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Feasibility study of a three-nucleon force in the no-core shell modelH binding energy
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We investigate the three-nucleon system with a realistic nucleon-nucleon potential and the Tucson-
Melbourne(TM) two-pion exchange three-body interaction using a translationally invariant harmonic oscillator
basis. In the calculations, the no-core shell-model two-body effective interaction replaces the nucleon-nucleon
potential, while the three-nucleon interaction is added without any renormalization. We study the convergence
of the approach by changing the basis size. Also the dependence of the binding energies on the TM cutoff
parameterA is examined. The results show promise for the construction of three-body effective interactions
including a three-nucleon interaction, for use in futateinitio no-core shell-model nuclear structure calcu-
lations forA>3 systems.
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[. INTRODUCTION employ eventually this formalism in the determination of the
effective three-body interaction that can be utilized in e
Recent theoretical and experimental investigations hav#itio no-core shell-mode(NCSM) calculations for nuclei
renewed interest in elucidating the three-body component ofith A>3. Such an approach might yield a method for
the internucleon potentidll—3]. Direct experimental obser- nuclear structure calculations which utilizes a three-nucleon

vations of the three-nucleon interaction are lackiaghough ~ "teraction, and thus, for instance, solves the problem of the
there are tantalizing hintg4)). It is well known, however aforgmentlo_ned blndlng.energy. deficit observed when e_ffec-
) ’ ' . tive interactions are derived using only two-body potentials.

tha? accurate_thgoretical c_alculations of the binding. energieﬁ‘t the same time, the sensitivity of the nuclear spectra to the
of light nuclei with A=3 yield values that are consistently yigerent terms of the three-nucleon interaction may provide
less than the corresponding experimental values by aboyformation on the structure of the three-nucleon interaction
5-10%, when only two-body potentials are employ&dl jtself. A prerequisite for the construction of the three-body
As most modern two-body nucleon-nucle@iN) potentials  effective interaction is the solution of the corresponding
fit availableNN scattering data with a satisfactorily high de- three-nucleon system. This is done in the present paper.
gree of precision, it is reasonable to suspect that we must go Hamiltonians with two- and three-nucleon potentials can
beyond two-body interactions if we are to explain this short-be solved very accurately for nuclei with<4 by a variety
fall within the framework of nonrelativistic quantum me- of techniques[7], and the Green’s function Monte Carlo
chanics. Performing calculations with a three-nucleon inter{ GFMC) method[8] gives very accurate results for energies
action (TNI) included in the nuclear Hamiltonian should and other observables of nucki<8 [9]. The latter method
bring us closer to the ultimate goal of a quantitatakeinitio  has only been applied to local potentials in coordinate space
theory of nuclear structure. such as the ArgonnBIN potentials and the Urbana and Illi-
The purpose of the present investigation is to develop @ois three-nucleon interactions. It may be limited to such
formalism for calculating the three-body matrix elements ofpotentials(i.e., those which do not depend on the individual
the two-pion-exchange Tucson-Melbourn@M) three- momenta of the interacting nuclegrigthe resulting nonlo-
nucleon interaction in an harmonic-oscillatdiO) basis. calities cannot be treated perturbatively. Examples of such
This three-nucleon interaction has the operator structure aionlocal two-body potentials would be the CD-Bonn poten-
all local three-nucleon interactions of the two-pion exchangeial and, in the three-body case, nonlocal terms from a com-
type[6], so our techniques are readily extended to other sucprehensive study of the “Born-term” parts of the two-pion
three-nucleon interactions currently available. Our aim is teexchange three-nucleon interactidi©]. The current work is
a step toward the development of a promising alternative to
the GFMC approach, which may prove to be more versatile
*Current address: Math/IT Unit, UAE University, P.O. Box (insofar as it could accommodate a variety of two- and three-
17172, Al-Ain, United Arab Emirates. body potentials does yield nuclear wave functions in con-
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trast to the GFMC approach, and might also be more easilgquivalent to solving the full three-body problem, which is

applicable to heavier nuclei. our eventual goal. Thus, for the purpose of finding the three-
To test our formalism we shall apply it to the=3 sys-  nucleon solutions we resort to a two-body approximation of

tem, for which calculations with the TM three-nucleon inter- the effective interaction as was done in majority of the

action have already been performed using different techNCSM applications.

niques[5,11-13. In Sec. Il we present our formalism both  The full three-body space is divided into an actitf

for the NCSM and for calculating the three-body matrix el- model space and an excludég) space, using the projectors

ements of the TM three-nucleon interaction. The applications g Q with P+Q=1. The model space is spanned by the

of our procedure to’H is given in Sec. lll, followed by @  three-nucleon HO states with the total HO quanta less than

discussion and conclusions in Sec. IV. or equal to som&\ ... We may ask the question, what is the
best two-body effective interaction corresponding to the

Il. FORMALISM model spacé for the HamiltonianH$ (2). In the spirit of
A. The no-core shell model the NCSM, we answer that it is such a two-body interaction

that will reproduce exactly the two-nucleon eigenstates of

In the present study we want to find bound state solutiong,e HamiltonianH® . when applied to a two-nucleon system
of the three-nucleon system described by a purely intrinsi¢ii, the sums IimAit’ed toA=2 in Eq. (2), but with A set to

