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Feasibility study of a three-nucleon force in the no-core shell model:3H binding energy
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We investigate the three-nucleon system with a realistic nucleon-nucleon potential and the Tucson-
Melbourne~TM! two-pion exchange three-body interaction using a translationally invariant harmonic oscillator
basis. In the calculations, the no-core shell-model two-body effective interaction replaces the nucleon-nucleon
potential, while the three-nucleon interaction is added without any renormalization. We study the convergence
of the approach by changing the basis size. Also the dependence of the binding energies on the TM cutoff
parameterL is examined. The results show promise for the construction of three-body effective interactions
including a three-nucleon interaction, for use in futureab initio no-core shell-model nuclear structure calcu-
lations forA.3 systems.
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I. INTRODUCTION

Recent theoretical and experimental investigations h
renewed interest in elucidating the three-body componen
the internucleon potential@1–3#. Direct experimental obser
vations of the three-nucleon interaction are lacking~although
there are tantalizing hints@4#!. It is well known, however,
that accurate theoretical calculations of the binding ener
of light nuclei with A>3 yield values that are consistent
less than the corresponding experimental values by a
5–10 %, when only two-body potentials are employed@5#.
As most modern two-body nucleon-nucleon~NN! potentials
fit availableNN scattering data with a satisfactorily high d
gree of precision, it is reasonable to suspect that we mus
beyond two-body interactions if we are to explain this sho
fall within the framework of nonrelativistic quantum me
chanics. Performing calculations with a three-nucleon in
action ~TNI! included in the nuclear Hamiltonian shou
bring us closer to the ultimate goal of a quantitativeab initio
theory of nuclear structure.

The purpose of the present investigation is to develo
formalism for calculating the three-body matrix elements
the two-pion-exchange Tucson-Melbourne~TM! three-
nucleon interaction in an harmonic-oscillator~HO! basis.
This three-nucleon interaction has the operator structur
all local three-nucleon interactions of the two-pion exchan
type @6#, so our techniques are readily extended to other s
three-nucleon interactions currently available. Our aim is
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employ eventually this formalism in the determination of t
effective three-body interaction that can be utilized in theab
initio no-core shell-model~NCSM! calculations for nuclei
with A.3. Such an approach might yield a method f
nuclear structure calculations which utilizes a three-nucle
interaction, and thus, for instance, solves the problem of
aforementioned binding energy deficit observed when eff
tive interactions are derived using only two-body potentia
At the same time, the sensitivity of the nuclear spectra to
different terms of the three-nucleon interaction may prov
information on the structure of the three-nucleon interact
itself. A prerequisite for the construction of the three-bo
effective interaction is the solution of the correspondi
three-nucleon system. This is done in the present paper.

Hamiltonians with two- and three-nucleon potentials c
be solved very accurately for nuclei withA<4 by a variety
of techniques@7#, and the Green’s function Monte Carl
~GFMC! method@8# gives very accurate results for energi
and other observables of nucleiA<8 @9#. The latter method
has only been applied to local potentials in coordinate sp
such as the ArgonneNN potentials and the Urbana and Ill
nois three-nucleon interactions. It may be limited to su
potentials~i.e., those which do not depend on the individu
momenta of the interacting nucleons! if the resulting nonlo-
calities cannot be treated perturbatively. Examples of s
nonlocal two-body potentials would be the CD-Bonn pote
tial and, in the three-body case, nonlocal terms from a co
prehensive study of the ‘‘Born-term’’ parts of the two-pio
exchange three-nucleon interaction@10#. The current work is
a step toward the development of a promising alternative
the GFMC approach, which may prove to be more versa
~insofar as it could accommodate a variety of two- and thr
body potentials!, does yield nuclear wave functions in con
©2002 The American Physical Society07-1
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MARSDEN, MAVRÁTIL, COON, AND BARRETT PHYSICAL REVIEW C66, 044007 ~2002!
trast to the GFMC approach, and might also be more ea
applicable to heavier nuclei.

To test our formalism we shall apply it to theA53 sys-
tem, for which calculations with the TM three-nucleon inte
action have already been performed using different te
niques@5,11–15#. In Sec. II we present our formalism bot
for the NCSM and for calculating the three-body matrix
ements of the TM three-nucleon interaction. The applicat
of our procedure to3H is given in Sec. III, followed by a
discussion and conclusions in Sec. IV.

II. FORMALISM

A. The no-core shell model

In the present study we want to find bound state soluti
of the three-nucleon system described by a purely intrin
Hamiltonian,

HA5Trel1V5
1

A (
i , j

~pW i2pW j !
2

2m
1(

i , j

A

VNN,i j

1 (
i , j ,k

A

VNNN,i jk , ~1!

where m is the nucleon mass,VNN,i j is the NN interac-
tion with both strong and electromagnetic components,
VNNN,i jk is the three-nucleon interaction. We work wi
the HO basis and apply the NCSM approach. First,
modify the Hamiltonian~1! by adding to it the center-of
mass ~c.m.! HO Hamiltonian Hc.m.5Tc.m.1Uc.m., where
Uc.m.5

1
2 AmV2RW 2, RW 5(1/A)( i 51

A rW i . The effect of the HO
c.m. Hamiltonian will later be subtracted out in the fin
many-body calculation so there is no net influence on int
sic properties of the many-body system. In fact, in the in
nite space such a potential has no influence on the intri
properties at all. However, this added/subtracted potentia
cilitates the use of the HO basis for evaluating the effect
interactions. The modified Hamiltonian can be cast into
form

HA
V5HA1Hc.m.5(

i 51

A

hi1(
i , j

A

Vi j
V,A1 (

i , j ,k

A

VNNN,i jk

5(
i 51

A F pW i
2

2m
1

1

2
mV2rW i

2G1(
i , j

A FVNN,i j 2
mV2

2A
~rW i2rW j !

2G
1 (

i , j ,k

A

VNNN,i jk . ~2!

