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Pseudovector vs pseudoscalar coupling in one-boson exchangeNN potentials
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We examine the effects of pseudoscalar and pseudovector coupling of thep and h mesons in one-boson
exchange models of theNN interaction using two approaches: time-ordered perturbation theory unitarized with
the relativistic Lippmann-Schwinger equation, and a reduced Bethe-Salpeter approach using the Thompson
equation. Contact terms in the one-boson exchange amplitudes in time-ordered perturbation theory lead natu-
rally to the introduction ofs-channel nucleonic cutoffs for the interaction, which strongly suppresses the far
off-shell behavior of the amplitudes in both approaches. Differences between the resultingNN predictions of
the various models are found to be small, and particularly so when coupling constants of the other mesons are
readjusted within reasonable limits.
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I. INTRODUCTION

Since the discovery and identification of the pion@1,2# as
the strongly interacting meson anticipated by Yukawa@3# in
1935, most theoretical efforts to construct a quantitativ
accurate model of the nucleon-nucleon (NN) interaction
have used the pion-nucleon interaction as the first build
block. Indeed, phase shift analyses ofNN scattering data
since 1959@4# use the one-pion exchange amplitude to
the phase shifts of the high orbital angular momentum pa
waves, which are not individually adjusted to fit the data

Almost at the beginning of these efforts the question ar
of whether the fundamental coupling of the pion to t
nucleon is of the pseudovector or pseudoscalar type.
question arises, of course, from the fact that the fully o
shell one-pion exchange amplitude derived from apNN in-
teraction Lagrangian with pseudovector coupling is identi
in form to that from one with pseudoscalar coupling. In ea
attempts to go beyond the one-pion exchange to the two-
exchange@5,6#, pseudoscalar coupling appeared to dema
suppression of ‘‘pair terms’’—terms describing the contrib
tion from intermediate states with one or more antinucleo
For the exchange of pions with low momenta, this effectiv
reduced to pseudovector coupling, for which the renorma
ability of the theory is doubtful, at best@7,8#. Pion-nucleon
scattering, through the smallness of the scattering leng
also strongly suggested pseudovector coupling. Dispers
theoretic results for the two-pion exchange contribut
@9,10# based on unitarity and analytic continuation ofpN

amplitudes to thepp
NN̄ channel also implicitly favored
pseudovector coupling.

We realize now that the meson theory of nuclear force
not a fundamental theory but, at best, an effective the
Thus lack of renormalizability in the usual sense is no
relevant criterion for the rejection of one form of coupling
another. Furthermore, the approximate chiral symmetry
hibited by QCD and implemented with considerable succ
in chiral perturbation theory (xPT) @11# makes it clear that
the effective coupling of pions to nucleons, at least at l
energies, is pseudovector in character. In other phenom
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the picture is more complex. In pion electro- and photop
duction analyses at low energies pseudovector couplin
preferred, whereas at higher energies pseudoscalar cou
provides a more economical description@12,13#. In the light
of this evidence it is clear that any of theNN interaction
models claiming to be realistic should, to some degree,
clude pion exchange with pseudovector coupling.

With the exception of some recent models based
baryonxPT @14–18#, NN models of the past three decad
include, in addition to the one-pion exchange, contributio
due to exchange of heavier mesons, whether explicitly, a
the various one-boson exchange~OBE! models@19–28#, or
implicitly, as resonantt-channel exchange of two pions, as
the dispersion-theoretic approaches@9,10#. Even within the
OBE models there is no single preferred approach. There
those models that are based on a Bethe-Salpeter@29# ap-
proach and in which the unitarizing equation is some thr
dimensional reduction of the Bethe-Salpeter equat
@22,30–32,25–27#, and there are those, including some
the various Bonn potentials@25,28,33#, that are based on
time-ordered perturbation theory~TOPT!. Our main interest
in this work is in TOPT, but we shall also examine diffe
ences between pseudoscalar and pseudovector couplin
both of these approaches. For that purpose we will utiliz
specific three-dimensional reduction of the Bethe-Salpe
equation known as the Thompson equation@31#.

In covariant perturbation theory one starts with a Loren
invariant Lagrangian density, from which one derives t
Hamiltonian density and, from that, the Hamiltonian. F
Lagrangians with scalar or pseudoscalar mesons without
rivative coupling, the interaction part of the Hamiltonia
density is just the negative of the interaction part of the L
grangian density. For Lagrangians with derivative coupli
or with vector mesons, however, noncovariant ‘‘contac
terms arise in the Hamiltonian density. These terms are n
essary to cancel the noncovariant terms in the meson pr
gators so that, in any order of perturbation theory, the res
ing amplitude is covariant@34#. From a procedural poin
of view, this means that in the Feynman rules one sim
drops the contact terms and the noncovariant parts of
propagators.
©2002 The American Physical Society06-1



or
nd
rd
g
s

on
a
it
r
so

on
e
as

he
on
s

eo
on
e,
of
e
ib
e

ng
s
ar
d,
e
p
o

th
a
us
w
a

s
ly
c

so
.