Hamiltonian, three in the HO interaction term. This approach implies that
the three-body interactioWyyy,ijx is not used at all when
1 the two-body effective interaction is being derived. It is used,
Ha=Tet V=72 2 T+2<- VNN,ij obviously, in the eventual three-body calculation where the
= two-nucleon interaction is replaced by the two-nucleon ef-
A fective interaction. A convergence of the three-nucleon
+ E VNNN,ijk o (1) eigenstates with respect to the basis-size increase can be
= achieved in this way, for a tractable size of the model space
defined byNax, Only if the three-nucleon interaction can be
ngonsidered to be a correction to the dominant two-nucleon
Interaction. This is indeed the case. We will investigate the
onvergence issue in Sec. Il B.
Details of the process for computing the two-body effec-
tive interaction are described fully in, e.g., REL6]; how-

where m is the nucleon massyyy,; is the NN interac-

tion with both strong and electromagnetic components, a
Vnnnijk IS the three-nucleon interaction. We work with c
the HO basis and apply the NCSM approach. First, we
modify the Hamiltonian(1) by adding to it the center-of-

. D i i = + i i
mass ((1: m) ':92 H?m"tomarLHS-m- TemTUem., where ever, for the sake of completeness, the method is briefly re-
Uem=2AMORY, R=(L/A)Zi_,T;. The effect of the HO yisjteq here. The two-body effective interaction is derived
c.m. Hamiltonian will later be subtracted out in the final utilizing the Lee-Suzuki transformatiofi7—19, which re-
many-body calculation so there is no net influence on intringts jn a Hermitian effective interaction. Let us write explic-

sic properties of the many-body system. In fact, in the infi-jyjy the two-nucleon Hamiltonian following from Eq2) in
nite space such a potential has no influence on the intrinsig,e two-nucleon relative and c.m. coordinates e.qg.

properties at all. However, this added/subtracted potential fa-
cilitates the use of the HO basis for evaluating the effective
interactions. The modified Hamiltonian can be cast into the

form HZ'=hy+h,+ V13" =Hoy+ Ha ot V13"
) 2
p 1 mQ
A A A =——+ >mO% 2+ Hy ¢+ Vien(2F) — P2, (3
HR=HatHem=2, hi+ 2 VA 2 Vi 2m 2
i=1 i<j i<j<k
A p? A 2 . I -
= [+ 2mO%2 [+ > [V ’ (F— 7)) where »H02+»H2C_m,=h1+ hy,, = \/1/2(r1—-r2), and p -
=1[2m 2 < o 2A =/1/2(p,— P,). The two-nucleon problem is then solved in
A a relative HO basis space with high precision. The c.m. mo-
" 2 v ) @) tion of the two nucleons is not affected by the transforma-
i Sty NNk tion. Thus, it does not contribute to the effective interaction

calculation and cancels out at the end. Phia Eq. (3) is set
Since we intend to solve the many-body problem in ato 3 in the present application.
finite HO basis space, the realistic nuclear interaction in Eq. The unitary transformation is obtained by choosing an
(2) will yield pathological results unless we use it to derive aanti-Hermitian two-body operatd®® determined from the
model-space dependent effective Hamiltonian. In general, fodecoupling condition
an A-nucleon system, arA-body effective interaction is
needed. Here, we have=3. Therefore, the corresponding
effective interaction should be a three-body interaction. -s@0 .52
However, to construct such an effective interaction is in fact Q. ~ 'Hye” P,=0, 4
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and the simultaneous restrictio_tﬁ’szs(z)Pz:QZS(Z)QZZO._ Eq. (9), asVer=P(Haer—hy—hy) P,. Apart from being a
Note that two-nucleon-state projectoi,(,Q,), whose defi-  ¢,nction of the nucleon numbek, V..« depends on the HO
nition follows from the definition of theA-nucleonP andQ frequencyQ and on the parameté,.,, defining the basis

projectors, appear in E¢4). space. It has the important property t VLA for
The unitary transformation and decoupling condition, in-Np _;oo following fropm the fffct Fhati;ga%frf;)—}i
troduced by Suzuki and Okamoto and referred to as the mgxo w,e eventually solve the Scldinger equation .of the

unitary-model-operator approa¢®0], has the solution three-nucleon system described by the Hamiltonian

S@=arctanlio— '), (5) . 5 5

, o HE ;o= D hit > Voegii + Vanniik, (1)
with o satisfyingw=Q,wP,. Furthermore, we also have A=3efl 2’1 ! 2’, 2efti) iqZk NNNijk

Q. “H3e“P,=0. (6) by diagonalization using the translationally invariant HO ba-
sis. The c.m. dependence is present only in the one-body
With Eq. (5), we obtain for the two-body effective Hamil- term of Eq.(11). We remove the c.m. term explicitly from
tonian H2=3, ot DY subtractingH . ,, introduced in Eq(2). It should
be emphasized that the Hamiltoniétil) is applicable only
— _ for the A=3 system. FOA>3, the bare three-body interac-
Haeir= (P2t @0) " %Pyt P20 Qa)H3 (QewP,+ P2) Py tion must be replaced by a three-body effective interaction,
+olw) 12 (7) e.g., Vunnerijk (in fact, the two-body effective interaction
will be replaced by a three-body effective interaction as
) ) 0 ) well). This is necessary because of the fact that the conver-
If the eigensolutions of the Hamiltonia, are given by  gence with the basis size is rather slow when the bare three-
H7|k)=E|k), then the operatom can be determined as  pody interaction is used, as will be seen in Sec. Ill B. Such a
three-body effective interaction can be derived in analogy to
_ the derivation of the two-body effective interaction, i.e., us-
(aglolap)= 2 (aglk)(K ap), (8  ing Eq. (9), with the help of three-body solutions obtained
kek using(11). In order to find the three-body solutions by solv-
ing the Schrdinger equation with the Hamiltoniafil), we
could, in principle, use some perturbative renormalization of
notes the inverse of the matrix defined by matrix elementy/Nnnijk 0 Speed up the convergence with the basis size.
. ~ , e owever, this is not really necessary, as we are able to reach
(aplk), ie., Zo (klap)(aplk’)=dc and Z(aplk) sufficiently large basis spaces for the=3 system to achieve
X(klap)= 8,1, o fOr kK’ e K. Note the sumC denotes a 3 reasonable convergence, as will be shown in Sec. Il B.
set ofdp eigenvectors whose properties are exactly repro-

