22~pW 1pW 8!2G ,

~3.8!

where V(p)5Am21p25V and V85Am21p82. The last
term in Eq.~3.8! reflects the relativistic effect in the defin
tion of a relative momentum. When going from individu
momentapW andpW 8 of the subsystem to the relative mome
tum and the total two-body momentumpW 1pW 8 one has to
consider the Jacobian of that transformation. The square
of the Jacobian is given by@15#

N~pW ,pW 8!5FU ]~pW ,pW 8!

]~kW ,pW 1pW 8!
UG 1/2

5F 4VV8

A~V1V8!22~pW 1pW 8!2~V1V8!
G 1/2

.

~3.9!

The kinetic energyE is given by

E~kW ,pW !5Av2~k!1m21V23m5V1V81V923m.
~3.10!

A detailed derivation of the above relations is given in R
@15#.

In our calculation of the triton binding energy the relati
istic Faddeev equation, Eq.~3.7! is solved in a partial wave
basis. The explicit representation of Eq.~3.7! in a partial
wave decomposition is given in Appendix B. Since we a
here only interested to test the feasibility of our approach,
only perform a five-channel calculation at present. T
means we allow theNN forces to act only in the states1S0
and 3S123D1 ~see, e.g., Table 3.4 in Ref.@20#!. We want to
point out that in contrast to a nonrelativistic calculation n
only the Faddeev component and theT matrix depend on the
angle betweenpW andpW 8 but also the JacobianN. In this first
approach we ignore the Lorentz transformation of the sp
states. AsNN potentials we employ the high-precision p
tentials CD-Bonn@1#, NijmI,II, 93 @2#, and AV18@3#, as well
as the Reid Soft Core potential@18# and two different
Yamaguchi@21# potentials. For all potentials~with the excep-
tion of RSC! we use np forces only. With those potentia
given, our calculation proceeds as follows. First, we perfo
the scale transformation of Eq.~3.2! to obtain a phase
equivalent potential obeying the relativistic two-bod
Lippmann-Schwinger equation. Then we boost this poten
and solve for the relativistic, boostedT matrix, which enters
the relativistic Faddeev equation, Eq.~3.7!. This is in con-
trast to the approach given in Ref.@15# where a relativistic
NN t matrix in theNN c.m. frame was calculated first, an
this t matrix was boosted to the obtain theT matrix entering
04401
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Eq. ~3.7!. We also want to point out that the relativistic po
tential used in Ref.@15# is only approximately phase shif
equivalent to the nonrelativistic one.

Our results for the relativistic Faddeev calculations ba
on five channels are displayed in Table I. For comparison,
also list the binding energiesEb

(nr) obtained from a nonrela
tivistic five-channel calculation. We want to emphasize th
the underlying relativistic and nonrelativisticNN forces are
strictly phase equivalent and give the same deuteron bind
energy. Only under these conditions it is reasonable to
down relativistic effects in the triton binding energy. Fro
Table I we see that the difference between the relativistic
nonrelativistic binding energies span a range of about 0.2
0.43 MeV. The Yamaguchi potentials do not fall into th
range. From Table I we can conclude that the relativistica
calculated triton binding energy is reduced in magnitu
compared to the one calculated nonrelativistically. A rela
investigation was carried out in Ref.@14# based on the AV18
potential. There the nonrelativisticNN potential was aug-
mented by relativistic corrections of low orders following th
work of Ref. @12# and was refitted to theNN phase shifts.
The final relativistic correction to the binding energy of3H
given in Ref.@14# is 0.33 MeV, which is comparable to ou
present findings. It is interesting to notice, that in the case
the Yamaguchi potentials, which are purely attractive,
relativistic, repulsive effect is weaker, namely, only about 0
MeV. This is presumably connected to the absence of s
range repulsive force components, i.e., high moment
components, which are presumably mostly affected by
relativistic effects. However, it will be difficult to provide
general arguments on the relative size of the relativistic
fects under consideration, since they most likely depend
the specific functional form of the potential. We also want
mention, that for nonrelativistic calculations the contrib
tions of the higher partial waves in the two-body subsyst
are attractive and range from about 0.04–0.24 MeV.

In order to shed some more light on the different con
butions to our relativistic calculation, we want to expose t
effect of the normalization factor separately. To do so,
solve Eq.~3.7! under the assumption thatN51, which is the
nonrelativistic limit of that quantity. The resulting bindin

TABLE I. The relativistic (Eb) and nonrelativistic (Eb
(nr)) triton

binding energies in megavolt obtained from different nonrelativis
potentials. The quantityD is defined asD[Eb2Eb

(nr) . For compa-
rision we also list the results of the relativistic calculation when
Jacobian functionN is set to 1.