cl

ans,
he
B,

of
our

ng

ou-
ird
of

calar
lem

od-

tor
ed
son
tum

n-
in

n-
or-

d in
c-

de

ba
f

d in

G. CAIA et al. PHYSICAL REVIEW C 66, 044006 ~2002!
In TOPT, however, one does not use particle propagat
They are effectively supplied by the vertex functions a
energy denominators in the time-ordered diagrams. In o
to obtain covariant results in TOPT starting from a Lagran
ian density with derivative coupling, or with vector meson
one must include the contributions of the contact interacti
in the Hamiltonian in the appropriate order of the perturb
tion expansion. Therefore, for single pion exchange w
pseudovector coupling inNN scattering, i.e., in second orde
in the coupling constant, one must include not just the me
exchange diagrams, but also the four-pointNN contact inter-
action, as shown in Fig. 1, and similarly for vector mes
exchange. Only then will the result agree with covariant p
turbation theory when all external particles are on their m
shells.

The main focus of the work that follows is to compare t
results of inclusion of the full pseudovector-coupled pi
exchange with those of pseudoscalar coupling in one-bo
exchange models based on time-ordered perturbation th
This is not simply a moot point: the pion-nucleon interacti
used in Ref.@33#, although nominally of pseudovector typ
is in fact pseudoscalar, and thus has a very different
energy shell behavior from pseudovector coupling. Furth
more, contact terms in the vector meson exchange contr
tions, as well as gauge terms, which have heretofore b
ignored, will be retained.

We shall, in this work, restrict ourselves to examini
one-boson exchange models, since the contact term
higher orders of TOPT present additional difficulties that
not easily resolved. We will, as in all models of this kin
need to introduce cutoffs in order to ensure convergenc
the integral equations used to unitarize the scattering am
tude. We will also compare the results to those obtained fr
a reduced Bethe-Salpeter approach, in which the problem
contact terms does not arise.

In Sec. II we describe the models that we employ in
present study. In particular, we give the equations that
used for unitarizing the scattering amplitude and we disc
some specific aspects of the vertex form factors. Finally,
outline the strategy that was followed for fixing the free p
rameters of the models. Results for phase shifts as well a
the deuteron properties are presented in Sec. III. We ana
the consequences of pseudovector versus pseudoscalar
pling in TOPT as well as in a model based on the Thomp
equation and we also compare the different approaches
Sec. IV we summarize our results and draw some con

FIG. 1. Schematically, the three terms in time-ordered pertur
tion theory that may contribute toNN scattering in second order o
the coupling constant in a meson exchange model.
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sions. Technical details such as the underlying Lagrangi
and the potential matrix elements in TOPT and for t
Thompson equation, are summarized in Appendixes A,
and C.

II. MODELS

In order to make the comparison of different treatments
pseudoscalar meson exchange explicit we will focus on f
one-boson exchange models of theNN interaction. The first
model that we will consider is that of pseudovector coupli
of the pseudoscalar mesons,p andh, in TOPT. The second
will be the same with the exception that pseudoscalar c
pling of the pseudoscalar mesons will be used. For the th
and fourth models we make the same comparison
pseudovector and pseudoscalar coupling for the pseudos
mesons, but within a Bethe-Salpeter approach to the prob
using the Thompson equation@31# to unitarize the scattering
amplitude.

The roster of exchanged mesons in each of the four m
els is identical: pseudoscalar mesonsp and h, vector me-
sonsr andv, and scalar mesonss anda0. Contact terms as
well as gauge terms arising in the polarization sums in vec
meson exchange in TOPT will be retained. In the reduc
Bethe-Salpeter approach, gauge terms in the vector me
propagators will also be retained. The masses and quan
numbers of the mesons are given in Table I.

The interaction Lagrangian densities for all of the meso
baryon interactions in our model calculations are given
Appendix A, along with the corresponding Hamiltonian de
sities. The matrix elements of the corresponding second
der potentials for the TOPT-based models are presente
Appendix B. Shown schematically in Fig. 2 are the intera
tion and the kinematics for the potentialV in theNN center-
of-mass frame. For this we unitarize the scattering amplitu
through use of the Lippmann-Schwinger equation,

T5V1V
1

W2H01 i e
T ~1!

or, more precisely,

^pW 8l18l28uT~W!upW l1l2&

5^pW 8l18l28uV~W!upW ,l1l2&1 (
m1m2

E d 3q

W22Eq1 i e

3^pW 8l18l28uV~W!uqW m1m2&•^qW m1m2uT~W!upW l1l2&.

~2!

-

TABLE I. Quantum numbers and masses of the mesons use
the models in this work.

Meson I (JP) Mass~GeV!

p 1 (02) 0.138 03
h 0 (02) 0.5488
s 0 (01) 0.52
a0 1 (01) 0.983
r 1 (12) 0.769
v 0 (12) 0.7826
6-2
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HereW represents the total energy of theNN system.
The Thompson equation, which we use to unitarize

scattering amplitude in the other two models, is given by

^pW 8l18l28uT~W!upW l1l2&

5^pW 8l18l28uV~W!upW ,l1l2&1 (
m1m2

E d 3q

W22Eq1 i e

3^pW 8l18l28uV~W!uqW m1m2&•
mN

2

Eq
2 ^qW m1m2uT~W!upW l1l2&.

