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Spin observables in nucleon-deuteron scattering and three-nucleon forces
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Three-nucleon forces, which compose an up-to-date subject in few-nucleon systems, provide a good account
of the triton binding energy and the cross section minimum in proton-deuteron elastic scattering. However,
three-nucleon forces do not explain spin observables such as the nucleon and deuteron analyzing powers,
suggesting serious defects in their spin dependence. We study the spin structure of nucleon-deuteron elastic
amplitudes by decomposing them into spin-space tensors and examine effects of three-nucleon forces to each
component of the amplitudes obtained by solving the Faddeev equation. Assuming that the spin-scalar ampli-
tudes dominate the others, we derive simple expressions for spin observables in the nucleon-deuteron elastic
scattering. The expressions suggest that a particular combination of spin observables in the scattering provides
direct information on scalar, vector, or tensor component of the three-nucleon forces. These effects are nu-
merically investigated by the Faddeev calculation.
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[. INTRODUCTION beams and targets by the use of the optical theorem. By
In the last decade, a lot of investigations have been dedecomposing the forward amplitudes according to their spin-
voted to nucleon-deuterom¢d) elastic scattering to provide space properties and examining the contributions of spin-
valuable information on nuclear interactions such as an evidependent interactions to the components, we have suc-
dence of a three-nucleon for¢8NF) [1-16]. In these stud- ceeded in clarifying spin-dependent effects of the 3NF on
ies, serious discrepancies between theoretical predictionsombinations of the total cross sections. Being encouraged
with conventional models of two-nucleon for¢8NF) and by such success, we will here develop the previous work to
corresponding experimental data were found for some scathe case oN-d spin observables at finite scattering angles.
tering observables in addition to the well known underbind-As in Ref.[20], we will examine the contribution of a par-
ing problem of the three-nucleon K§ bound states. An ex- ticular spin-dependent interaction on the observables by tag-
ample of the discrepancies is that calculated nucleon anging ranks of related spin-space tensors on the scattering
deuteron vector analyzing powers are considerably smallesmplitude as described below, and then will study which
than those measured in a low-energy region, €8y observable characterizes the effect of the particular spin-
=20 MeV|[2,3,9,11,13,16-18Another example of the dis- dependent interaction.
crepancies is observed in the proton-deuterprd) elastic For the tagging, we will decompose scattering amplitudes
cross sections around the minima of angular distributionsaccording to the tensorial property in the spin space. In such
where the 2NF calculations underestimate the cross sectiaecomposition, where we obtain scalar amplitude, vector
systematically, when compared to the measured ones at imne, second-rank tensor one, and so on, each component
termediate energieE,=60—150 MeV [4,7,12. The latter  specified by the tensor rank will describe the scattering by
discrepancy has been solved by introducing a two-pion exeorresponding interactions: the scalar component will de-
change three-nucleon force £E-3NF) with a cutoff param-  scribe the scattering by central interactions, the vector one
eter adjusted so as to reproduce the empirical binding energyie scattering by spin vector interactions such as spin-orbit
of the triton[19]. However, the introduction of the 3NF pro- ones, and the second-rank tensor one the scattering by tensor
vides only a small effect on the former discrepancy, or someinteractions. In the following section, such decomposition
times gives rise to worse agreements with experimental datef the scattering amplitude is performed in a model-
on some spin observablgs-8,10,12,1% We are, therefore, independent way by the invariant amplitude methad.
still far from the final understanding of nuclear interactions When the observables are described in terms of such de-
in the 3N system. composed amplitudes, one will be able to identify the con-
Since the difficulties are concerned with the spin observiribution of the particular spin-dependent interaction by the
ables, detailed investigations on the contribution of spin-help of the associated tensor rank. However, full expressions
dependent interactions in the observables will be required foof the observables in terms of the decomposed scattering
improving the relevant interactions. Previoug®p], we have  amplitudes are rather complicated. In Sec. Ill, we will show
analyzed the imaginary parts of neutron-deutenosd) for-  that the central interaction will dominate the scattering at low
ward scattering amplitudes, which are transformed into comenergies. Then the observables are described rather simply in
binations of total cross sections for polarized or unpolarizecan approximation neglecting second order terms of the vec-
tor and tensor amplitudes in the expressions. This approxi-
mation gives a clear insight into the role of each component
*Email address: ishikawa@i.hosei.ac.jp of the interaction and one can obtain the information on the
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observables, which characterize the contribution of the comwheres is the spin of the related particlk, (k;) is the N-d
ponent. Utilizing the results, typical observables such as theelative momentum in the initial(final) state, C;,({2)
vector and tensor analyzing powers and spin correlation CO=[47/(21+1)1¥2Y,,(Q), and K=K for even K and K
efficients are fully analyzed by the Faddeev calculations in-k +1 for odd K. The amplitudeF (s;s;K1;) is called the
Sec. IV. In the analyses, investigations are particularly fojnyariant amplitude due to the invariance under rotations of
cused on the contributions of 3NFs to the observables, whickhe coordinate axes and is a function of the center of mass
include various spin effects and are decomposed into scal%rnergy and the scattering angle In Eq. (3), while the geo-
gffects, vector ones, a_nd tensor ones. T_he incident energy jsetrical part of the matrix element & __ . is described by
fixed to Ey=3 MeV, since at low energies below the deu- the Clebsch-Gordan coefficients using the Wigner-Eckart

teron breakup threshold, the Coulomb interaction can b ; C
treated exactly in the Faddeev calculat{@2)]. Theorem and  that OfRk. Is represented by[C,(ki)

Matrix elements of a scattering matrix in terms of the ~ ®Cj (ki)]%, their physical parts are included F(s;s¢Kl;),
invariant amplitudes are given in Appendix A, and formulaswhich represents the scattering by spin-space scalar interac-
of polarization transfer coefficients in the approximation aretions for K=0, the one by vector interaction fé¢=1, and
given in Appendix B for the convenience of applications of so on.