Interaction Eb Eb
(nr) D Eb(N→1)

RSC @18# 26.59 27.02 @25# 0.43 26.63
CD-Bonn @1# 27.98 28.33 0.35 28.03
Nijmegen II @2# 27.22 27.65 0.43 27.27
Nijmegen I @2# 27.71 28.00 0.29 27.76
Nijmegen 93@2# 27.46 27.76 0.30 27.51
AV18 @3# 27.23 27.66 0.43 27.27
Yamaguchi I@21# 29.93 210.13 0.20 210.04
Yamaguchi II@21# 28.30 28.48 0.18 28.40
expt. 28.48
0-5
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energies are listed in the last column of Table I. replaced
1, which is the nonrelativistic limit of that quantity. We se
that N gives a repulsive contribution in all cases.

Finally we display the relativistic and nonrelativistic Fa
deev components in Figs. 3 and 4. We choose the cha
related to the two-body state1S0, which is one of the five
channels. The figures show that the relativistic Faddeev c
ponent is more extended into the highk region than the non-
relativistic one. As a reminder, the corresponding two-bo
relative momentum is denoted byq, see Eq.~3.2!. However,
when the momentumk of the relativistic Faddeev compone
is expressed in terms ofq according to Eq.~3.2! and the
component is replotted as a function ofq, then the shape o
this Faddeev component is very close to the nonrelativi
one, as shown in Fig. 5.

FIG. 4. The nonrelativistic Faddeev componentf(q,p) corre-
sponding to Fig. 3. The contour lines carry the same values a
Fig. 3. Note the difference in the two-nucleon subsystem mom
tum q to k in Fig. 3.

FIG. 3. The relativistic Faddeev componentf(k,p) linked to
the 1S0 state in the two-body subsystem.
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y
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IV. SUMMARY AND OUTLOOK

We derived and presented an explicit expression fo
Lorentz boostedNN potential, which can be used to dete
mine the two-bodyT matrix in a frame, in which the tota
momentum of the two particles is different from zero. T
description of two-body systems with nonzero total mome
tum is relevant for calculating properties in an interacti
three-body system in a relativistic framework. The generaT
matrix was inserted into a relativistic three-body Fadde
equation for the bound state, which was proposed in R
@15#. The dynamical input consisted ofNN potentials used in
a relativistic two-body Schro¨dinger equation which are ex
actly phase equivalent to nonrelativisticNN potentials used
in the nonrelativistic Schro¨dinger equation. The phas
equivalence of the two differentNN potentials is achieved
by a momentum scale transformation@16#. We applied this
scheme to various modern high precisionNN potentials, and
compared resulting three-nucleon binding energies from
nonrelativistic and relativistic 3N Faddeev equations. In a
case the relativistic effects turned out to be repulsive and
the order of 400 keV.

The effect of the boost turns out to be relatively small f
moderate total momenta of the two nucleons, howeve
high momenta they are quite visible. If one compares
relativistic and nonrelativistic Faddeev components one
tices some enhancement for high momentum componen
the two-body subsystem.

The access to boostedNN potentials opens the door t
considering the relativistic Faddeev equations for thr
nucleon scattering. The need for a relativistic description
three-nucleon scattering became already apparent when
surements of the total cross section for neutron-deute
scattering@22# were analyzed within the framework of non
relativistic Faddeev calculations@23#. Here,NN forces alone
were not sufficient to describe the data above about
MeV. The discrepancy is most likely due to missing corre
tions from three-nucleon forces and relativistic effects. T
relativistic corrections considered in Ref.@23# were only of
kinematic nature, but they lead to an increase of the to
cross section by about 3% at 100 MeV and about 7% at
MeV. This estimate, though very crude, emphasizes the
portance of a consistent treatment of relativistic effects es
cially in scattering. The availability of a boostedNN poten-
tial is one step in that direction. Additional technical steps

in
n-

FIG. 5. The relativistic Faddeev component. From Fig. 3, wh
k is expressed in terms ofq. Contour lines are as in Figs. 3 and 4
0-6
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relation to the relativistic free three-body propagator and
singularity structure have already been worked out@24#. We
expect that the Wigner rotations of the spin states can
performed along the line given in Ref.@13#.

Note added in proof.After the submission of this manu
script we learned about the work by Wallace@26#, where a
simple, approximate boost rule is derived, relating inter
tions of the two-body problem in an arbitrary frame to tho
in the c.m. frame. It will be interesting to compare this wi
our scheme in a future work.
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APPENDIX A: PROOF OF THE REALITY OF THE
BOOSTED POTENTIAL

The boosted potential is given in Eq.~2.8!. Obviously, the
first three terms are real. Here we show that the remain
fourth term,

1

v2v8 HPE d3k9
~Av921p22v9!

v92v
t~kW ,kW9;v9!t* ~kW8,kW9;v9!