where |ap) and|ag) denote the two-nucleon model- and
Q-space basis states, respectively. The tilde in @By.de-

duced in the model space, withy equal to the dimension of B. Three-nucleon interactions
the two-nucleon model space. . . .
With the help of the solution fom (8), we obtain a simple The task of extracting a reliable and consistent form for

expression for the matrix elements of the Hermitian effectiveln® nuclear three-body interaction has proven to be a difficult
one over the years, certainly when compared to the extent to

Hamiltonian - al W 4
which the precision of empirical two-body potentials has
_ , been determined. The wealth of two-nucleon scattering and
(ap|Haer ap) bound state data starting from the early days of nuclear phys-
ics has made it possible to construct empiriddl potentials
=> > > (ap|(Py+ w'w) Y al) aplk) without much constraint from th@pproximatg chiral sym-
P P . . . .
Kek o ol metry of the QCD strong interaction. The single exception to

this untrammeled empiricism was the long range one-pion
X Ep (k| ap)(af|(Po+ o w) Y ap). (99  exchange potential common to all high-quality potentials;
long range due to the tiny pion mass, a direct consequence of
)_1/2 the Goldstone-mode realization of chiral symmetry. The
' three-body force among nucleons, to the contrary, had no
such empirical input before the advent of reliable calcula-
tions of theA=3 bound state and, more recently, lfd
scattering[2] and of heavier nucl€i5,21]. Thus models of
the three-nucleon interaction were forced to be more theo-
retically based than contemporary two-body force models of
Finally, the two-body effective interaction is determined the same era; indeed the two first papers of which we are
from the two-nucleon effective Hamiltonian, obtained from aware that discussed the implication of chiral symmetry for

For computation of the matrix elements ®4{+ 'w
we use the relation

(apl(Pot0"0)|ap)= 3 (ap®)([ap) . (10
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nuclear forces focused first on the three-nucleon f¢aa TABLE I. Parameters of the TMthree-body force foA=5.8u.

and subsequently on the two-nucleon fof28]. For different values of\, the parametea’ varies slightly according
Even with the guidance of chiral symmetry, constructionto a relation given in Ref.14].

of potentials always involves theoretical choices, since a po=

tential is an unphysical theoretical object, obtained from a pa’ b n’d ¢ u(Mev)
subamplitude(an off-mass-shell part of an amplitudac- ™' (81) _087 -258 -0753 179.7 139.6
cording to a set of prescriptions. Such a subamplitude wheﬁnM,(%) 074 -253 -072 179 '7 138l0

iterated(in the Schradinger equation, for exampl@roduces ™' (99) 112 -280 072 1721 138.0
observables such as on-shell scattering amplitudes or ener-
gies. Choicesimplicit or explicit) in the definition of a two-
body potential that arise naturally in the context of Rayleigh-
Schralinger perturbation theory will also alter the definition corporate phenomenology from-N scattering and were
of what constitutes a three-body force. None of these definiconstructed in accordance withpproximatg chiral symme-
tions is wrong, and consistency considerations relate eadiy [29]. This interaction TM has been used in several pre-
one to the others. Expediency and theoretical prejudice aréous studieg5,14,15, thus providing a body of results for
usually our guides in selecting the prescriptions we choosezomparison with the present method. The two-body interac-
These general statements were illustrated in a paper by Frigion that we will apply in this study is the Argonne V18
and Coon[24] which clarified the relationship between dif- potential[30]. This potential demonstrates the inconsistency,
ferent two-pion-exchange three-body for¢&6,25 obtained noted above, between our chosen three-nucleon interaction
from a simple nonlinear chiral Lagrangian. Polyzou andand the relativistic corrections to the one-pion-exchange po-
Glockle [26] have made a similar observation in the contexttential of our chosen realistic two-nucleon potential. This
of a Hamiltonian framework; that it is possible to reproduceAV18 potential has no firm value of the arbitrary parameter
the binding energy and scattering matrix of a nuclear systerg, which can be identified in some other phenomenological
from two different Hamiltonians, the two related by a unitary NN potentials, and has been identified to bd (pseudo-
transformation, and consisting of different combinations ofscalar coupling of the pion to free nucleon spinars the
two- and three-nucleon interactions. With the advent of anTM three-nucleon forc¢10,31] Nevertheless, the AV18IN
effective field theory of nuclear forcd®7], it has become potential fits well the two-body data and the Thhree-body
commonplace to think of consistent two- and multibodyforce has the operator structure of the-@xchange part of a
forces as being ultimately derivable from the low-energy La-chiral perturbation theory three-body force. In addition, the
grangian of chiral perturbation theory according to an agreethtter has strength constants near those expected to arise from
upon prescription. This prescription may choose to emphaa systematic analysis of pion-nucleon scattefi®g] and of
size two-body forces at the expense of three-body forces, 2w exchange iNN phase shift analys483,34. This com-
choice of the theorist, but the observables of the theory carbination of two and three-body potentials will suffice for our
not be changed by his/her choice. Although much progrespreliminary studies.
has been made toward this g$a8], at this moment th&IN Adapting the original coordinate space derivatjif,12,
potentials that give the highest precision fit to the nucleonthe TM’' three-nucleon interaction applied in this work has
nucleon data and are used in nuclear structure calculations dbe form
not even have a consistent chiral nature with respect to the
three-nucleon forces availabJ&0], let alone being derived
from the same Lagrangian as the chosen three-body force.