Since we intend to solve the many-body problem in
finite HO basis space, the realistic nuclear interaction in
~2! will yield pathological results unless we use it to derive
model-space dependent effective Hamiltonian. In general
an A-nucleon system, anA-body effective interaction is
needed. Here, we haveA53. Therefore, the correspondin
effective interaction should be a three-body interacti
However, to construct such an effective interaction is in f
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equivalent to solving the full three-body problem, which
our eventual goal. Thus, for the purpose of finding the thr
nucleon solutions we resort to a two-body approximation
the effective interaction as was done in majority of t
NCSM applications.

The full three-body space is divided into an active~P!
model space and an excluded~Q! space, using the projector
P andQ with P1Q51. The model space is spanned by t
three-nucleon HO states with the total HO quanta less t
or equal to someNmax. We may ask the question, what is th
best two-body effective interaction corresponding to t
model spaceP for the HamiltonianHA

V ~2!. In the spirit of
the NCSM, we answer that it is such a two-body interact
that will reproduce exactly the two-nucleon eigenstates
the HamiltonianHA

V , when applied to a two-nucleon syste
with the sums limited toA52 in Eq. ~2!, but with A set to
three in the HO interaction term. This approach implies t
the three-body interactionVNNN,i jk is not used at all when
the two-body effective interaction is being derived. It is use
obviously, in the eventual three-body calculation where
two-nucleon interaction is replaced by the two-nucleon
fective interaction. A convergence of the three-nucle
eigenstates with respect to the basis-size increase ca
achieved in this way, for a tractable size of the model sp
defined byNmax, only if the three-nucleon interaction can b
considered to be a correction to the dominant two-nucle
interaction. This is indeed the case. We will investigate
convergence issue in Sec. III B.

Details of the process for computing the two-body effe
tive interaction are described fully in, e.g., Ref.@16#; how-
ever, for the sake of completeness, the method is briefly
visited here. The two-body effective interaction is deriv
utilizing the Lee-Suzuki transformation@17–19#, which re-
sults in a Hermitian effective interaction. Let us write expli
itly the two-nucleon Hamiltonian following from Eq.~2! in
the two-nucleon relative and c.m. coordinates, e.g.,

H2
V5h11h21V12

V,A5H021H2 c.m.1V12
V,A

5
pW 2

2m
1

1

2
mV2rW21H2 c.m.1VNN~A2rW !2

mV2

A
rW2, ~3!

where H021H2 c.m.5h11h2 , rW5A1/2(rW12rW2), and pW
5A1/2(pW 12pW 2). The two-nucleon problem is then solved
a relative HO basis space with high precision. The c.m. m
tion of the two nucleons is not affected by the transform
tion. Thus, it does not contribute to the effective interacti
calculation and cancels out at the end. TheA in Eq. ~3! is set
to 3 in the present application.

The unitary transformation is obtained by choosing
anti-Hermitian two-body operatorS(2) determined from the
decoupling condition

Q2e2S(2)
H2

VeS(2)
P250, ~4!
7-2
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and the simultaneous restrictionsP2S(2)P25Q2S(2)Q250.
Note that two-nucleon-state projectors (P2 ,Q2), whose defi-
nition follows from the definition of theA-nucleonP andQ
projectors, appear in Eq.~4!.

The unitary transformation and decoupling condition,
troduced by Suzuki and Okamoto and referred to as
unitary-model-operator approach@20#, has the solution

S(2)5arctanh~v2v†!, ~5!

with v satisfyingv5Q2vP2. Furthermore, we also have

Q2e2vH2
VevP250. ~6!

With Eq. ~5!, we obtain for the two-body effective Hamil
tonian

H̄2eff5~P21v†v!21/2~P21P2v†Q2!H2
V~Q2vP21P2!~P2

1v†v!21/2. ~7!

If the eigensolutions of the HamiltonianH2
V are given by

H2
Vuk&5Ekuk&, then the operatorv can be determined as

^aQuvuaP&5 (
kPK

^aQuk&^k̃uaP&, ~8!

where uaP& and uaQ& denote the two-nucleon model- an
Q-space basis states, respectively. The tilde in Eq.~8! de-
notes the inverse of the matrix defined by matrix eleme

^aPuk&, i.e., (aP
^k̃uaP&^aPuk8&5dk,k8 and (k^aP8 uk̃&

3^kuaP&5da
P8 ,aP

, for k,k8PK. Note the sumK denotes a

set of dP eigenvectors whose properties are exactly rep
duced in the model space, withdP equal to the dimension o
the two-nucleon model space.

With the help of the solution forv ~8!, we obtain a simple
expression for the matrix elements of the Hermitian effect
Hamiltonian

^aPuH̄2effuaP8 &

5 (
kPK (

aP9
(
aP-

^aPu~P21v†v!21/2uaP9 &^aP9 uk̃&

3Ek^k̃uaP-&^aP-u~P21v†v!21/2uaP8 &. ~9!

For computation of the matrix elements of (P21v†v)21/2,
we use the relation

^aPu~P21v†v!uaP9 &5 (
kPK

^aPuk̃&^k̃uaP9 & . ~10!

Finally, the two-body effective interaction is determine
from the two-nucleon effective Hamiltonian, obtained fro
04400
-
e
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Eq. ~9!, asV2eff5P2(H̄2eff2h12h2)P2. Apart from being a
function of the nucleon numberA, V2eff depends on the HO
frequencyV and on the parameterNmax, defining the basis
space. It has the important property thatV2eff→V12

V,A for
Nmax→`, following from the fact thatv→0 for P→1.