~3!

The simple prescription for obtaining the matrix elementsV
from the matrix elementsV(W) of Eq. ~2! is given in Ap-
pendix C. The relations between the standardNN phase pa-
rameters and the matrix elements ofT can be found in Ap-
pendix C.2 of Ref.@33#. We wish to point out here that thi
relation applies to both of the models employed, taking i
account the transformationT5(mN /Ep8)•T•(mN /Ep) for
the models based on the Thompson equation.

Except for the cutoff functionsF j (W,pW 8,pW ) that multiply
the field-theoretic meson exchange amplitudes in the po
tial matrix elementsV andV, the input to our model calcu
lations is completely specified. The cutoff functions, as
ready mentioned, are needed for the convergence of
scattering equation, but the form that one chooses is lar
arbitrary. One commonly used, especially in one-boson
change models, is the so-called ‘‘multipole’’ form,

F j~W,pW 8,pW !5F L j
22mj

2

L j
21~pW 82pW !2G nj

, ~4!

whereL j and nj are the free parameters andmj stands for
the meson mass. Part of the appeal of this particular cuto

FIG. 2. Kinematics for theNN potential in theNN center-of-
mass frame with total energyW. The fermion lines are labeled b
their three-momentum, energy, and helicity.
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that the connection between the range at which the cu
becomes effective for that meson potential is simply rela
to the cutoff parameter:Rj ,cutoff'Anj /L j . Considered as a
product of two mesonic form factors, this is then interpret
as, or assumed to be, a reflection of the effective size of
meson cloud in that part of theNN interaction.

In treating contact terms in the interaction, however, t
form immediately raises some difficulties. The first is th
through the dependence on the three-momentum transfe
the denominator, it introduces effects of the contact ter
into all angular momentum partial waves, whereas the c
tact terms alone, which are polynomials of low degree in
sine or cosine of the c.m. scattering angle, contribute only
a few of the lowest partial wave amplitudes. The cont
term arising from pseudovector pion coupling, for examp
contributes only tos andp waves. In adopting the multipole
form, one singles out the three-momentum transfer as
variable in which to cut off the potential, but there is n
compelling reason to do so, and good reason not to. Ind
in the effective field theoretic approach of Epelbaumet al.
@15#, a purelys-channel cutoff is used.

On the other hand, we wish to have the comparison p
sented in this work make some contact with models in
literature @24,25,33# that employt-channel cutoffs. Further-
more, we wish to apply the same cutoff to both the mes
exchange termsand the contact terms in order that one ter
not receive excessive weight from one kinematic region
the range of the loop integral as compared with the oth
This is a problem of long standing and we will not attempt
address it here. Rather, we will simply adoptad hocthe form

F j~W,pW 8,pW !5F L j
22mj

2

L j
21~pW 82pW !2G njS LN

4

LN
4 1~W2/42Ep

2!2D 2

3S LN
4

LN
4 1~W2/42Ep8

2
!2D 2

; ~5!

that is, we take the form of Eq.~4! and multiply it by a factor
LN

4 /@LN
4 1(W2/42Eq

2)2# for each nucleon line with momen

tum qW entering or leaving the interaction. In all cases exc
as noted in Table II below we takenj52.

This form provides the potential with botht- and
s-channel cutoffs. Although it does not remove the objecti
raised above, of mixing contact terms into higher part
waves, we shall mitigate that effect via the proviso that
parameterL j for meson terms whose interactions inclu
contact terms be chosen large enough so as to have n
gible effects in partial waves with orbital angular momentu
l>2, except for3D1 because of its coupling to3S1.

As there are free and nearly free parameters in the m
els, a simple comparison of theNN phase shifts produced b
the four models for a given set of parameters would not
our opinion, be a useful way to present the results of
investigation. Such a comparison might be seen to favor
model over another, which is not our intention.

Instead, for each of the four models, we perform a co
strained least-squares fit of the adjustable parameters to
NN phase shifts in the range of laboratory kinetic energ
6-3
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from 20 to 300 MeV taken from the energy independentNN
phase shift analysis SP40 of Ref.@35#. By ‘‘constrained’’ we
mean that the parameters that are allowed to vary, suc
coupling constants and cutoff masses, are restricted
range that is consistent with values used in the vari
meson-exchange models of theNN interaction in the litera-
ture. The results of these best fits will then be compared
detail. We will also, for the sake of completeness, mak
comparison of pseudovector and pseudoscalar couplin
the TOPT models with identical parameter sets.

Admittedly, this is not a rigorous procedure, but it reflec
better the intention of our work. We wish to examine wheth
the terms that, in principle, should be included in one-bo
exchange models based on TOPT but have heretofore
omitted require a major reworking of previous models, or
their effects can be compensated for by relatively small
justments in the parameters of the other models. There
we are not concerned with ‘‘high precision’’ fits of the mo
els to the phase shifts, but with qualitatively acceptable
of the magnitudes and energy dependencies of the m
results to the data, since further refinements of the mod
such as the inclusion of two-pion exchange or effects
baryon resonances@33#, would necessitate refitting of th
parameters and, presumably, result in quantitatively be
fits.