For this study we choose a recent modificatitebeled
TM’) of the Tucson-Melbourne three-body force, the first ofwhere theéW,; each have the same functional form but contain
the class of two-pion-exchange three-nucleon forces that insyclically permuted variables. The analytic form\&f; is

W= W1+W2+W3, (12)

2
W, = ;v'—MW) a'(7'2'7’3)(52'23)(_&3'22)21(X3)Zi(xz)+b(?z'7’3)((&2'23)(_&3'22)(—?3'22)2(X3)2(X2)
e s Z1(X9) L. L= Zi(Xa)  Zi(X3) Zi(X)
+(0'2'X3)(0'3'X3)Z(X3) 1X 2 +(_O'2'X2)(_0'3'X2)Z(X2) lX 3 (0’2.0-3 l)(( 3 lX 2
2 3 3 2

Zi(Xp)
X2

+d(73X 7y a>( (G- R3)(— 03 %) (— G1- XaX X) Z(Xg) Z(Xp) + (G- R3) (Gg- 51 X Kg) Z(X3)

; (13

B T L SN (6,0 2 (6,5)
H (=03 R)(—F1- 02XR2)Z(X5) n7s 1(X3) £1 2)

+ (01 02X 03 %
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and the correlation functions in this expression are given by The purely spatial correlation functions in Eq$3) and
(14), i.e., Z;(r) and Zi(r), are the first and second deriva-

2/ =—pu 1+ i o Al = e tives, respectively, of Yukawa functions corresponding to the
L K ur/opr Ar)  pur exchange of a pion between a nucleon pair:
(A—p%) Am [ dg el9NF2(G2
teg e zyn=2r[ G4 € P gy
wlo@m? (G2t
= ) Zy(r) 3 3 \e ™ modified by a form factor at eachNN vertex,
2N=24(nN-——=p |1+ —+—5 Y
MU pere) pr
AZ_MZ
A
A? 3 3 |e F(G°)= Ar (16)
-—— 1+ ——+—
MZ Ar A2r2] ur . . . .
which cuts off the potential at shofpairwise distances.
A [ A2 1 Because a form factor is not an observable, one is free to
B e L Y e A (14)  change the value ok (but not the strength constants which
Kip are taken from dajeand this is often done. From Eq4.3)—

(16), we see that each term of the potential Tof Eq. (13)
ﬂ]as the spatial structure of range in one pair coordinate
ultiplied by anotherr range in the other pair coordinate.

PhysicallyW; corresponds to a process in which nucleon
1 exchanges pions with each of nucleons 2 and 3. The un

vegtorsfgi a're.the unit inFernucIeo'n cooEdinateis{-r”k)/m The potential TM (13) differs from the original TM
_r.'<|’ W('jth. b, _andk deflr:_edlcycl!fr?lly.ab an_dtr rgpre?ent h 2m-exchange three-nucleon potential by the omission of a
Spin-and 1Sospin, respectively, with SUDSCTIPLS denoting Neq .y, i the Jatter which did not have the spatial structure of
relevant nucleon. Most of the calculations presented in thlqu range plusm range but instead that of short range piis
Fapertrt:seq the constantsto:‘( RlélftZ].bIn ttﬁat ira of;he_ ™ range. If the cutoff factorA—o, this omitted term would
or(cj:e tetpllc;gngrgﬁs\\//v?-i a enl 0 be the ¢ ?hrge 6%'2” Ma%Zve the structure of zero range phtsange familiar from
an 52e at 159.6 Viev. The nucieon makk,is then 6.725 effective field theories. Yet it did not appear in the
and g© the pion-nucleon coupling constant was taken to b

. e27r-exchange three-nucleon force of chiral perturbation
izgtgd ?Ogg;ue few percent higher than tyé=172.1 ac- theory[6]. This discrepancy was elucidated in Rgg] with

The TM th | . . f the ob the aid of a pion field transformation that transmogrifies the
N three-nucleon interaction grew out of the ObSer, .y of chirgl symmetry chosen for chiral perturbation

vation that thew-N scattering amplitude is constrained O.ﬁ' theory calculations into a form that emulates the current
mass-shell by the results of current algebra and the part'a"yélgebra-PCAC constraints adopted by the Tucson-Melbourne

conserved axial_ currenPCAQ) [35]. The comb_inatiqn of group. In that form it became clear that the model ansatz for
off-shell constraints and on-shell values of the invariant aMihe off-shell pion-nucleon amplitude of the TM force pro-

plitudes of pion-nucleon scattering yields a unique input to4uced a short range plus range operator that should have

the TM three-nucleon interaction in the form of the strengthbeen canceled but was not. Such a cancellation in the current
!