So, we eventually solve the Schro¨dinger equation of the
three-nucleon system described by the Hamiltonian

HA53,eff
V 5(

i 51

3

hi1(
i , j

3

V2eff,i j 1 (
i , j ,k

3

VNNN,i jk , ~11!

by diagonalization using the translationally invariant HO b
sis. The c.m. dependence is present only in the one-b
term of Eq.~11!. We remove the c.m. term explicitly from
HA53, eff

V by subtractingHc.m. introduced in Eq.~2!. It should
be emphasized that the Hamiltonian~11! is applicable only
for theA53 system. ForA.3, the bare three-body interac
tion must be replaced by a three-body effective interacti
e.g., (VNNN)eff,i jk ~in fact, the two-body effective interaction
will be replaced by a three-body effective interaction
well!. This is necessary because of the fact that the con
gence with the basis size is rather slow when the bare th
body interaction is used, as will be seen in Sec. III B. Suc
three-body effective interaction can be derived in analogy
the derivation of the two-body effective interaction, i.e., u
ing Eq. ~9!, with the help of three-body solutions obtaine
using~11!. In order to find the three-body solutions by sol
ing the Schro¨dinger equation with the Hamiltonian~11!, we
could, in principle, use some perturbative renormalization
VNNN,i jk to speed up the convergence with the basis s
However, this is not really necessary, as we are able to re
sufficiently large basis spaces for theA53 system to achieve
a reasonable convergence, as will be shown in Sec. III B

B. Three-nucleon interactions

The task of extracting a reliable and consistent form
the nuclear three-body interaction has proven to be a diffi
one over the years, certainly when compared to the exten
which the precision of empirical two-body potentials h
been determined. The wealth of two-nucleon scattering
bound state data starting from the early days of nuclear ph
ics has made it possible to construct empiricalNN potentials
without much constraint from the~approximate! chiral sym-
metry of the QCD strong interaction. The single exception
this untrammeled empiricism was the long range one-p
exchange potential common to all high-quality potentia
long range due to the tiny pion mass, a direct consequenc
the Goldstone-mode realization of chiral symmetry. T
three-body force among nucleons, to the contrary, had
such empirical input before the advent of reliable calcu
tions of theA53 bound state and, more recently, ofN-d
scattering@2# and of heavier nuclei@5,21#. Thus models of
the three-nucleon interaction were forced to be more th
retically based than contemporary two-body force models
the same era; indeed the two first papers of which we
aware that discussed the implication of chiral symmetry
7-3
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nuclear forces focused first on the three-nucleon force@22#
and subsequently on the two-nucleon force@23#.

Even with the guidance of chiral symmetry, constructi
of potentials always involves theoretical choices, since a
tential is an unphysical theoretical object, obtained from
subamplitude~an off-mass-shell part of an amplitude! ac-
cording to a set of prescriptions. Such a subamplitude w
iterated~in the Schro¨dinger equation, for example! produces
observables such as on-shell scattering amplitudes or e
gies. Choices~implicit or explicit! in the definition of a two-
body potential that arise naturally in the context of Rayleig
Schrödinger perturbation theory will also alter the definitio
of what constitutes a three-body force. None of these de
tions is wrong, and consistency considerations relate e
one to the others. Expediency and theoretical prejudice
usually our guides in selecting the prescriptions we choo
These general statements were illustrated in a paper by
and Coon@24# which clarified the relationship between di
ferent two-pion-exchange three-body forces@10,25# obtained
from a simple nonlinear chiral Lagrangian. Polyzou a
Glöckle @26# have made a similar observation in the conte
of a Hamiltonian framework; that it is possible to reprodu
the binding energy and scattering matrix of a nuclear sys
from two different Hamiltonians, the two related by a unita
transformation, and consisting of different combinations
two- and three-nucleon interactions. With the advent of
effective field theory of nuclear forces@27#, it has become
commonplace to think of consistent two- and multibo
forces as being ultimately derivable from the low-energy L
grangian of chiral perturbation theory according to an agr
upon prescription. This prescription may choose to emp
size two-body forces at the expense of three-body force
choice of the theorist, but the observables of the theory c
not be changed by his/her choice. Although much progr
has been made toward this goal@28#, at this moment theNN
potentials that give the highest precision fit to the nucle
nucleon data and are used in nuclear structure calculation
not even have a consistent chiral nature with respect to
three-nucleon forces available@10#, let alone being derived
from the same Lagrangian as the chosen three-body for

For this study we choose a recent modification~labeled
TM8! of the Tucson-Melbourne three-body force, the first
the class of two-pion-exchange three-nucleon forces tha
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corporate phenomenology fromp-N scattering and were
constructed in accordance with~approximate! chiral symme-
try @29#. This interaction TM8 has been used in several pr
vious studies@5,14,15#, thus providing a body of results fo
comparison with the present method. The two-body inter
tion that we will apply in this study is the Argonne V1
potential@30#. This potential demonstrates the inconsisten
noted above, between our chosen three-nucleon interac
and the relativistic corrections to the one-pion-exchange
tential of our chosen realistic two-nucleon potential. Th
AV18 potential has no firm value of the arbitrary parame
m, which can be identified in some other phenomenologi
NN potentials, and has been identified to be21 ~pseudo-
scalar coupling of the pion to free nucleon spinors! in the
TM three-nucleon force@10,31# Nevertheless, the AV18NN
potential fits well the two-body data and the TM8 three-body
force has the operator structure of the 2p-exchange part of a
chiral perturbation theory three-body force. In addition, t
latter has strength constants near those expected to arise
a systematic analysis of pion-nucleon scattering@32# and of
2p exchange inNN phase shift analyses@33,34#. This com-
bination of two and three-body potentials will suffice for o
preliminary studies.

Adapting the original coordinate space derivation@11,12#,
the TM8 three-nucleon interaction applied in this work h
the form

W5W11W21W3 , ~12!

where theWi each have the same functional form but conta
cyclically permuted variables. The analytic form ofW1 is

TABLE I. Parameters of the TM8 three-body force forL55.8m.
For different values ofL, the parametera8 varies slightly according
to a relation given in Ref.@14#.

ma8 m3b m3d g2 m ~MeV!