the theory. For theN-d scattering, in whichs, ands; are: or 2, K
takes 0, 1, 2, and 3. For the components of the amplitude in
Il. T MATRIX AND TRANSITION AMPLITUDES Eq. (3), we will denote the scalar amplitude& € 0), the

vector ones K=1), the tensor oneK(=2), and the third-
Let us describe a scatterifgmatrix M for the N-d scat-  rank tensor onesk(=3) as follows:
tering by specifying the elements by theomponent of the
deuteron spirvy and that of the nucleon spiny as

A B C D E F
G H I J K L 33
M N O P Q R U3EF<§EOO>' @
M“Il'R 0 P 0 N -Mm[| @
R R 11
Lok =3 1 H -G Slz[cl<ki)®cl(kf>]}F(§ 511),
-F E D -C -B A
where the row and column are designated by={1,v\ S,=[C,(k)®Cy(k¢)]}F §311
1 - _ 1 - _1 - R 1UR 1\Rf) 11 22 ’
_2)! (Vd_l!VN_ 2)1 (Vd_OIVN_Z)! (Vd_O!VN_ 2)1
(v¢g=—1wvy=13), (vg=—1py=—3) from left to right for
the initial state and from top to bottom for the final state. B . < (33
These matrix elements will explicitly be described by scat- S3:[C1(ki)®cl(kf)]l':(§§ll '
tering amplitudes that have a particular tensorial property in
the spin space. For that purpose, we will decompdsby . . 13
spin-space tensoiS;,, whereK and « are the rank of the S4E[C1(ki)®Cl(kf)]}F<§ 511), (5)

tensor and itz component,

_ ec korel S L
M= M, M= (-)'S Ree. @) Tu() =23 [C, (k)@ Cy (k)1ZF| 5 5211,
K K i
Here, Rk, is the counter part, a tensor in the coordinate B A - 13
space. Bsing Eq2), matrix elements oMy are given[21] TZ(K)Z; [Cli(ki)®clf(kf)]i':(§ §2|i)’
by
- _ A . (33
(vivg: ki Myl vnvaki) Ta(x)=2 [C (k)@ Ci (kn TTF| 5 521,
:;Sf (SnSanval Sivi) (SnSavnvgl Sive) (—) %7 (k=0.1,2). ©)
. 33
X (S i K C,. Ri = I I 3 = DA,
(sistvi— vyl K)li:%_K[ 1, (ki) V(k) }lj [c,i(k,)®c,f(kf)]KF(2 23I,)
©C —ic-1, (k) IKF(sisiKl), ) (k=1,2,3). @
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Here,U; andS; describe the scattering in the spin doublet
state §=s;=3), Uz, S3, T3(k), andV(«) describe those

in the spin quartet states,=s;=3), andS,, S;, T,(x), and
T»(x) describe the doublet-quartet nondiagonal transitions.
The time reversal theorem gives one relation,

84:_821 (8)

for the vector amplitudes, four relations between the nine
tensor amplitudes, and one relation between the three third-
rank tensor amplitudes, although latter five relations are not
used explicitly. These relations are equivalent to those given
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for d+3He scattering in Refl23].

The matrix element4,, ... R are described in terms of
the amplitudesU., ... ,V(3), whose explicit expressions
are given in Appendix A. Solving Eq$A1)—(A18) in Ap-
pendix A inversely, we get the amplitudés, ... ,V(3) in
terms ofA, ... R as follows:

22 2 2 2
= \/—H——I——N+£O,
3 3 33

1.2 2 2
U3=A+§H+?|+?N+§O,

sl=§(ﬁJ—2K—P+ V2Q), (9)
S,=- %(3&6—3M+2J+ V2K—2P-Q),

1
S;=——(3B+3,2C—3G—32M

3./10

+2\23+ 2K+ 4P+242Q),

Sy=— %(3\/58—3C+J— V2K +2P-2Q), (10

2 22 2 2
T1(0)=—§H—T|+?N+§O,

2 2 2y2 2
T2(0)=§H—£I+T\/—N—§O,

2 2 2
TH(0)=A— H— £| —\/—_N——O,

37 3 3 3 )

1
T1(1>=—m<ﬁG—M—2J—ﬁK+ V2P+Q),

To1)= (3B~ C3+ 3K~ 2P +2Q),

&

T3(1)=—%(B+\/§C+G+\/§M), (12)
Ti(2)=— * V2L-R)
l( - \/§( y
Ty(2)= — (D~ |2E)
2 - \/§ y
T3(2)=%(\/§D+E+L+ J2R), (13
V(1)= %(BJF J2C-G—\2M—2J-K—-2P—2Q),
V(2)= %(H J2R—\2D-E),
V(3)=F. (14)

Intrinsic third-rank tensor interactions are unknown and
possible third-rank tensor amplitudes may arise from higher
orders of the vector and tensor interactions, which is sup-
posed to have small contributions to the scattering. Then the
third-rank tensor amplitudes will be neglected in later appli-
cations for simplicity.

When effective interactions are introduced bilal two-
body model, one can directly relate the amplitude,
Ti(«x=0,1,2), andS; to the components of the model inter-
actions, i.e., central ones, tensor ones, and spin-orbit ones.
The example of the relation is given in R¢R0]. Then the
analyses in the following sections can be represented in
terms of such effective interactions when necessary.