constantsa’, b, andd. The values of these constants aré 5 iuepra PCAC technique would require current algebra-

taken from dispersion relation analyses of pion-nucleon SCabCAC constraints on the subamplitude labeled “three-

tering and change as the data base chaf8@s38. These ,cje0n force,” in addition to the employed constraints on
constants roughly correspond to the chiral constaafsof  yhe sybamplitude labeled “off-shetN amplitude,” which

the next-to-leading-order chiral Lagrangian of chiral pertur-,,qerjies the TM three-nucleon interaction. This was not un-
t?a“on theory[6], aIth_ough the TM constants were not de- gerstood in the early days, would be technically demanding
rived from a Lagrangian field theory. The specific values we; ¢ impossible, and seems unnecessary because simply

use are given in Table I, where TKB1) has constants ob- qh5ing the term makes the modified potential Taatisfy
tained from premeson factory data and T89) is built upon ), pictures of chiral symmetry. A careful numerical exami-

the meson factory data bas€or notation see Refl4] and  \44ion[40] showed that the dropping of this spurious term
for a PCAC discussion of chiral symmetry and low-energygom the TM force has almost no effect on the binding en-
pion-nucleon scattering consult RgB5].) Both a’ andb  gr4y of the triton. This is evidently a numerical accident due
contain the pion-nucleon sigma term, a measure of chirgly the yalue of its strength parameter and need not be true for
symmetry breaking, whose value is still under discussion afy| ghservables. Indeed, the omission of this spurious term

!
ter all these years. The constants labeled' B reflect @  joeq produce a noticeable effect on a polarization observable
sigma term of 69 MeMi.e., the value of the invariant am- of elastic proton-deuteron scatteriftp).

plitude at the Cheng-Dashen pairnd those of TM(99) a

sigma term of 83 MeV. The latter value is based on a phase
shift data base, which may be flawed in the higher partial
waves[39]. In any event, we present results with both sets of In order to use the chosen three-nucleon interaction, we
values, as they are likely to bracket the “ultimate” value of must first calculate its matrix elements. We work in the trans-
the sigma term. lationally invariant HO basis. We use a standard Jacobi sys-

C. Matrix elements
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INiJT)=>, (nIsjt; VLI TL|NIIT)|nIsjt; VLT L ;IT),
(18)
A U = 2.
= dm) — 5T ML where N=2n+1+2N+£ and i is an indexing quantum
number distinguishing different antisymmetrized states with
the sameN,J, T. These coefficients are determined by diago-
nalizing the three-nucleon system antisymmetrizer as de-
scribed in Refs[41-43. In this procedure we are able to
@ - @ eliminate the nonantisymmetrized nonphysical states of the
system.
In a next step we recouple the basis fronpjao anLS

representation, because in the determination of thé -
trix elements we separate spatial and spin components of the

tem of coordinates to describe our three-body system. Thatp ree-body potential operator.

is, given the three-body system with vector coordinates Now let us proceed o the determination of the matrix
> gIve . y sy . . ; elements of TMin the recoupled basis, described above. Of
{F1,f,F3}, we define the corresponding Jacobi coordinates

particular note are the spatial components, as these will com-
prise the bulk of the computational expense. The isospin

& = (1 —72); nl

FIG. 1. Coordinate system for the three-body basis set.

gozi(rﬁ ot F3), components of the TMthree-nucleon interaction are already
3 separated from the remainder of the operator. There are only
two cases to be considered, and in the three-body basis being
used, the calculation of their matrix-element components is a

7 (17) relatively straightforward exercise in angular momentum re-
coupling[44],

-1 2. T2, 24 (1' 2
52:%@14”*2)_ \/;r3. ((t2)T| 7, 75|(1'3)T)

—

An , 1

. . . . . . _ 1o t+t'+T+5

This particular choice of Jacobi coordinates will prove to be =6tt'(-1) z
useful in the determination of the TMthree-nucleon

interaction matrix elements, as t@g coordinate is parallel (19
to the X3 unit vector defined in the interaction W, in

Eq. (13. Ignoring the center-of-mass coordinafg, we S, .
define an HO wave function in each of the remaining two {(t2)T|7sX 72- 71[(t'3)T)

coordinatesé, and &, (as shown in Fig. Las the spatial

component of the basis functions we employ. With spin and

isospin degrees of freedom included, the basis vectors L
will be designated by their independent quantum numbers =36t/ (-1)T 2

Inl(&,)sjt; NL(&,) 5 7%:3T). Heren,| and . £ are the HO
guantum numbers corresponding to the coordinéﬁ_eand

52, respectively. The quantum numbesd,j designate the
spin, isospin, and total angular momentum for the relative
channel of nucleons 1 and 2, whilgis the angular momen-
tum of nucleon 3 relative to the center of mass of nucleons We have followed standard notation in this work, insofar as
and 2(see Fig. 1 J, T are the total angular momentum and the “hat” notation designates a unit vector when used with
isospin of the three-body system, respectively. The modethe coordinatesx;, but denotes the recoupling factcir
spaceP for our effective interaction calculation shall be the = /2j+1 when applied to the angular momentum quantum
subspace spanned by all those functions with the desirefumbers of standard recoupling notation.

total isospin and total angular momenta, which satisfy 2 The spin degrees of freedom cannot be determined quite
+14+ 2N+ L<Npa. Then N, defines the size of the so easily, because these are, for the most part, coupled to the

model spaceP—all HO states up to an energy df,,/€)  spatial coordinate unit operators. We perform a recoupling,
above the ground state are included.

