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Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross
section for deuteron electrodisintegratialfe,e’ p)n, is studied. The relativistic kinematics are reviewed, and
simple theoretical formulas for the relativistic impulse approximati@h) are derived and discussed. Nu-
merical predictions for the scattering in the higi region obtained from the RIA and five other approxima-
tions are presented and compared. We conclude that measurements of the unpolarized coincidence cross
section and the asymmet#y,, to an accuracy that will distinguish between different theoretical models, is
feasible over most of the wide kinematic range accessible at Jefferson Lab.
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[. INTRODUCTION that can be measured in tidée,e’ p)n reaction were classi-
fied and defined. There it was found that the use of transver-
Inelastic scattering of electrons from the deuteron is arsity amplitudegclosely related to helicity amplitudegave a
important source of information about the nuclear currentyery efficient description of the reaction. Transversity ampli-
deuteron structure, and tieN force. The exclusive scatter- tudes were discussed by Goldstein and Moravia#, who
ing cross sectiord(e,e’p)n, was first measured forty years found that they build in the constraints imposed by parity
ago[1], and since then it has been measured under a widand rotational invariance in the most efficient way. In a trans-
variety of kinematic condition$2]. There is a substantial versity basis, the constraints imposed by these symmetries
body of data for this reaction, including cross section meaensure that half of the possible amplitudes vanish identically,
surementg3—6] as well as separations of various responseso that the cumbersome linear relations needed in other for-
functions[7—16] which differentiate between absorption of malisms[23] are unnecessary. This economy will be essen-
longitudinal and transverse photons. tial some time in the future when large data sets exist, and it
In this paper we survey results that might be expectednay be important to know whether or not a proposed new
from a new generation ad(e,e’p)n coincidence measure- measurement will really be independent of amplitudes al-
ments proposed for Jefferson Laborat@iyab). At JLab itis  ready measured.
possible to carry out a comprehensive program of measure- The details of the calculation are carried out using the
ments at both higiQ? and largeW (whereW is the invariant ~ covariant spectator theory, which has been successfully ap-
mass of the finahp statg. A broad program of such mea- plied to the description oNN scattering[24] and the elec-
surements offers the best hope of independently determininggomagnetic form factors of the deuterf®2b]. One feature of
effects of final state interactions and the nuclear current, pethis theory is that the deuteron bound state is described by
mitting the extraction of important new information about the covariantdnp vertex with one nucleon on mass shell,
the short rang& N interaction. and this is precisely the amplitude that is needed for the
Electrodisintegration of the deuteron has been studiedelativistic impulse approximatiofRIA), making the theory
theoretically by many groups. Recently, Arenkh Beck, well suited to the analysis of th#{e,e’p)n coincidence re-
and Wilbois[17] have emphasized that the relativistic effectsaction[26]. In this first application of the covariant spectator
in inelastic scattering can be very large, even at modest mdheory using the transversity basis, we present the RIA cal-
menta, and it is therefore particularly important to have aculation only. This provides the opportunity to work out sev-
fully relativistic theory available for the analysis of the eral new technical details for the simplest case, and to com-
higher momenta data that will be measured at JLab. Relatiware to other approximations. The inclusion of final state
istic calculations of this reaction date back to the early workinteractions and interaction currents will be the subject of
of Durand[18] and McGed19] and lead up to more recent future work.
work by Tjon [20]. One of the goals of this paper is to A second purpose of this paper is to estimate the size of
present a fully modern, covariant treatment of this procesthe unpolarizedi(e,e’p)n cross sections expected over the
suitable for the analysis of JLab data. broad range ofQ? and W accessible to JLab. In preparing
This paper imbeds the dynamical calculation in the genthis survey we found that relativistic and nonrelativistic pre-
eral formalism developed in Ref21], where a covariant, dictions ford(e,e’p)n at highQ?, where the cross section is
systematic treatment of most of the polarization observablegiost sensitive to the theory, often differ by as much as an
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order of magnitude, extending the observations of Aren-

hovel, Beck, and Wilboig17]. Since nonrelativistic calcula- s the Mott cross section ara®, is defined below. The quan-
tions cannot be taken seriously at such high energies, Wegties 9, E, E’, andQ’ are the electron scattering angle, the
report our results for a variety of relativistic or semi- energies of the initial and final electron, and the solid angle
relativistic models only. In this first exploratory study the of the final electron, all in the lab frame. The deuteron mass
goal is to provide only a rough survey of the landscape. Thés M, andh=*1/2 is the helicity of the incident electron.
simplicity of the RIA allows a uniform treatment over the The electron kinematical factors are
entire kinematic range, but is, of course, very incomplete. It
is our intention to follow up this study with complete calcu- B ) B 9 1/
lations for cases where the theoretical effects look especially S35 +&, s E(l’L £
interesting.

Our notation for the cross section and the spectator theory 1
for the RIA are reviewed briefly in Sec. Il, numerical results sp=E1+ Y2 sip=— =&, (2.3
presented in Sec. lll, and conclusions given in Sec. IV. Many V2
theoretical details are given in the several Appendices, which
are important parts of this paper. where

é= lta d (2.4)
Il. THEORY Q% '

: . . . . ith

In this section we define the coincidence cross section an\gt

the RIA matrix element. All other theoretical details can be 9?=—Q?= vz—qu 12— g2 (2.5
found in the Appendices.

the square of the virtual photon four-momentum, wWithq, }
and{vg,qq} the energy and three-momentum of the virtual
photon in the lab and center of momentymm, systems,

. . . respectively, andjy= , etc.

Figure 1 shows the kinematics for the processd— e’ 'IF')here aE/e twéq ione|rgzoi|l reference frames that are of interest
+p+n (using the notation of Ref21]). The incident and , the calculation of deuteron electrodisintegration: the labo-
scattered electron momenta form a plane called the “scattetxiory frame which coincides with the rest frame of the target
ing plane” while the momenta of the proton and neutron ingeyteron, and c.m. frame in which the total three-momentum
the final state form a second plane called the “ejectilepf the final state proton-neutron pdar of the initial virtual
plane.” The virtual photon momentum is common to the twophoton and the target deutejda zero. One of the virtues of

planes and is chosen as the direction of ztaxis. The two g (2.1 is that the response functioRsare covariant and

planes, which are represented by they(z) and &’,y".z')  nence Eq(2.1) can be used to describe the cross section in
coordinate systems, are oriented at a relative azimuthal ang|gther the c.m. of the outgoingp pair or the laboratory

of ¢. Arotation of the response tens@lefined belowfrom  fame py the replacement oS, by

the unprimed to the primed frame can be used to extract all

of the ¢ dependence from the tensor. Using this along with d3|em=pdQ* (2.6)
the explicit form of the electron tensor, the cross section can

be shown to be of the forrcf. Eq. (95) of Ref.[21]) in the c.m. frame or

A. The cross section
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TABLE I. Notation for frequently used variables. ment that this is the case and will demonstrate later that it is
true for the particular calculations which are described in this
Variable Lab c.m. paper.

The nine response functions of E@.1) are related to
Photon energy v Yo sums over the squares of matrix elements of the deuteron
Magnitude of photon three-momentum g, o current. In the helicity basis, with,, the helicity of the vir-
Deuteron four-momentum P P tual photon,\; and\, the helicities of particles 1 and 2 in
Deuteron energy Mg Do the final state, andl4 the helicity of the initial deuteron, the
Proton four-momentum P1 [ current operator is writtef\ 1\ ,|J, (9)|\q). Following the
Neutron four-momentum P2 p3 conventions of Jacob and Wittlzg]ywe choose particle 1 in
Proton angle 01 0* the final state to be the proton and particle 2 to be the neu-
Neutron angle 0, 0*+m tron. The current operator conserves parity, which means that
Magnitude of proton three-momentum ) p the matrix elements satisfy the condition
Magnitude of neutron three-momentum 2 P p <)\1)\2|‘])\Y(Q)|)\d>: “—L<—7\1:_>\2|J—>\7(Q)| N, (2.9

where the phase depends on the helicitie® Ref[21]). For
d3|jap=p1 dQ1R (2.7 this reason it is convenient to introduce symmetric and anti-

symmetric combinations of thia,|=1 amplitudes
in the laboratory framd.Except for special notation used in rg
Eq. (2.5), we use a roman character for the magnitude of a JS)\l)\Z(plrpZaq)E<)\l)\2|Js(q)|)\d>
three-momentum, so that $|p,|, to distinguish it from the L
corresponding four-momentum,.| The factor
ponding fou HPe. = {3 (@) ng)
W 1
R=— (2.9 — (N[ a(@)[Na)}
My 1+ vp,— E;q cosb,
R I E— A
MaPy L Jagl)\z(pl,p27Q)E<)\17\2|Ja(Q)|7\d>
is the recoil factor, wherdV is the invariant mass of the - 1{()\1)\2|J1(q)|)\d>
outgoing pair and the subscriptmeans that each variable in 2
the parentheses is to be replaced by its value in the lab frame NI 1@} 2.10

(for example,q—>qL and p is a function of#,, the angle . .
bet h {00 ¢ d theaxis in the lab _ Where, because of the phasés,is symmetricunder theY
etween the outgoing proton and taaxis In he 1ab sys parity transformatioriparity followed by rotation byr about
‘e”?)- We_ will sometimes use an asterlsk)(to denote a the y axis) andJ, is antisymmetridand we note for future

variable in the c.m. system. Notation for some of the mosrreference thagd = (A5l Jo(9)Ng) is alsosymmetrig

important variables is summarized in Table 1. TTOMA a
The c.m. framdreferred to as the “antilab” frame in Ref. We then define the deuteron response terﬁ&sand Ry -
[17]) is of interest for theoretical reasons because integrating 2

m

over the final state kinematical variables is particularly con- () _ Py, JMd
venient in this frame and the partial wave expansion of the 99" 272w MEA pgi PRI (PaP2.0)
. . . . . . . 1102

final state is normally carried out in this frame. While this
partial wave expansion is particularly convenient at low and
medium energies of a few hundred MeV, we would like to
point out that the partial wave approach becomes extremely
tedious and/or impractical at GeV energies. At such energies

