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Extended-soft-coreNN potentials in momentum space. II. Meson-pair exchange potentials
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The partial wave projection of the Nijmegen soft-core potential model for meson-pair-exchange~MPE! for
NN scattering in momentum space is presented. Here, nucleon-nucleon momentum-space MPE potentials are
NN interactions where either one or both nucleons contains a meson-pair vertex. Dynamically, the meson-pair
vertices can be viewed as describing in an effective way~part of! the effects of heavy-meson exchange and
meson-nucleon resonances. From the point of view of ‘‘duality,’’ these two kinds of contribution are roughly
equivalent. Part of the MPE vertices can be found in the chiral-invariant phenomenological Lagrangians that
have a basis in spontaneous broken chiral symmetry. It is shown that the MPE interactions are a very important
component of the nuclear force, which indeed enables a very successful description of the low and medium
energyNN data. Here we present a precise fit to theNN data with the extended-soft-core model containing
one-boson-exchange, PS-PS-, and MPE potentials. An excellent description of theNN data for TLab

<350 MeV is presented and discussed. Phase shifts are given and axpdp
2 51.15 is reached.
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I. INTRODUCTION

In the previous paper~paper I! @1#, the techniques for the
momentum space treatment of the extended-soft-core~ESC!
model are described. This implies first the development o
representation of the ESC model suitable for the projec
onto the Pauli-spinor rotational-invariant operators and s
ondly the partial wave analysis. This partial wave analysi
organized along similar lines as used for the soft-core o
boson-exchange~OBE! models @2#. In @1# the nucleon-
nucleon partial wave contributions have been worked ou
detail. These are the analogs of the configuration-space
meson-exchange~TME! potentials given in, e.g.,@3#. Here,
the TME potentials are defined to contain the planar a
crossed-box two-meson-exchange potentials.

In this second paper on soft-core two-meson-excha
potentials in momentum space~paper II!, we derive the same
representation as in paper I, but now for the contributions
the nucleon-nucleon potentials when either one or b
nucleons contains a pair vertex—i.e., the MPE potentials.
give the partial wave potentials in the similar representat
as used in paper I. In Ref.@4# the MPE contributions to the
configuration-space nucleon-nucleon potentials—i.e., w
either one or both nucleons contains a pair vertex—h
been derived. The corresponding ‘‘seagull’’ diagrams are
ferred to as one-pair and two-pair diagrams. This in orde
distinct these from the planar and crossed-box diagra
which were given Ref.@3#.

The two types of two-meson-exchange potentials, tw
meson exchange~TME! ~see I! and meson-pair exchang
~MPE! presented here are part of our program to extend
Nijmegen soft-core one-boson-exchange potential@5–7# to

*Present address: Kyushu International University, Fukuoka 8
8512, Japan.
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arrive at a new extended soft-core nucleon-nucleon mo
hereafter referred to as the ESC potential@4,8–10#.

In the introduction to Ref.@4# a rather complete descrip
tion is given of the physical background behind the MP
potentials, and we refer the interested reader to that re
ence.

We apply the potentials derived in this work to fit theNN
data. In the TME potentials we restrict ourselves
pseudoscalar-pseudoscalar~PS-PS! exchange. Or, phrase
differently, we include only the Goldstone-boson sector. T
because it gives the complete long-range contribution of o
plus two-pion-exchange potential~OPEP1TPEP! and the in-
clusion of h, etc., is necessary for~i! ~approximate! chiral
symmetry and~ii ! for completeness in the sense of SUf(3),
which allows an extension to hyperon-nucleon and hyper
hyperon potentials@10#.

In fact, this fit has been performed in the configuratio
space version. However, the results were checked num
cally in momentum space, using the formulas of papers I
II.

This paper is organized as follows. In Secs. II and III, w
give the essentials of the procedure followed in deriving
new momentum-space representation. In Sec. IV the pro
tion of the MPE on the Pauli-spinor invariants is worked o
for the adiabatic contributions. In Sec. V the same is done
the 1/M corrections: the nonadiabatic and the pseudovec
vertex terms. In Sec. VI the partial wave analysis is in
cated. The procedure for the partial wave projection is co
pletely analogous to that of paper I and can be transcri
immediately comparing the invariant contribution
V j (k

2;t,u) for MPE to those for TME in I. In Sec. VII the
results from a fit to theNN data are shown and discusse
Here, phase shifts are given forTlab<350 MeV and the pair
couplings are compared to the values expected from, e
chiral Lagrangians.

In Appendix A the pair-interaction Hamiltonians ar
5-
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listed. In Appendix B thel representations for the MPE
denominators are given. In Appendix C we give the integ
tion dictionary for the Gaussian integrals that occur in M
but not in TME. In Appendix D a derivation for the poten
tials due to the ‘‘derivative scalar pair’’ interaction@see the
g(pp)0
8 coupling in Eq.~A1a!# is outlined. Thus, for com-

pleteness, since although we do not employ this kind of p
interaction, it occurs often in the current literature. In Appe
dix E the full SUf(3) content of our pair interactions i
shown.

II. MOMENTUM-SPACE REPRESENTATION MPE
POTENTIALS

Here, we give an outline the essentials of the procedur
derive our new momentum-space representation for the M
potentials. These procedures have been described in
which we refer for details. Here, we focus on the pecu
features that occur in the application to the MPE potentia

The starting point is the basic convolutive integral

ṼM ,N~k!5E E d3k1d3k2

~2p!3
d~k2k12k2!

3F̃M~k1
2 ,m1!G̃N~ k2

2 ,m2!

5E d3D

~2p!3
F̃M~D2,m1!G̃N„~k2D!2,m2…, ~2.1!

whereF̃M(k2) andG̃N(k2) can be of the form

M50: F̃0~k2!5exp@2k2/L1
2#,

M52: F̃2~k2!5
exp@2k2/L1

2#

k21m1
2

,

N50: G̃0~k2!5exp@2k2/L2
2#,

N52: G̃2~k2!5
exp@2k2/L2

2#

k21m2
2

; ~2.2!

i.e., M ,N52 is the modified Yukawa type andM ,N50 is
the Gaussian type. Below, we give for the different cases
momentum-space representation, similar to the one that
been developed in paper I.

~i! M5N52: In paper I using twice the identity

exp@2k2/L2#

k21m2
5em2/L2E

1

` dt

L2
expF2S k21m2

L2 D tG ,

~2.3!

theD integral has been carried out. After a redefinition of t
variablest→t/L1

2 andu→u/L2
2 the result in I is
04400
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Ṽ2,2~k!5~4p!23/2em1
2/L1

2
em2

2/L2
2

3E
t0

`

dtE
u0

`

du
exp@2~m1

2t1m2
2u!#

~ t1u!3/2

3expF2S tu

t1uD k2G ~ t051/L1
2 ,u051/L2

2!.

~2.4!

~ii ! M52,N50: Using the identity~2.3! once and per-
forming similar steps as in paper I, one easily derives th
for this case,

Ṽ2,0~k!5~4p!23/2em1
2/L1

2
em2

2/L2
2

3E
t0

`

dtE
u0

`

du
exp@2~m1

2t1m2
2u!#

~ t1u!3/2

3expF2S tu

t1uD k2Gd~u2u0!. ~2.5!

Here is definedd(u2u0)[ lime↓0d(u2u0,e), where u0,e
5u02e. This definition implies that in Eq.~2.5! the u inte-
gration can simply be performed by the substitutionu→u0
in the integrand.

~iii ! M50,N52: Similarly to the previous case, one ha

Ṽ0,2~k!5~4p!23/2em1
2/L1

2
em2

2/L2
2

3E
t0

`

dtE
u0

`

du
exp@2~m1

2t1m2
2u!#

~ t1u!3/2

3expF2S tu

t1uD k2Gd~ t2t0!; ~2.6!

the caseṼ0,0(k) does not occur, since double diffractive e
change has not been included. For the integralsṼM ,N of this
section and similar integrals below in this paper, we int
duce the following convenient shorthand notation. We wr

ṼM ,N~k!5E
t0

`

dtE
u0

`

du w0~ t,u!

3H vM ,N~ t,u!expF2S tu

t1uD k2G J , ~2.7a!

with common weight functionw0(t,u) defined as

w0~ t,u![~4p!23/2em1
2/L1

2
em2

2/L2
2 exp@2~m1

2t1m2
2u!#

~ t1u!3/2
.

~2.7b!

The form in which these basic integrals appear in M
depends on two factors:~i! The denominatorsD(v1 ,v2). In
the next section we will give a catalog of these.~ii ! The
operatorsÕ(k1 ,k2). Also these will be given in the nex
section.
9-2
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III. MESON-PAIR-EXCHANGE POTENTIALS

In @4# the derivation of the pair-exchange potentials
both momentum and configuration space is given. In t
reference the configuration-space potentials are worked
fully. The topic of this paper is to do the same for th
momentum-space description. In particular, the partial w
analysis is performed leading to a representation which
very suitable for numerical evaluation.