At this point we must inject a word of caution for th
reader. As our models have boths- and t-channel cutoffs to
regulate the integral equations, one should not expect
cutoff masses that we use, especially those for the mes
form factors, to agree well with those in the literature f
models using different cutoff schemes. The way that cuto
are implemented in any model is part of the model and t
has a large influence on the values of the model’s parame

Our procedure is first to select the parameters in the m
els that we wish to vary and then set the limits of variation
each of these parameter to values that we consider rea
able. For example thepN coupling constant,gp

2 /4p is fixed

TABLE II. Parameters for the TOPT models. The columns
beled PV and PS represent, respectively, the values for the m
with pseudovector and pseudoscalar coupling of thep andh me-
sons, as in the figures. Fixed parameters are shown in parenth
The values of searched parameters are determined by a l
squares fit to the SP40NN phase shift analysis of Ref.@35#. For
these modelsnp51 @see Eq.~5!#.

Coupling
constant PV PS Cutoff

PV
~GeV!

PS
~GeV!

gp
2 /4p ~13.8! ~13.8! Lp 2.50 1.80

gh
2/4p 2.15 2.00 Lh 1.00 1.21

gs
2/4p 6.4355 7.1572 Ls 10.00 9.80

ga0

2 /4p 0.8463 1.7915 La0
2.50 1.50

gr
2/4p 1.14 1.06 Lr 1.45 1.73

f r /gr 5.12 4.40
gv

2 /4p 17.40 22.20 Lv 1.41 1.35
f v /gv ~0! ~0!

LN
a ~0.7! ~0.7!

aSee Sec. II, Eq.~5! for the use ofLN .
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at 13.8, whereas thehN coupling constant,gh
2/4p, since it is

less well known, is allowed to vary from 0 to 6. Cuto
massesL j are allowed a fairly large range, but are requir
to be greater than 1 GeV. The meson masses are fixed a
values given in Table I. For the nucleonic cutoff mass,LN ,
we explored a range of values and found that good fits w
all the models could be obtained forLN between 600 and
900 MeV. For values below 600 MeV the potential was t
strongly suppressed and for values above 1 GeV the cu
had almost no effect. We therefore fixed the value ofLN at
700 MeV in all the models. With this choice the contrib
tions to the scattering amplitude at low c.m. energies fr
intermediate states with energies above the pion produc
threshold are strongly suppressed.~We should remark here
that this value ofLN is of the same order of magnitude as t
s-channel cutoff employed by Epelbaumet al. @15# in their
effective field-theoretic approach.! We then perform a leas
squares search on the variable parameters.

III. RESULTS

The parameters for our four models are shown in Table
where we give the complete set of coupling constants
cutoff masses for the TOPT models, and in Table III, whe
we show them for the models based on the Thompson e
tion @31#. The phase shifts predicted by the various mod
we have considered are shown in Fig. 3, where we pre
the results for the TOPT models, and in Fig. 4, where
present them for the Thompson equation models and,
purposes of comparison, also for the TOPT model w
pseudovector coupling. Phase shifts are shown for pa
waves only up toJ53, omitting e3, since the differences
between the phase shifts calculated with the various mo
are almost imperceptible in the omitted phase shifts. Si
the pion coupling is the same in all models, it is clear that
higher partial waves in the energy regime considered
practically identical. The deuteron properties calculated fr
the models are given in Table IV.

As our primary interest is in the differences due to alt

el

es.
st-

TABLE III. Parameters for the Thompson equation models. T
columns labeled TPV and TPS represent, respectively, the va
for the model with pseudovector and pseudoscalar coupling of
p andh mesons, as in the figures. Fixed parameters are show
parentheses. The values of searched parameters are determine
least-squares fit to the SP40NN phase shift analysis of Ref.@35#.

Coupling
constant TPV TPS Cutoff

TPV
~GeV!

TPS
~GeV!

gp
2 /4p ~13.8! ~13.8! Lp 2.00 1.80

gh
2/4p 4.22 5.00 Lh 1.00 1.00

gs
2/4p 6.8822 7.2057 Ls 10.00 10.00

ga0

2 /4p 5.1165 5.0071 La0
2.50 1.50

gr
2/4p 0.800 0.800 Lr 1.34 1.31

f r /gr 6.89 6.89
gv

2 /4p 25.00 25.00 Lv 1.245 1.260
f v /gv ~0! ~0!

LN ~0.7! ~0.7!
6-4
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FIG. 3. Phase shifts for TOPT models. The curves labeled PV are the results of the best fit for the model with pseudovector co
the p and theh; those labeled PS are the best fit for pseudoscalar coupling. The curves labeled PS0 are the results of using the
set of PV but with pseudoscalar coupling. Parameters for the models are given in Table II. The triangles represent the phase shi
by the Nijmegen Group at selected energies@36#, and the open circles stand for the energy independent analysis SP40 from the CNS
Services SAID@35#.
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native couplings of the pseudoscalar mesons, we shall
examine the results for the TOPT models. We shall then t
our attention to the results of Thompson equation mod
Afterwards, we shall briefly compare the results of the mo
els in the two approaches.