This is not an antisymmetric basis; hence, the first step in
our calculation is to antisymmetrize via the calculation of the (Gp-%)(Ga-Ki)= 2 (— 1)K(5_20->_3)(K) ) ()A(_)'z_)(K) (21)
appropriate coefficients of fractional parentage, ' R SR

N[ = ~
N|
N = e
NI~
N|
_|

N~ ~

N~ 2

4
P N NP
= NP N

(20
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o AAk1k2Ke* o L
(02-X3)(03- %) (X3 Xo) — 2 (—1)k2k .k, 1 01 1 (6263) (1) [ (RaRa) KD (Rp%,) (K ](K), (22
kikoK
(kg K 1
(Gp %a)(Gg- 61X Rg)=—\6i >, (— 1)“%{ }[(61&»“1)&3]“)-(xsﬁsﬂK), (23)
kK 1 1 1
(Ga-Ro)(G1 G X Ro) = — ﬁi; (—DX[(G152) M 35100 (R%2) 0, (24)

(101 1)k ks K
Fo e K (Far o) (G- KaX Ko) = — \/6i —1)ketks
(02-X3) (03 X) (01 X3 X KXp) \/ElklkEzkg( 1) klkaS[l K, sz 1 K, 1}

X[(G167) KD 55100 [ (RaRq) K2 (R,%5) k81K, (29

leaving the spatial-spin operators in the foXx,,x3) - Y(&1,0,,3) ). The matrix elements of these separated operators
are easily written in terms of the requisite reduced elements,

((NINLIL;(83)S,3|X (%, %8) V- Y (01, 52,55) (N I"A L1)L" (8" 3)S';3)

, L J
=(—-1* +S+J[S, L K]<(n|NE)L||X(Xz,Xs)(K)ll(n’l’J\/'ﬁ')L'><(S%)S||Y(51,&2,53)(K)||(S'%)S'>- (26)

The reduced_ spin_matrix_elements are therefore j_ust generg\}s(xs):g(sl)zi(xs)' from the spherical tensor of order 1 in
cases of the isospin matrix elements noted above in@85.  E£q. (21) and the scalar correlation functiafi(xz) in Eq.

and(20), (13), and the analogous termy(x,) = X$DZ;(x5).
) - ) The difficulty in the matrix element calculation arises
((s3)8(5253)Ml(s'3)S") from thew,(x,) piece of this object, as, is not parallel to
1 either of the coordinateél, 52 we have chosen for our HO
S 3 S basis. This problem has been solved by inserting a complete
s s 1 set of states between the; andw, operators,
=(—1)°688’'SS'K{1 1 1 o 1 s
E E E E AN ! !
L1k ((NIND)L||[ws(xg) MW (xp) 2T (n"1" A7 £7)L")
ki ks K
(27) = > <—1>L’+K+le[ , ]
nH|!IN!£HLII L L L
((s3)8[(G152) " V31M|(s"5)S") X ((NINL)L [ wa(xg) R0 (n"I"A” L")L")
S N X (1AL [wo(0) <2 (01 AT L)L),
2 2 2 (29)
6688’85k, K{ 1 1 1
6688’ SS'k,K - o o . g
Note that the sum over the intermediate HO states in(Z3).
1 1 Kk k;, 1 K should be taken to as large a limit as possit@ethe least

(28) until adequate convergence in the resulting nuclear spectrum
is achievedl and not restricted merely to the states permitted

We are left with the spatial reduced matrix elements of" .the model space. For a discussion of the summation re-
component operators of the  form X(xp,xs)™ quired to reach this convergence see Sec. Ill A.

_ The first spatial matrix element in Eq29) is easy, as
=[W3(x3) “Dw,(xp) *2]M). Here, w(xs) and wy(x,) rep- o - -

resent the decoupleg; and X, components determined in Ws(x3) is diagonal i VL), hovyever, the second_ IS not. BUt.
Egs. (21)—(25), along with the corresponding correlation W& €@n execute a transformation of the HO basis from one in
functions for each term, as noted in the expressior\gr ~ terms of the €,,&;) coordinates(as defined above in Eq.
Eqg. (13). For example, the first term iW/; would produce (17)]to (&;,£5), where these new coordinates are defined by
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1 for particles with unequal mass¢45]. The ansatz of Ref.
E1=—=(3— 1), [45] defines a parametet, which is determined from the
V2 transformation coefficients: the transformation from coordi-
1 5 nates (;,f,) to (F,R) may be written as
§§:%(Fs+ F)— \[g Py (30 ) d |12 i
r= m rl—(1+d) 21'2,
In other words, we have transformed the coordinates to
match the second internucleon coordinate of interest. The 112
coordinate transformation is easily determined to be §=(1+d)’1’2F1+ 14 P, (32
. 1. B,
§1=§ &+ > &, which matches Eq31) if we setd=1/3. Note that a reversal
of the ordering of the coordinates in the bracket is required
B 1. since£; in Eq. (31) corresponds t& in Eq. (32), and simi-
52:751_5 &2, 31 larly Eé corresponds t6—thus introducing a phase factor to

be included in the final matrix element in E(1). Our
and, thus the two HO function basis sets are related by eseduced spatial matrix element, thus, appears eventually as
transformation depending on the Brody-Moshinsky bracketgollows:

((NINL)L| wa(xz) KDwy(x,) *2 T (n 1" A7 L7)L")

— VLA LHL Lot Ltk kot K 7 (T )2 ke 12 lz| ke | l ki ko K
> (—1) 2 KL (L") P 1 ;
n"|”|_”n2|2/\/2£2né|é £2 L L E L L L L L

X (Nl pNRL)L" [0 NL)L" ) g 13 (N5 SN2 L)L [(N TN L)L Y g 1yl wa(x3) <2 In"17)