From @4# and Eq.~3.1! it follows that the momentum-
space MPE potential can be represented in general in
form

Ṽab
(n)~k!5C(n)~ab!g(n)~ab!E E d3k1d3k2

~2p!3
d~k2k12k2!

3F̃0~k1
2!G̃0~k2

2!(
p

Õab,p
(n) ~k1 ,k2!D $p%

(n)~v1 ,v2!,

~3.1!

where the indexn distinguishes one-pair (n51) and two-
pair (n52) meson-pair exchange, and (ab) refers to the
particular meson pair that is being exchanged~see Fig. 1!.
The subscript$p%5$ad,na,pv,o f f% distinguishes, respec

FIG. 1. Time-ordered~a!–~c! one-pair and~d! two-pair dia-
grams. The dashed line with momentumk1 refers to the pion and
the dashed line with momentumk2 refers to one of the other~vec-
tor, scalar, or pseudoscalar! mesons. To these we have to add t
‘‘mirror’’ diagrams, where for the one-pair diagrams the pair vert
occurs on the other nucleon line.
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tively, the adiabatic, the nonadiabatic, pseudovector ver
and off-shell contributions. Here, the last three are the 1M
corrections to the MPE potentials.

The product of the coupling constants in the casesn
51,2 is given by

g(1)~ab!5g(ab)gNNagNNb ,

g(2)~ab!5g(ab)
2 , ~3.2!

with appropriate powers ofmp , depending on the definition
of the Hamiltonians given in@4#, Sec. II.

The momentum-dependent operatorsOab,p
(n) are given in

Tables I and II. For completeness, these tables also con
the isospin factorsC(n)(ab) as derived in Appendix B of
@4#. The momentum operators for (pp)0 and (pp)1 both
contain a term antisymmetric ink1↔k2, which only contrib-
utes in the nonadiabatic contribution; see@4#, Sec. IV. In the
adiabatic potential, as explained in@4#, they drop out when
we integrate overk1 andk2.

The energy denominatorsDp
(n) are also discussed in deta

in @4#, Sec. II, in terms of the time-ordered processes
volved in one- and two-pair exchange. These denomina
depend on the energies of the exchanged mesons, i.e.,v1 and
v2. Another source ofv1,2 dependence comes from vertice

TABLE I. The one-pair isospin factorsC(1)(ab) and momen-

tum operatorsÕab,p
(1) (k1 ,k2). The indexp labels the type of de-

nominators. Note thatk15( f /g)(pp)1
.

(ab) C(1)(ab) Oab,p
(1) (k1 ,k2)

(pp)0 6 2k1•k21
i

2
(s11s2)•(k13k2)

(ss) 2 1

(ph) t1•t2 22k1•k2

(ph8) t1•t2 22k1•k2

(pp)1 2i t1•t2 iFk1•k22
i

2
~s11s2!•~k13k2!G

1
i

M F ~11k1!s1•~k13k2!s2•~k13k2!

1
i

2
~s11s2!•~k13k2! q•~k12k2!G

(pr)1 22i t1•t2
i

M Fs1•k1s2•k11
1

2
~11kr!~s1•k1s2•k2

1s1•k2s2•k122s1•s2k1•k2) G
(ps) t1•t2 @s1•k1s2•k21s1•k2s2•k122s1•k1s2•k1#

(pP) t1•t2 @s1•k1s2•k21s1•k2s2•k122s1•k1s2•k1#

(pr)0 3 @s1•k1s2•k21s1•k2s2•k112s1•k1s2•k1#

(pv) t1•t2 @s1•k1s2•k21s1•k2s2•k112s1•k1s2•k1#
9-3
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TABLE II. The two-pair isospin factorsC(2)(ab) and momentum operatorsÕab,p
(2) (k1 ,k2), and denomi-

natorsDp
(2)(v1 ,v2).

(ab) C(2)(ab) Õab,p
(2) (k1 ,k2) Dp

(2)(v1 ,v2)

(pp)0 6 1 2
1

2v1v2

1
v11v2

(ss) 2 1 2
1

2v1v2

1
v11v2

(ph) t1•t2 1 2
1

2v1v2

1
v11v2

(ph8) t1•t2 1 2
1

2v1v2

1
v11v2

(pp)1 t1•t2 1 2
1

2 F 1

v1
1

1

v2
2

4

v11v2
G

(pr)1 2t1•t2 s1•s2 2
1

2v1v2

1
v11v2

(ps) t1•t2 s1•(k12k2)s2•(k12k2) 2
1

2v1v2

1
v11v2

(pP) t1•t2 s1•(k12k2)s2•(k12k2) 2
1

2v1v2

1
v11v2

(pr)0 3 s1•s2 2
1

2 S 1

v1
1

1

v2
D

2s1•(k11k2)s2•(k11k2) 2
1

2v1v2

1
v11v2

(pv) t1•t2 s1•s2 2
1

2 S 1

v1
1

1

v2
D

2s1•(k11k2)s2•(k11k2) 2
1

2v1v2

1
v11v2

TABLE III. The one-pair denominatorsDp
(1)(v1 ,v2).

(ab) Dad
(1)(v1 ,v2) Dna

(1)(v1 ,v2) Dpv
(1)(v1 ,v2)

(pp)0
1

v1
2v2

2

1

v1
2v2

2 F 1

v1
1

1

v2
2

1

v11v2
G 1

v1v2(v11v2)

(pp)1
2

v1v2(v11v2)
,

1

v1
2v2

2

2

v1
2v2

2

1

v1
2 ,

1

v2
2

(ps) 1

v1
2v2

2

1

v1
2v2

2 F 1

v1
1

1

v2
2

1

v11v2
G 1

v1v2(v11v2)
044009-4
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with derivatives and the nonadiabatic expansion terms. It
pears from@4# that in general one can write

D $p%
(n)~v1 ,v2!5 (

p1 ,p2 ,p3

cp1 ,p2 ,p3

(n) D $p1 ,p2 ,p3% , ~3.3!

TABLE IV. The dp(t,u) functions corresponding to the denom
natorsDp(v1 ,v2), p50,1,2,3,4,5.

D $p%(v1 ,v2) d$p%(t,u))

D2,2,0 5 1

v1
2v2

2
d2,2,0 5 1

D2,0,0 5 1

v1
2

d2,0,0 5 d(u2u0)

D0,2,0 5 1

v2
2

d0,2,0 5 d(t2t0)

D1,0,0 5 1
v1

d1,0,0 5 1

Ap
t21/2 d(u2u0)

D0,1,0 5 1
v2

d0,1,0 5 1

Ap
u21/2 d(t2t0)

D0,0,1 5 1
v11v2

d0,0,1 5 1

2Ap
(t1u)23/2

D1,1,1 5 1
v1v2

1
v11v2

d1,1,1 5 1

Ap
(t1u)21/2
04400
p-

where in terms of the integer powerspi ( i 51,2,3) the de-
nominators can be written

D $p1 ,p2 ,p3%5
1

v1
p1

1

v2
p2

1

~v11v2!p3
. ~3.4!

The energy denominatorsDp
(n) are listed in Tables II and III.

The evaluation of the momentum integrations can n
readily be performed using the methods given in@4,11#.
There it was shown that the full separation of thek1 andk2
dependence can be achieved in all cases using thel-integral
representation, first introduced in@11#. In Appendix B the
occurringl-integrals are listed. From the listing in Append
B one readily sees that for the derivation of the represe
tion similar to that one in Eqs.~2.4!–~2.6! we need to start
out from a generalization of Eq.~2.1!:

ṼM ,N~k,l!5
2

pE0

`

dl f M ,N~l!E d3D

~2p!3
F̃M~D2,Am1

21l2!

G̃N„~k2D!2,Am2
21l2

…. ~3.5!

In paper I it has been shown that all occurringl integrals can
be performed analytically. The result for all cases can
written as
TABLE V. CoefficientsY j ,k
(ad,na,pv) for the (pp)0 contributions.

Y0(i)(t,u) Y1(i)(t,u) Y2(i)(t,u)

One-pair exchange

V1
(1),ad

1
3
2

1
t1u 2

tu

(t1u)2
—

V1
(1),na

2
1

Ap
15
4

At1u

(t1u)2

1
M

2
1

2Ap
S t228tu1u2

t1u D At1u

~ t1u!2

1

M
2

1

Ap
S t2u2

~ t1u!2D At1u

~ t1u!2

1

M

V4
(1),na

2
1

Ap

At1u

t1u

1
M

— —

V1
(1),pv 3

2Ap

1

(t1u)3/2

1
M

1

2Ap
S t21u2

t1u D 1

~ t1u!3/2

1

M
—

V4
(1),pv

1
3

Ap

1

(t1u)1/2

1
M

— —

Two-pair exchange

V1
(2),ad

2
1

2Ap

1

(t1u)1/2 —
—

9-5
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Ṽp1 ,p2 ,p3
~k!5E d3D

~2p!3
F̃0~D2,m1!G̃0„~k2D!2,m2…

D $p1 ,p2 ,p3%~v1 ,v2!