A. TOPT models

The two ‘‘best fit’’ TOPT models—curves PV and PS
Fig. 3—both give reasonably good descriptions of the ph
shift data. Where there are discernible differences, it is d
cult to form a consistent picture of the effects of the tw
alternative couplings that cannot be compensated by r
tively small adjustments in the cutoffs or in the couplin
constants of the other mesons. As mentioned before, the
coupling constant is the same in all models. In order to de
04400
st
rn
s.
-

e
-

a-

on
-

onstrate the difference of the two coupling schemes a
arises when there is no readjustment of the other meson
rameters, Fig. 3 includes the results of a calculation, labe
PS0, in which the only difference from model PV is th
change of the coupling of thep and h mesons from
pseudovector to pseudoscalar. A comparison of the resul
PV with PS0 shows that, even with no readjustments of
cutoffs or coupling constants of the other mesons, the dif
ences between pseudovector and pseudoscalar couplin
p andh is quite small, especially at low energy.

There is, however, one glaring exception to this gener
zation: the predictions for coupled channels3S1–3D1 and
the mixing parametere1. This parameter, as calculated fro
PS0 is, almost double the value from PV—and the data
throughout the energy range shown, thus indicating that
tensor forces resulting from the two coupling schemes
6-5
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FIG. 4. Phase shifts for Thompson equation models. The curves labeled TPV are the results of the best fit for the model with ps
tor coupling of thep and theh; those labeled TPS are the best fit for pseudoscalar coupling. Included for purposes of comparison
results of the best fit of the TOPT model with pseudovector coupling~curves labeled PV!. Parameters for the models are given in Table
The error bars are the same as in Fig. 3.
ed
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r
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cut-
rather different. Confirmation of this conclusion is provid
by an examination of the singlet and triplet phase shifts:
the 1S0 and 1D2 the results of models PV and PS0 are
most identical, whereas in3S1, and in 3D1 at higher energy,
there are small—but noticeable—differences between the
sults for the two models. As the only difference between
04400
n
-

e-
e

two models is in the change from pseudovector to pseu
scalar coupling of thep andh, the effect must be due pri
marily to a change in the tensor—as opposed to the s
spin—component of the one-pion exchange interaction.

Indeed, it is the need to describee1 more accurately tha
largely drives the changes in the coupling constants and
TABLE IV. Deuteron properties calculated with the four models considered.

Quantity Experiment PV PS TPV TPS

2Ed @MeV# 2.245 75~9! @37# 2.224 47 2.224 46 2.224 66 2.224 54
PD @%# 3.8 3.4 4.4 3.9
Qd@ fm2#a 0.2859~3! @38,39# 0.2784 0.2779 0.2765 0.2754
AS @ fm21/2# 0.8846~9! @38,40# 0.9117 0.9119 0.8974 0.8950
AD /AS 0.0256~4! @41# 0.0255 0.0260 0.0252 0.0257

aTheoretical values do not include meson exchange current contributions.
6-6
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offs in model PS from model PV. With very few exception
the results of PS0 are closer than those of PS to the resu
PV. The exceptions, as one might expect from their conn
tion with e1, are the phase shifts3S1 and 3D1, to whiche1
is coupled.

The main features of the difference between models
and PS0 can be seen in Fig. 5, where we show the pote
for the 3S1–3D1 transition for each model as implemented
our approach, for a c.m. momentum of 265 MeV. For n
on-shell values of the half-shell momentum the two pot
tials are nearly the same. As the half-shell momentum g
further from the on-shell point, the difference between
and PS0 grows larger until, at sufficiently high momenta,
form factors assert their effect, suppressing the difference
both potentials approach zero.

Comparing the coupling constants and cutoffs of PV a
PS, one sees that theh is essentially unchanged. Ther cou-
pling in PS is slightly smaller, but that is partially offset by
cutoff mass that is slightly larger. The greatest differen
between the parameters in the two models are in thes and
v. The v coupling in PS is about 25% larger than in P
although its cutoff mass is smaller, which tends to comp
sate for the increased repulsive strength at short dista
The increase in thes coupling is necessary, apparently,
provide attraction at intermediate range to counter the gre
repulsion due to thev.

While the picture is not entirely clear, the competitio
between increased attraction due to the largers contribution
at intermediate range and increased repulsion at short r
due to the largerv contribution appears evident. In the mid
peripheral uncoupled phases where differences can be
served, i.e.,1D2 and 3D2, PS is slightly more repulsive tha
PV, while in the more peripheral phase shift1F3, the reverse
is true. For higher partial waves, which are not shown in
figures, the phases are almost entirely given by the on-s
pion exchange term, but the effect is, as one would exp
the same as in1F3, although the differences are so small
to be invisible on graphs.