’
Adkd
’

™
X (P’[J))xdxé‘Jg,fi)\z(pl P2,9)},

Glauber theory [27], or the new so-called “three- an m? ) rg

dimensional” methods of calculating tHéN amplitude di- Rgg’:m E Z+ 1PN Igh 0, (P2 P2, Q)

rectly without partial wave expansiofig], are better. In any T A, P

case, since the final scattering state is by far the most com- Nghap

plicated ingredient in the calculation of the transition matrix N

elements, it is important to be able to carry out calculations X[p(D*”)]AdAéJg,;‘,Az(pl,pz,q)}, (2.11
1

in this frame and to translate them to the lab frame. The
necessity of boosting the calculation from the c.m. frame tavhereg andg’ ={0,s,a}, andpf andp® are the spin density
the lab frame requires that the Lorentz properties of the mamatrices for one nucleon in the final state or the deuteron
trix elements be understood. This goal is conveniently actarget, withp* being the part of the density matrsymmet-
complished by using the Jacob and Wick helicity formalismric underY parity andp~ the partantisymmetricunderY

[29] provided that it can be shown that the various ingredi-parity. Symmetry under th¥ parity operation then ensures
ents in the calculation of the matrix elements, such as théhat those observables of tyfé) must include one, and only
wave functions, are covariant. We will assume for the mo-one factor of the antisymmetric curred} (further details
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TABLE Il. Response functions. A second, independent combination of the same four re-
= sponse functions gives the asymmetry
R{"=Rgo
RO =2(Ryat Rsd R =4ReRg, ] ]
RY=2(Raa—Red R =-4ImRg, d—a((b:o)_d—g((ﬁ:ﬂ.)
R =4ReR, R =4ImRy, dQ'dE'dX dQ'dE'dY
~ ~ A,=
R, =4Im Ry, R", =4ReRy, ¢ d (5o0s dBor e
—_— = —_— =17
_ _ ) dQ'dE'd dQ’dE'd3
can be found in Ref[21]). The relation between the nine
response functions that appear in E8.1) and the tensors s.tR"
defined in Eq(2.11) are given in Table Il. The normalization = 1 (2.14
of Eq. (2.11) and the density matrices is consistent, for un- RO+ s;RP — {R(TI)T

polarized reactions, to summing over final state spins and
averaging over the initial deuteron spin.

For unpolarized particles, ) o ] ]
where the electron kinematics is held fixed and the outgoing

+ _35 - _o proton is measured forward to the direction of the virtual
(PN =50 (Puhpy, =0 photon momentuny (at ¢=0) and backwardat ¢= ).

~ 1.
The longitudinal contributionR(L')—ER(T')T can be separated

1
(PEp =500 (Ppap =0, (212 -
DAdhg 3 Tt D hdhg from the transverse respon&” by measuring the cross

so the observables of typ@l) are zero. If we also limit section for the same kinematics at forward and backward

discussion to unpolarized electrons, the terms proportional tSIECtLO(rI; scattering angles, bthl)the transverse interference
the electron helicith average to zero, and the cross sectionterm R} can be separated froR{” only by an out-of-plane

depends on only four response functions: measurementfor example,¢ = m/2).
These four unpolarized structure functions are only a

B0 4o RO small fra(_:tion of_the structure functions which can be mea-
L oTRT sured. Withpolarizedelectrons, targets, and recoiling nucle-
ons many more can be studig?ll,23, but these observables
1 _ 5 tend to be very sensitive to final state interactions and inter-
— 5c0s 2R+ sLTcos¢R(L')T] . action currents. In this first paper we have omitted final state
interactions and interaction currents, and hence also limit the
(2.13 discussion to unpolarized observables.

d°o oy Q?

dQ'dE'ds  47Mg g?

4 T 7
x=0
>
N (3]
< 8
(5]
8 T
& =
o o
=
2mv (GeV?) 2mv (GeV?)

FIG. 2. Left panel is the?v plane, and the right panel th&/?v plane. In each panel lines with constanare shown, and the cases

analyzed in the following section are shown as dots. The shaded area in each panel is the region where pion production is kinematically

possible. Note that pions cannot be produced near thexkn®, but that inelasticity sets in even at sm@f along the quasielastic ridge
(x=1) and at smaller values af The dashed line in the left panel correspondgvfe= 9m?, just above the region shown in the right panel.
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, produced more and more easily @8 increasegpenetrating
for thinking about final state interactions. However the RIA
%) lab system. The spectator momentpmpss may be either p
P, ) or p, depending on which of the two nucleons was struck by
proton %) 4 the virtual photor{(in the absence of final state interactions or
1
section is therefore the coherent sum of two terms. Symboli-
2!
these two terms are normally dominated by the one with the
FIG. 3. The relafivistic impulse approximatidiRIA) to deu-  ,qgting from the c.m. frame. Theirandz components are
nucleon form factor, and the nucleon propagating between the two

[
0
'~ further and further into the shaded region in Fig, and
D : P1 explicit treatment of the pion degrees of freedom will be
D, P necessary.
< The variableQ?, v (or x or W?), and¢* are convenient
qo
depends primarily on only two variableQ? and Ryiss,
where piss iS the value of thespectatormomentum in the
'I/(Pz) p 2 . . ..
FP(Q9) interaction currents, this is all that can happemd the cross
cally, the RIA current is
P JR.A<p1,p2,q>=|FP<QZ)¢<p2>rF“(Qz)tp(pnlz,(z 5
' A
P v (py) B o )
where explicit formulas for the magnitudes of the rest frame
neutron i p three momenta,pand p, are given in Eq(2.19 below. The
FAQY) two terms contributing to this sum are illustrated in Fig. 3.
Since (p) is normally a rapidly decreasing function of p,
lab frame c.m. frame smallest piss-
The momentap; and p, are most easily obtained by
teron electrodisintegration in the lab frame and the c.m. frame. The
open circles denote the deuteron wave function, the filled circles the piX: +psing*,
is off-shell. Note that the wave functionsalways have one particle
off-shell.

q
piZ:?L + pEWWcosa* , (2.17
B. Kinematics
~ where the uppeflower sign is fori=1 (i=2), p is the
The response functior? depend on three variable®?, ~ magnitude of the nucleon momenta in the c.m. frafig,is
v, and the anglef; betweenp;, and q, wherep, is the  the energy of the outgoing pair in the lab frame, with
three-momentum of the particle detected in coincidence with
the final electronassumed here to be the profofihe vari- \/[WZ—(mlJr m,) 2] [W2— (m;—m,)?]
ablesQ? and v are fixed by the virtual photon, and we p=

2
choose#* (the lab value off,) rather thang, because it is 4w
independent ofQ? and v and always varies between 0 and 1
a. In place of v, it is often convenient to us&? or x zE\/W2—4m2,
=Q?2mv, the Bjorken scaling variable. The mass of the
final state,W, is related tov (or x) by Ew= WP 2=My+ v, 2.18
mx
W2=Mj+2Mgr—Q%=M3+ ZMdV( 1- M_) : and the other variables were previously defifietall Table
d (215 . Hence
2
The region of allowed values @? andv is shown in Fig. 2. , |9 Ew 5 .
If the scattering is elastic, so that the deuteron remains bound Pr=|7 =Py cosd™ | +p S g™ (2.19

after the scatteringg=2, and this defines one boundary of

the allowed scattering region. It is sometimes assumed that The behavior of the magnitudes of and p, and the
pions must necessarily be produced@sincreases, but as anglesd; and#,, for six choices ofQ? andx, can be inferred
long asx remains close to 2, the final state remains below thérom Fig. 4. The solid lines in each panel are the locus of
pion production threshold up to very large values@t and  points swept out by Eq2.17, and the dashed lines by Eq.
one may try to explain the larg@? behavior of these inelas- (2.17) with E,,=W (for a Galilean boost Forx=1 the two

tic processes using a theory with no pion rescattering in theectorsp, andp, always lie in the first or fourth quadrant,
final state. The linex=1 is the quasielastic peak; wh@f is but for x<1 the vectors may lie in any quadrant.

large the region between=1 andx=0 is the region where The restriction of both momentg andp, to the first and

y (or x) scaling is observed. Ik is small, pions will be fourth quadrants, which happens for1, produces a curi-
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4 60
{50
3 |
- e ‘"‘--_~_ :-."'.'_'_..- ] 40
P, 2of ’« Gs(deg)
(GeV) | . =

Q*(GeV?)

FIG. 5. The symmetry momentg pnd the symmetry anglek
as functions ofQ? for five values ofx: x=2 (solid ling), 1.8 (long
dashepy 1.5 (medium dashegs 1.0 (dashegy and 0.5(dotg. The
momenta rise witfQ? and the angles fall witlQ?. For x=2 the
angle ;=0 and is not shown.

where a:dzel/d0*2|(,:_t. The differential cross section in

the c.m. is always finite, but the lab cross section, defined by
the transformation

do do* . |Mc.m.(0*)|2
de* dé1  de,/de*

do )
d_01:|MIab(01)| =
(2.22

has a singularity at the critical poird]"®* because of the
vanishing of the Jacobia(2.20. The integrated cross sec-

FIG. 4. Polar plots Sh0W|ng the locus of the momentum VeCtOrtion |S |ndependent Of frame1 because mza |mp||es (for
p; in the lab systenisolid lines are relativistic; dashed lines non- an infinitesmal interva|e|< 8 aroundg®.,)
~ = crit

relativistic). The horizontal axis in each paneliisthe vertical isx.