5E
t0

`

dtE
u0

`

du w0~ t,u!H d$p1 ,p2 ,p3%~ t,u!

3expF2S tu

t1uD k2G J . ~3.6!

All functions d$p1 ,p2 ,p3%(t,u) that occur in this work are
given in Table IV. As noted in Sec. II we will use onl
representations withM5N52, so that nod(t2t0) or d(u
2u0) occurs.

IV. PROJECTION MPE ON SPINOR INVARIANTS I:
ADIABATIC CONTRIBUTIONS

The MPE contributions from the adiabatic terms—t
nonadiabatic and pseudovector-vertex corrections—are
central, spin-spin, tensor, and spin-orbit momentum-sp

analogs of those given in Ref.@4# in configuration space.

04400
he
ce

From Eq. ~3.1!, Tables I–III it is readily verified that the
projection onto the potentialsVj , similarly to paper I, can be
written as

Ṽpair
(n) ~ab!5E

t0

`

dtE
u0

`

du w0~ t,u!

3H expF2S tu

t1uD k2GV j
(n)~k2;t,u!J ~ab!.

~4.1!

The functionsV j
(n) are worked out in the subsections belo

Like in I, we also introduce for convenience the expansion
k2:

V j
(ad,na,pv)~k2;t,u!

5C(n)~ab!g(n)~ab!(
k50

K

Y j ,k
(ad,na,pv)~ t,u!~k2!k.

~4.2!
TABLE VI. CoefficientsY j ,k
(ad,na,pv) for the (pp)1 contributions.

Y0(i)(t,u) Y1(i)(t,u) Y2(i)(t,u)

One-pair exchange

V1
(1),ad

1
3

Ap

1

(t1u)3/2
2

2

Ap

tu

(t1u)5/2
—

V2
(1),ad — 2

1

3Ap

(11k1)
M

1
t1u

—

V3
(1),ad

1
1

2Ap

(11k1)
M

1
t1u

— —

V4
(1),ad

2
1

Ap

1
M

1
t1u

— —

V1
(1),na

2
15
4

1

(t1u)2

1
M

2
1
2St228tu1u2

~t1u!3 D 1

M 2
t2u2

(t1u)4

1
M

V4
(1),na

2
1

t1u

1
M

— —

V1
(1),pv

1
3
4

d(t2t0)1d(u2u0)
t1u

1
M 1

1
2

t2d(t2t0)1u2d(u2u0)

(t1u)2

1
M

—

V1
(4),pv

1
t d(t2t0)1u d(u2u0)

t1u

1
M

— —

Two-pair exchange

V1
(2),ad

2
1

2Ap
Fd~u2u0!

At
1

d~ t2t0!

Au
2

2

~ t1u!3/2G —
9-6
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TABLE VII. CoefficientsY j ,k
(ad,na,pv) for the (pr)1 contributions.

Y0(i)(t,u) Y1(i)(t,u) Y2(i)(t,u)

One-pair exchange

V2
(1),ad

1
1
M

( 3
2 1kr)

1
t1u

1

3M S u2

~t1u!2
22~11kr!

tu

~t1u!2D —

V3
(1),ad

1
1
M

u21tu(11kr)

(t1u)2
— —

Two-pair exchange

V2
(2),ad

2
1

2Ap

1

(t1u)1/2
— —-

TABLE VIII. Coefficients Y j ,k
(ad,na,pv) for the (ps)1 contributions.

Y0(i)(t,u) Y1(i)(t,u) Y2(i)(t,u)

One-pair exchange

V2
(1),ad

2
2

t1u 1
2
3

tu2u2

(t1u)2
—

V3
(1),ad

12
tu2u2

(t1u)2
— —

V2
(1),na

1
5

Ap

1

(t1u)3/2

1
M

1
1

3Ap

t2213tu16u2

(t1u)5/2

1
M

1
2

3Ap

tu2(t2u)

(t1u)7/2

1
M

V3
(1),na

1
1

Ap

t227tu16u2

(t1u)5/2

1
M

1
2

Ap

tu2(t2u)

(t1u)7/2

1
M

—

V2
(1),pv

2
1

Ap

1

(t1u)3/2

1
M

2
1

3Ap

t22tu

(t1u)5/2

1
M

—

V3
(1),pv

2
1

Ap

t22tu

(t1u)5/2

1
M

— —

Two-pair exchange

V2
(2),ad

2
1

Ap

1

(t1u)3/2
2

1

6Ap

(t2u)2

(t1u)5/2
—

— —-

V3
(2),ad

2
1

2Ap

(t2u)2

(t1u)5/2
— —-
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TABLE IX. CoefficientsY j ,k
(ad,na,pv) for the (pv)1 contributions.

Y0(i)(t,u) Y1(i)(t,u) Y2(i)(t,u)

One-pair exchange

V2
(1),ad — 1

2
3

u

t1u
—

V3
(1),ad

12
u

t1u
— —

Two-pair exchange

V2
(2),ad

2
1

2Ap
Fd~ t2t0!

Au
1

d~u2u0!

At
G 1

1

6Ap

1

At1u
—

V3
(2),ad

1
1

2Ap

1

At1u
— —
ti
s

Below in this section we give the results for the adiaba
contributions. The coefficientsY j ,k

ad are tabulated in Table
V–IX.

A. JPCÄ0¿¿: Adiabatic „pp…0-exchange potentials

The one-pair and two-pair contributions are

V1
(1)~k2;t,u!56S g(pp)0

mp
D S f NNp

2

mp
2 D d$2,2,0%~ t,u!

3H 1
3

2
2S tu

t1uD k2J 1

t1u
, ~4.3a!

V1
(2)~k2;t,u!523S g(pp)0

mp
2 D 2

d$1,1,1%~ t,u!. ~4.3b!
04400
c B. JPCÄ1ÀÀ: Adiabatic „pp…1-exchange potentials

~i! One-pair exchange:

V1
(1)~k2;t,u!524~t1•t2!S g(pp)1

mp
2 D S f NNp

2

mp
2 D

3d1,1,1~ t,u!H 2
3

2
1S tu

t1uD k2J 1

t1u
,

~4.4a!

V2
(1)~k2;t,u!522~t1•t2!S g(pp)1

mp
2 D S f NNp

2

mp
2 D

3
~11k1!

M
d2,2,0~ t,u!1

1

3
k2

1

t1u
,

~4.4b!
V3
(1)~k2;t,u!522~t1•t2!S g(pp)1

mp
2 D S f NNp

2

mp
2 D ~11k1!

M
d2,2,0~ t,u!2

1

2

1

t1u
, ~4.4c!

V4
(1)~k2;t,u!522~t1•t2!S g(pp)1

mp
2 D S f NNp

2

mp
2 D 1

M
d2,2,0~ t,u!

1

t1u
. ~4.4d!

~ii ! Two-pair exchange:

V1
(2)~k2;t,u!52

1

2
~t1•t2!S g(pp)1

mp
2 D 2

@d1,0,01d0,1,024d0,0,1#~ t,u!. ~4.4e!
9-8
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C. JPCÄ1¿¿: Adiabatic „pr…1-exchange potentials

~i! One-pair exchange:

V2
(1)~k2;t,u!5

2

M
~t1•t2!S g(pr)1

mp
D S f NNpgNNr

mp
Dd2,2,0~ t,u!H F1

2
1

1

3 S u2

t1uD k2G1
1

2
~11kr!F22

4

3

tu

t1u
k2G J 1

t1u
,

~4.5a!

V3
(1)~k2;t,u!5

2

M
~t1•t2!S g(pr)1

mp
D S f NNpgNNr

mp
Dd2,2,0~ t,u!H u2

t1u
1

1

2
~11kr!

2tu

t1uJ 1

t1u
. ~4.5b!

~ii ! Two-pair exchange:

V2
(2)~k2;t,u!52~t1•t2!S g(pr)1

mp
2 D 2

d1,1,1~ t,u!. ~4.5c!

D. JPCÄ1¿¿: Adiabatic „ps…-exchange potentials

~i! One-pair exchange:

V2
(1)~k2;t,u!51~t1•t2!S g(ps)

mp
2 D S f NNpgNNs

mp
Dd2,2,0~ t,u!F221

2

3 S tu2u2

t1u D k2G 1

t1u
, ~4.6a!