B. Thompson equation models

The phase shift fits for the two models that employ t
Thompson equation are shown in Fig. 4, along with the
sults for the TOPT-based model PV discussed in the prev
section. The curves labeled TPV show the results for

FIG. 5. The 3S1–3D1 transition potential,VS2D for the
TOPT models PV ~pv coupling! and PS0 ~ps coupling!,
with q85265 MeV. The dot in the figure indicates the on-sh
point, q5q8.
04400
of
c-

V
ial

r
-
ts

e
as

d

s

-
e.

er

ge

b-

e
ell
t,

-
us
e

model with pseudovector coupling of thep and h mesons,
while those labeled TPS show the results for the model w
pseudoscalar coupling of thep andh mesons. Both TPV and
TPS are best-fit results in the restricted sense discusse
Sec. II, in which bounds are placed on the range of the
justable parameters.

As in the case of the TOPT models, the phase param
that shows the most striking difference between pseudov
tor and pseudoscalar coupling is the mixing parametere1.
Using the models with the Thompson equation with the c
offs implemented as we have described, it is impossible
achieve a satisfactory description ofe1 while simultaneously
keeping the coupling constants within reasonable bou
when pseudoscalar coupling is used for thep andh mesons.

Apart from e1, the only other phase shifts that reveal a
noticeable difference between pseudovector and pse
scalar coupling in the Thompson equations models are1P1 ,
e2, and 3D3, and even there the differences are rather sm
For the most part, the two Thompson equation results
closer to each other than either is to PV or to PS. This re
is not surprising, since most of the parameters in TPV a
TPS are the same, which reflects the fact that they are a
limits of their permitted ranges. An interesting result is th
the t-channel cutoff of thes meson Ls is extremely
large—10 GeV, which is effectively infinite. This sugges
that thes-channel cutoff has a very powerful effect in th
Thompson equation models, and the large value ofLs re-
flects an effort of the fitting program to increase the attract
effect of the s exchange contribution to counter the in
creased strength of thev contribution. Indeed, with very few
exceptions, both of the Thompson models are more repul
than PV, as one might expect from the large value ofgv

2 .
A slightly different view of the models that we have co

sidered is provided by the deuteron parameters compile
Table IV, which shows some small—but consistent— diffe
ences between them. All four models are adjusted to fit
deuteron binding energy very accurately. Both TOPT mod
give a very good value of the quadrupole moment with
relatively low d-state probability, which is characteristic o
TOPT models, although the tendency of the Thompson m
els to have relatively larged-state probability is mitigated
here, presumably because of the strongs-channel cutoff that
was not present in earlier work@25#. In both the TOPT and
Thompson equation models, pseudoscalar coupling resul
a lowerd-state probability than pseudovector coupling. T
value of PD is consistently 0.4–0.5% higher wit
pseudovector coupling than with pseudoscalar coup
within the same approach, as long as the deuteron bindin
energy is fit to its experimental value and the coupling co
stants are within their allowed ranges. For example, mo
PS0, aftergs

2 is readjusted to give the correct deuteron bin
ing energy, yields almost exactly the samePD as model PS.
The asymptotics wave,AS , is somewhat high for the TOPT
models, although the asymptoticd-to-s ratio, AD /AS , is ac-
ceptable. As expected, thed-state probability of the Thomp
son models is larger than in the corresponding TOPT mod
resulting in a lower value ofAS . The value ofAD /AS , how-
ever, is not very different among the four models, whi
6-7
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probably explains the smaller quadrupole moments for
Thompson equation models: the slightly greaterd-state prob-
ability in the Thompson equation deuteron wave function
not sufficient to counter the slightly more compact struct
of the deuteron that the Thompson equation produces.

IV. SUMMARY AND CONCLUSIONS

It is clearly impossible to draw any general conclusio
concerning the effects of pseudoscalar as opposed
pseudovector coupling of pseudoscalar mesons in theNN
system. Any statements that we make are necessarily q
fied by their model dependence. It is nevertheless usefu
summarize our approach and findings and to note, if p
sible, any tendencies within the limited context of the mod
that we have investigated.

In the first place, we wished to treat pseudovector c
pling properly in the TOPT approach, using the Lippman
Schwinger equation to generate unitary scattering amplitu
from the one-meson exchange amplitudes, and to compa
with pseudoscalar coupling. The presence of contact term
the pseudoscalar meson exchange terms, as well as in
vector meson exchange terms with tensor coupling, led u
introduce nucleonic—i.e.,s-channel—form factors in addi
tion to thet-channel form factors that are usually employ
in meson exchange models of theNN interaction.

For the purpose of comparison with a different approa
we examined the difference between the two coupl
schemes in the context of a model based on a partic
version of three-dimensional reduction of the Bethe-Salp
equation, the Thompson equation. In this approach the
ergy denominators and the off-shell continuations of the m
son exchange amplitudes differ from those of TOPT. In p
ticular, no contact terms appear. In order to keep
comparison as close as possible, we chose similar form
tors to those in the TOPT-based models that we studied

Within each model we made a restricted best fit to theNN
data, allowing meson coupling constants and form factor
vary within broad limits chosen with regard to values
these parameters found in earlier works. We also exam
the effect of simply changing the pseudovector coupling
the p andh to pseudoscalar, within the TOPT approach.