I1l. ANALYSES OF INVARIANT AMPLITUDES

In the present work, we have calculated the scattering
amplitudes by solving the Faddeev equation in the coordi-
nate spacg24] with the Argonne \jg model(AvV18) [25] for
the input 2NF. The Coulomb interaction is included for the
p-d scattering by the method described in R@2]. The 3N
partial wave states for which the 2NF acts are restricted to
those with total two-nucleon angular momenta up to 2, and
the total N angular momentum is truncated at 19/2. The
accuracy of our calculations is examined by the comparison
with variational calculations for the AV18 2NF with the pair
correlated hyperspherical harmonics bg€§], whose re-
sults of the AV14 2NH27] are considered as benchmarks for
the n-d scattering[28] and thep-d scattering[29]. The
agreement of the phase-shift parameters by both methods are
found within a few percent deviation for all of thirty phase-
shift parameters up to the 5/tate[22].

Calculated binding energy of the triton for the AV18 is
7.51 MeV, which is small compared to the empirical value of
8.48 MeV. An additional contribution of the 72E-3NF is
investigated by using the Brazil modéBR) [30], which
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gives 8.44 MeV for the triton binding energy in combination transition amplitudeS,. The magnitude o5, is larger than

with AV18 (AV18+BR). Furthermore, we introduce two that ofS;. They have similar shapes in the angular distribu-

kinds of phenomenological models of the 3NF. One is for thetion which have maxima aroun@=90°. The absolute

study of the role of the central force part of the BR-3NF, squares of the tensor amplitudds,(0), T,(0), andT5(0)

which is simulated by a Gaussian ty@S) [14] as show similar angular dependence in a global sense. Other

C2 e tensor ampli'gude_s also have common Characteristics in the
Vesar=VE Ek exp{— i) _(ﬁ) ] (15) angular distributions forx=1 and k=2, respectively, al-
i#]#

re re though in less grades than fe=0. These properties of the
vector and tensor amplitudes reflect the specific characters of
Values of the parameters, which are determined so as to rghe 9 dependent factors in Eq5) and (6), since thed de-
produce the empirical triton binding energy of 8.48 MeV in pendence of (s;s¢Kl;) is weak at the present incident en-
combination with AV18(AV18+GS), arerg=1.0 fm and ergy.
VS= —45 MeV. The other model of 3NF is the spin-orbit  The contributions of the 3NFs on thred scattering am-
(SO 3NF [31], which is adopted as an example of new spinplitudes are shown in Fig. 2, where we have displayed the
vector interactions to account for the discrepancy in the vecratio of the magnitude of each amplitude calculated with the
tor analyzing powers, 3NF to that of the amplitude calculated without any 3NF. In
the figure, the amplitud®l; is little affected by the 3NFs,
while U; receives large contributions from the BR-3NF as
well as from the GS-3NF. The SO-3NF provides very small
contributions toU;. In more detail, the contribution of the
with p?= %(r§2+r§3+r§1) and P, is the projection operator BR-3NF toU, is considered to be mostly due to the central
to the spin and isospin triplet state of the paif). For this  part of the interaction, because the magnitude and the angu-
interaction several parameter sets are Suggested |r[$§_é,f lar distribution of the contribution are very similar to those
among which we takex=1.5 fm™! and W,=—20 MeV. Of the GS-3NF. The vector amplitudeS;, S,, andS;, are
The SO-3NF gives a repulsive effect on the triton bindinginfluenced by the 3NFs, and particularly the SO-3NF pro-
energy. The resultant binding energy for the SO-3NF withduces large contributions 8, and S;. The 3NF-effects on
the BR-3NF(AV18+BR+SO) is 8.39 MeV. the tensor amplitudes are examined, for example, for the spin
We first calculate the magnitudes of the scalar, vector, anfuartet scattering, wherg;(0) andT3(1) are considerably
tensor amplitudes, for which the contributions of the 3NF areaffected by the BR-3NF but are very little affected by the
examined. Figure 1 shows as functions of the scatteringS-3NF or by the SO-3NF. The amplitudg(2) is hardly
angle the squares of the absolute magnitudes of the amplaffected by any 3NF studied. Such properties of the ampli-
tudes,U;, Uz, S;, S, Ss, Ti(k), Ta(x), andTa(x) (x«  tudes will be reflected on the observables in the analyses in
=0,1,2), obtained by the Faddeev calculation without thethe following section.
3NF for then-d scattering aE,,=3 MeV. There the magni-
tude of the quartet scattering amplitutle is much larger
than that of the doublet scattering amplitude. Among the
three vector amplitudes, the magnitude of the quartet scatter- In the preceding section, we observed that the scalar am-
ing amplitudeS; is much larger than other two, those of the plitudes are larger in magnitude than the vector and tensor
doublet scatterings, and the doublet-quartet nondiagonal amplitudes at the low energy. In this section, analytical ex-

1 ~
VSO—SNFZEWOeXp{_ CYP};J_ [lij-(oy+07)]P11, (16)

IV. ANALYSES OF OBSERVABLES
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aminations ofN-d observables will be carried out in an ap-
proximation where we neglect the second order terms of th

wherer ;= — (\/3/2) (7, +i 7,) andr, and 7, are thex andy
eomponents of the spin vector operator of the deuteron.

vector and tensor amplitudes in the observables. The results In the SAD approximation,

by this approximation, which we call the scalar amplitude

dominance(SAD) approximation, are used as the guidelines

for the numerical analyses of the observables Wtd am-
plitudes provided by the Faddeev calculati¢p@g].

A. Differential cross section

The unpolarized differential cross sectier(6) is ex-
pressed as

1
o(0)= ENR’ (17)
whereNg, is defined as
Ng=Tr(MMT), (18

Ay=3iNle[U1 N
V28, + \[gss)]

1 /2
iTn=N—R\[§Im{Ul<2sl— V28))* + Us(— S+ 5S5y)*}.
(23

S,+2S,

(22

+Uj;

These equations show that the scalar amplitudes and the vec-
tor ones dominantly govern the vector analyzing powers.
First we will numerically examine the validity of the SAD
approximation in the vector analyzing powers, by comparing
Egs. (22) and (23) with the exact calculations. Figure 3

and the factor 6 arises from the spin average in the initiakhows the comparison where the SAD approximation works

state.
In the SAD approximationNg is given by
Ng=[U;|*+[U3)%. (19

Differences between fully calculated differential cross

very well, indicating the contributions of the neglected terms
to be small. Therefore the approximation will have sufficient
accuracy to obtain the guidelines for further calculations.
Next, we will examine the contributions of the related
interactions in detail. Since the magnitude W§ is much
larger than that ofJ; as seen in Fig. 1, one can expect the

sections and those in the SAD approximation are lesgiominant contribution to the vector analyzing powers to

than 1%.