V3
(1)~k2;t,u!512~t1•t2!S g(ps)

mp
2 D S f NNpgNNs

mp
Dd2,2,0~ t,u!S tu2u2

t1u D 1

t1u
. ~4.6b!

~ii ! Two-pair exchange:

V2
(2)~k2;t,u!52

1

2
~t1•t2!S g(ps)1

mp
2 D 2

d1,1,1~ t,u!H 2

t1u
1

1

3 S t2u

t1uD 2

k2J , ~4.6c!

V3
(2)~k2;t,u!52

1

2
~t1•t2!S g(ps)1

mp
2 D 2

d1,1,1~ t,u!S t2u

t1uD 2

. ~4.6d!

E. JPCÄ1¿À: Adiabatic „pv…-exchange potentials

~i! One-pair exchange:

V2
(1)~k2;t,u!5~t1•t2!S g(pv)

mp
D S f NNpgNNv

mp
Dd2,2,0~ t,u!F2

3 S tu1u2

t1u D k2G 1

t1u
, ~4.7a!

V3
(1)~k2;t,u!512~t1•t2!S g(pv)

mp
D S f NNpgNNv

mp
Dd2,2,0~ t,u!S tu1u2

t1u D 1

t1u
, ~4.7b!

~ii ! Two-pair exchange:

V2
(2)~k2;t,u!52

1

2
~t1•t2!S g(pv)1

mp
2 D 2H d1,0,01d0,1,02

1

3
k2d1,1,1J ~ t,u!, ~4.7c!

V3
(2)~k2;t,u!51

1

2
~t1•t2!S g(pv)1

mp
2 D 2

d1,1,1~ t,u!. ~4.7d!
044009-9
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F. JPCÄ1¿¿: Adiabatic „pP…-exchange potentials

The treatment of the Pomeron has been explained in@3#. This implies the use ofG̃0 /MN
2 in Sec. II. Furthermore, with

respect tos exchange there is a (2) sign forP exchange. Therefore, comparing to Eqs.~4.6a!–~4.6d! we obtain the following
potentials.

~i! One-pair exchange:

V2
(1)~k2;t,u!52~t1•t2!S g(pP)

mp
2 D S f NNpgNNP

mp
D 1

MN
2

d2,0,0~ t,u!F221
2

3 S tu2u2

t1u D k2G 1

t1u
d~u2u0!, ~4.8a!

V3
(1)~k2;t,u!522~t1•t2!S g(pP)

mp
2 D S f NNpgNNP

mp
D 1

MN
2

d2,0,0~ t,u!S tu2u2

t1u D 1

t1u
d~u2u0!. ~4.8b!

~ii ! Two-pair exchange:

V2
(2)~k2;t,u!51

1

2
~t1•t2!S g(pP)1

mp
D 2

1

MN
2

d1,1,1~ t,u!H 2

t1u
1

1

3 S t2u

t1uD 2

k2J d~u2u0!, ~4.8c!

V3
(2)~k2;t,u!51

1

2
~t1•t2!S g(pP)1

mp
2 D 2

1

MN
2

d1,1,1~ t,u!S t2u

t1uD 2

d~u2u0!. ~4.8d!

Notice that in Eqs.~4.8a!–~4.8d!, u051/4mP
2 .

G. JPCÄ0¿¿: Adiabatic ‘‘derivative’’ „pp…0-exchange potentials

The derivative-pair potentials in coordinate space have been derived in@12# in detail. A summary of this is given in
appendix D. A short derivation of thep-space potentials is also can be found there.

~i! One-pair exchange:

V1
(1)~k2;t,u!5212S g(pp)0

8

mp
3 D S f NNp

mp
D 2

d2,2,0~ t,u!F15

4
1

1

2

t228tu1u2

t1u
k21

t2u2

~ t1u!2
k4G 1

~ t1u!2
. ~4.9a!

~ii ! Two-pair exchange:

V1
(2)~k2;t,u!526S g(pp)0

8

mp
3 D 2H F15

4
1

t223tu1u2

t1u
k21

t2u2

~ t1u!2
k4Gd1,1,1~ t,u!

~ t1u!2

1
1

2 F3

2
~m1

21m2
2!1

m1
2t1m2

2u

t1u
k21m1

2m2
2~ t1u!Gd1,1,1~ t,u!

t1u
1F3

2
2

tu

t1u
k2G d0,0,1~ t,u!

t1u J . ~4.9b!

H. JPCÄ0¿¿: Adiabatic „ss…-exchange potentials

~i! One-pair exchange:

V1
(1)~k2;t,u!52S g(ss)

mp
DgNNs

2 d2,2,0~ t,u!. ~4.10a!

~ii ! Two-pair exchange:

V1
(2)~k2;t,u!52S g(ss)

mp
D 2

d1,1,1~ t,u!. ~4.10b!

V. PROJECTION MPE ON SPINOR INVARIANTS II: 1 ÕM CORRECTIONS

The nonadiabatic and pseudovector-vertex corrections have been given in@4#, Sec. IV. Similar to Eq.~4.1! we write these
contributions in the form
044009-10
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Ṽpair
(na,pv)~ab!5E

t0

`

dtE
u0

`

du w0~ t,u!H d$p1 ,p2 ,p3%
(n) ~ t,u!expF2S tu

t1uD k2GV j
(n)~k2;t,u!J . ~5.1!

A. Nonadiabatic corrections

From Eqs.~4.5!–~4.8! of @4# one readily obtains the momentum-space equivalents using the replacements

E E d3k1d3k2

~2p!6
ei (k11k2)→E E d3k1d3k2

~2p!3
d~k2k12k2!.

Then, by comparison one can easily read off the diverse quantitiesÕab,p
(na) andDp

(na)(v1 ,v2) that occur in Eq.~3.1! for the
nonadiabatic potentials. The projections onto theV j

(na) in Eq. ~5.1! yield the following.
~i! (pp)0:

V1
(na)~k2;t,u!52

g(pp)0

mp
S f NNp

mp
D 2 3

M
d$na%~ t,u!H 15

4
11

1

2 S t228ut1u2

t1u D k21S t2u2

~ t1u!2D k4J 1

~ t1u!2
, ~5.2a!

V4
(na)~k2;t,u!52

g(pp)0

mp
S f NNp

mp
D 2 3

M
d$na%~ t,u!

1

t1u
. ~5.2b!

~ii ! (pp)1:

V1
(na)~k2;t,u!522~t1•t2!

g(pp)1

mp
S f NNp

mp
D 2 1

M
d$2,2,0%~ t,u!H 15

4
1

1

2 S t228ut1u2

t1u D k21S t2u2

~ t1u!2D k4J 1

~ t1u!2
, ~5.3a!

V4
(na)~k2;t,u!522~t1•t2!

g(pp)1

mp
S f NNp

mp
D 2 1

M
d$2,2,0%~ t,u!

1

t1u
. ~5.3b!

~iii ! (ss):

V1
(na)~k2;t,u!5

g(ss)

mp

gNNs
2

M
d$na%~ t,u!H 2

3

2
1S tu

t1uD k2J 1

t1u
. ~5.4!

~iv! (ps):

V2
(na)~k2;t,u!51~t1•t2!

g(ps)1

mp
2

f NNp

mp

gNNs

M
d$na%~ t,u!H 5

2
1

1

6

t2213tu16u2

t1u
k21

1

3

tu2~ t2u!

~ t1u!2
k4J 1

~ t1u!2
, ~5.5a!

V3
(na)~k2;t,u!51~t1•t2!

g(ps)1

mp
2

f NNp

mp

gNNs

M
d$na%~ t,u!H 1

2

t227tu16u2

t1u
1

tu2~ t2u!

~ t1u!2
k2J 1

~ t1u!2
. ~5.5b!

~v! (pp)0 ~‘‘derivative’’ !:

V1
(na)~k2;t,u!5212S g(pp)0

8

mp
3 D S f NNp

mp
D 2 1

2M H 1F15

4
1

1

2 S t228tu1u2

t1u D k21
t2u2

~ t1u!2
k4Gd1,1,1~ t,u!

~ t1u!2

2F105

8
1

15

4 S t225tu1u2

t1u D k22
3

2
tuS t225tu1u2

~ t1u!2 D k42
t3u3

~ t1u!3
k6Gdna~ t,u!

~ t1u!3 J , ~5.6a!

V4
(na)~k2;t,u!5212S g(pp)0

8

mp
3 D S f NNp

mp
D 2 1

2M H d1,1,1~ t,u!

t1u
1F2512

tu

t1u
k2Gdna~ t,u!

~ t1u!2 J . ~5.6b!

Here,d$na%(t,u) is defined in Eq.~B3!.
044009-11



-vertex

Th. A. RIJKEN, H. POLINDER, AND J. NAGATA PHYSICAL REVIEW C66, 044009 ~2002!
B. Pseudovector-vertex corrections

From Eqs.~4.9!–~4.11! of @4# likewise as in the case of the nonadiabatic corrections one obtains for the pseudovector
corrections.