Not surprisingly, perhaps, most of the differences in
scattering and bound state properties calculated with
various models were quite small, which probably reflects
fact that the cutoffs were strong enough to strongly supp
differences in the off-shell behavior of the two couplin
schemes. The most dramatic difference in the TOPT mo
appeared in the mixing parametere1 when the simple chang
of pseudovector to pseudoscalar coupling was made.
should not be surprising, since the effect of the contact te
is limited to s andp waves and states coupled to them. T
diagonal pion exchange amplitude is rather weak so that
in the relatively small mixing parametere1, which is domi-
nated byp andr exchange, that changes in the short-ran
behavior of the tensor force is most strongly felt. Inde
most of the differences between the ‘‘best fit’’ pseudovec
and pseudoscalar models was due to the readjustment o
rameters in the latter needed to produce a better fit toe1.
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The same effect was observed in the Thompson equa
models, with the largest relative difference between
pseudovector and pseudoscalar coupling versions remai
after refitting coupling constants appearing ine1. Other dif-
ferences between the two Thompson equation models w
very small, owing in large part to the fact that several of t
adjustable parameters were at the limits of their permit
ranges in both cases.

Differences in the deuteron parameters among the mo
were similarly quite small, with only the slight tendencies
d-state probability, quadrupole moment and asympto
s-state predictions noted previously.

The motivation of this study was to see whether, with
very restricted set of models, one type of coupling of t
pseudoscalar mesons would be able better to reproduceNN
scattering data than the other. Within the TOPT approach
might claim that, on the whole, pseudovector coupling yie
a slightly better description of the data than pseudoscalar,
not in every partial wave. Within the Thompson models, t
differences between pseudovector and pseudoscalar cou
are still smaller. Between the TOPT and Thompson mo
predictions there is no clear best. We must conclude th
fore that the results obtained forNN scattering with the mod-
els considered in this work present no compelling evide
that one form of coupling of the pseudoscalar mesons
nucleons is favored over the other.
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APPENDIX A: INTERACTION LAGRANGIANS
AND HAMILTONIANS

We present here, for the purpose of completeness,
interaction Lagrangian densities and the corresponding in
action Hamiltonian densities for the various meson-nucle
interactions used in this work.

1. Scalar meson

LI ,s52gsc̄cfs , ~A1!

HI ,s52LI ,s . ~A2!

2. Pseudoscalar meson, pseudoscalar coupling

LI ,pps52 igpc̄g5cfp , ~A3!

HI ,pps52LI ,pps. ~A4!

3. Pseudoscalar meson, pseudovector coupling

LI ,ppv52
gp

2mN
c̄g5gmc]mfp , ~A5!

HI ,ppv52LI ,ppv1
1

2

gp
2

4mN
2 ~ c̄g5g0c!2. ~A6!
6-8
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4. Vector meson

Here we take for the free meson Lagrangian the form

L0,v52
1

4
FmnFmn1

1

2
mv

2AmAm, ~A7!

whereFmn[]mAn2]nAm . We then have

LI ,v52gvc̄gmcAm2
f v

4mN
c̄smncFmn , ~A8!

HI ,v52LI ,v1
gv

2

2mv
2 ~ c̄g0c!21

1

2

f v
2

4mN
2 ~ c̄s i0c!2, ~A9!

wheresmn[( i /2)@gm,gn#2 . We use the Bjorken-Drell con
ventions, summing on repeated indices and using the L
letter i to denote spatial indices 1•••3. Isotopic spin notation
has been suppressed.

While it is simple to work out the relation between th
Hamiltonian density and the Lagrangian density for no
derivative couplings, i.e., for scalar mesons with scalar c
pling and pseudoscalar mesons with pseudoscalar coup
the procedure for other couplings requires some care.
example, in the case of pseudoscalar mesons w
pseudovector coupling, the canonical momentum den
p(x) is given by

p~x!5
]L

]~]f/]t !
5

]f

]t
2 j 5

0 , ~A10!

where

j 5
m5

gp

2mN
c̄g5gmc, ~A11!

which arises fromLI . The relation betweenH andL,

H5S ]f

]t Dp~x!2L, ~A12!

yields

H5
1

2
p~x!21

1

2
@¹W f~x!2#1

1

2
mp

2 f~x!22 jW5~x!•¹W f~x!

1 j 5
0p~x!1

1

2
@ j 5

0~x!#21nucleon kinetic terms

5H01HI , ~A13!

with

HI5 j 5
0~x!p~x!2 jW5~x!•¹W f~x!1

1

2
@ j 5

0~x!#2. ~A14!

To complete the transformation, one identifiesp(x) with
]0f5]f/]t in the interaction picture.

Proceeding in a similar manner for thevectormesons, one
encounters the complication of having four canonical m
mentum densities,pm(x) with p0(x)50. One must then use
04400
in
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the Euler-Lagrange equations to obtain a constraint onA0 in
order to reduce the number of degrees of freedom inAm from
4 to 3. Identification ofA0 in the interaction picture with

2(1/2mv
2)¹W •pW completes the transformation and gives t

result above. For a detailed derivation of the interact
Hamiltonian densities from Lagrangian densities see, e
pp. 318–323 of Ref.@34#.