X (Nl o[ Wa(x2) &2 [ngl 5, (33

where the subscript 2 denotes the transformed basis ix,the actions are useldt3]. It is important to select the optimal HO
coordinate described above. frequencyQ in this way, as the nucleon-nucleon interaction
The remaining one-dimensional integrals can now be eads the dominant part of the whole interaction. When we in-
ily determined by a standard numerical integration routinevestigate the convergence of the calculation with the three-
(an analytic formulation for these integrals should be posnucleon interaction oM, We want to make sure that the
sible, but as these take up only a very small part of the actualvo-nucleon part of the interaction is under control. In our
computation, the benefits of this are neglig)bl€hese inte- present investigation, we use the AVINN potential[8] to-
grals are noted in the Appendix. Once we calculate thesgether with several versions of the TMINI. The AV18 NN
integrals, the determination of each full Tvhatrix element potential includes the isospin breaking as well as charge-
becomes a purely algebraic exercise. symmetry breaking terms. In our calculations though, we
restrict our basis td' =3 states. Consequently, we employ
the 3Vpn+ 5V, NN potential combination in the=1 two-
I1l. RESULTS AND DISCUSSION nucleon channels.

To test our formalism we apply it to calculate tHgd
binding energy, for which calculations with the Thhree-
nucleon interaction have already been performed using, e.g., As noted above, one limit in the calculations, which must
the Faddeev techniqU®]. We solve the Schdinger equa- first be established, is that of the intermediate sum in the
tion with the Hamiltonian(11) by diagonalization using the spatial reduced matrix elements, EP9). These intermediate
translationally invariant HO basis applying the approach destates should, in theory, be summed over the full infinite
scribed in the preceding sections. Our results depend on thidimensional basis space. For practical calculations, however,
HO frequencyQ and on the basis size defined b .. we must choose a limit to this sum, which hopefully will still
Concerning the HO frequendf, we select it from our’H be large enough to achieve convergence in the nuclear prop-
calculation with just the two-nucleon interaction. It follows erties of interest. We choose this limit by defining a param-
from our previous investigations thaf)=28 MeV leads to eter N . and allow only those intermediate states whose

the fastest convergence when realistic nucleon-nucleon intetHO components satisfy rZ+1”+2A"+ £"<NI . Then

A. Test of convergence for the intermediate sum truncation
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TABLE II. Energies, in MeV, for the ground and lowest three T T T T T T T T T T

——AV18

excited states offH from 16:Q-space Ny.=16) calculations :;-i: 3H 1 —— Avis«Tme1)
with the AV18+TM'(81) potential,.A/,u:_At.YSG, usingﬁQ.:28 _ _7:6_,\ 1 - AV18 exact
MeV. Convergence of the results with thel, parameter is inves- 3 79 i 1 —o— AVI8+TM(B1) exact
tigated. For details see text. = -80f b

w .g2p N
E (MeV) Ground First Second Third A ]
NIMt — 24 -83219 62131  12.2709  13.4426 b T
N =26 —-8.3252  6.2066  12.2598  13.4460 %8 8 ‘°‘2‘4;:1“° c=2th o5
N =28 ~-8.3274 62023  12.2516  13.4483 max
Nes= 30 —8.3288  6.2033 12.2553 13.4472 FIG. 2. Convergence of théH binding energy with model
N}ﬂ;x=32 —8.3295 6.2042 12.2565 13.4469 space size using the AV18 two-body potential both without
N =34 —8.3299 6.2047 12.2553 13.4473 (squares and with (triangles the TM'(81) three-body force
NIt =36 —8.3300 6.2054 12.2549 13.4475 (h)=28 MeV andA/n=4.756. The dotted lines denote the exact
Nt —2g —8.3300 6.2065 12.2551 13.4475 binding energies, using the Faddeev method for the AW

max

potential only (—=7.623 MeV [5]), and for AV18+TM'(81)
(—8.444 MeV[5)).

we can study the convergence of nuclear propertieSidls  calculations used these parameters in order to compare with
becomes large and determine an adequate value for this linthe results of Faddeev calculations by Nogga and co-workers
iting parameter. Table Il shows the eigenenergies for thg5], which we take as a benchmark calculation with this
ground and first three excited states 8H using an Hamiltonian. The binding energies resulting from using only
intermediate-sizéN,,,—= 16 basis spacéwhich allows us to  a two-body effective interaction derived from the AVIN

use large values df\l'r?faQ and the AV18-TM'(81) potential  potential, converge very quickly with increasiil,,, to the

for various values o . It should be noted here that these exact AV18-only result(which, as has been noted, un-
excited states are virtual, unbound eigenstates, useful only @erbinds this nucleus by approximately 0.9 Me\Conver-
numerical indicators of convergence. We note, though, thagence to the exact Faddeev result-68.444 MeV[5] when

the excited states will be required in the determination of arusing the combination of the AV18 generated two-body ef-
effective three-body interaction féx>3. In that case, these fective interaction and the bare T81) three-nucleon inter-
states will be bound as the system will be bound in a HOaction is much slower and indeed has not been quite reached
potential obtained by setting>3 in thevfj"A term of Eq.  in our calculations. ANy,,,= 30, the largest basis size that
(2). It is apparent that in the present calculation the excitedWe were able to reach at present due to technical reasons, we
state energies are more sensitive to the choich’®f than  Still miss almost 60 keV of the exact res(fior a summary of

the ground state, and so if a useful spectrum is to be derived€ results see Table JllObviously, we will improve on this

a reasonab|y |arge intermediate state expansion will be rén the future, but even the current result should a.HOV\{ us to
quired. Certainly it appears that convergence has beeﬁonstruct a reasonably accurate three—l?ody effective interac-
achieved by the time one reachi§!, =36, as the results tion usable in calculations fok>3 nuclei.