TM8~81! 20.87 22.58 20.753 179.7 139.6
TM8~93! 20.74 22.53 20.72 179.7 138.0
TM8~99! 21.12 22.80 20.72 172.1 138.0
W15S gm

8MpD 2Fa8~tW2•tW3!~sW 2• x̂3!~2sW 3• x̂2!Z18~x3!Z18~x2!1b~tW2•tW3!S ~sW 2• x̂3!~2sW 3• x̂2!~2 x̂3• x̂2!Z̃~x3!Z̃~x2!

1~sW 2• x̂3!~sW 3• x̂3!Z̃~x3!
Z18~x2!

x2
1~2sW 2• x̂2!~2sW 3• x̂2!Z̃~x2!

Z18~x3!

x3
1~sW 2•sW 3!

Z18~x3!

x3

Z18~x2!

x2
D

1d~tW33tW2•tW1!S ~sW 2• x̂3!~2sW 3• x̂2!~2sW 1• x̂33 x̂2!Z̃~x3!Z̃~x2!1~sW 2• x̂3!~sW 3•sW 13 x̂3!Z̃~x3!
Z18~x2!

x2

1~2sW 3• x̂2!~2sW 1•sW 23 x̂2!Z̃~x2!
Z18~x3!

x3
1~sW 1•sW 23sW 3!

Z18~x3!

x3

Z18~x2!

x2
D G , ~13!
7-4
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and the correlation functions in this expression are given

Z18~r !52mS 11
1

mr D e2mr

mr
1LS 11

1

Lr D e2Lr

mr

1
~L22m2!

2m
e2Lr

Z̃~r ![Z19~r !2
Z18~r !

r
5m2F S 11

3

mr
1

3

m2r 2D e2mr

mr

2
L2

m2 S 11
3

Lr
1

3

L2r 2D e2Lr

mr
b f

2
L

2m S L2

m2
21D S 11

1

Lr De2Lr G . ~14!

PhysicallyW1 corresponds to a process in which nucle
1 exchanges pions with each of nucleons 2 and 3. The
vectorsx̂i are the unit internucleon coordinates (rW j2rWk)/urW j
2rWku, with i, j, andk defined cyclically.sW and tW represent
spin and isospin, respectively, with subscripts denoting
relevant nucleon. Most of the calculations presented in
paper used the constants of Ref.@12#. In that era of the TM
force the pion mass was taken to be the charged pion m
and set at 139.6 MeV. The nucleon mass,M, is then 6.726m
and g2 the pion-nucleon coupling constant was taken to
179.7, a value few percent higher than theg25172.1 ac-
cepted today.

The TM three-nucleon interaction grew out of the obs
vation that thep-N scattering amplitude is constrained of
mass-shell by the results of current algebra and the partia
conserved axial current~PCAC! @35#. The combination of
off-shell constraints and on-shell values of the invariant a
plitudes of pion-nucleon scattering yields a unique input
the TM three-nucleon interaction in the form of the streng
constantsa8, b, and d. The values of these constants a
taken from dispersion relation analyses of pion-nucleon s
tering and change as the data base changes@36–38#. These
constants roughly correspond to the chiral constants$ci% of
the next-to-leading-order chiral Lagrangian of chiral pert
bation theory@6#, although the TM constants were not d
rived from a Lagrangian field theory. The specific values
use are given in Table I, where TM8~81! has constants ob
tained from premeson factory data and TM8~99! is built upon
the meson factory data base.~For notation see Ref.@14# and
for a PCAC discussion of chiral symmetry and low-ener
pion-nucleon scattering consult Ref.@35#.! Both a8 and b
contain the pion-nucleon sigma term, a measure of ch
symmetry breaking, whose value is still under discussion
ter all these years. The constants labeled TM8~81! reflect a
sigma term of 69 MeV~i.e., the value of the invariant am
plitude at the Cheng-Dashen point! and those of TM8~99! a
sigma term of 83 MeV. The latter value is based on a ph
shift data base, which may be flawed in the higher par
waves@39#. In any event, we present results with both sets
values, as they are likely to bracket the ‘‘ultimate’’ value
the sigma term.
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The purely spatial correlation functions in Eqs.~13! and
~14!, i.e., Z18(r ) and Z19(r ), are the first and second deriva
tives, respectively, of Yukawa functions corresponding to
exchange of a pion between a nucleon pair:

Z1~r !5
4p

m E dqW

~2p!3

e( iqW •rW)F2~qW 2!

~qW 21m2!1
, ~15!

modified by a form factor at eachpNN vertex,

F~qW 2!5
L22m2

L21qW 2
, ~16!

which cuts off the potential at short~pairwise! distances.
Because a form factor is not an observable, one is free
change the value ofL ~but not the strength constants whic
are taken from data! and this is often done. From Eqs.~13!–
~16!, we see that each term of the potential TM8 of Eq. ~13!
has the spatial structure ofp range in one pair coordinat
multiplied by anotherp range in the other pair coordinate.

The potential TM8 ~13! differs from the original TM
2p-exchange three-nucleon potential by the omission o
term in the latter which did not have the spatial structure
p range plusp range but instead that of short range plusp
range. If the cutoff factorL→`, this omitted term would
have the structure of zero range plusp range familiar from
effective field theories. Yet it did not appear in th
2p-exchange three-nucleon force of chiral perturbat
theory @6#. This discrepancy was elucidated in Ref.@6# with
the aid of a pion field transformation that transmogrifies
form of chiral symmetry chosen for chiral perturbatio
theory calculations into a form that emulates the curr
algebra-PCAC constraints adopted by the Tucson-Melbou
group. In that form it became clear that the model ansatz
the off-shell pion-nucleon amplitude of the TM force pr
duced a short range plusp range operator that should hav
been canceled but was not. Such a cancellation in the cur
algebra-PCAC technique would require current algeb
PCAC constraints on the subamplitude labeled ‘‘thre
nucleon force,’’ in addition to the employed constraints
the subamplitude labeled ‘‘off-shellpN amplitude,’’ which
underlies the TM three-nucleon interaction. This was not
derstood in the early days, would be technically demand
if not impossible, and seems unnecessary because sim
dropping the term makes the modified potential TM8 satisfy
all pictures of chiral symmetry. A careful numerical exam
nation @40# showed that the dropping of this spurious ter
from the TM force has almost no effect on the binding e
ergy of the triton. This is evidently a numerical accident d
to the value of its strength parameter and need not be true
all observables. Indeed, the omission of this spurious te
does produce a noticeable effect on a polarization observ
of elastic proton-deuteron scattering@40#.