The three left-hand panels ha@¥=1 GeV? and the various val- 6.+
. . Ao = crit d0*|M (0*)|2
ues ofx andq shown on each panel; the right-hand panels are for c.m. . c.m!
Q?=3 Ge\2. In all panels they vector points to the right along the crit
z axis and sets the scale. The other two vectorpaandp, for the o )
symmetry case discussed in the text. = d01| M jan( 91)| =A0,
07 (1/2)as?

ous singularity in the lab cross section. For fixed electron (2.23
kinematics the lab angle is only a function of the c.m. angle o
[6,=6,(6*)], and wherx>1 there is a point where the lab Where we have used E(2.21). Because of thénite resolu-
angled; reaches a maximum val'®<90° at a c.m. angle tion of any physical apparatugal experiments always mea-

6* = 6%, At this point sure an averageross sectiorfwith 6+ 0), and the_sin_gular- _
ity never shows up in any real measurement. This singularity
de is further discussed in detail in Appendix C. In this paper we
! |+ =0. (2.20 present c.m. cross sections only, so we do not encounter this
do* ot singularity.

For the special case whett = 7/2 (where the relativistic
Near this point, infinitesimal linear variations of the cm gllipse touches the nonrelativistic cirglthe magnitudes of
angle 6* = 03+ € lead to a quadradic variation of the lab p, andp, are equal, and the RIA depends uniquely on the
angle, wave function at only one momentum point. We will refer to
this as thesymmetry pointSince the angle betwegn and
0, = gAx_ 1a52+ o 221 P2 is 90° in the nonrelativistic limit, this is referred to as
R 2 ' ' perpendicular kinematics. Were there no final state interac-
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TABLE Ill. Wave function combinations that enter the current.

+ o l E \/— B 1 p
$0 (P)= 7= (R + V2 w(p)] ¢o<p>=ﬁ(5[u<m+ﬁw<p>]ﬁvm]
N 1E 1[p
$1(P)= 75 V2 u(p)~w(p)] ¢1<p>=§[E[ﬁum)—w(pmﬁvt(p)]

tions or interaction currents, the symmetry_ point would be aran incomingv spinor (but is not to be interpreted as an

optimal place to measure the wave function. The symmetryniinarticle in this application and therefore the most gen-

point momenta p=[py| =|p,| and angled)s=0,=— 06, are  era| operator® can be constructed from the standard 16
independent Dirac bilinear covariant operators. The matrix

ps=\p*+q°= i [8m?x+ Q2 representatiori2.25 is equivalent to a direct product repre-
4mx sentation
4m?x(2—x u un
b =tan ! | ~tan ! ( ) . (224 Ua(P1, A )[OC]4pup(P2,N2)
4m?x%+ Q?

S Ug(P1,A)UE(P2, A)[OClep,  (2.26
These are shown in Fig. 5 as a function@f for several ) ) o )

fixed values ofx. The figure shows that if we wish to mea- butis more convenient for relativistic calculatiopNote that
sure the wave function at large, pnear one GeyYand at f[he r!ght hand side and Igft hqnd_ side of this equatio_n_ are
large x where pion production is not large, we must go to identical as long as the Dirac indices are shown explicitly,

large Q? (about 2—-3 Ge¥). but only the left hand side can be turned into E2125 by
We now turn to a discussion of the RIA. dropping explicit reference to the indices. Beware that the
order of the momenta in Eq$2.25 and (2.2 is_opposite
C. Matrix element for the relativistic impulse approximation from that used in a previous referen¢a0]) whereu(p;,\»)
was multiplied from the left and(p;,\4) from the right; see

The RIA approximation used in this paper is based on th
simple pole diagrams shown in Fig. 3. We usstandard but
unfamilian notation in which matrix elements of an operator
betweerntwo outgoingDirac particles are written in the form <

Appendix A]
Including the isospin factor

111 1 00 1
222 72" 3

where C=—i7°y? is the Dirac charge conjugation matrix. the Feynman amplitudes for the RIA &my frame can be
This notation is very convenient because' transforms like  written

(Oy=u(py,A1) OCUT(P2 N2, (2.29

TABLE IV. Matrix elements of the current. All variables are in the c.m. frame, Brd\/m?+p?, p,
=psing*, and p=p cos#*. For the proton currenf("), we substitute proton form factors fér, andF, and
set the phasé= +. For the neutron current,(z), we substitute neutron form factors and et —.

. 1 . vop
i1°=5 (F1do—527F2p,) i2°=Fig
. 1 Vo PL 1 1
ts_ _ 5 _F 0 i+S_ -
J1 2 2 om? J2 _\/Em Flpz+52 F20o
) 1 - OE 1 1
+a__ .
i1 —5—\/§Fzsm€*W J;a——\/zm((SFlp-l- EFonCOSH*)
o cosf* o Sing*
ji0=- 5—g— (Fino—217E) B O=m—Q(FlVOE—27'F2mZ)
s 55"“9*(,: E VOE) . cosH*(F E+1F )
— 5 2 = ZFE.p
J1 \/5 1T 2500 J2 \/Em 1 52V
o 1 _ dgop. 1 1
a__ __ P
i = 5\/§F2 om? Jzazﬁm(FlE-F EFZVO)
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<)\1)\2|Jg(q)|)\d> tributions (RIA, FSI, and Int§ separatelygauge invariant
without altering their sum, andiii) modifies each of the
11— (1) @ !ndividual cqntributions as little as possible. The method was
_\/E—N[ul(pl')‘l)lg (P1,P1=A) ¥ 5, (P2, P) introduced in Ref[33], where it was also shown that the
d prescription guarantees that the RIA also gives the correct
~. (2 _ (1) asymptotic result for deep inelastic scattering.

Ua(P2:A2)lg (P22 YN (PP (2:20 )I/f tEe individual contributions to the total current are de-
where\; are the nucleon helicities and, the helicity of the ~ N0t€dJria, Jrsi, @ndJinc, then the prescription calls for
deuteron, andNy is a normalization constant defined and €ach to be modified by the replacement
discussed below. The subscript on the nucleon helicity u
spinor, u; [suppressed in Eq2.25], refers to whether it is T]Q:JQ— —q-Jx, (2.31)
particle 1 or particle 2, in the sense of Jacob and WR% q
(see the discussion in Appendix.AThe nucleon current is

(i s whereX is any of the RIA, FSI, or IntC terms. Since the total
ig’(Pp—a)=egi,)(P.p—q), 228 Cirentis gauge invariant- Jy,;,=0, and

wherep andp—q are nucleon four-momenta withon-shell

(p?=m?) and p—q off-shell, the superscript=1 (proton Je =3 (2.3

or 2 (neutron, and the virtual photon has a polarization vec-

tor e, whereg={0,s,a} with sanda the linear combination o ]

of photon helicities introduced in Eq2.10 [for more de- SO the prescription does not modlfy the total current. Further-
tails, see Eq(B14)]. The relativistic deuteron wave function More, since the photon helicity vectors are all orthogonal to
[30] for a nucleon with momentunP—p off-shell and a 0 &,-9=0,
nucleon with momentunp and helicity A on-shell(so that

p>=m?) is definedto be ¢, , (p,P), and is related to the

. J=¢ -J 2.3
normalizeddnp vertex functionl” by BT E X (233
i m+P—p and the prescription haw effect on the contribution of each
(1) = " n
lﬂ)")‘d(p’P)_ m?— (P—p)? Nal",(p.P)Cu; (p')‘)gl;d(P)’ of the terms in the currenfThis prescription meets all three

(2.29 of the conditions listed above.
Unfortunately, there is no uniquely correct way to modify
where the normalization constant the RIA so that it is gauge invariant. The choice proposed

here is only one of many possibilities.
Ng=[2My(2m)3] 22 (2.30

is chosen to give the defined wave functigra convenient E. Calculation of the structure functions
normalization[see Eq(A15)]. The superscripti) labels the

: B . . The structure functions are obtained by squaring the ma-
choice of helicity conventiofparticle 1 or 2 for the on-shell

_ : . trix element(2.27 and summing over spins. There will be
particle, I',(p,P) is the normalizeddnp deuteron vertex hree terms: the two “diagonal” terms coming from the
(with the off-shell particle on the leffirst defined by Blan-  sqare of the proton term and the square of the neutron term,
kenbecler and Coo31], and &} (P) is the deuteron polar- - 5nq the interference term. The diagonal terms can be calcu-
ization vector for a state with helicity\q and four- lated by expanding the density matrices

momentumP. We use the notation of Reff30] for I'. Note

that the normalization constants in Ed2.27) and (2.29
cancel; the Feynman amplitude depends only on the normal-
ization of ' and not on the convention used to normalize

For further details, see Appendix A.