~i! (pp)0:

V1
(pv)~k2;t,u!51

g(pp)0

mp
S f NNp

mp
D 2 3

M
d$1,1,1%~ t,u!H 31S t21u2

t1u D k2J 1

t1u
, ~5.7a!

V4
(pv)~k2;t,u!512

g(pp)0

mp
S f NNp

mp
D 2 3

M
d$1,1,1%~ t,u!. ~5.7b!

~ii ! (pp)1:

V1
(pv)~k2;t,u!51~t1•t2!

g(pp)1

mp
S f NNp

mp
D 2 1

M F S 3

2
1

u2

t1u
k2Dd$2,0,0J ~ t,u!1S 3

2
1

t2

t1u
k2Dd$0,2,0%~ t,u!

1

t1u
, ~5.8a!

V4
(pv)~k2;t,u!512~t1•t2!

g(pp)1

mp
S f NNp

mp
D 2 1

M F u

t1u
d$2,0,0J 1

t

t1u
d$0,2,0%. ~5.8b!

~iii ! (ps):

V2
(pv)~k2;t,u!52~t1•t2!

g(ps)1

mp
2

f NNp

mp

gNNs

M
d$1,1,1%~ t,u!H 11

1

3

t22tu

t1u
k2J 1

t1u
. ~5.9a!

V3
(pv)~k2;t,u!52~t1•t2!

g(ps)1

mp
2

f NNp

mp

gNNs

M
d$1,1,1%~ t,u!S t22tu

t1u D 1

t1u
. ~5.9b!

~iv! (pp)0 ~‘‘derivative’’ !:

V1
(pv)~k2;t,u!526S g(pp)0

8

mp
3 D S f NNp

mp
D 2 1

2M
d1,1,1~ t,u!H ~m1

22m2
2!22F3~m1

21m2
2!1

m1
2~3t22u2!1m2

2~3u22t2!

t1u
k2G 1

t1u

2F S t212tu1u2

t1u D k212tuS t212tu1u2

~ t1u!2 D k4G 1

~ t1u!2J , ~5.10a!

V4
(pv)~k2;t,u!5224S g(pp)0

8

mp
3 D S f NNp

mp
D 2 1

2M
d1,1,1~ t,u!H ~m1

21m2
2!1F3

2
1S t21tu1u2

t1u D k2G 1

t1uJ . ~5.10b!

The coefficientsY j ,k
na,pv defined in Eq.~4.2! are tabulated in Tables V–IX.
os
ad

E

For (pP) exchange, the 1/MN nonadiabatic and
pseudovector-vertex corrections can be read off from th
for (ps) and making the same adjustments as given alre
for the adiabatic contributions. In Table X theV i

(pv,ad) for
(pP)-pair exchange are given explicitly.

VI. PARTIAL WAVE ANALYSIS

Like the TME potentials in I, the general form of the MP
potentials in momentum space is
04400
e
y

Ṽj
(n)~k!5E

t0

`

dtE
u0

`

duH w$p1 ,p2 ,p3%
(n) ~ t,u!

3expF2S tu

t1uD k2GV j
(n)~k2;t,u!J , ~6.1!

where

w$p1 ,p2 ,p3%
(n) ~ t,u!5w0~ t,u!d$p1 ,p2 ,p3%

(n) ~ t,u!.
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TABLE X. CoefficientsY j ,k
(ad,na,pv) for the (pP)1 contributions. These coefficients have to be multipli

by a factor2d(u2u0)/MN
2 .

Y0(i)(t,u) Y1(i)(t,u) Y2(i)(t,u)

One-pair exchange

V2
(1),ad

2
2

t1u 1
2
3

tu2u2

(t1u)2
—

V3
(1),ad

12
tu2u2

(t1u)2
— —

V2
(1),na

1
5

Ap

1

(t1u)3/2

1
M

1
1

3Ap

t2213tu16u2

(t1u)5/2

1
M

1
2

3Ap

tu2(t2u)

(t1u)7/2

1
M

V3
(1),na

1
1

Ap

t227tu16u2

(t1u)5/2

1
M

1
2

Ap

tu2(t2u)

(t1u)7/2

1
M

—

V2
(1),pv

2
1

Ap

1

(t1u)3/2

1
M

2
1

3Ap

t22tu

(t1u)5/2

1
M

—

V3
(1),pv

2
1

Ap

t22tu

(t1u)5/2

1
M

— —

Two-pair exchange

V2
(2),ad

2
1

Ap

1

(t1u)3/2
2

1

6Ap

(t2u)2

(t1u)5/2
—

— —

V3
(2),ad

2
1

2Ap

(t2u)2

(t1u)5/2
— —
-
th
ils

hi
is
m
th
-
n

-

n

t
ster

In
ere
aly-

he
Therefore, the partial wave~PW! analysis runs along the
same lines as described in Secs. VI and VII of paper I for
TME potentials. We refer the reader to this paper for deta

VII. ESC MODEL: RESULTS

The momentum-space formulas for the potentials of t
paper and paper I have been checked numerically. Th
done by solving the Lippmann-Schwinger equation and co
paring the phase shifts with those obtained by solving
Schrödinger equation using thex-space equivalent of the po
tentials. The agreement reached was of the order of o
hundredth of a degree.

After the completion of thep-space formalism we per
04400
e
.

s
is
-
e

e-

formed ax2 fit with the ESC model to the 1993 Nijmege
representation of thex2 hypersurface of theNN scattering
data belowTlab5350 MeV @15#.

This fitting was executed inx space using the equivalen
x-space potentials. The reason for this is the much fa
evaluation of the ESC model inx space. We obtained a
x2/Ndata51.15. The phase shifts are shown in Figs 2–5.
Table XI the results are shown for the ten energy bins, wh
we compare the results from the updated partial wave an
sis with the ESC potentials.

In Table XII we show the OBE coupling constants and t
Gaussian cutoffsL. The a[F/(F1D) ratios used for the
OBE couplings are pseudoscalar mesonsapv50.355, vector
mesons aV

e51.0, aV
m50.275, and scalar mesonsaS
9-13
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50.914, which is computed using the physicalS*
[ f 0(993) coupling, etc. In Table XIII we show the MP
coupling constants. TheF/(F1D) ratios which we used for
the MPE couplings are (ph), etc., and (pv) pairs
a($8s%)51.0, (pp)1, etc., pairsaV

e($8%a)50.4, aV
m($8%a)

50.335, (pr)1, etc., pairsaA($8%a)50.335.
We emphasize that we use the single-energy~SE! phases

andx2 surface@17# only as a means to fit theNN data. As
stressed in@15# the Nijmegen SE phases have not much s
nificance. The significant phases are the multienergy~ME!
ones; see the dashed lines in the figures. One notices tha
central values of the SE phases do not correspond to the
phases in general, illustrating that there has been a ce
amount of noise fitting in the SE PW analysis; see, e.g.e1
and 1P1 at Tlab5100 MeV. The ME PW analysis reache
x2/Ndata50.99, using 39 phenomenological parameters p
normalization parameters and the related phenomenolog
PW potentials NijmI,II and Reid93@18#, with, respectively,
41, 47, and 50 parameters, all withx2/Ndata51.03. This
should be compared to the ESC model, which hasx2/Ndata
51.15 using 20 parameters. These are nine meson-nuc
nucleon couplings, eight meson-pair-nucleon-nucleon c
plings, and three Gaussian cutoff parameters. From the
ures it is obvious that the ESC model deviates from the

FIG. 2. Solid line: proton-protonI 51 phase shifts~degrees!, as
a function ofTlab ~MeV!, for the ESC model. The dashed line: th
multienergy phases of the Nijmegen93 PW analysis@15#. The black
dots: the single-energy phases of the Nijmegen93 PW analysis.
diamonds: Bugg single energy@16#.
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PW analysis at the highest energy in particular. If we eva
ate the x2 for the first nine energies only, we obtai
x2/Ndata51.10.