C. Matrix elements

In order to use the chosen three-nucleon interaction,
must first calculate its matrix elements. We work in the tra
lationally invariant HO basis. We use a standard Jacobi s
7-5
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tem of coordinates to describe our three-body system. T
is, given the three-body system with vector coordina
$rW1 ,rW2 ,rW3%, we define the corresponding Jacobi coordina

jW05
1

A3
~rW11rW21rW3!,

jW15
1

A2
~rW12rW2!, ~17!

jW25
1

A6
~rW11rW2!2A2

3
rW3 .

This particular choice of Jacobi coordinates will prove to
useful in the determination of the TM8 three-nucleon
interaction matrix elements, as thejW1 coordinate is paralle
to the x̂3 unit vector defined in the interaction inW1 in
Eq. ~13!. Ignoring the center-of-mass coordinatejW0, we
define an HO wave function in each of the remaining t
coordinatesjW1 and jW2 ~as shown in Fig. 1! as the spatial
component of the basis functions we employ. With spin a
isospin degrees of freedom included, the basis vec
will be designated by their independent quantum numb

unl(jW1)s jt;NL(jW2) 1
2 J1

2 ;JT&. Heren,l andN,L are the HO

quantum numbers corresponding to the coordinatesjW1 and
jW2, respectively. The quantum numberss,t, j designate the
spin, isospin, and total angular momentum for the relat
channel of nucleons 1 and 2, whileJ is the angular momen
tum of nucleon 3 relative to the center of mass of nucleon
and 2~see Fig. 1!. J,T are the total angular momentum an
isospin of the three-body system, respectively. The mo
spaceP for our effective interaction calculation shall be th
subspace spanned by all those functions with the des
total isospin and total angular momenta, which satisfyn
1 l 12N1L<Nmax. Then Nmax defines the size of the
model spaceP—all HO states up to an energy ofNmax\V
above the ground state are included.

This is not an antisymmetric basis; hence, the first ste
our calculation is to antisymmetrize via the calculation of t
appropriate coefficients of fractional parentage,

FIG. 1. Coordinate system for the three-body basis set.
04400
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s
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d
rs
rs
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uNiJT&5( ^nls jt;NL1
2 J 1

2 iNiJT&unls jt;NL1
2 J 1

2 ;JT&,

~18!

where N52n1 l 12N1L and i is an indexing quantum
number distinguishing different antisymmetrized states w
the sameN,J,T. These coefficients are determined by diag
nalizing the three-nucleon system antisymmetrizer as
scribed in Refs.@41–43#. In this procedure we are able t
eliminate the nonantisymmetrized nonphysical states of
system.

In a next step we recouple the basis from aj j to an LS
representation, because in the determination of the TM8 ma-
trix elements we separate spatial and spin components o
three-body potential operator.

Now let us proceed to the determination of the mat
elements of TM8 in the recoupled basis, described above.
particular note are the spatial components, as these will c
prise the bulk of the computational expense. The isos
components of the TM8 three-nucleon interaction are alread
separated from the remainder of the operator. There are
two cases to be considered, and in the three-body basis b
used, the calculation of their matrix-element components
relatively straightforward exercise in angular momentum
coupling @44#,

^~ t 1
2 !TutW2•tW3u~ t8 1

2 !T&

56 t̂ t̂8~21! t1t81T1
1
2 H t t8 1

1

2

1

2

1

2
J H t t8 1

1

2

1

2
TJ

~19!

^~ t 1
2 !TutW33tW2•tW1u~ t8 1

2 !T&

536i t̂ t̂8~21!T1t81
1
2 H t t8 1

1

2

1

2
TJ 5

1

2

1

2
t8

1

2

1

2
t

1 1 1
6 .

~20!

We have followed standard notation in this work, insofar
the ‘‘hat’’ notation designates a unit vector when used w
the coordinatesxi , but denotes the recoupling factorĵ
5A2 j 11 when applied to the angular momentum quant
numbers of standard recoupling notation.

The spin degrees of freedom cannot be determined q
so easily, because these are, for the most part, coupled t
spatial coordinate unit operators. We perform a recouplin

~sW 2• x̂i !~sW 3• x̂j !5(
K

~21!K~sW 2sW 3!(K)
•~ x̂i x̂j !

(K), ~21!
7-6
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~sW 2• x̂3!~sW 3• x̂2!~ x̂3• x̂2!2 (
k1k2K

~21!k2k̂1k̂2H k1 k2 K

1 1 1J ~sW 2sW 3!(K)
•@~ x̂3x̂3!(k1)~ x̂2x̂2!(k2)# (K), ~22!

~sW 2• x̂3!~sW 3•sW 13 x̂3!52A6i(
k1K

~21!K1k1k̂1H k1 K 1

1 1 1J @~sW 1sW 2!(k1)sW 3# (K)
•~ x̂3x̂3!(K), ~23!

~sW 3• x̂2!~sW 1•sW 23 x̂2!52A2i(
K

~21!K@~sW 1sW 2!(1)sW 3# (K)
•~ x̂2x̂2!(K), ~24!