NOp)=2 ¥ (pPI® U (PP (239
d

in terms of independent Dirac spin invariants, and then per-
forming the sum over the off-shell particle degrees of free-
dom using Feynman trace techniques. The final result, given
The RIA is not gauge invariant by itself. This issue mustin Ref.[34], is a sum of squares of invariant functions and
be dealt with before we can proceed with the calculationscalar products of four vectors, and is manifestly covariant.
Here we discuss how this is done. In this paper we present an alternative method in which
Using the method of Refl32], the RIA, together with the structure functions are calculated by first expanding the
final state interaction§FSl) and interaction currentdntC), off-shell nucleon in terms of on-shell nucleon degrees of
are part of a gauge invariant calculation. Once all of theséreedom, and then computing the squares of the matrix ele-
pieces have been calculated and assembled, the result will Ipeents. It is possible that this method will simplify the calcu-
gauge invariant. Here we describe a convenient prescriptiotation of polarization observables planned for future work.
that is (i) covariant,(ii) renders each of the individual con- Unfortunately, the results obtained using this method are not

D. The issue of gauge invariance
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manifestly covariantbut they are, nevertheless, covarjant the spectatornucleon(with four-momentump, for the pro-
and, unless one is extremely careful, it is easy to make sigton term and four-momentum;, for the neutron term The
mistakes by dropping one of the many phases that arise whdimal result in the c.m. framgsee Eq.(B4)] is

transforming helicity amplitudes. As a check of the results

presented here, we have shown explicitly that our final ana¢x 1\ ,|J4(q* )|\ o)

lytical result for the diagonal term iglentical to the result

obtained in Ref[34]. 3 1
The discussion of this method begins by noting that the= +/ oo > > {ﬂp(z)\i)j(xll)xp,g(pﬁ*,qo)
physical content of the matrix eleme(®.27) can be dis- HECRY VA
played by decomposing the off-shell nucleon into positive

H H ; 1/2 1/2 ’
energy (1 spinoj and negative energy (spinoj states. For X ¢fA\(p2)d5\1,)>\d( 02_7T)d§\’ A) (Q’Z)d(w x)(wZ) 7,(2\3)
example, if we choose a four-momentuos{E, ,k}, then 272 !
the statesu(k,\) and y°u(k,\) (which we use in place of (2 1 (112) (1/2)
thev spinorg, with helicity A=+ 3, are complete, and XJ(AZ)AP,g(p*a* ’qO)‘i’fA\(pl)d(kad(al)dxixl(“’l)dxéx (01},

1= fu(k, N utk, )+ y2u(k, ) ulk,n) y5). (236

» where thed’s are the rotation matricegy=\;+\;, o; are
(2.39 the Wigner rotation angles resulting from the boost of the

spectator nucleons with four-momentym from the lab to

(The definitions and normalization of the helicity states ardn€ ¢-m. frame, and;pand ¢; are the magnitudes of the
discussed in Appendix Alt is important to realize that while on-shell spectator thr_ee-momenta and polar angles in the rest
this decomposition can be carried datany frameusing frame of the deuterofi.e., the lab frame; recall Tablg.[The
nucleon states witlany on-shell four-momentynthe result phasez,(x) is
may appearvery different depending on the frame and the
spinor states used to do the decompositieven though the
final numerical result will always be independent of these
choices.

In this subsection we record the results for the current Egand the matrix elements of the single nucleon current, in the
(2.27) if the decomposition is made in terms of the states ofc.m. system, are

1 if p=+

—x if p=—"' (237

7,(X)=

ui(pF ADIY(pFLpF —a*)uy(pr A i p=,

o '9 | (2.39
ui(pr DI (pF L pF —a*)YPu(pf ) if p=—,

j g\ii)}f)rg(p! 6* qu) = {

with j=1 or 2, butj #i. The deuteron matrix elements are defined in the deuteron rest frame using the exgagsoand
are written

d (00  ifi=1,

2.3
did (6,—m) if i=2. (239

(i) _ 3 ! + ! 5 ’ —
A ag P P)= \/gz {ui(pi N @A (P) — 2N Y ui(pi N) dpa (P} X
A

The ¢'s are combinations of the four scalar deuteron wave functions defined b2 .. These are th8 stateu, theD state
w, and the twdP-state wave functions; andv, and expressions for thg’s are given in Table Ill. The final resul2.36) was
obtained by boosting this result to the c.m. frame, as shown in Appendix A.

This form of the Born term makes it easy to examine polarization observables, and gives a simple form for the unpolarized
response tensof&.11). Squaring the proton terfiwvith (i) =(1)] andsumming over spinaveraging over the initial deuteron
polarization gives

R _ m2 J JT _ m2 2 J(l) Ag * * . P*)J(l)}‘dT * * P*)_ mZMd J+ + ) 2+ + ) 2
99’ — 12,”_2w< g g'>_ 127T2W oA g )\l)\z(pl P25 g’)‘l)‘z(pl P25 - W { gg/[{¢o (p2 } {¢1 (p2 } ]
35 o (P F+ { b (Po) 21+ (3% COsw,+ 35 sinws) b (P2) g (P) + 5 (P) by (o) T, (2.40

where the currents are
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FIG. 8. The ratio of the Bernheim data to the acceptance aver-

FIG. 6. The Bernheim data at low missing momentum. Note thataged relativistic RIA calculation shown in Fig. 7. The triangles are

the relativistic effectgmostly from the current operagoare signifi-
cant.(Three of the lowesp,, data points, possibly contaminated by
bremsstrahlung, have been omitted from the figure.

J+ .(1)+.(1)++j(1)+.(1)+

gg/:Jlg llg’ 29 ng, ,

- (1)) () (D)

Jgg'_Jlg ]lg’ +J29 Jgg/ ’
C _ ()i (D)= s (D+ (1) s+ (D= (D)+(1)-
Jgg'_Jlg Jlg’ +Jlg' Jlg JZg ngr 2g’ ng )

S+ (D)= (D) () W)+ (D) (D) (1)

(2.41

10

10

10

p

10

d’6/dE'dQdQ (mb/strd®MeV)

10'9 L I L L
0 50 100 150 200 250 300 350

p, (MeV)

the low p,,, data set, and the circles the high, set.

Recall thatg andg’ can be either Os, or a. The 12 indi-
vidual current matrix elements are given in Table IV. These
exact expressions are easily evaluated, and the response
functions determined from Table Il. The square of the neu-
tron term[with (i) =(2)] is obtained by replacing4-2, and

the result for the interference term is given in Appendix B.

F. The cross section in the quasielastic limit

We may use expressid@.40 to look at the cross section
at the quasielastic peak, wherg=f0 andx=1 (we assume
here thatM4=2m). Near p=0 the minus components of
the wave functions are both suppressed, and the leading con-
tribution to the cross section comes only from the term pro-
portional to

E2
(60)*+($1)*= U+ W’ ]=[u?+w?]=47n(p,),
(2.42

where the momentum density is approximately normalized to

1
J n(p)d3p=EJ d*p[u?(p)+wWA(p)]~1 (2.43

[the exact relativistic normalization is given in EGA15)].

At the quasielastic peak* =0 and the c.m. momentum p
that enters the current matrix elements given in Table IV is
fixed. From Eq.2.17 and the conditiorx=1 we obtain

:WqL: W20 o (2.44
P=2E,  2E,My 2 :

FIG. 7. The acceptance averaged relativistic RIA calculationThis givesRrr=0 andR =0, and the following simple

compared to the Bernheim data.

formula for the coincidence cross section:
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FIG. 9. The differential cross sectidn the c.m. systerat Q>=0.5 Ge\* and forx=0.5,1,1.25,1.5,1.8, and 1.89. The differential cross
section is in mb/$rMeV and ¢ is in degrees. Each panel shows the six calculations described in the text: @i@dashed ling
C-1IB-noP (solid ling), C-AV18 (dashed ling AA-v/c (widely dotted ling, JD-full (dash-dotted ling and JD-1stclosely dotted ling Note
that the different approximations are hard to distinguish, as discussed in the text.

d5o m? GZ(Q?)+ 7G4 (Q?)
————— =0y n(0)
dQ'dE'd3 w 1+7

+27GZ,(Q)tarf /2 . (2.45

This can be compared to the cross section for scattering from a free proton, which is
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FIG. 10. The differential cross section@?=1 Ge\? and for variousx. The meaning of the curves is the same as in Fig. 9.

d?o E’ GE(QZ)-F TG%A(QZ) ) Gu=F;+F;. (2.47
I _ 2
Y oM E 17, +27G(Q Ytarf6/2; .

(2.46) IIl. PREDICTIONS OF THE RELATIVISTIC IMPULSE

APPROXIMATION
In both of these formulasy=Q?/(4m?), and Gg and Gy,

- . . A. How good is the RIA?
are the familiar electric and magnetic form factors, related to
F1andF,: The low energy Bernheini1981) data[3] are shown in

Fig. 6. This figure showsi) that the nonrelativistic calcula-
Geg=F,—7F,, tion is inadequate andi) at these low missing momenta
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FIG. 11. The differential cross section@f=2 Ge\? and for variousx. The meaning of the curves is the same as in Fig. 9.

there is no evidence for relativistic effects of higher order inmated by thdrelativistic) RIA. The agreement is at the level
v/c, nor for model dependencies coming from the differenceof +50% for a drop in the cross section of four orders of
between the Argonne V18 and Model 1B wave functions. magnitude. We take this as evidence that the RIA is sufficient

The inadequacies of nonrelativistic calculations of thefor the kind of crude survey carried out in this paper.
d(e,e'p)n reaction have already been emphasized in Ref.

[17], and are confirmed in our calculations. For this reason
we will dispense with further nonrelativistic calculations,
and present only calculations with relativistic effects in- \We surveyed thel(e,e’p)n reaction over the wide range
cluded. of kinematical conditions summarized in Table V. We did
Figure 6, and the accompanying Figs. 7 and 8, also showalculations at four different four-momentum transf€$
that the low energy cross section is reasonably well approxi= 0.5, 1, 2, and 3 Ge¥ and six different values of the

B. Covariant RIA predictions for high Q?
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FIG. 12. The differential cross section @=3 Ge\? and for variousx. The meaning of the curves is the same as in Fig. 9.

Bjorken variablex= 0.5, 1.0, 1.25, 1.5, 1.8, and just below Enp= m_ mp— My, (3.0
2, near the highest value accessible in tife,e’p)n reac-

tion at a given @. (The value ofk=2 can be reached only in

the elastic reaction, not in electrodisintegratjdn. addition  and the kinetic energy of then system in the lab frame,
to Q2 and x, Table V gives the transferred energy the

magnitude of the transferred three-momenkqlpr|qL|, and M2 Q2 /M

the range in missing momentum, whqn@i“ corresponds to a T";"‘,E’=—d —-2m+ —(—d - 1) . (3.2
value of #*=0°, and p3™ corresponds to a value of* 2m 2mimx

=180°. In addition, we list the value of the final stai@

relative energy(in the c.m. system E,,,, which is The highest accessible valueofor a certainQ? is given by
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FIG. 13. Dimensionless ratios of the differential cross sedtidhe c.m. systerfor the cases shown in Fig. @f=0.5 Ge\?). The c.m.
angled is in degrees. Here five of the calculations are divided by the C-1IB-noP calculation: Gdll line), C-AV18 (long-dashed ling
AA-v/c (short-dashed line JD-full (dotted ling, and JD-1s{dash-dotted ling

0

Q2M, which we present calculations later on; it is characterized by
(3.3 a kinetic energy in the lab frame of roughly 10 MeV.
Table V shows that the values of the transferred energy
and transferred three-momentum are closest for jovin
which comes from the requirement thﬂfﬁ>0. In Table vV, nonrelativistic reduction schemes one often assumes
we list the kinematic variables for= X, in the last line for ~ ¥<4d , Which is clearly not the case for low Note also that
eachQ?. The closesk value to that is the highest one for the np relative energy is highest for low. These imply

Xmax™

m(4m?>—M3+Q?)’
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FIG. 14. Ratios of the differential cross section@ft=1 Ge\? and for variousx. The meaning of the curves is the same as in Fig. 13.
The estimated errors for a JLab measurement using existing equipment, shown in parel®1.0,1.5, and 1.95, are discussed in the

text.

that relativistic effects should be very strong in this region.