B. Vector analyzing powers

The vector analyzing powers of the proton and the deu
teron,A, andiT,,, are defined as

1
Ay=R T (MoyM h, (20)

i
iTy= N—RTr( M7 MT), (21)

arise from theU; terms of Egs.(22) and (23), which are
accompanied by two vector amplitud8sandS;. To extract
the contribution of one of these amplitudes, we will elimi-
nate the other by considering a linear combinatiopfind
iTq1: the contribution ofS, will be enhanced by the combi-
nation A, — (2/\/3)iT; and that ofS; by the combination
Ay+(4/\7%)iT11. Considering these features, we will inves-
tigate for thep-d scattering the contribution of the 2NF and
the corrections due to the 3NF to the analyzing powers
where the SO-3NF produces the dominant correction. As
seen in Fig. 4, the Faddeev calculation with the AV18 does
not reproduce the measurég andiTy;, while the calcula-
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0.04 | (@) Ay (b) 'Tﬁ - 0.02
B\
4
0.03
FIG. 3. The vector analyzing powers of pro-
0.02 0.01 tonsA, and deuterongT 4, for the p-d scattering
) 1" at E,=3 MeV by the exact calculationgsolid
curveg and by the SAD approximatiofdashed
curves for AV18.
0.01
0.00 P R IR 0.00
60 120 180
6, (deg)
tion that includes the SO-3NF improves very much the C. Spin correlation coefficients
agreement with the data for both &f, andiT,; due to the In the previous papdi20], we have investigated the total

large contribution of the SO-3NF to the amplitud8sand .55 sections of the-d scattering for the unpolarized neu-
S; as seen in Fig. 2. In the figure, the calculations are coMgon and deuteron, for the transversal polarizations where the
pared with the data for the combinatio§+(4/\3)iT1y  polarizations of the neutron and the deuteron are perpendicu-
and Ay~ (2/y/3)iTy; obtained from those oA, andiTi;,  |ar to thez axis, and for the longitudinal polarizations where
where the SO-3NF reproduces quite well the data of thehe polarizations of the neutron and the deuteron are parallel
former combination but the data of the latter are not SUfﬁ-to the z axisl and have shown that linear combinations of
Ciently reprOduced by the calculation, althOUgh the improve'these cross sections give information th(@: 0) and

ment of the agreement with '.[he latter data is appreciable fof),(9=0), separately. To extend this idea to finite angles, we
the SO-3NF contribution. This means that the SO-3NF doegj| investigate the spin correlation coefficients defined as

not describe the amplitud®, sufficiently. Since the magni-
tude of S, is much smaller than that &; as seen in Fig. 1,
the inadequacy of the contribution & is masked by the
contribution ofS; in A, andiT,;. Then, the linear combina-
tions proposed here will provide more refined tests of the The spin correlation coefficient for the transversal polar-
spin vector interaction than the analyzing powers themizations will representatively be described by the average of

1
ca,B:N—RTr(MraaBMT). (24)

selves, at such low energies. Cyx andC, ,, which is given in the SAD approximation as
0.06
0.05 (a) Ay o1 (c) Ay + 41T /sqrt(3)

= ===
0.04 = = = =
0.03 :—E‘?__"—E, = 0.08 = 7 = .
) =, o = = FIG. 4. Comparison of the Faddeev calcula-
0.02 5 : = .- tions and experimental daf&] for (a) the proton
il = 004r = ' vector analyzing poweh, , (b) the deuteron vec-

. tor analyzing powei Ty, (¢) Ay+(4/\3)iTyy,
0.00 , : 0.00

) ! and (d) Ay7(2/\/§)iTn in the p-d scattering at
. E,=3 MeV. The solid curves denote the calcula-
0.03 ®) iT (d) Ay - 21T, /sart(3) tions for AV18, the dashed curves for AVABR,
" = 0.02 L and the dotted curves for AVE8BR+SO. For(c)
0.02 ;it = T ;'QQ@: and (d), quasiexperimental data made by fitting
= = I::E/ oL the experimental data @&, andiT,; in Ref.[3]
= &= L7 Y are plotted with the error bars.
0.01 = 1
E p
0005 80 120 180 %% 80 120 180
0__ (deg) 6__ (deg)
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(a) (b)
(mb) (mb)
- A1 F

(C, X+Cy y+Cz ,+2) () /3

100 | 100 (- FIG. 5. Effects of 3NFs on spin correlation

i F coefficients for vector polarizations of deuterons.
The calculated@, ,+C, ,+C, ,+2)o(6)/3 and
—(Cyx*+Cyy+C;,—1)o(0)/3 are shown for
the n-d and p-d scattering aEy=3 MeV in (a)
and(b), respectively, where the dashed curves de-
note the calculations for AV18, the solid curves
for AV18+BR, and the dotted curves for AV18

+GS. See the text for the points with error bars.

1 1 4 2 that the contributions are remarkable |id,|? but not in
5(CuxtCyy)= WR% - §|U1|2+ §|U3|2 |U;|? and the GS-3NF is a good simulation of the scalar part
R of the BR-3NF. Such 3NF contributions will experimentally
2\/5 2 be examined by measuring the cross section and the spin
- TUle(O) + §U’3‘T2(0) correlation coefficients.