change only negligibly between here and usmﬂtaxz 38. o

But if one can tolerate a systematic truncation error of less C: Dependence ofH binding energy on the TM" cutoff

than 4 eV, then using\jn..= 30 still yields the ground state parameter

energy up to about 1 eV, while reproducing the first three In this subsection, we investigate tiiel binding energy
excited state energies within this tolerance. A similar serieglependence on the TMTNI cutoff parameterA for two

of calculations in other basis spaces shows convergence tiifferent versions of the TV We note that this type of de-
this accuracy _al\l'r?,gx= Nmaxt 14. Thus, we will assume that pendence was investigated in several previous works, e.g., in
a value forN™ of 144Q above theN,.,, defining the Refs.[13,14].

model space, will provide adequate convergence of this in- In Fig. 3, we present results for the updated Tucson-
termediate expansion. Melbourne potentials TM93) and TM' (99) obtained in one

TABLE lIl. The ®H ground-state energy, in MeV, obtained in
B. Test of convergence for binding energy ofH the NCSM and the Faddeev calculatiof§ are compared. The
With the HO frequency fixed ak)=28 MeV, we per- cutoff —parameter A/u=4.756 was used. The NCSM
formed calculations foPH both with and without the TNIin  AV18+TM'(81) calculation is not fully converged, see Fig. 2. The
the range of basis spaces froti,.,= 0 to N,.,= 30. Figure result obtained in the largest a(_:cessed basis spagg= 30 using
2 demonstrates the convergence with the basis size when tffi HO frequencyi2=28 MeV, is presented.
Hamiltonian contains the AV18 plus the TK81) three-

3
nucleon interaction with the cutoff parameter value/dj H Egs (MeV) NCSM  Faddee(S] Expt.
=4.756, a value chosen to reproduce closely the experimen- AV18 —761 —7.623
tal ®H and *He binding energies. Note that taé parameter  av18+TM’(81) ~8.39 _8.444 —8.482

is kept fixed here at the value given in Table-0.87). Our
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i - - L I AViS to other such three-nucleon interactions currently available.
-8k 1 — AvigsTM9) We studied the convergence of our approach by changing
— I 3H ] the basis size. We were able to obtain not yet completely
> SF ] T AVIB+TMI(%9) converged three-nucleon solutions that should still be appli-
= -10f ] cable for construction of three-body effective interactions us-
w b ] able for nuclei withA>3. In addition, we examined the
L AVIS+TM' ] dependence of théH binding energy on the TMcutoff
-12p ] parameterA.
b In summary, we have shown the feasibility of NCSM cal-
4 5 6 7 culations with free-space three-nucleon interactions. This re-
A[u] sult, coupled with the work of Navratil and Ormap#i7] on

o . ~ effective three-body interactions obtained from free-space
FIG. 3. Dependence of théH binding energy, obtained using NN potentials only, clears the way for complete NCSM cal-

the AV18 NN potential plus the TMTNI, on the TM cutoff pa-  cyjations with full effective three-body interactions in the
rameterA. Results for two different versions of the TM'NI are shell.

presented. The dotted line shows the result obtained with A8
potential only.

of the largest model spaces allowed by our present comput- ACKNOWLEDGMENTS
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MeV), rather than the charged pion mass of 139.6 MeV. This

minor change reflects the isospin formalism of the potential

(13), rather than a charge state formalism. The latest poten- APPENDIX

tial incorporates the larger sigma term which may be a result ] .

of the 7-N data analyses made since the 1980’s. One can see After, applying Eq.(33) to factor the spatial component of
from Fig. 3 that the potentials TNB3) and TM(99) give the TM" matrix element, a careful inspection of the interac-
about the same binding energy results as a function/pf  tion (13) reveals that only four cases for eacht,n”,1” com-
The convergence issue becomes more severe for the larg@ination are required:

values ofA/u. Our best value for the binding energy &

when the TM(99) is used is only about 0.09 MeV below a
benchmark Faddeev calculation faru=5.0, but the dis- (nl‘
crepancy rises to about 0.9 MeV faru=7.1[46].

Zy(r)

r

Zy(r)
r

Rpyr(r)r2dr,
(A1)

n”l”> = 5|’|rri fo Rm(r)

IV. CONCLUSIONS

In this work we investigated the three-nucleon system (il FOZL(r) "1y
with a realistic nucleon-nucleon potential and the TiWo- !
pion-exchange three-body interaction using a translationally . o
invariant harmonic oscillator basis. In the calculations, the =—1(1010]1"0) Jo Rni(1)Z3(r)Ryn(r)rdr,
no-core shell-model two-body effective interaction replaced
the nucleon-nucleon potential, while the three-nucleon inter- (A2)
action was added without any renormalization.

We presented a formalism for calculating the three-body
matrix elements of the TMinteraction in a translationally <n|||(ff)(0)2(r)||nrr|~>
invariant harmonic oscillator basis. This three-nucleon inter- A
action satisfies all requirements of chiral symmetry including I ~ )
those of the chiral perturbation theory paradigm. It has the == ﬁ&,l" o Rni(r)Z(r) Ry (r)redr,
operator structure of all local three-nucleon interactions of
the 2r-exchange type, so our techniques are readily extended (A3)

[
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(I[[(FHYPZ(r)n"1"y

2. o ~
= \[§I<I020|I”O>f Ry (1) Z(r)Ryrn(r)r2dr.
0
(A4)
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Referring to the example stated in the text between E28.
and (29), the first term inW, yields ws(xs) =x$"Z;(x3)
[with a similar expression fow,(x,)]. Substituting these
into Eq. (33) produces single dimensional integrals of the
form (A2) in both coordinates.
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