~sW 2• x̂3!~sW 3• x̂2!~sW 1• x̂33 x̂2!52A6i (
k1k2k3

~21!k21k3k̂1k̂2k̂3H 1 1 1

1 k1 k2
J H k2 k3 K

1 k1 1 J
3@~sW 1sW 2!(k1)sW 3# (K)

•@~ x̂3x̂3!(k2)~ x̂2x̂2!(k3)# (K), ~25!

leaving the spatial-spin operators in the formX(x2 ,x3)(K)
•Y(sW 1 ,sW 2 ,sW 3)(K). The matrix elements of these separated opera

are easily written in terms of the requisite reduced elements,

^~nlNL!L;~s1
2 !S;JuX~x2 ,x3!(K)

•Y~sW 1 ,sW 2 ,sW 3!(K)u~n8l 8N8L8!L8;~s8 1
2 !S8;J&

5~21!L81S1JH L S J

S8 L8 KJ ^~nlNL!LiX~x2 ,x3!(K)i~n8l 8N8L8!L8&^~s1
2 !SiY~sW 1 ,sW 2 ,sW 3!(K)i~s8 1

2 !S8&. ~26!
e
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The reduced spin matrix elements are therefore just gen
cases of the isospin matrix elements noted above in Eqs.~19!
and ~20!,

^~s1
2 !Si~sW 2sW 3!(K)i~s8 1

2 !S8&

5~21!s6ŝŝ8ŜŜ8K̂H s s8 1

1

2

1

2

1

2
J 5

s
1

2
S

s8
1

2
S8

1 1 K
6 ,

~27!

^~s1
2 !Si@~sW 1sW 2!(k1)sW 3# (K)i~s8 1

2 !S8&

56A6ŝŝ8ŜŜ8k̂1K̂5
1

2

1

2
s

1

2

1

2
s8

1 1 k1

6 5
s

1

2
S

s8
1

2
S8

k1 1 K
6 .

~28!

We are left with the spatial reduced matrix elements
component operators of the form X(x2 ,x3)(K)

5@w3(x3)(k1)w2(x2)(k2)# (K). Here,w3(x3) and w2(x2) rep-
resent the decoupledx̂3 and x̂2 components determined i
Eqs. ~21!–~25!, along with the corresponding correlatio
functions for each term, as noted in the expression forW1;
Eq. ~13!. For example, the first term inW1 would produce
04400
ral

f

w3(x3)5 x̂3
(1)Z18(x3), from the spherical tensor of order 1 i

Eq. ~21! and the scalar correlation functionZ18(x3) in Eq.
~13!, and the analogous termw2(x2)5 x̂2

(1)Z18(x2).
The difficulty in the matrix element calculation arise

from thew2(x2) piece of this object, asx2 is not parallel to
either of the coordinatesjW1 , jW2 we have chosen for our HO
basis. This problem has been solved by inserting a comp
set of states between thew3 andw2 operators,

^~nlNL!Li@w3~x3!(k1)w2~x2!(k2)# (K)i~n8l 8N8L8!L8&

5 (
n9 l 9N9L9L9

~21!L81K1k1K̂H k1 k2 K

L8 L L9
J

3^~nlNL!Liw3~x3!(k1)i~n9l 9N9L9!L9&

3^~n9l 9N9L9!L9iw2~x2!(k2)i~n8l 8N8L8!L8&.

~29!

Note that the sum over the intermediate HO states in Eq.~29!
should be taken to as large a limit as possible~at the least
until adequate convergence in the resulting nuclear spect
is achieved! and not restricted merely to the states permit
in the model space. For a discussion of the summation
quired to reach this convergence see Sec. III A.

The first spatial matrix element in Eq.~29! is easy, as
w3(x3) is diagonal inuNL&, however, the second is not. Bu
we can execute a transformation of the HO basis from on
terms of the (jW1 ,jW2) coordinates~as defined above in Eq
~17!# to (jW18 ,jW28), where these new coordinates are defined
7-7
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jW185
1

A2
~rW32rW1!,

jW285
1

A6
~rW31rW1!2A2

3
rW2 . ~30!

In other words, we have transformed the coordinates
match the second internucleon coordinate of interest.
coordinate transformation is easily determined to be

jW185
1

2
jW11

A3

2
jW2 ,

jW285
A3

2
jW12

1

2
jW2 , ~31!

and, thus the two HO function basis sets are related b
transformation depending on the Brody-Moshinsky brack
e

a
in
os
tu

es

e.

de
t

s

te
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for particles with unequal masses@45#. The ansatz of Ref.
@45# defines a parameterd, which is determined from the
transformation coefficients: the transformation from coor
nates (rW1 ,rW2) to (rW,RW ) may be written as

rW5S d

11dD 1/2

rW12~11d!21/2rW2 ,

RW 5~11d!21/2rW11S d

11dD 1/2

rW2 , ~32!

which matches Eq.~31! if we setd51/3. Note that a reversa
of the ordering of the coordinates in the bracket is requi
sincejW18 in Eq. ~31! corresponds toRW in Eq. ~32!, and simi-

larly jW28 corresponds torW—thus introducing a phase factor t
be included in the final matrix element in Eq.~31!. Our
reduced spatial matrix element, thus, appears eventuall
follows:
^~nlNL!Li@w3~x3!(k1)w2~x2!(k2)# (K)i~n8l 8N8L8!L8&

5 (
n9 l 9L9n2l 2N2L2n28 l 28

~21!L1L91L81L21 l 1 l 281k11k21KK̂L̂L̂8~ L̂9!2H k2 l 28 l 2

L2 L9 L8
J H k1 l 9 l

L L L9
J H k1 k2 K

L8 L L9
J

3^~n2l 2N2L2!L9u~n9l 9NL!L9&d51/3̂ ~n28l 28N2L2!L8u~n8l 8N8L8!L8&d51/3̂ nliw3~x3!(k1)in9l 9&

3^n2l 2iw2~x2!(k2)in28l 28&, ~33!
n
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ee-
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where the subscript 2 denotes the transformed basis in thx2
coordinate described above.

The remaining one-dimensional integrals can now be e
ily determined by a standard numerical integration rout
~an analytic formulation for these integrals should be p
sible, but as these take up only a very small part of the ac
computation, the benefits of this are negligible!. These inte-
grals are noted in the Appendix. Once we calculate th
integrals, the determination of each full TM8 matrix element
becomes a purely algebraic exercise.