In Fig. 5(b), we plot the data of approximate doublet cross

4 sections obtained by
~3U3T5(0) (25
. . - - 1 |
and the spin correlation coefficient for the longitudinal po- 01(0)=c"6)— €|U§a|2, (29
larizationC, , in the SAD approximation is given by
sziRe{ _ E|U1|z+ £|U3|2+ 2\/§U’1‘T1(0) where the experimental data in RE2] are used fo:zrex’f( 0)
“ NR 3 3 3 and the results of the AV18BR calculation forUS®. Since

> 4 the amplitudeJ 5 is little affected by the 3NFs as observed in
— ZUET,0)+ —U§T3(O)]. (26)  Fig. 2, the use of another calculation fo5? produces es-
3 3 sentially the same results. The theoretical prediction of
—3(Cyx+Cyy+C,,~1)a(6) agrees well with the data
o1(6) up to #~120° when the 3NF is included, showing the
5NF contribution to be indispensable to describe the doublet
scattering.
The remarkable effect of the 3NF d#y is related to the
2_ _ _ effect on the triton binding energy, as will be understood by
|Udl 2(Coxt Cyy+ CrpmDa(0) @9 the characteristic that the doublet scattering amplitudes at
and low energies are governed by a position of the 3N bound
state pole[14]. Then it will be important to confirm such
|U3|?=2(Cyx+Cyy+C,,+2)a(8), (28)  theoretical predictions of the characteristics of thd cen-
tral interaction by the experimental measurements to fully
where we have used Egd.7) and (18) with Eqg. (19). understand the role of the scalar part of theE23NF at low
For both of thep-d and n-d scattering,— 3(Cy x+ Cyy  energies. Other combinations @f ,, C, ,, andC, , will be
+C,,—1)o(6) and %(CX,X+ Cyyt+C,,+2)o(6) obtained discussed later together with tensor analyzing powers.
by the full calculations are displayed in Fig. 5. These quan- Further, we will examine&C, , andC, , as other examples
tities describe;|U4|? and §|U3|?, respectively, in the SAD  of the spin correlation coefficients for the vector polariza-
approximation and we see again thak|? is much larger tions of the nucleon and the deuteron. Generally, the contri-
than|U,|? for then-d scattering as in Fig. 1 and also for the butions of the vector amplitudes and those of the tensor ones
p-d scattering except for small angles where the Coulomlwill be mixed up in these coefficients. However, their effects
interaction dominates. The contributions of the BR-3NF andare separated from each other by considering their linear
the GS-3NF are displayed in the figure, where one can seeombinations. In fact, in the SAD approximation,

These results suggest that one can g&U,|2+|U;|? in
terms of the spin correlation observables by taking a linea
combination of Eqs(25) and (26). Further, by using the
unpolarized differential cross secti@r(6), we get
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2 contributes to the former quantity through the vector ampli-
Cy .t CZ'X=—Re{—2U’{T1(1)+\/§U§(T2(1) tudesS, and S; and the BR-3NF to the latter through the
\/§NR tensor amplitudél,(1), since the magnitude df; is small
—2T4(1)) (30) compared to that df); andU is hardly affected by the 3NF.
’ In Fig. 6, the calculate€,, , andCy,, and their linear
2.2 combinations,C,, ,+C,,, and C,,,—C,,, for the p-d

Cyz—Cox=— _ZRQ{(\/Eul_Us)*sz}, (31) scattering are displayed for the three kinds of interactions,
NRr AV18, AV18+BR, and AV18+BR+SO. In the calculated

Cyyx and Cy,,, the vector effect of the SO-3NF and the

tensor effect of the BR-3NF are actually mixed up as seen in

Ghe left panel of Fig. 6. However, in the right panel of Fig. 6,

Ce”"?" in_teractions and _the tensor ones. On_ thg contrary, t ﬁey are clearly separated from each other, that is, the effect
combinationC, ,— C, , will describe the contributions of the of the SO-3NF appears i,y ,+Cy,, but not in Cy,,

central Interactions anq the Spin vector interactions. The—C 2z, While the effect of the BR-3NF appears in the latter

former quantity will be investigated by considering further __~%z2' . o
. . . combination but not in the former one. These characteristics

combinations with tensor analyzing powers. The latter quan-

tity will exhibit the contribution of the SO-3NF to the vector are consistent with the theoretical prediction t_)y G2 .
: X ) - o and (33). Therefore, measurements of these spin correlation
amplitudeS,, sinceU; is small andU; is insensitive to the

INEF coefficients will be useful to identify the contributions of

Next we will investigateC,, , andC,,, as examples of these 3NF, separately.
the spin correlation coefficients due to the tensor polariza-
tions of the deuteron. In the SAD approximation,

The combinatiorC, ,+ C, , consists of the scalar amplitudes
and the tensor ones and will reflect the contributions of th

D. Tensor analyzing powers of deuterons

Tensor analyzing powers of the deuterdy), («=0,1,2)

3 are defined by
ny,x+ CyZ’ZIEny’y:N_RIm

—Uy(2V2S,+ Sy)*

1
To,=—Tr(M7,, M"), (34)
R

. S+ \FSS) *} (32) e
V2 5 ’ wherer,, is the spin tensor operator of the deuteron with the
Z componentx. In the SAD approximation,

+Uj

1
Cxyx~Cyzz=~ ( Coxy T Ecyy,y)

= %ﬁlm{ U Ty(1)*+ iU3T2(1)*] .
R

V2

1
To= R RE =2V Ta(K) +V2U3 (To(k) + Ta( )}
(39

Then, the tensor analyzing powers represent the contribu-
(33  tions of the scalar amplitudes and the tensor ones. However,
the tensor amplitudes are influenced by the tensor part of the
Due to E@s.(32) and (33), C,y«x+C,,, characterizes the BR-3NF, as shown in Fig. 2, where the magnitude3 ()
contribution of the vector amplitudes ai@, ,—C,,, that andT;(1) are affected by the 3NF at most angles, while the
of the tensor ones. Further it is expected that the SO-3Nkagnitude ofT3(2) is not. Such 3NF effects can be ex-
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tracted by the linear combination of the tensor analyzing(mb) °©
powers and the spin correlation coefficients. Using E2S).
and(26), we get in the SAD approximation,

1
—=(Cxx+Cy,y)—2C,, 10

V2

1
=N RE~2UITy(0)+ J2U3 (T5(0) - 2T5(0))}.