2PE d3k9
~Av921p22v9!

v92v8
t~kW ,kW9;v9!t* ~kW8,kW9;v9!J ,

~A1!

is also real. This term contains the complex express
t(kW ,kW9;v9)t* (kW8,kW9;v9), which we will have to rewrite in
order to show that the integration over it results in a r
number. First, we note that only the half-shellt matrix enters
the integration in Eq.~A1!. Via the Heitler equation it can be
related to theK matrix,

t~kW ,kW9;v9!5K~kW ,kW9;v9!2 ipAk921m2k9E dk̂-

3K~kW ,kW-;v9!t~kW-,kW9;v9!, ~A2!

whereukW-u5k9 is on-energy shell. TheK matrix is real and
defined in the standard fashion as

K~kW ,kW9;v9!5v~kW ,kW9!1PE d3k-
v~kW ,kW-!K~kW-,kW9;v9!

v92v-
.

~A3!

In order to carry out the angular integration in Eq.~A3!, we
use the partial wave representations of thet andK matrix,

t~kW ,kW9;v9!5(
lm

t l~k,k9;v9!Ylm~ k̂!Ylm* ~ k̂9!, ~A4!

and
04401
s
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-

t

r-
e

g
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l

K~kW ,kW9;v9!5(
lm

Kl~k,k9;v9!Ylm~ k̂!Ylm* ~ k̂9!. ~A5!

Inserting these partial wave expressions into Eq.~A3! leads
to a partial wave representation oft as

t l~k,k9;v9!5Kl~k,k9;v9!

3@12 ipAk921m2k9t l~k9,k9;v9!#. ~A6!

Thus, the half-shellt matrix t l(kW ,kW9;v9) receives its complex
parts only from the factor@12 ipAk921m2k9t l(k9,k9;v9)#
which does not depend onk. Using the partial wave expan
sions of Eqs.~A4! and ~A5! leads to

E dk̂9t~kW ,kW9;v9!t* ~kW8,kW9;v9!

5(
lm

t l~k,k9;v9!t l* ~k8,k9;v9!Ylm~ k̂!Ylm* ~ k̂8!

5(
l

~2l 11!Kl~k,k9;v9!Kl~k8,k9;v9!

3@11p2~k921m2!k92ut l~k9,k9;v9!u2#Pl~ k̂• k̂8!.

~A7!

HerePl is the Legendre polynomial. The expression given
Eq. ~A7! is manifestly real and consequently the express
given in Eq.~A1! is real.

APPENDIX B: PARTIAL WAVE REPRESENTATION

In a partial wave representation the relativistic Fadde
Eq. ~3.7! is explicitly given as

fa~k,p!

5
1

Eb2E~k,p! (
a8a9

E
0

`

dp8p82E
21

1

dx
Taa8~k,k1 ;p8!

k1
l 8

3
Ga8a9~p,p8,x!

N1~p,p8,x!N2~p,p8,x!

fa9~k2 ,p8!

k2
l 9

, ~B1!

where

Gaa8~p,p8,x!

5(L PL~x! (
l 11 l 25 l

(
l 181 l 285 l 8

$~11y1!p% l 21 l 28

3$~11y2!p8% l 11 l 18g
aa8

Ll 1l 2l 18 l 28 , ~B2!

and

k15Ap821
~11y1!2

4
p21~11y1!pp8x,

k25Ap21
~11y2!2

4
p821~11y2!pp8x, ~B3!

and
0-7
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y15y1~p,p8,x!5
Am21p822Am21p21p8212pp8x

Am21p821Am21p21p8212pp8x1A~Am21p821Am21p21p8212pp8x!22p2
, ~B4!

y25y1~p8,p,x!.

When explicitly calculating the normalization factorN(pW 8,2pW 2pW 8), it turns out thatN(pW 8,2pW 2pW 8)→N1(p,p8,x) with

N1~p,p8,x!5S 4Am21p82Am21p21p8212pp8x

A~Am21p821Am21p21p8212pp8x!22p2~Am21p821Am21p21p8212pp8x!
D 1/2

. ~B5!
n,
y

ir
t

In a similar vein,N(2pW 2pW 8,pW )→N2(p,p8,x), with

N2~p,p8,x!5N1~p8,p,x!. ~B6!

The indexa summarizes a set of quantum numbers~chan-
nels!

ua&5u~ ls! j S l
1

2D I ~ j I !J~ t 1
2 !T&, ~B7!

wherel ,s, j , andt are orbital angular momentum, total spi
total angular momentumj and total isospin in the two-bod
subsystem. The indicesl,I , J, and T stand for the orbital
angular momentum, the total angular momentum of the th
particle, the total three-body angular momentum, and the

tal isospin @19,20#!. The quantityg
aa8

Ll 1l 2l 18 l 28 represents the
standard permutation operator coefficient.
.

e
L

04401
d
o-

Finally, when taking the limits

y1 ,y2→0,

N1 ,N2→1, ~B8!

one obtains the nonrelativistic result@25#

E~k,p!→ k2

m
1

3p2

4m
,

T→t (nr), ~B9!

and the relativistic Faddeev equation, Eq.~3.7!, reduces to
the nonrelativistic one.
J.
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