III. RESULTS AND DISCUSSION

To test our formalism we apply it to calculate the3H
binding energy, for which calculations with the TM8 three-
nucleon interaction have already been performed using,
the Faddeev technique@5#. We solve the Schro¨dinger equa-
tion with the Hamiltonian~11! by diagonalization using the
translationally invariant HO basis applying the approach
scribed in the preceding sections. Our results depend on
HO frequencyV and on the basis size defined byNmax.
Concerning the HO frequencyV, we select it from our3H
calculation with just the two-nucleon interaction. It follow
from our previous investigations that\V528 MeV leads to
the fastest convergence when realistic nucleon-nucleon in
s-
e
-
al

e

g.,

-
he

r-

actions are used@43#. It is important to select the optimal HO
frequencyV in this way, as the nucleon-nucleon interactio
is the dominant part of the whole interaction. When we
vestigate the convergence of the calculation with the thr
nucleon interaction onNmax we want to make sure that th
two-nucleon part of the interaction is under control. In o
present investigation, we use the AV18NN potential@8# to-
gether with several versions of the TM8 TNI. The AV18 NN
potential includes the isospin breaking as well as char
symmetry breaking terms. In our calculations though,
restrict our basis toT5 1

2 states. Consequently, we emplo
the 1

3 Vpn1 2
3 Vnn NN potential combination in thet51 two-

nucleon channels.

A. Test of convergence for the intermediate sum truncation

As noted above, one limit in the calculations, which mu
first be established, is that of the intermediate sum in
spatial reduced matrix elements, Eq.~29!. These intermediate
states should, in theory, be summed over the full infin
dimensional basis space. For practical calculations, howe
we must choose a limit to this sum, which hopefully will st
be large enough to achieve convergence in the nuclear p
erties of interest. We choose this limit by defining a para
eter Nmax

int , and allow only those intermediate states who
HO components satisfy 2n91 l 912N91L9<Nmax

int . Then
7-8
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we can study the convergence of nuclear properties asNmax
int

becomes large and determine an adequate value for this
iting parameter. Table II shows the eigenenergies for
ground and first three excited states of3H using an
intermediate-sizeNmax516 basis space~which allows us to
use large values ofNmax

int ) and the AV181TM8~81! potential
for various values ofNmax

int . It should be noted here that thes
excited states are virtual, unbound eigenstates, useful on
numerical indicators of convergence. We note, though,
the excited states will be required in the determination of
effective three-body interaction forA.3. In that case, thes
states will be bound as the system will be bound in a H
potential obtained by settingA.3 in the Vi j

V,A term of Eq.
~2!. It is apparent that in the present calculation the excit
state energies are more sensitive to the choice ofNmax

int than
the ground state, and so if a useful spectrum is to be deri
a reasonably large intermediate state expansion will be
quired. Certainly it appears that convergence has b
achieved by the time one reachesNmax

int 536, as the results
change only negligibly between here and usingNmax

int 538.
But if one can tolerate a systematic truncation error of l
than 4 eV, then usingNmax

int 530 still yields the ground state
energy up to about 1 eV, while reproducing the first thr
excited state energies within this tolerance. A similar se
of calculations in other basis spaces shows convergenc
this accuracy atNmax

int 5Nmax114. Thus, we will assume tha
a value for Nmax

int of 14\V above theNmax, defining the
model space, will provide adequate convergence of this
termediate expansion.

B. Test of convergence for binding energy of3H

With the HO frequency fixed at\V528 MeV, we per-
formed calculations for3H both with and without the TNI in
the range of basis spaces fromNmax50 to Nmax530. Figure
2 demonstrates the convergence with the basis size whe
Hamiltonian contains the AV18 plus the TM8~81! three-
nucleon interaction with the cutoff parameter value ofL/m
54.756, a value chosen to reproduce closely the experim
tal 3H and 3He binding energies. Note that thea8 parameter
is kept fixed here at the value given in Table I~20.87!. Our

TABLE II. Energies, in MeV, for the ground and lowest thre
excited states of3H from 16\V-space (Nmax516) calculations
with the AV181TM8~81! potential, L/m54.756, using\V528
MeV. Convergence of the results with theNmax

int parameter is inves-
tigated. For details see text.

E ~MeV! Ground First Second Third

Nmax
int 524 28.3219 6.2131 12.2709 13.4426

Nmax
int 526 28.3252 6.2066 12.2598 13.4460

Nmax
int 528 28.3274 6.2023 12.2516 13.4483

Nmax
int 530 28.3288 6.2033 12.2553 13.4472

Nmax
int 532 28.3295 6.2042 12.2565 13.4469

Nmax
int 534 28.3299 6.2047 12.2553 13.4473

Nmax
int 536 28.3300 6.2054 12.2549 13.4475

Nmax
int 538 28.3300 6.2065 12.2551 13.4475
04400
m-
e

as
at
n

-

d,
e-
en

s

e
s
to

-

the

n-

calculations used these parameters in order to compare
the results of Faddeev calculations by Nogga and co-work
@5#, which we take as a benchmark calculation with th
Hamiltonian. The binding energies resulting from using on
a two-body effective interaction derived from the AV18NN
potential, converge very quickly with increasingNmax to the
exact AV18-only result~which, as has been noted, un
derbinds this nucleus by approximately 0.9 MeV!. Conver-
gence to the exact Faddeev result of28.444 MeV@5# when
using the combination of the AV18 generated two-body
fective interaction and the bare TM8~81! three-nucleon inter-
action is much slower and indeed has not been quite reac
in our calculations. AtNmax530, the largest basis size tha
we were able to reach at present due to technical reasons
still miss almost 60 keV of the exact result~for a summary of
the results see Table III!. Obviously, we will improve on this
in the future, but even the current result should allow us
construct a reasonably accurate three-body effective inte
tion usable in calculations forA.3 nuclei.