(36)
From Egs.(35) and(36), we obtain
1 3.2
Tao~ 5 (Cut Gy + V2C, = ~Re(U3 T5(0).
(37)

Relations similar to Eq(37) are derived for the tensor am-
plitudesT3(1) andT5(2) in the SAD approximation,

3 3V2
Ty~ g(cx,z"' Cz,x) = NLR—RG(U; T3(1)), (39

NE] 3\2

Toot 7(Cx,x_Cy,y):N_RRe(UgT3(2))' (39

SinceUj; is insensitive to the 3NF, the right hand sides of s elo e 1;0 T
Egs. (37), (38), and(39) will reflect the tensor effect of the
BR-3NF onT4(0), T5(1), andT3(2) shown in Fig. 2. To 6, (deg)
eliminate the 3NF effect oNg, we will show the calculated
[Too— (1\/2) (CxxtCyy)+ \/zcz'z] a (), [T~ (\/3/2) ~ FIG. 7. Effects of 3NFs on tensor amplitudes in thel scatter-
X(Cx,z+ Cz,x)]0(9)7 and [T22+(ﬁlz)(cx,x_cy,y)]a(a) ing at E,=3 MeV. The quantltles,[Tzo—(1/\/5)(CXYX+ Cyy)
in Fig. 7. The figure shows the 3NF tensor effects to be™ \2C, ,1o(6), [Tzr(\@/2)(Cx,z+cz,x)]0(9_). and [Ty
consistent with the characteristics of the effects on tensof (¥3/2)(Cxx—Cy,)10(6) (see textare shown irfa), (b), and(c),
amplitudes in Fig. 2. That is, the 3NF tensor effect is sm(,i'|respect.|vely. The dashed curves denote the calculations for AV18,
but finite in REU% T5(0)) and R&U% T4(1)), while the ef- the solid curves for AV18BR, and the dotted curves for AV18
fect is almost negligible in R&J2 T5(2)). These features can +GS. The dashe_d curves and the dotted curves are overlapped al-

) ; 33 : - most completely i@ and(b), and the three kinds of curves cannot

be examined by measuring the cross section and the Spy} jgentified to each other if).
correlation coefficients and such measurements will be im-
portant to determine the contribution of the 2NF tensor in-Scattering, which can be examined by measuring the cross
teractions and the 3NF tensor effect in the scattering, sincéection and some spin correlation coefficients. Further, the
T5(0), T3(1), andT5(2) form a complete set of the tensor Faddeev calculations clarify that therZ-3NF contributes

amplitude in the spin quartet scattering. also as the tensor interaction to the tensor amplitudes in the
spin quartet scattering. These 3NF effects will be criticized
V. CONCLUDING REMARKS by comparing with experimental data when the related ob-

servables are measured. The SO-3NF produces the remark-

We have proposed some combinations of the scatteringble contribution to the vector amplitudes in the quartet scat-
observables for obtaining the detailed information on thetering and also in the doublet-quartet nondiagonal transition.
contributions of the 2NF and various models of the 3NF.This improves the calculated vector analyzing powers of the
Since each combination characterizes the contribution of @roton and the deuteron successfully, although the agreement
particular interaction, measurements of these quantities willvith the experimental data transformed for the nondiagonal
provide clear tests for the validity of the interaction. transition is not so good as that for the spin quartet scatter-

The numerical investigations are particularly focused oning.
the contributions of the 2E-3NF and the SO-3NF. As is The SAD approximation is useful to find the suitable
well-known the 2rE-3NF provides an indispensable contri- combination of the spin observables for the examination of a
bution to the triton binding energy, and by the present analyparticular interaction. In the present investigation, the ana-
ses it turns out that this 3NF effect produces clear contribulyzing powers and the spin correlation coefficients are cho-
tions to the spin doublet scalar amplitude in tihed sen as the spin observables. However, polarization transfer
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coefficients will also be available for the examination of the 1 2
interaction. For the convenience of such applications, we J=——=[2T1(1)—Tx(1)]+ ?Sl
will give in Appendix B the formulas of the polarization 243

transfer coefficients in the SAD approximation, which will

be useful in finding suitable combinations for testing of the _ ES 5, V(1) (A10)
validity of particular interactions. 6 3\/—
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in[—2T1(2)+T3(2)+V(2)], (A12)

APPENDIX A: MATRIX ELEMENTS OF M IN TERMS OF \/6
THE INVARIANT AMPLITUDES

. . . 1 1 1 2
The matrix elementg, ... ,Rin Eq. (1) are described by _ _ Zg___o_ \ﬁ
M= ——=[Ta(1)~2T5(1)]+ 58~ —=Sy— \ 3gV(L),