At high x, the np relative energy is very small, on the

This is interesting as it allows for a description of final stateorder of a few tens of MeV. Under these kinematic condi-

interaction by Glauber theorj27]. Although final state in-

tions, the system is reminiscent of a bound system, and one

teractions(FSI) are not considered in this present study, it ismight realistically expect wave function physics to be impor-
useful to know that they can be calculated reliably in thistant here, e.g., the presence of the relativiBtiwaves. The

kinematic region.

044003-16

calculation of final state interactions proceeds by including



COVARIANT DESCRIPTION OF INELASTC . .. PHYSICAL REVIEW C 66, 044003 (2002

2.0 — e 20—
I x=1.0

ratio

0.0 e ! ! I

o 30 60 so 120 150 180 %030 80 60 120 150 180
2.0_ 1 20 —m T
' =143 | i x=1.5 .
e 1 150 ]
ratio [
Ein o,
1.0 Fovediy:
0.5F ]
0_07 M M- L

= ma— O'O_H Ly L M| Ll R | ‘-
0 30 60 90 120 150 180 0O 30 60 90 120 150 180

2'0. 20 T T =T T~ T
3 sl x=1.97
1or ] 1.5L ]
ratio  [ite- e e - e
Foo ™~ e A ST £ o D Tl T
) Y T e Ll e
F -3 gy —— e N T P
Sz L . 3 =-_--.-—-—~""":'-'—'_-_-_-_'_"""'--:-:'-7-’
0-51 } 0.5 ]
0.0l l ‘ : ‘ ‘ [ | | |
0 30 60 90 120 150 180 0.0

0 30 60 90 120 150 180

0 0

FIG. 15. Ratios of the differential cross section@ft=2 Ge\? and for variousx. The meaning of the curves is the same as in Fig. 13.
The estimated errors for a JLab measurement using existing equipment, shown in parel®.®1.0, and 1.5, are discussed in the text.

the lowest partial waves. So, we have reliable methods fowhere the binding energy,, leads to a small deviation from
the calculation of FSI both at higk and at lowx. In the ~ x=1. However, the binding energy for the deuteron is small

region in between, the description of FSI is more involvedand we will refer tox=1 as the quasifree case in the follow-
and accordingly more difficult. ing discussion.

The case ofx=1 roughly corresponds to the quasifree
case. Strictly speaking, the quasifree case corresponds to
2
p= Q ~E, (3.4) Six different theoretical approximations will be discussed
2my ’ in the following. The first three are based on the covariant

C. Six approximations
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FIG. 16. Ratios of the differential cross section@f=3 Ge\? and for variousx. The meaning of the curves is the same as in
Fig. 13. The estimated errors for a JLab measurement using existing equipment, shown in pare.50t.0,1.5, and 1.98, are discussed
in the text.

spectator RIA presented in detail in this paper, and will beelastic deuteron form factof25]. The full wave function has

denoted “C-IIB,” “C-11B-noP,” and “C-AV18.” four components: the familig® andD states, and two small
“C-lIB” is calculated using the covariant 1IB deuteron P states of relativistic origin.
wave function obtained from the successful NBN interac- “C-lIB-noP” is calculated using covariant IIBS and D

tion [24]. This wave function and the relativistic spectator state wave functions, but setting the small relativiftistate
model have been previously used to successfully explain theomponents to zero.
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TABLE V. Overview over the kinematics employed in the cal- derived in Refs[37,36 by its invariant extension, defined to

culation of the differential cross section and asymméetyy,. be

Q2 X q, v p?in p?ax Enp Tbﬁb > Q2

(Ge\?) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV) q(zaff:—Q2+(Ed_W)21 (3.5
0.5 0.5 0.885 0.533 0.214 1.099 0.362 0.793 1+ 2

0.5 1.0 0.756 0.266 0.004 0.752 0.126 0.261

05 1.25 0.738 0.213 0.081 0.657 0.076 0.155 ) o _
05 15 0729 0178 0152 0577 0041 0084 Whereeq,W are energies of then pair in its respective c.m.

05 18 0722 0148 0246 0477 0012 0025 [rame inthe initial and final states. This prescription is simi-

lar to one proposed long ago for the elastic scattering by
0.5 1.89 0.721 0.141 0.285 0.436 0.005 0.011 —. . . .
Friar [38], but differs from calculations by Arenkel et al.

0.5 1.97 0.720 0.136 0.360 0.360 0 0 [17]

The next two versions are from Amaro, Donnelly, and
1 05 1.461 1065 0.265 1.726 0.674 1.591 Jeschonnek39.44).
L 1.0 1133 0533 0003 1130 0247 0.527  wjp f1” yses a fully relativistic, positive energy current
& 125 1.087 0426 0108 0979 0151 0314 operator. This covariant current differs from the spectator
1 15 1061 035 0207 0.854 0084 0.172 5pe by certain off-mass-shell extensions studied in a recent
1 1.8 1043 0296 0340 0703 0.027 0.054 paper by two of the authoi@4].
1 1.95 1037 0.273 0446 0.590 0.004 0.009  «jp-1st”uses a current operator expanded to first order in
1 198 1.035 0269 0518 0518 0O 0 the initial nucleon momentum, with all other terms retained

fully. This approximate “first order” form should be closer

2 05 2557 2130 0310 2.867 1206 3.186 to the covariant one than the traditionalc current men-

2 1.0 1770 1065 0.003 1768 0.470 1.058 tioned above, since an expansion is made only in terms of

2 125 1651 0.852 0.141 1510 0.293 0.633 the moderate momenta of nucleons in the initial nucleus.

2 15 1582 0.710 0.280 1.303 0.167 0.349  The relativistic one-nucleon current used here in the JD-

2 1.8 1533 0592 0.473 1.060 0.055 0.112 full calculation has been recently employed by Donnelly

2 1.97 1514 0541 0.667 0.847 0.005 0.010 etal.[39,4Q in studies of €,e’N) reactions. In these studies

2 1.99 1512 0535 0.756 0.756 0 o0 relativistic models appeared to be far more successful than
nonrelativistic one$17,39. It is, however, a nontrivial task

3 05 3.634 3.195 0331 3.966 1.658 4.781 to extend them beyond RIA.

3 1.0 2356 1.598 0.002 2.354 0.673 1589 Final state interaction and meson-exchange currents have

3 125 2153 1.278 0.162 1.991 0.427 0.951 been so farincluded into realistic calculations mostly within

3 15 2033 1065 0329 1.704 0247 0526 aPproximate frameworks based on various expansions of the

3 18 1946 1946 0574 1372 0084 0171 nuclear operators ir_1 terms of_supposedly sr_nall momenta

3 198 1911 0807 0859 1052 0005 0010 [39-42. We_ do not |_ntend to give an exhaust|ve_ survey of

3 199 1.909 0802 0954 0.954 0 0 those techniques, neither do we dare to compete in complete-

ness and consistency with recent elaborate calculations
[41,43. We only show in our figures the results obtained
) ) with the various one-nucleon currents introduced above.
“C-AV18”is calculated from the covariant spectator RIA \while a much more comprehensive study of relativistic
formulas using theS and D state Argonne V18 deuteron effects, including relativistic expansions ef exchange cur-
wave functiong35] (instead of the wave functions derived rents and heavy meson-exchange currents including boost
from the IIB one boson exchange modahd setting thé®  terms,ymp andy7w currents, and isobar contributions, was
state components to zero. This is included among the covaerformed by Ritzt al.[41] for lower energies, we focus on
riant models even though, strictly speaking, the wave funchigh energies. Here, high energies mean the GeV region,
tion is not consistent with the covariant formalism. This accessible at Jefferson Lab and even the new kinematic re-
model is very similar to the “covariant model” previously gime opening up with the planned 12 GeV upgrade of JLab.
discussed by Arenhel et al. [17], but they used ordinary Our C-1IB calculation given here is fully covariant, and part
spin instead of helicity, and the Paris deuteron wave funcef a consistent treatment of the nuclear dynamics and the
tions instead of thévery similap AV18 wave functions. one-body current that does not rely on any kind of nonrela-
The next three calculations are not consistently covariantjvistic expansion.
but they do use relativistic current operators. They all use the None of our calculations is complete; the purpose is rather
nonrelativistic Argonne V18 wave function. The first of theseto explore various experimentally feasible kinematical re-
is based on the work of Adam, Jr. and Arembb[36]. gions to find those for which the complete microscopic cal-
“AA- v/c” uses a current operator that results from/@  culations and precise measurements would be worthwhile.
expansion of the intrinsic curref®7,3€. Matrix elements of Nevertheless, the variations between results obtained with
this current are made frame independent by replacing theersions of covariant currents and their approximations, as
approximate noninvariant effective three-momentum transfewell as those between two covariant or two approximate for-
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TABLE VI. Sensitivity to relativistic effect§R) compared to estimated measurement er¢btsfor selectedQ? andx.