C. Dependence of3H binding energy on the TM8 cutoff
parameter

In this subsection, we investigate the3H binding energy
dependence on the TM8 TNI cutoff parameterL for two
different versions of the TM8. We note that this type of de
pendence was investigated in several previous works, e.g
Refs.@13,14#.

In Fig. 3, we present results for the updated Tucs
Melbourne potentials TM8~93! and TM8~99! obtained in one

FIG. 2. Convergence of the3H binding energy with model
space size using the AV18 two-body potential both witho
~squares! and with ~triangles! the TM8~81! three-body force
~\V528 MeV andL/m54.756!. The dotted lines denote the exa
binding energies, using the Faddeev method for the AV18NN
potential only ~27.623 MeV @5#!, and for AV181TM8~81!
~28.444 MeV@5#!.

TABLE III. The 3H ground-state energy, in MeV, obtained
the NCSM and the Faddeev calculations@5# are compared. The
cutoff parameter L/m54.756 was used. The NCSM
AV181TM8~81! calculation is not fully converged, see Fig. 2. Th
result obtained in the largest accessed basis space,Nmax530 using
the HO frequency\V528 MeV, is presented.

3H Eg.s. ~MeV! NCSM Faddeev@5# Expt.

AV18 27.61 27.623
AV181TM8(81) 28.39 28.444 28.482
7-9
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of the largest model spaces allowed by our present com
ing power;Nmax528. The HO frequency was again fixed
\V528 MeV. The parameters of the TM8 TNI forces are
given in Table I. We note that thea8 parameter varies
slightly with L according to a relation given in Ref.@14#. In
general, though, the results are very weakly dependent on
a8. Although convergence has not been quite reached
particular for larger values ofL, still these are among th
first results with a three-body force which reflect the cha
ing p-N data set. The three-body force TM8~93! uses about
the samep-N input parameters (a8, b, d) as does TM8~81!.
The significant difference was the decision to make the ra
parameters reflect the SU~2! average mass of the pion~138
MeV!, rather than the charged pion mass of 139.6 MeV. T
minor change reflects the isospin formalism of the poten
~13!, rather than a charge state formalism. The latest po
tial incorporates the larger sigma term which may be a re
of thep-N data analyses made since the 1980’s. One can
from Fig. 3 that the potentials TM8~93! and TM8~99! give
about the same binding energy results as a function ofL/m.
The convergence issue becomes more severe for the la
values ofL/m. Our best value for the binding energy of3H
when the TM8~99! is used is only about 0.09 MeV below
benchmark Faddeev calculation forL/m55.0, but the dis-
crepancy rises to about 0.9 MeV forL/m57.1 @46#.

IV. CONCLUSIONS

In this work we investigated the three-nucleon syst
with a realistic nucleon-nucleon potential and the TM8 two-
pion-exchange three-body interaction using a translation
invariant harmonic oscillator basis. In the calculations,
no-core shell-model two-body effective interaction replac
the nucleon-nucleon potential, while the three-nucleon in
action was added without any renormalization.

We presented a formalism for calculating the three-bo
matrix elements of the TM8 interaction in a translationally
invariant harmonic oscillator basis. This three-nucleon in
action satisfies all requirements of chiral symmetry includ
those of the chiral perturbation theory paradigm. It has
operator structure of all local three-nucleon interactions
the 2p-exchange type, so our techniques are readily exten

FIG. 3. Dependence of the3H binding energy, obtained usin
the AV18 NN potential plus the TM8 TNI, on the TM8 cutoff pa-
rameterL. Results for two different versions of the TM8 TNI are
presented. The dotted line shows the result obtained with AV18NN
potential only.
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to other such three-nucleon interactions currently availab
We studied the convergence of our approach by chang

the basis size. We were able to obtain not yet comple
converged three-nucleon solutions that should still be ap
cable for construction of three-body effective interactions
able for nuclei withA.3. In addition, we examined the
dependence of the3H binding energy on the TM8 cutoff
parameterL.

In summary, we have shown the feasibility of NCSM ca
culations with free-space three-nucleon interactions. This
sult, coupled with the work of Navratil and Ormand@47# on
effective three-body interactions obtained from free-sp
NN potentials only, clears the way for complete NCSM c
culations with full effective three-body interactions in thep
shell.
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APPENDIX

After applying Eq.~33! to factor the spatial component o
the TM8 matrix element, a careful inspection of the intera
tion ~13! reveals that only four cases for eachn,l ,n9,l 9 com-
bination are required:

^nl IZ18~r !

r
In9l 9&5d l ,l 9 l̂ E

0

`

Rnl~r !
Z18~r !

r
Rn9 l 9~r !r 2dr,

~A1!

^nli r̂ (1)Z18~r !in9l 9&

52 l̂ ^ l010u l 90&E
0

`

Rnl~r !Z18~r !Rn9 l 9~r !r 2dr,

~A2!

^nli~ r̂ r̂ !(0)Z̃~r !in9l 9&

52
l̂

A3
d l ,l 9E

0

`

Rnl~r !Z̃~r !Rn9 l 9~r !r 2dr,

~A3!
7-10



he

FEASIBILITY STUDY OF A THREE-NUCLEON FORCE . . . PHYSICAL REVIEW C 66, 044007 ~2002!
^nli~ r̂ r̂ !(2)Z̃~r !in9l 9&

5A2

3
l̂ ^ l020u l 90&E

0

`

Rnl~r !Z̃~r !Rn9 l 9~r !r 2dr.

~A4!
.

,

C

d

c

w

y

k,

R

04400
Referring to the example stated in the text between Eqs.~28!

and ~29!, the first term inW1 yields w3(x3)5 x̂ 3
(1)Z18(x3)

@with a similar expression forw2(x2)]. Substituting these
into Eq. ~33! produces single dimensional integrals of t
form ~A2! in both coordinates.
D.
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