the invariant amplituded,, . .. V() as follows: 23
(A13)
1
AZE[U3+T3(O)]7 (A1) 1
“3al V2U 1+ U5+ T1(0)+2T,(0) — T5(0)],
(A14)
—=[Ta(1)=T5(1)]— —=S3+ —=V(1),
f f J_ J_s 11
(A2) O:§ EU1+U3+T1(O)_T2(O)_T3(O) :
(A15)
C=—%(%T2(1)+T3(1) +%s4+ %33+ \/%V(l), 1 1 1
(A3) P=—%[T1(1)+Tz(1)]—551+ ﬁ(_sﬁ”sz)
2@
D- %[—T2<2>+Ta<2>—w2)], (A%) RPN (A19)
1 1
1 Q= ——=[~Ty(1)+2T,(1)]+ =(2V25,+25,+$S))
E= —[2T,(2)+ T4(2) - V(2)], (A5) 2.3 6
\/E 2 2
F—v(3), A6) + ﬁ%— \/1:5V(1), (A17)
1 1 1 R= i[T (2)+T4(2)]+ iV(2) (A18)
A G R Sy r5v<1> N N
A7
(A7) APPENDIX B: POLARIZATION TRANSFER
3 L COEFFICIENTS IN THE SAD APPROXIMATION
H= ?U1+ gU3+ g[ —2T1(0)+2T,(0)—T5(0)], 1. Deuteron (vector) to nucleon transfers
(A8) The polarization transfer coefficient is defined as
1 KA(d-n)= NiTr(MTaMTaB). (B1)
| U+ 3\/— \/—[2T1(0)+T2(0)+T3(0)] R
(A9) DefineX,, Y,(x=0,1,2), andZ, by
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2 5
Xi=— §|U1|2Jr §|U3|2— TRG(U1U§), (B2)

J2
Yi(k)= ?R Ui(T1(k) —4To( k) +2T3(k))*

+ﬁu3(T1<K>+ %TZ(K>+2T3(K>) ]

(B3)

5 5 \*
Sl+ﬁ82+ \/;S:;,) ]

(B4)

zlzRe+<ﬁu1—us>

Then we get

2
K(d-n) +KJ(d-n)= 3—M[X1—Y1(0)], (BS)

1
K(d) = g [Xa+ 2Y2(0)], (86)
22
K(d-n)— KJ(d-n)= @—ﬁwz), (87)
R
22
K(d-n)+KZ(d-n)=— ﬁ—ﬁvlm, (B8)
R
8
K;((d-n)— Ki(d-n)= g—NRzl. (B9)

2. Nucleon to deuteron(vector) transfers

The polarization transfer coefficient is defined as
1
KA(n-d)= N—Tr(MO'aMTTB). (B10)
R
DefineX,, Y,(k=0,1,2), andZ, as
Xo=Xq, (B11)

N7
Yo(k)= ?Re{ U(4T1(k) —Ta(k)+2T5(k))*

1 *
+\/§U3(_ETl(K)_Tz(K)+2T3(K)) ],
(B12)
7,=7,. (B13)

Then we get

2
Ki(n-d)+K§(n—d)= 3—NR[X2—Y2(0)], (B14)

PHYSICAL REVIEW 66, 044005 (2002

1
K;(n-d)= 3—NR[X2+ 2Y,(0)], (B15)
242
K(n-d) — KY(n-d) = \/§£ Y,(2), (B16)
R
X z 2\/§
Kz(n'd)+Kx(n'd):_\/§—NY2(l)a (B17)
R
8
K’z‘(n-d)—Ki(n-d)= g—NRZZ. (818)

3. Deuteron (tensor) to nucleon transfers

The polarization transfer coefficient is defined as
1 t
K} s(d-n)= N—RTr(MTQﬁM o). (B19)
Define X3, Y3(x=0,1,2), andZ; as

X5=0, (B20)

Y3(k)= U1(T1(x)—2T3(x))*

2I (
—lim
3

3 *
+ﬁu3(T1<K>+§T2<K>+T3<K>) j

(B21)

5 *
Z3EIm{U1(SZ—ES3)
3 2_\"

Then we get

1
K¥«(d-n) — K3, (d-n)= N—R[ —Y3(1)—2Z5], (B23)
1 2
K, (d-n)+KJ,(d-n)= N—( —Ya(1)+ §z3) , (B24)
R

1
Ki(d) = - Ya(2), (825

, 1 1
Kyz(d'n) =N §Y3(1) +Z3

Nn , (B26)

1 3
K} (d-n) = K¥(d-n) = — N—R\[zYs(‘”- (B27)
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4. Nucleon to deuteron(tensor) transfers

The polarization transfer coefficient is defined as

1
K27 (n-d)=5-Tr(Mo M'7g,). (B28)
R

DefineX,, Y4(x=0,1,2), andZ, as

X,=0, (B29)

2
Y4(k)= ﬁ'm[ Uy(To(k)+2T3(k))*
3 *
+ \/EUB(ETl(K)+T2(K)_T3(K)) ],

(B30)

Z,=75. (B3D)
Then we get

1
K2*(n-d) — K¥¥(n-d) = N_R[ ~Y4(1)—22,], (B32

KX¥(n-d)+ Kgy(n-d)zNi( —Y,(1)+ 224) , (B33
R

3
1
K (n-d)==—Y4(2), (B34)
Nr
Kyz(n-d)=i(—EY (1)+2Z (B35)
z NR 2 4 4]
K¥A(n-d) +K{%(n-d)=—K7(n-d), (B36)

1 /3
K¥(n-d) - K}*(n-d) = — N—R\[EY4(0). (B37)

5. Deuteron (vector) to deuteron (vector) transfers

The polarization transfer coefficient is defined as
1
KA(d-d)= N—Tr(MTaMTTB). (B39
R
DefineXs, Y5(x=0,1,2), andZs as

242

4 5
Xs= §|u1|2+ §|U3|2+ TRe(ulug), (B39)

4 1 *
Ys(x)= gRe{ ﬁul( Ta(k) = Ta(k)+ §T3<K>)

1
+ 5 Us(Ta(k) = To(x) = 4T3(x))* ] ., (B40)

PHYSICAL REVIEW C 66, 044005 (2002

442
Ze= iRe|U1

9

4S,+22S,+ \/gsg)

1

U, ﬁsl+552— Jésg) J (B41)