We mentioned that we do not include negative-ene
state contributions. It is assumed that a strong pair supp
sion is operative at low energies in view of the compos
nature of the nucleons. This leaves for us the pseudosc
mesons with two essential equivalent interactions: the di
and derivative ones. In expanding theNNp, etc., vertex in
1/MN these two interactions differ in the 1/MN

2 terms; see
@3#, Eqs. ~3.4! and ~3.5!. Here, we prefer to cancel thes
1/MN

2 terms by taking

Hps5
1

2
@gNNpc̄ ig5tc•p1~ f NNp /mp!gmg5tc•]mp#,

~7.1!

wheregNNp5(2MN /mp) f NNp .
As for the OBE couplings, one notices thatGE5grNN is

small ~see@20#!, but GM5gr1 f r is okay. One possible ex
planation would be that part of ther exchange is replaced b
the two-pair (pp)1 exchange, which has identical quantu
numbers. This still leaves room for the interpretation of t
one-pair (pp)1 exchange as a form factor correction. A

he

FIG. 3. Solid line: proton-protonI 51 phase shifts~degrees!, as
a function ofTlab ~MeV!, for the ESC model. The dashed line: th
multienergy phases of the Nijmegen93 PW analysis@15#. The black
dots: the single energy phases of the Nijmegen93 PW analysis.
diamonds: Bugg single energy@16#.
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other interesting possibility is that leaving out the tensor m
sonsa2(1320), f 2(1270), andf 2(1520) affects the vector
meson couplings. This can be seen as follows. At h
energies and low to moderate momentum transfer there
strong cancellation between the vector and tensor excha
(r2a2)- and (v2 f 2) cancellation@19#. This is called ex-
change degeneracy~EXD!. Indeed, by changinggr /A4p
50.3 to gr50.75/A4p one can cancel the change in th
r-exchange potential by the inclusion ofa2 exchange rathe
completely. The inclusion of mesons with a mass>1 GeV
/c2, like the axial and tensor mesons, we leave as a fu
project.

Unlike in @3,4#, we did not fix the pair couplings using
theoretical model based on heavy-meson saturation and
ral symmetry. So in addition to the 14 parameters used
@3,4# we now have eight pair coupling fit parameters.
Table XIII the fitted pair couplings are given. Note that t
(pp)0-pair coupling gets contributions from the$1% and the
$8s% pairs as well, giving in totalg(pp)50.10, which has the
same sign as in@4#. The f (pp)1

-pair coupling has opposite
sign as compared to@4#. In a model with a more complex an
realistic meson dynamics@9# this coupling is predicted a
found in the present ESC-fit. The (pr)1 coupling agrees

FIG. 4. Solid line: neutron-protonI 50 phase shifts~degrees!,
as a function ofTlab ~MeV!, for the ESC model. The dashed lin
the multienergy phases of the Nijmegen93 PW analysis@15#. The
black dots: the single-energy phases of the Nijmegen93 PW an
sis. The diamonds: Bugg single energy@16#.
04400
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nicely with theA1 saturation; see@4#. We conclude that the
pair couplings are in general not well understood and dese
more study.

The ESC model described here is fully consistent w
SU~3! symmetry. In Appendix E we display the full SU~3!
contents of the pair interaction Hamiltonians. For examp
g(pr)1

5gA8VP , and besides (pr) pairs one sees also tha

KK* (I 51) andKK* (I 50) pairs contribute to theNN po-
tentials. All F/(F1D) ratios are taken fixed with heavy
meson saturation in mind. The approximation we have m
in this paper is to neglect the baryon mass differences;
we putmL5mS5mN . This because we have not yet worke
out the formulas for the inclusion of these mass differenc
which is straightforward in principle.

VIII. CONCLUSIONS AND OUTLOOK

The ESC model presented is very successful and flex
in describing theNN data. It can be developed and extend
in various ways. First, we plan to extend the OBE potenti
in momentum space by including the full OBE propagat
i.e.,

1

v2
→ 1

v~v1a!
, a5

1

M
@pf

21pi
222p0

2#. ~8.1!

This includes retardation at the level of the OBE potentia
Second, one may extend the TME potentials including
sides PS-PS also the PS-vector, PS-Scalar, etc., poten
Third, we may include the axial and tensor mesons, wh
we discussed in connection with EXD.

ly-

FIG. 5. Solid line: neutron-protonI 50 phase shifts~degrees!,
as a function ofTlab ~MeV!, for the ESC model. The dashed line
the multienergy phases of the Nijmegen93 PW analysis@15#. The
black dots: the single-energy phases of the Nijmegen93 PW an
sis. The diamonds: Bugg single energy@16#.
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The momentum-space formulation of the ESC model a
suggests a covariant formulation. Consider an effective fi
theory and suppose that it allows Wick rotation. Then,
suming in Euclidean space a Gaussian cutoff, one can u
representation completely akin to Eq.~2.3!, etc. For example,
this opens the way to analyze the expansion in loops in
presence of a strong cutoff. Also, one could evaluate the E
model using the Bethe-Salpeter equation.

The ESC model presented can be applied in various w
~i! the study of few-body systems in momentum space,~ii !
the study of meson-exchange-current~MEC! corrections,
~iii ! the derivation of three-body forces consistent with t
two-body forces, and~iv! G-matrix, etc., description of
nuclear matter.

APPENDIX A: PAIR INTERACTION HAMILTONIANS

The pair Hamiltonians are

TABLE XI. x2 andx2 per datum at the ten energy bins for th
Nijmegen93 partial wave analysis.Ndata lists the number of data
within each energy bin. The bottom line gives the results for
total 0–350 MeV interval. Thex2 access for the ESC model i

denoted byDx2 andDx̂2, respectively.

Tlab No. data x0
2 Dx2

x̂0
2 Dx̂2

0.383 144 137.5549 21.3 0.960 0.148
1 68 38.0187 55.7 0.560 0.819
5 103 82.2257 13.0 0.800 0.127
10 209 257.9946 78.1 1.234 0.269
25 352 272.1971 44.3 0.773 0.126
50 572 547.6727 137.4 0.957 0.240
100 399 382.4493 27.6 0.959 0.069
150 676 673.0548 82.9 0.996 0.123
215 756 754.5248 108.0 0.998 0.143
320 954 945.3772 305.0 0.991 0.320

Total 4233 4091.122 864.2 0.948 0.201

TABLE XII. Meson parameters of the fitted ESC model. Pha
are shown in Figs. 2–5. Coupling constants are atk250. An aster-
isk denotes that the coupling constant is not searched, but
strained via SU~3! or simply put to some value used in previou
work.

Meson Mass~MeV! g/A4p f /A4p L ~MeV!

p 138.04 0.2663 950.69
h 547.45 0.1461* 950.69
h8 957.75 0.1789* 950.69
r 768.10 0.2700 3.6378 688.20
f 1019.41 –1.4717* 0.0149* 688.20
v 781.95 2.6862 0.3255 688.20
a0 982.70 0.9851 734.25
f 0 974.10 –0.7998 734.25
« 760.00 3.7554 734.25
A2 309.10 –0.4317
Pomeron 309.10 2.5514
04400
o
ld
-
a

e
C

s:

JPC5011:HS5~ c̄8c8!$gpp)0
~p•p!1gsss2%/mp

1g(pp)0
8 ~ c̄8c!~]mp•]mp!/mp

3 , ~A1a!

JPC5122:HV5Fg(pp)1
c̄8gmtc82

f (pp)1

2M
c̄8smntc8]nG

3~p3]mp!/mp
2 , ~A1b!

JPC5111:HA5g(pr)1
c̄8gmg5tc8~p3rm!/mp

1g(ps)c̄8gmg5tc8~s]mp2p]ms!/mp
2 ,

~A1c!

JPC5112:HB5g(pr)0
c̄8smng5c8]n~p•r!/mp

2

1gpvc̄8smng5tc8]n~p•vm!/mp
2 . ~A1d!

APPENDIX B: l REPRESENTATIONS

The following l representations@11# are exploited:

D1,0,0~v1 ,v2!5
1

v1
5

2

pE0

` dl

v1
21l2

, ~B1a!

D0,1,0~v1 ,v2!5
1

v2
5

2

pE0

` dl

v2
21l2

, ~B1b!

D0,0,1~v1 ,v2!5
1

v11v2
5

2

pE0

` l2dl

~v1
21l2!~v2

21l2!
,

~B1c!

D1,1,1~v1 ,v2!5
1

v1v2~v11v2!

5
2

pE0

` dl

~v1
21l2!~v2

21l2!
. ~B1d!

A special combination occurs in nonadiabatic terms. H
~see Table III! occurs

Dna
(1)~v1 ,v2!5

1

v1
2v2

2 F 1

v1
1

1

v2
2

1

v11v2
G

5
2

pE0

` dl

l2 F 1

v1
2v2

2
2

1

~v1
21l2!~v2

21l2!
G .

~B2!

Notice that the denominatorDna
(1)52D i ; see@3#. The corre-

spondingdna(t,u) is ~see paper I, Sec. IV A!

dna~ t,u!5
2

pE0

` dl

l2
@12e2(t1u)l2

#5
2

Ap
At1u.

~B3!

e

s

n-
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APPENDIX C: INTEGRATION DICTIONARY

In this appendix we give a dictionary for the evaluation
the momentum integrals that occur in the matrix elements
the TME potentials. The results of thed3D integration are
given apart from a factor (4pa)23/2 (a5t1u), common to
all integrals. Using the results given in Appendix B of pap
I, one obtains the following.