Q? (GeV)? 1 2 3
X 0.5 1.0 1.5 1.95 0.5 1.0 1.5 1.97 0.5 1.0 1.5 1.98
do R (in precent 50 20 10 10 100 50 20 10 160 50 50 20
do M (in precent 1 1 1-3 5 5 1-10 1-10 W 1-20 1-20 50
A, R (absolutg 0.1 <01 <01 <0.05 0.2 0.1 0.1 0.01 0.5 0.2 0.1 <0.05
A, M (absolutg 0.1-0.2 0.1 0.2-0.5 0.1-0.2 <0.1 >0.5

mulations themselves, should provide some insight on théackward peak. Here high momentum components of the
region of validity of the expansions and approximationsdeuteron contribute over the whole angular range. Figures
used. 9-12 seem to suggest that, for-0.5, the differential cross
section is relatively insensitive to the model used. However,
D. Differential cross section this is largely an artifact of the log scales used in the figures,
. : . L N and to show more clearly theelative sizeof the different
Th? dlfferent[al Cross §ect|o(r2.1) Is given in Figs. 9-12. calculations, Figs. 13—16yshow thatio of each approxima-
The six panels in each figure all have the same scale, so tm%)n to the C-lIB-noP calculation. Theelative variation is

relative size of the cross section may be seen at a gla”CFargest for lowx (x=0.5), but is significant at at, varying
Examination of these figures shows that the magnitude of thﬁ'om about +10% to +’50% particularly nearé* ~90°

H *
cross section depends strongly @A, X, and ¢* . The bulk depending on the values 6% and x. These variations are

feature of the differential cross section consists of the two . . .
peaks atf* =0° and #* = 180°. The first peak corresponds summarized in Table VI for the larger values @f. Since

. L s the cross sections vary by many orders of magnitude, this
to the impulse approxmaﬂpn c_ontrlbutlon, where the photo odel dependence is not large enough to prevent these cal-
couples to the protcin which is detected later on, and the . -vions from providing a useful estimate of the size of the
second peak at 180° corresponds to the Born contrlbutlorl:rOSS section over a wide range of kinematics
where the photon interacts with the neutron. ker1.5 the :

w K I ted b Fi h | For a few choices of kinematics, we have estimated the
0 peaks are well separate eca(cfe Fig. 4 Oe NUCIE-  size of the experimental errors that can be expected from a
ons have very different momenta @t=0 and 180°. In this

oo measurement of this reaction at JLab using existing equip-
case one of the two RIA contributiofeecall Eq.(2.16 and ment. We find, for many kinematics, that the experimental
Fig. 3] is much larger than the other.

5 i <h be the d ¢ ._errors would be small enough to distinguish between the
OWEVET, IT We WIS to pro e the eute_ron wave funcltion yigterent theoretical models shown in the figures. Our esti-
at high momentum, we will seek the region ne#r=90°,

h both : h v th ates of the experimental errors are shown in Figs. 13-16
where both nucleons have nearly the same momenta ang, in Taple VI. In all cases that we have examined, except

only high momentum components of the wave function can,,«qipy ot the largest values okt the larges©?, we could
contribute. In this region the RIA cross section is very Sma”distinguish these models from one another. Of course. the
and FS| are expected to be important. At lacgeand in o) siate interactions and exchange current contributions

particular nearx=2, the two dla_lgrams will always haye must be calculated before one has a complete picture of this
large _momente(because the re_Iatlve momentum of the final rocess, but our results suggest that such a calculation is
state is low, and the cross section shows no sharp forward o ikely to be worthwhile

) o o To estimate these errors we assumed the measurement
TABLE VII. Cuts used to arrive at the statistical uncertainties. would be carried out in Hall A with the hadron arm of the
high resolution spectromet@iRS) spectrometer pair placed

Q* (Gevy X Q cut xeut either in the direction of the momentum transfer veajor

1 0.5 0.8-1.2 0.4-0.6 (data points with solid circlgsor to the left(triangles or
1.0 0.8-1.2 0.8-1.2 right (inverted trianglesof q,. Each spectrometer setting is
1.5 0.8-1.2 13-17 able to measure a range of angls with the settings to the
1.95 0.8-1.2 1.9-2.0 left and the right oqu able to measure large#* 's than the

2 0.5 1.8-2.2 0.4-0.6 setting alongq, (which samples angles ne#"=0). The
1.0 1.8-2.2 0.8-1.2 errors grow ag* gets close to the limit of the acceptance of
1.5 1.8-2.2 1.3-1.7 the spectrometer, and this explains the large errors at certain
1.97 1.8-2.2 1.9-2.0 angles shown in the figurdsee for example, the case when

3 0.5 2.6-3.4 0.4-0.6 x=1.5 and Q?=3, where there are large errors &t
1.0 2.6-3.4 0.8-1.2 =25°, #* =50°, and#* =80°). This is clearly an artifact of
15 2.6-3.4 1.3-1.7 our crude estimates, and could be removed by repositioning
1.98 26-34 1.95-2.0 the spectrometers. The statistics are based on running for one

day at each setting under normal JLab operating conditions.
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FIG. 17. The dimensionless asymmefry atQ?=0.5 GeV and for various. The c.m. angld is in degrees. The meaning of the curves

is the same as in Fig. 9.

These graphs show statistical errors only. The estimates afeptance model for the JLab-Hall A HRS pair. A maximum
the statistical uncertainties were made by acceptance averalgeam energy of 4 GeVexcept 6 GeV was used for tH@?

ing [44] and radiatively folding[45] the plane wave Born =3 Ge\?, x=0.5 casg a beam current of 10QA on a 15
approximation model of Jeschonnek and Donng®9]. An  cm liquid deuterium target, and measurement time per kine-
alternate three-pole parametrization of the MMD nucleonmatic setting of 24 h were assumed. The cuts shown in Table
form factors[46] and the Argonne V1&IN interaction[35] VIl were used to restrict the simulations to reasonable inter-
were used. The simulations were done using a realistic acrals around the desired kinematics.
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FIG. 18. TheA, atQ?=1 Ge\? and for variousx. The meaning of the curves is the same as in Fig. 9. The estimated errors for a JLab
measurement using existing equipment, shown in panelg=fd@.5 and 1.95, are discussed in the text.

E. The asymmetryA,, Q?=0.5 GeV? andx=0.5. The extremum shifts to smaller
Next, we present our results for the asymmesy, angles for increasing and to larger angles for increasing
which is closely related to the transverse-longitudinal re-Q2. Then, the asymmetry changes sign and exhibits another
sponseR, 1 ; see Eq(2.14. The numerical results are shown Peak aroundd* =140° for Q°=0.5 GeV* andx=0.5. The
in Figs. 17—20. The asymmetry is zero féf =0°, then positive peak shifts to lower angles both for increasirand
becomes negative, with an extremum aroufid=60° for Q. The appearance of the positive valued partAgf de-
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FIG. 19. TheA,, atQ?=2 Ge\ and for variousx. The meaning of the curves is the same as in Fig. 9. The estimated errors for a JLab
measurement using existing equipment, shown in panelg=fd.5 and 1.97, are discussed in the text.

pends on the presence of the Born graph contribution; the One can see at first glance that the asymmetry is less
impulse approximation alone would only lead to one negasensitive to the differences in the calculations than is the
tive peak. Accordingly, when both processes start to interdifferential cross section, except near0.5. Perhaps the
fere, i.e., for the highesk values, the minimum tends to most interesting feature of these calculations is the irregular
wash out, especially for the situations where the peak arounshape of the asymmetry &t 0.5 forQ?=2 and 3 GeV. At

0* =180° has vanished in the cross section. Q?=2 Ge\? both versions of the JD and the C-AV18 calcu-
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FIG. 20. TheA,, atQ?=3 Ge\ and for variousx. The meaning of the curves is the same as in Fig. 9. The estimated errors for a JLab
measurement using existing equipment, shown in panelg=d@.5,1, and 1.98, are discussed in the text.

lations develop an extra dip. AQ%=3 Ge\?, the results for
x=0.5 develop even more structure, with the AAe calcu-
lation having the opposite sign ne@ near 0°, and the
C-IIB-noP showing an extra peak arourtd=90°. At Q?

not measurable with sufficient accuracy.

The uncertainties irA, were generated by propagating
the errors in the cross sections, where the latter included
statistical errors folded in quadrature with an overall 5% sys-

=3 andx=0.5, A, could give unique insight both into the tematic uncertainty. Further, to simplify the procedure, the
effects of relativity and different wave functions. By con- integrated yields for protons within the right and left hemi-
trast, at largex and largeQ? the asymmetry is very small and spheres about the momentum transfer direction were as-
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sumed to correspond =0 and¢= . Finally, the values

of the cross sections, needed to propagate the errom for
were taken from the pointi.e., not acceptance averaged
values; the statistical uncertainties in the cross sections were,
of course, determined using the full acceptance.

\9 |
=P .

IV. CONCLUSIONS 0, =1+6, X

I

I

I

I

I

I

I

I
In this paper we have estimated tdé¢e,e’p)n coinci- —P=P2 :
dence cross section using the relativistic impulse approxima-
tion (RIA). Our calculations span the range €.62 FIG. 21. The definitions of the momenta and anglesnd 6.
<3 Ge\V? andx from 0.5 to just less than 2. In this kine-
matic region, we find that the results are sensitive to differenwhere 5 is the Dirac operator for a pure boost along the
approximate treatments of the single nucleon current, an@XIs,
conclude the following:

Using equipment already in existence at JLab, it is fea-
sible tq measure the uppolarlzed coincidence cross sectloWnith tanh¢,=p/E, andR is the Dirac rotation operator
over this entire kinematic range. The asymmery can be P
measured at smal where it is large.