APPENDIX B: MATRIX ELEMENTS OF THE POTENTIAL

We show here the potential matrix elements in tim
ordered perturbation theory to second order in the mes
nucleon coupling constants derived from the Hamiltonians
Appendix A. The field-theoretic matrix element for the co
tribution of meson j is multiplied by a cutoff function
F j (W,pW 8,pW ), as described in Sec. II.

We use the helicity basis in the two-nucleon center-
mass~c.m.! frame. The total c.m energy of the system isW,
the momenta of the ingoing and outgoing nucleons are (pW ,
2pW ) and (pW 8, 2pW 8) with corresponding energiesEp and
Ep8 and helicitiesl1 , l2 and l18 , l28 , with l56 1

2 . The
energy transfer in the interaction isd5Ep82Ep , the three-

momentum transfer in the interaction iskW5pW 2pW 8 and the

energy of the exchanged meson of typej is vk
j 5AkW21mj

2.
The energy denominator for the meson exchange term
given byD j[W2Ep2Ep82vk

j .

1. Scalar meson

Vs
(2)5

gs
2

~2p!3
I 12

1

vk
sDs

$@1#1@1#2%Fs~W,pW 8,pW !. ~B1!

2. Pseudoscalar meson, pseudoscalar coupling

Vp(ps)
(2) 52

gp
2

~2p!3
I 12

1

vk
pDs

$@g5#1@g5#2%Fp(ps)~W,pW 8,pW !.

~B2!

3. Pseudoscalar meson, pseudovector coupling

Vp(pv)
(2) 5

gp
2

~2p!3
I 12H 1

vk
pDp S 2@g5#1@g5#2

2
d

2mN
~@g5g0#1@g5#21@g5#1@g5g0#2!

1
~vk

p!22d2

4mN
2 @g5g0#1@g5g0#2D

1
1

4mN
2 @g5g0#1@g5g0#2J Fp(pv)~W,pW 8,pW !. ~B3!
6-9
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4. Vector meson

Vv
(2)5

gv
2

~2p!3
I 12H 1

vk
vDv S 2gmn@gm#1@gn#21

~vk
v!22d2

mv
2 @g0#1@g0#2D 1

1

mv
2 @g0#1@g0#2J Fv~W,pW 8,pW !1

f v
2

~2p!34mN
2

I 12

3H 1

vk
vDv

~gmn@sam~p182p1!a#1@sbn~p282p2!b#21d$@s0i #1@sb i~p282p2!b#21@sa i~p182p1!a#2@s0i #2%

1@~vk
v!22d2#@s0i #1@s0i #2!1@s0i #1@s0i #2J Fv~W,pW 8,pW !1

gv f v

~2p!32mN

I 12

1

vk
vDv

$gmn$@gm#1@san~p282p2!a#2

1@sam~p182p1!a#1@gn#2%1d~@g i #1@s0i #21@s0i #1@g i #2!%Fv~W,pW 8,pW !. ~B4!
ss

ra

in
e

el
o

h

he
s of

on
vec-

on.
In the expressions above we have used the compre
notation

Vj
(2)[^pW 8l18l28uVj

(2)~W!upW l1l2& ~B5!

and

@A#1@B#2[@ ū~pW 8,l18!Au~pW ,l1!#@ ū~2pW 8,l28!Bu~2pW ,l2!#
~B6!

for the matrix elements of the potential.
The isospin factorI 12 is 1 or t̃1• t̃2 as the isospin of the

meson concerned is 0 or 1. The normalization of the Di
spinors is

u†~pW ,l!u~pW ,l!51, ~B7!

and the four-vectorsp1 and p2 are (Ep ,pW ) and (Ep ,2pW ),
respectively, and similarly for the primed quantities.

We have written the matrix elements in a way to dist
guish clearly the meson exchange terms, which contain
ergy denominatorsD j5W2Ep82Ep2vk

j , from the contact
terms, which do not. The equivalence of the fully on-sh
one-pion exchange with pseudovector coupling with that
the one with pseudoscalar coupling is then evident. In t
caseEp5Ep85W/2, Dp52vk

p and d50. The term con-
taining (vk

p)2 is exactly canceled by the contact term.
re

P.

.
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APPENDIX C: THE THOMPSON EQUATION

Matrix elements for the potential to be used in t
Thompson equation can easily be found using the result
Appendix B by applying the following prescription:

~i! Change the nucleon spinor normalization to

ū~pW ,l!u~pW ,l!51. ~C1!

~ii ! For each meson contributionVj
(2) , replace the energy

denominatorvk
j D j according to

vk
j D j→2~vk

j !252~pW 82pW !22mj
2 . ~C2!

~iii ! Drop all contact terms.
This prescription is equivalent to using in the one-bos

exchange amplitude in the Thompson equation the usual
tor meson propagator,

Dmn~k!5 i

2gmn1
kmkn

mv
2

k22mv
2

, ~C3!

wherek is the four-momentum transfer carried by the mes
As used in the Thompson equation,k has only spatial com-
ponents in the c.m. frame of the two nucleons.
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