~i! For the operatorsÕab,p
(1) and the operatorsÕab,p

(2) :

~a! ~k1•k2!5D•k2D2⇒ 1

2 H 2312S tu

t1uD k2J 1

t1u
,

~C1a!

~b! @s1•k13k2#@s2•k13k2#

5@s1•D3k#@s2•D3k#

⇒ 1

2 H 2

3
~s1•s2!k2

2F ~s1•k!~s2•k!2
1

3
~s1•s2!k2G 1

t1u
,

~C1b!

~c! @~s11s2!•k13k2#q•~k12k2!

5@~s11s2!•D3k#q•~2D2k!

⇒@~s11s2!q3k#
1

t1u
, ~C1c!

~d! ~s1•k1s2•k2!1~s1•k2s2•k1!

⇒2H s1•s22
2tu

t1u
~s1•k!~s2•k!J 1

t1u
,

~C1d!

TABLE XIII. Pair-meson coupling constants employed in th
MPE potentials. Coupling constants are atk250. An asterisk de-
notes that the coupling constant is set to zero.

JPC SU~3! irrep (ab) g/4p f /4p

011 $1% (pp)0 0.1567
011 $1% (ss) 0*
011 $8%s (ph) –0.2946
011 (ph8) 0*
122 $8%a (pp)1 0.1093 –0.2050
111 $8%a (pr)1 0.6950
111 $8%a (ps) 0.0140
111 $8%a (pP) –0.1604
112 $8%s (pv) –0.1081
04400
f
f

r

~e! ~s1•k1!~s2•k1!

5~s1•D!~s2•D!

⇒1

2 H s1•s21
2u2

t1u
~s1•k!~s2•k!J 1

t1u
,

~C1e!

~ f! s1•~k12k2!s2•~k12k2!

5s1•~2D2k!s2•~2D2k!

⇒s1•s2H 2

t1u
1

1

3 S t2u

t1uD 2

k2J
1S s1•ks2•k2

1

3
k2s1•s2D S t2u

t1uD 2

. ~C1f!

~ii ! For the 1/M correction operatorsÕab
(na) , etc., not in-

cluded in the list~C1a!–~C1f!:

~a! ~k1•k2!25~D•k2D2!2

⇒ 1

4 H 1512S t228ut1u2

t1u D k2

14S t2u2

~ t1u!2D k4J 1

~ t1u!2
, ~C2a!

~b! ~s1•k2!~s2•k2!

5s1•~k2D!s2•~k2D!

⇒1

2 H s1•s21
2t2

t1u
~s1•k!~s2•k!J 1

t1u
,

~C2b!

~c! k1
25D2⇒H 3

2
1

u2

t1u
k2J 1

t1u
, ~C2c!

~d! k2
25~k2D!2⇒H 3

2
1

t2

t1u
k2J 1

t1u
, ~C2d!

~e! k1
2k2

25k2D222k•DD21D4

⇒H 15

4
1

1

2

~3t224tu13u2!

t1u
k2

1
t2u2

~ t1u!2
k4J 1

~ t1u!2
, ~C2e!
9-17
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~f! ~k1•k2!~s1•k1!~s2•k1!

5D•~k2D!@s1•Ds2•D#

⇒H 2
5

4
1

1

2

tu

t1u
k2J • 1

~ t1u!2
s1•s2

1~s1•ks2•k!H 1

2

~2t25u!u

t1u

1
tu3

~ t1u!2
k2J 1

~ t1u!2
, ~C2f!

~g! ~k1•k2!~s1•k1!~s2•k2!

5D•~k2D!@s1•Ds2•~k2D!#

⇒H 5

4
2

1

2

tu

t1u
k2J 1

~ t1u!2
s1•s21~s1•ks2•k!

3H 1

2
2

7

2

tu

~ t1u!2
1

t2u2

~ t1u!3
k2J 1

t1u
.

~C2g!

APPENDIX D: DERIVATIVE SCALAR-PAIR POTENTIALS

As pointed out by Ko and Rudaz@13#, besides the mos
simple Lagrangian fors decay,L spp

(0) 5gsppsp•p, also the
Lagrangians decayL spp

(1) 5gspp8 s]mp•]mp appears in the
linear s model. The latter is useful in keeping the sca
meson widths within reasonable bounds as the scalar m
increases. Also, derivative couplings to baryons were con
ered in the context of an SUf(3) generalization in@9#. In the
(NN2p) effective-field-theory Lagrangian @14# the
NN-interaction Lagrangian, i.e., the next-to-leading-ord
~NLO! term, for the pion pairs reads

L (1)52c̄F8c1D21mp
2 p

Fp
2

24c3Dm•Dm

12c4smnt•Dm3DnGc, ~D1!

whereD511p2/ f p
2 andDm5D21]mp/Fp , with Fp52 f p

5185 MeV. The correspondence with the pair terms trea
in this paper is thatc1;g(pp)0

andc3;g(pp)0
8 . Thec4 term

has been considered in@9#, but not in this paper. The ‘‘de
rivative’’ Hamiltonian to lowest order in thep reads
04400
r
ss

d-

r

d

HS85g(pp)0
8 ~ c̄8c!~]mp•]mp!/mp

3 . ~D2!

1. Adiabatic potentials

For the one-pair graphs in Eq.~3.1!,

Õab,p
(1) ~k1 ,k2!⇒Õab,p

(S8) Õab
(2PS) ,

Õab
(2PS)52S f NNp

mp
D 2

~k1•k22 i s•k13k2!,

Õab,p
(S8) 52

g(pp)0
8

mp
3 ~6v1v21k1•k2!. ~D3!

Here, for p5a,c the (2) sign and forp5b the (1) sign
apply. Obviously,a5b5p in Eqs.~D3!. All other quantities
in Eq. ~3.1! are the same as for a pion pair without deriv
tives. Here and in the rest of this appendix, we absorb
g(n)(a,b) factor in Eq. ~3.1! into the definition of theO
operators.

Evaluation of thep sum and including the mirror graphs
one gets, collecting all terms and selecting the contributi
symmetric in 1↔2 the matrix element,

(
p

Õab,p
(1) ~k1 ,k2!Dp

(1)~v1 ,v2!

522
g(pp)0
8

mp
3 S f NNp

mp
D 2

~k1•k2!

3$k1•k22 i s•k1k2%
1

v1
2v2

2
. ~D4!

For the two-pair graphs in Eq.~3.1! one has

Õab,p
(2) ~k1 ,k2!D (2)~v1 ,v2!

52
1

2v1v2~v11v2!
~2v1v21k1•k2!2.

~D5!

Using the expressions in this appendix we obtain inp
space the adiabatic ‘‘derivative’’ (pp)0-exchange potentials
The one-pair exchange and two-pair graphs give

V1
(1),ad~k2;t,u!

5212S g(pp)0
8

mp
3 D S f NNp

mp
D 2

d2,2,0~ t,u!

3F15

4
1

1

2

t228tu1u2

t1u
k21

t2u2

~ t1u!2
k4G 1

~ t1u!2
,

~D6a!
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V1
(2),ad~k2;t,u!

526S g(pp)0
8

mp
3 D 2H F15

4
1

t223tu1u2

t1u
k21

t2u2

~ t1u!2
k4G

3
d1,1,1~ t,u!

~ t1u!2
1

1

2 F3

2
~m1

21m2
2!1

m1
2t1m2

2u

t1u
k2

1m1
2m2

2~ t1u!Gd1,1,1~ t,u!

t1u

1F3

2
2

tu

t1u
k2G d0,0,1~ t,u!

t1u J . ~D6b!

2. 1ÕM corrections

The nonadiabatic from the 1/M expansion of the energ
denominators and the pseudovector-vertex 1/M corrections
are described in Ref.@11# and used also in Ref.@4#, Sec. IV.
Below, we give the results for the evaluation of these 1m
corrections for the one-pair graphs with the ‘‘derivative’’ pa
interaction.

a. Nonadiabatic contributions

For the one-pair graphs in Eq.~3.1! the nonadiabatic op
erator is

Õab,p
(1),na~k1 ,k2!⇒22

g(pp)0
8

mp
3 S f NNp

mp
D 2 1

2M @ ~k1•k2!2

1
i

2
~s11s2!k13k2q•~k12k2!G̃pp,p

(S8) ,

~D7!

whereG̃pp,p
(S8) 56v1v21k1•k2 and the6 sign has been ex

plained above. The denominatorsDp
(na)(v1 ,v2) have been

given in @4#. Again, we select the terms symmetric in 1↔2
since the asymmetric terms will not contribute, which is e
ily seen in x space. The sum over the graph’sp5a,b,c
yields

(
p

G̃pp,p
(S8) Dp

na~v1 ,v2!5
1

v1v2

1

v11v2
1

1

v1
2v2

2

3F 1

v1
1

1

v2
2

1

v11v2
G~k1•k2!.