The coincidence cross section is sensitive to the theory
over the entire kinematic range, and it appears that measure- A o
ments can be done to an accuracy sufficient to distinguish i]at takes the momentum from along max'?fnto its final
large variety of relativistic models from each other, exceptdirection. Using this transformation in thez plane (@
possibly wherboth xand Q? are very large. =0), the helicity spinors for particle 1 are defined as in

The asymmetry is less sensitive to the theory, except drefs.[24,47,
the smallest value of=0.5 where measurements can easily .
distinguish between different theoretical models. u(p,N)=uy(p,\)=S(p,{,)u(O,N)

To complete this preliminary study, we must add relativ- _
istic final state interactions and interaction currents that are =Uy(PA.01)
consistent with the RIA. This is_ certainly feasilgle at Igrge =R,(61)us(p.\,0)
values ofx, where the low relative momentum in the final

B({p) =63 %2, (A2)

R(ﬁ):R((ﬁ, 6,— (;b):efi23¢/2efi220/26i23¢/2 (A3)

state makes it possible to use existing relatividtid inter- 1

action models. It may also be feasible at laywwhere the COShE &p

large excitation energy deposited into the final state may jus- = 1 XA(91),
tify the use of a relativistic generalization of the Glauber 2\ Sinh§§p

approximation.

v(—p,N)=vi(p,N)=—(—1)Y2cu* (p,—\)

. ) =v4(p,\,01)
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APPENDIX A: THE DEUTERON WAVE FUNCTION coshy ¢y
1. Helicity spinors (A4)

Following the conventions of Jacob and WifR9], the
helicity spinors for a particle with four-momenturp - .
—{E,p! are obtained from spinors with four-momentum P~ P1 (€€ Fig. 21 and

whereR,(6)="7R(0,0,0), 6, is the polar angle of the vector

{m,0} and spins up or down in the direction. The state is 1 1
first boosted along theaxis until its momentum i$E,0,0p} cos; 6 —sinz 6
and th_en is rotated in _th(_e direction pf The Lorentz trans- X1 0)= 1 , X—l/Z( 0)= 1
formation that does this is therefore :
smi (% COSE (%
S(P,£p) =R(PB(£) =S A(P.¢p)], (A1) (A5)
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Note that theu(p,\) andv(—p,\) of Ref.[47] are identical
to theu,(p,\) andv4(p,\) of Ref. [24]. Following Jacob

PHYSICAL REVIEW 66, 044003 (2002

Note that this equation holds for particle 2 even though, in
applications, we restrich,= . The active rotation of the

and Wick[29], the helicity spinors for particle 2 are defined deuteron helicity vector from an initial direction along the

as

U(—p.N)=Up(p.N) = (= DYZ R (01) Ry () B(£p)u(0N)
=U,(p,\, 65)
=Ry(0,)Uz(p.\,0)

Ry(62)(—1)Y* uy(p.\,0)

1
coshz o

X_}\( 61),
2\ sinhzgp

v(p,N)=va(PN) = (=12 ACu* (—p,—\)
=va(p,\,02)
=Ry(02)v2(p,\,0)
=Ry(62)¥°y°uz(p.\,0)

1
—2\ smhzgp
= 1 X?A(al)a
coshigp

(AB)

where 6,= 7+ 6, is the polar angle of the vector p=p,
(see Fig. 2L andu(—p,\) andv(p,\) are identical to the
us(p,A\) andv,(p,\) of Ref. [24]. Note that the angular
conventions have € §,<m and haver=< 6,<2x. Useful
relations, valid on the two-component subspace, are

Ry(62)x,(0)=2\x _ (61),

Ry(m)x (6)=2\x_(6), (A7)

and, on the full four-component spaeg, andu, are related
by

uz(p,)\,92)=2)\Ry(77)u1(p,)\,01). (A8)

[Note that A=(—1)Y2"*.] This last formula is useful for
the applications in this paper.

2. Deuteron wave functions in the rest frame

The deuteron wave functio(2.29 is manifestly covari-

axis to an angle with respect to the axis is given in terms
of the spin 1 rotation matrices

£,.(0)= 2 di (0)€,(0). (A10)

Substituting (A9) into (2.29, working the operatork
through the rest of the expression, and then using(&g0)
to realign the deuteron helicity vector in tizedirection by
rotating it through angle- 6 gives

(PP =9(P.6) € (0)

=Ry(6) > ¢ (p, 0)§“<0)d‘1’ (0),
Y

(A1)

1)
Aoy
only in the deuteron rest frame where there is no total three-
momentum to be rotated Iy, .

In the original Ref.[30] the on-shell particle was taken to
be particle 1 with four-momentump,, and the wave function
in the deuteron rest frame was expanded in termsoaf
shel) particle 2 spinor$24]. (Also, be aware that the spinors

used in Ref[30] were quantized along the fixedaxis, and
for v spinors the notation-s corresponded to spin projec-

tion +s in the z direction) In the notation of Eq(A6) this
becomes

where we used, - ,(— 6) =d(xl,)>\d(0). This argument works
d

1
5\1) )\d(pl!

)= [u2(p1,>\2,ﬂz)df{lxz,xd(pl)
A2

+t02(PrA2,02) ¢y, 0 (PO (AL2)

1h2Ag

Using the fact that,= 7+ 6, so thatd,= = when §,=0,
and using Eq(A1l) gives

PN (P1P)I= 2 [U2(Py A2, 0200, 1i(P12)
Ao, }‘d
+02(P1.N2,02) ¥, RV plz)]d(l) (91)

(A13)

ant, and we use this feature to simplify the treatment. Apply-
ing Eqs.(A4) and(A6) in the deuteron rest frame, the spinor Where the components, VY (P1z) have the relative mo-
for either particle 1 or 2 can be written in terms of the spinormentum vectofsame as the momentum of particle 1 in the

with the momentum in the direction,

ui(p,N) =ui(p,\, 6;) =R, (6)ui(p,\,0). (A9)

rest systemaligned along thet z direction. The= compo-
nents of the wave functions follow from the helicity spinors
defined above and the expansions given in IR&d]:
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1
lp;ﬁ\zr’\d(p) :\/ﬁXL\Z u(p)o- fxd

w(p) io,

~ - 2
+ (30 o o-gg} 5

_ _ 3 t
I, ng(P)=1\ 27X,

_ vi(p)
V2

vs(PP-§

i0'2
RS

(A14)

(0:p-& —p-€ )
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1
), (P, P)= T ; [uz(py. N2, 02)F 5y (P2)

—2h02(P1 A2, 02) F iy - (P1)]

xd{) 5 5 (61)- (A20)

One disadvantage of the expansi@®0) is that the four-
momentum of particle 2, which ip;={My—E, ,—ps} in
the rest system, isotthe same as the four-momentum of the
spinoru,, which isf)2={Epl, —p4}. This difference can lead
to confusion, especially because the four-momenfuris

not one of the four-momenta that naturally occurs in the
problem. Inthis paper we avoid this confusion, exploit the

Hereu(p) andw(p) are the momentum space radial wavefreedom to expand the off-shell particle in terms spinors with

functions for theS and D states andv(p) andvg(p) are

any four-momentum, and choose the four-momentum of the

triplet and singletP-state wave functions, which appear in a on-shell particle(i.e., the spectatprfor the expansion. The
manner similar to the lower component wave functions foradvantage of this choice is that four-momentum used to de-
the Dirac equation. These wave functions are functions of thecribe the off-shell particle is now one of the naturally oc-

variable p=|p| and satisfy the normalization conditi¢80]
fo p’dp{u(p) + WA (p)+of(p)+vi(p)}=1. (AL5)

The wave function$A14) can be simplified by specifying
the helicity states of the deutergim the rest framg Since

the deuteron is a particle 2 in the sense of Jacob and Wick, its

helicity states are

£ =82 =(~1)* e el

1
—(*+1,—i,0 if N\yq==,
(0,0, if Ng=0.
Note, for future reference, that
RLE =(—1)t g (A17)
Ag —Ng

where R ,=R(m). If pis in the +z direction, it is not
difficult to evaluate Eq(Al14), giving

1
N (P) ===\, -, T r (D),
AAaiNg \/ﬁ d Mo N N

- Ay ~
In,ng(P)=— E&‘d"‘z*)‘lfmﬁp)’ (A18)

where
fo(P=u(p)+v2w(p), fo(p)=3vp),

f1(p)=3vy(p). (A19)

Combining the expression&13) and(A18) gives

7 (p)=2u(p)—w(p),

curring momenta in the problem. Also, we find that the for-
malism is simplified if we usey®u instead ofv spinors to
describe the negative energy statas in Ref.[47]). With
this choice, we find the following expansion for the wave
function:

/3
¢§\ll),>\d(p17p): g% [Ul(ply)\Zv91)¢|J;\2+’\1\(p1)

—2N7°us(p1. Az, 601) Px,in,(P1)]

xdD a0, (A21)

where and extra factor of3 has been introduced for conve-
nience. Projecting out the independent components, gives

+ EP + - 1|p + N
¢0(p)zﬁfo(p), ¢o(p):ﬁ Efo(p)_fo(p)}
Eo

+ =

),
(A22)

1
f1(p), ¢I(p)=ﬁ

where the new wave functions were given in Table III.
Comparison of the expansiofs20) and(A21) underline
the fact thathe separation of the wave function into positive
and negative energy parts is a matter of conventanly the

total result is independent of this separation.
By a similar argument, we expect the expansion §&?
to be

/3
@d(pz,P): %)\2 [Uz(pzﬂ\l,92)¢\,x+2+>\1\(p2)
1

—2\17°Ux(P2, 1, 65) Bx,xy(P2)]

xd{Dsy 2 (02— 7). (A23)
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One can prove tha$™ = ¢ *by finding the expansions for Three basic Lorentz transformations are required in the fol-