Then we get

K(d-d)+ KY(d-d) = NiR(§X5+ %Y5(0)) ., (B42

1 /2
Kj(d-d)—K}(d-d)= — N—R\[§Y5(2), (B43)
1 /2
KZ(d-d)+K%(d-d)= N—\[§Y5(1), (B44)
R
1
KZ(d-d)— K¥(d-d)= N Zs (B45)
R

1
K3(d-d)= 3—NR[X5—Y5(0)]- (B46)

6. Deuteron (vector) to deuteron (tensor) transfers

The polarization transfer coefficient is defined as
By 1 t
K&7(d-d)= N—RTr(MTaM Tgy)- (B47)
DefineXg, Yg(x=0,1,2), andZg as

Xﬁz 0, (B48)

2
Ye(K)= \[§|m{\/§U1(2T2(K) +T3(k))*

+U3(= 3Ty (k) +Ta(k) +2T3(x))*},

(B49)

1 \* 22 \*

Zs=Imj U, ZSZ_ESS —U, lerfs3 .
(B50)

Then we get

1 2
KJ*(d-d) +KJ¥(d-d)= N_[YG(l)_ 526}1 (B51)
R
1
K(d-d) — K(dd) = <[ Ye(1)+ 2], (B52
R

K¥Y(d-d)=— %[K;*(d-d)— K¥(d-d)],  (BS3
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1
K;Z(d-d) +K¥A(d-d) = N—YG(Z), (B54)
R

sz(d -d) —KY4(d-d) = — ! \FY6(O) (B55)
R
1
K(d-d) =~ <= Y¢(2), (B56)
R

Ky4(d-d)= — : ( 5 Ye(1)— Ze) (B57)

7. Deuteron (tensor) to deuteron (vector) transfers

The polarization transfer coefficient is defined as
1
ap(d- d)— Tr(MraBM 7). (B58)

DefineX;, Y;(x=0,1,2), andZ; as

X,=0, (B59)

2
Y(r)= \[g'm{ V2U1(2T1(0) = To(x))*
+U3(To(k) = 3To(k) = 2T(x))*},  (B6O)
Z,=Z;. (B61)

Then we get

K, (d-d)+ K} (d-d)= — ! (Y7(1)— 227), (B62)

Kyu(d-d) — K3, (d- d)— [Y7(1)+227], (B63)
R

K%y (d-d)=— %[Kix(d-d)—Kiy(d-d)], (B64)

Kl d-) + K (d-d) = K, (d-d) = == : Y4(2),
(B65)

KY,(d-d) — K} (d-d) = — \F SY:(0),  (B6H)
R

1
Ky (d-d)= ( 5Y7(1)— Z7> (B67)

8. Nucleon to nucleon transfers

The polarization transfer coefficient is defined as

1
KA(n-n)= N—Tr(MO'aMTO'B). (B68)
R

PHYSICAL REVIEW 66, 044005 (2002

Define Xg, Yg(xk=0,1,2), andZg as

82

1 5
xsz§|ul|2+ §|U3|2+ TRe(ulu’g), (B69)

4
Yo(x)= ZRE{(V2U1 = Ua)[ Ta(k) = Ta(x) +2T5(x)]*},
(B70)
8 1 *
Zg= §Re[ ul( \/;Sl"— 2sz+2£53)
5 *
—Us(zsl—sﬁsz— \[553) } (B71)
Then we get

1 2
KX(n-n)—K3(n-n)=— N—R\@YS(Z), (B72)

1/2 1
X(nn)+Ky(nn)— (3X8+ YB(O)) (B73)

KZ(n-n)= S_NR[XS_YB(O)]’ (B74)
1 2
K%(n-n)+K3j(n-n)= N_\[§Y8(1)’ (B75)
R
1
KZ(n-n)—KJ}(n-n)= N_ZS' (B76)
R

9. Deuteron (tensor) to deuteron (tensor) transfers

The polarization transfer coefficient is defined as
Yo 1 t
Kap(d-d)= N_RTr(MTaBM Tys)- (B77)
DefineXg, Yqo(x=0,1,2), andZq as

——|U3|2+ 2RgU,U3%), (B78)

Yo(k)=Re{\2U;T4(x)* = Ug(T1(k)— Ta(x))*},
(B79)

S1\2S,+ \@33)]

(B8O

3
Zo=Rel —U,S} +U
9 e{\/g 183 3

Then we get

KZa(d-d) =[Kix(d-d) + Ki(d-d) ]+ [KTH(d-d) + KYJ(d-d) ]

2
= N_[XQ_YQ(O)]v (B81)
R
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3
\@Ygu)—zg), (B88)

—[Kg(d-d) + K(d-d) ]+ [ K{T(d-d) + K{3(d-d) ]

3
XYid-d)= ——
KGHd-d) = 5

= &Yg(Z), (B82)
" 3 3
[Ki(d-d) = K3(d-d) ]+ [ K}x(d-d) — K}¥(d-d) ] KXz(d-d)—K}(d-d)= N—R< \[Evg(l)—zg) , (B8Y)
246
== N;ng(Z), (B83) 1
" Kix(d-d)+ Ky (d-d)=— N—( \[zvg(lwszg ,
[Ki(d-d) — KY(d-d)] - [K3(d-d) — K{(d-d)] ) (890
6
= N_[X9+ Yo(0)], (B84 1 3
" K3(d-d) + K = | = \5Yo(1)+32Zs .
KX¥(d-d)= i[Xg+ Yo(0)] (B85) (B9
Xy ZNR ]
XZ _wXxz _ i \ﬁ
Ki(d-d)+ KJi(d-d) = Ni( Xo~ %vg(m) . (B86) Kiodd-0) =Kyy(d-d) = NR( SYo(1)+Zs), (B92)
R
3 3 1
Kig(d-d) —KJ(d-d)= N—R\[ng(Z), (B87) KYy(d-d) = S[K3(d-d) —KJj(d-d)].  (B93)
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