~D8!

Using the expressions in this appendix we obtain inp space
the nonadiabatic ‘‘derivative’’ (pp)0-exchange potentials
04400
-

V1
(na)~k2;t,u!

5212S g(pp)0
8

mp
3 D S f NNp

mp
D 2 1

2M

H 1F15

4
1

1

2 S t228tu1u2

t1u D k21
t2u2

~ t1u!2
k4G

3
d1,1,1~ t,u!

~ t1u!2
2F105

8
1

15

4 S t225tu1u2

t1u D k2

2
3

2
tuS t225tu1u2

~ t1u!2 D k42
t3u3

~ t1u!3
k6

dna~ t,u!

~ t1u!3
,

~D9a!

V4
(na)~k2;t,u!5212S g(pp)0

8

mp
3 D S f NNp

mp
D 2 1

2M

3H d1,1,1~ t,u!

t1u

1F2512
tu

t1u
k2Gdna~ t,u!

~ t1u!2 J . ~D9b!

Hered$na%(t,u) is defined in Eq.~B3!.

b. Pseudovector contributions

The pseudovector vertex gives 1/M terms as can be see
from

ū~p8!GP
(1)u~p!52 i

f NNp

mp
Fs•~p82p!6

v

2M
s•~p81p!G ,

~D10!

where the upper~lower! sign applies for the creation~absorp-
tion! of the pion at the vertex. For graph~a! the operator for
the nucleon line on the right is readily seen to be

2S f P

mp
D 2 1

2M
@~v1k2

22v2k1
2!22q•~v1k21v2k1!

12i s2•q3~v1k22v2k1!#. ~D11!

The same expression for graph~b! is obviously obtained
from Eq. ~D11! by making the the substitutionv1→2v1
and for graph~c! the substitutionv1,2→2v1,2. The mirror
graphs are included by making the replacements2→(s1
1s2)/2. Combining all this with the adiabatic denominato
Di

1(v1 ,v2),

Da
1~v1 ,v2!5

1

2v1v2
2~v11v2!

, Db
1~v1 ,v2!5

1

2v1
2v2

2
,

~D12!
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TABLE XIV. CoefficientsY j ,k
(ad,na,pv) for the (pp)0 ~‘‘derivative’’ ! contributions.

Y0(i)(t,u) Y1(i)(t,u) Y2(i)(t,u) Y3(i)(t,u)

V1
(1),ad

2
15
4

1
t1u 2

1
2

t228tu1u2

(t1u)3
2

t2u2

(t1u)4
—

V1
(1),na

2
45

2Ap

1

(t1u)5/2

1
M

1
1

2Ap

14t2267tu114u2

(t1u)7/2

1
M

2
tu

Ap

3t2214tu13u2

(t1u)9/2

1
M

2
1

Ap

t3u3

(t1u)1/2

1
M

V4
(1),na

1
9

Ap

1

(t1u)3/2

1
M

2
4

Ap

tu

(t1u)5/2

1
M

— —

V1
(1),pv

2
1

2Ap

(m1
22m2

2)2

(t1u)1/2

1
M

1

2Ap

m1
2(3t22u2)2m2

2(t223u2)

(t1u)5/2

1
M

1

Ap

tu(t212tu1u2)

(t1u)9/2

1
M

—

1
3

2Ap

m1
21m2

2

(t1u)3/2

1
M

1
1

2Ap

t212tu1u2

(t1u)7/2

1
M

V4
(1),pv

2
2

Ap

(m1
21m2

2)

(t1u)1/2

1
M

2
2

Ap

(t21tu1u2)

(t1u)5/2

1
M

— —

2
3

Ap

1

(t1u)3/2

1
M

V1
(2),ad

1
1

Ap

1

(t1u)3/2
2

1

2Ap

tu

(t1u)5/2
— —
r

e

and Dc
1(v1 ,v2)5Da

1(v2 ,v1). Summing over the one-pai
graphs gives

(
p

Õab,p
(1),na~k1 ,k2!Dp

1~v1 ,v2!

52
g(pp)0
8

mp
3 S f NNp

mp
D 2 1

M

1

v1v2~v11v2!

3F H 1

2
~m1

21m2
2!~v1

21v2
2!22v1

2v2
2J 2~k1

21k2
2!

3~k1•k2!2 i ~s11s2!•q3k~v1
21v2

21k1•k2!G .
~D13!

Using the expressions in this appendix we obtain inp space
the pseudovector-vertex 1/M corrections to the ‘‘derivative’’
(pp)0-exchange potentials

V1
(1),pv~k2;t,u!526S g(pp)0

8

mp
3 D S f NNp

mp
D 2 1

2M
d1,1,1~ t,u!

3H ~m1
22m2

2!22F3~m1
21m2

2!

1
m1

2~3t22u2!1m2
2~3u22t2!

t1u
k2G 1

t1u
04400
2F S t212tu1u2

t1u D k2

12tuS t212tu1u2

~ t1u!2 D k4G 1

~ t1u!2J ,

~D14a!

V4
(1),pv~k2;t,u!

5224S g(pp)0
8

mp
3 D S f NNp

mp
D 2 1

2M
d1,1,1~ t,u!H ~m1

21m2
2!

1F3

2
1S t21tu1u2

t1u D k2G 1

t1uJ . ~D14b!

The coefficientsY j ,k
(ad,na,pr) defined in Eq.~4.2! are tabu-

lated in Table XIV.

APPENDIX E: PAIR COUPLINGS AND SU F„3…
SYMMETRY

Below, s,a0 ,A1 , . . . are shorthand for, respectively, th

nucleon densitiesc̄c, c̄tc, c̄g5gmtc, . . . .
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The SUf(3) octet and singlet mesons, denoted by the s
scripts 8 and 1, respectively, are in terms of the physical o
defined as follows.

~i! Pseudoscalar mesons:

h15cosupvh82sinupvh,

h85sinupvh81cosupvh.

Hereh8 andh are the physical pseudoscalar mesonsh(957)
andh(548), respectively.

~ii ! Vector mesons:

f15cosuvv2sinuvf,

f85sinuvv1cosuvf.

Heref andv are the physical vector mesonsf(1019) and
v(783), respectively.

Then, one has the following SU~3!-invariant pair interac-
tion Hamiltonians. ~1! SU~3!-singlet couplings Sb

a

5db
as/A3:

HS1PP5
gS1PP

A3
$p•p12K†K1h8h8%•s.

~2! SU~3!-octet symmetric couplings I, Sb
a

5(S8)b
a⇒(1/4)Tr$S@P,P#1%:

HS8PP5
gS8PP

A6
H ~a0•p!h81

A3

2
a0•~K†tK !

1
A3

2
$~K0

†tK !•p1H.c.%2
1

2
$~K0

†K !h81H.c.%

1
1

2
f 0~p•p2K†K2h8h8!J .

~3! SU~3!-octet symmetric couplings II, Sb
a

5(B8)b
a⇒(1/4)Tr$Bm@Vm ,P#1%:
e
or

.

04400
-
esHB8VP5

gB8VP

A6
H 1

2
@~B1

m
•rm!h81~B1

m
•pm!f8#

1
A3

4
@B1•~K* †tK !1H.c.#1

A3

4
@~K1

†tK* !•p

1~K1
†tK !•r1H.c.#2

1

4
@~K1

†
•K* !h81~K1

†
•K !f8

1H.c.#1
1

2
H0Fr•p2

1

2
~K* †

•K1K†
•K* !

2f8h8G J .

~4! SU~3!-octet asymmetric couplings I,Ab
a5(V8)b

a

⇒(2 i /A2)Tr$Vm@P,]mP#2%:

HV8PP5gA8PPH 1

2
rm•p3]m

↔
p1

i

2
rm•~K†t]m

↔
K !

1
i

2
@Km*

†t~K]m
↔

p!2H.c.#1 i
A3

2
@Km*

†
•~K•]m

↔
h8!

2H.c.#1
i

2
A3fm~K†]m

↔
K !J .

~5! SU~3!-octet asymmetric couplings II,Ab
a5(A8)b

a

⇒(2 i /A2)Tr$Am@P,Vm#2%:

HA8VP5gA8VPH A1•p3r1
i

2
A1•@~K†tK* !2~K* †tK !#

2
i

2
$@~K†tKA!•r1~KA

†tK* !•p#2H.c.%

2 i
A3

2
$@~K†

•KA!f81~KA
†
•K* !h8#2H.c.%

1
i

2
A3 f 1@K†

•K* 2K* †
•K#J .

The relation with the pair couplings of Appendix A i
gS1PP /A35g(pp)0

/mp , gA8VP5g(pr)1
/mp , etc.
r-
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