@ directly from those foryY). Using Eq.(A23) and or- lowing discussion. In the notation of EGAL), these are:

thogonality relations for the spinors gives A~ - ~
P=S(p,{p)P=R(P)B({p)P,

'+
12 (1) , -, -~ s, ~
(3/8m) 75 5 (P2) i (00) P’ =S(p . {p)P=R(P')B( L )P,
:UZ(DZa)\lyHZ) lﬂg\zz),xd(pz,P) p'=B({,)p. (A27)
=U2(p2,)\1,92)de(P2,P)Ca-zr(pzy?\z.ﬁz) The first Lorentz transformation connects the particle rest
frame with the initial frame of the particle and is composed
= 4NN oU1(P2 A1, 01) R T (P2, P) of a pure boost along theaxis B(¢;) followed by a rotation
into the direction of the initial particle directioR(p). The
xcn;lﬁ'{(pz,)\zygl) second Lorentz transformation connects the particle rest
B frame with the final frame of the particle and is also com-
=4\ No(— 1)1‘”du1(p2,)\1,01)F_>\d(p1,P) posed of a pure boost along thexis followed by a rotation.
The third Lorentz transformation connects the initial and fi-
X CUL(P2. N2, 07) nal particle frames with a pure boost along thaxis.

o Now consider the boost of a helicity spinj@itheru, of
=(—1)A"‘du1(p2,)\1,01)F,)\d(pl,P)CGI(p2,7\2,01), Eq. (A4) or uy(p,\) of Eq. (A6)] along thez axis

(A24) B, ui(p\)=B(L)S(P,£p)ui(ON)

where A=\1+X;, Iy (p,P)=T,(p.P)&L (P), Ry(m)p, =S(p",£p)S HP' Lo ) B(L)S(P,p)Ui(ON)
=p,, and we used the relatior{#8) and (A17). However, ~, 1,
from Eq. (A21) =3(p",{p)SAT (P, Lpr)
(318724 (p) A, (6~ ) XB(L)A(P,£p)Jui(ON), (A28)
— (3/8m) Y4~ )N gy (p)d), _, (6y) where S(f),g“p)=S[A(E),§B)] is the representation of the
o Lorentz transformatiom\ (p,{,) and the group composition
:(—1)A7)\du1(pl,)\2,01)¢§i)'7kd(pllp) property of the Lorentz transformations has been used in

writing the final step. Since

=Pz 60T (P P) AP Ly BEABL)P=P,  (A29)

this combination of Lorentz transformations must be equiva-
. . L , ) lent to a rotation and is referred to as the Wigner rotation. In
Since this equation is symmetric under the interchange,of thjs case, where the boost is along thaxis and the mo-
and, and p=p, in the c.m. system, the o BQ®A24) 0 yn are in the plane, the Wigner rotation is a rotation

+_ g+ imi ~
and(A25) are equal, ang™ = ¢ . Asimilar argument holds about they axis, denoted?,(w;). The boosted spinor can

for ¢~ i
The wave functions used in this paper were obtained b}herefore be written

solving the spectator equation using a kernel adjusted to fit _ —an _
the NN data below 350 MeV lab enerdp4]. B&ui(p M) =S(p", ) Ry(@1)Ui(ON)

=S<b',§pf)§ u(ON")d 2 (w))

XCGI(plu)\lvel)- (A25)

3. Boosting helicity spinors

In order to boost the spectator equation wave functions it

is necessary to have expressions for the pure boosts of the => ui(p’,)\’)dg\l,’f)(wi). (A30)

helicity spinors. Indeed, for the applications to elastic deu- A

teron electromagnetic form factors and the response fun

tions for deuteron electrodisintegration, it is only necessa

to study the case where the boosts are made alongakis. —

Since the Dirac spinors for arbitrary momentum are define@Ui (P.M).

in terms of a Lorentz transformation of the rest frame [N this pape3({,) will be chosen to be the boost from the

spinors, it is useful to define the four-momentum in the par<-M. frame wher@* ={D,,0,0,~ g} to the lab frame where

ticle rest frame as P={M4,0,0,3. This is accomplished by a boost in the posi-
_ tive z direction with tanhl,=qy/Dg. In the notation we have
p=(m,0). (A26) introduced, the basic equations are

r(\S_ince y® and Cy° both commute with the boost, and since
¥he boost is real,(A30) also holds for y°u;(p,\) and
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B(g)Heu (pF =2 cul(p A )d (), (A3D)
}\!
and the inverse relations
B7Y(g)cul(pr =2 cul(pr A)dYD(— ),
}\I
(A32)

where the variables without asterisks are in the deuteron re
frame (the lab frame and the variables with asterisks are in
the c.m. frame of the electrodisintegration process.

PHYSICAL REVIEW C 66, 044003 (2002

with E=m?+ p? andE; = \m?+ piz. The following identi-
ties, derived from these equations, are very useful:

E - . E
—sing; cosw—cosg; smwza'sm 6;,

E . . -
—sin 60F sinw + cosé; cosw=cos¥,

st

The Wigner rotation angles can be computed from the

standard relations

Bil(gz)Ry( 0i)8(§pi):Ry( ar)B(gp)Ry(:wi)a
(A33)

where the upper sign holds for=1 and the lower foi =2
[the change in sign is a consequence of the phase relation
Eqg. (A8)], and 0} = 6* and 65 = 6* + 7 [recall Table I; the
form of 65 is a consequence of the extra rotationsbyn Eq.
(A8)]. Writing the rotation and boost operators in closed
form, Eq.(A33) can be written

2|

0

| :

1 1
X [COShE gpi — agsmhz gpi]

1
cos;

1 o1
coshé {,— agsmhz {,

0i - izzsin

1.1 1
= COS§9i —|Ezsm§0i coshigp
1 1. 1.
—a3smh§§p (cos§w+|223|n§w), (A34)

wherew is a shorthand for eithab; or — w,, depending on
the case under consideration. This operator relation can

separated into four independent equations relatintp the
lab variables{p;, 6;} to the c.m. variable$p, 6 }. A conve-
nient form of these equations is

1 1 ~
C_+cos§0i=\/2Md(E+m)COS§(9i*_w),
1 1 .~
C__cos,§0i=\/2Md(E—m)cos§(6’i +w),
.1 . 1 *x _
CHsngi:\/2Md(E+m):~:|n§(¢9i - w),

1 1 ~
C+,sin§ 6,=~2M d(E—m)sinE(ai* +w), (A35)

where

Cab=V(Do+Mg)(E;+am)+by(Dy—Mg)(E;—am),
(A36)

~ ~ D
— —cos#} sinw+sin 6 cosw = —Osinai ,
m Mg

- - DyE _
— cosy* cosw+ sin 0¥ sinw= — 'cosei—%,
m Mdm Mdm

~ Qo 0

—pcosw= M_dEi cosé?i—l\/l—dpi ,
in .om |
psSinw= M—dq0 sing, . (A37)

4. Boosting the deuteron wave function

In order to calculate the response functions for deuteron
electrodisintegration it is necessary to boost the deuteron
wave functions from the center of momentum frame of the
final state proton-neutron pair to the reékth) frame of the
deuteron(where the decomposition of the wave functions
onto S D, andP states has been definedf the system is
quantized such that the three-momentum trargiégs along
the z axis, then the deuteron wave functions in the c.m. must
be boosted to the rest frame by a pure active b@§st) in

the z direction with tanh,=q, /Dy, as defined in the previous
section.

The rest frame wave functions are obtained by applying
the operato3=B({,) to the wave functiong2.29, which

b%ives

By (pF .P*)

m+ P* —pr* .
()2 NPT PTICU (R M)

m+ P* — p*

g | (ENaDRT PE T
i

X[Beu! (pF N1

m+P—p,
= mmndm PIcu! (pi N AR @)
N - — Pi
=2 9, (P PR @), (A38)
}\!

where, in the next to last step, we used the boost properties
of the helicity spinorgA31) and the fact that the propagator
and de(pi ,P) are Lorentz scalars. Note that there is no
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Wigner rotation of the deuteron helicity vector because theandA and the Wigner rotation angles were defined above.
boost is in the same direction as its momentdmat the The matrix elements of the single nucleon current opera-
components of the vectdy, do changg The wave function tor, in the c.m. system, are defined to be

in the c.m. frame can therefore be written in terms of the rest

frame wave function N (P,6%,do)

: ~ u(pE ADIOPT L PE =Pl N if p=+
UQ(Pr P=3 B, (b PSR ), Bl g
)\/

(A39) wipF ADIOPT P —a*) Yu(pf N if p=—

Using the representatiori821) or (A23), and the boost for- (B3)
mulas(A39) and(A30), the wave function in the c.m. frame These are calculated in the next section. Using this notation,

becomes the current matrix elemeni®1) can be written in the fol-
3 lowing compact notation:
() * pEy= [ B Y u.(p Nk (b
lﬂxi ’Ad(p' ’ ) 87)\%_; [ I(pl ’ ])¢\A\(pl) <)\1)\2|‘J)\y(q)|)\d>:(‘Jky)ij)\z(p?lr ,p;r ,q*)
joi

_2)\!75ui(pi:)\")¢\_A|(pi)] _ /31
' - Vlede; ?‘ {75(202)

xd®, (dy ),
X0 (P.6% Go) ¢ (P2)

[3
- ﬁz [ui(P! M) () A (02— A2 (w02)d)i V()
— 2N YPui(pE N i (P)] —71,(2\; )J§\22)>\p>\ (P, 0% ,d0) pfr((P1)
xd®, (Bd Do )d(llz)(w,)(A40) xd) (00 d Y (0n)d ()},
(B4)

where A=\/+\[, 0;=0;, 0,=06,—m, and the upper

(lowen sign in theA index ofd® is for i = 1(2). Note that ~ Wherez,(x) is the phase defined in E(2.37). The unpolar-

the notation is mixed in the last equation: the momentum ofzed cross section will be calculated from this matrix element
the spinors is expressed in the c.m. frame and the variabledter the matrix elements of the nucleon current have been
of the ¢’s andd¥) are in the deuteron rest frame. discussed.

APPENDIX B: THE HADRONIC MATRIX ELEMENT 2. The single nucleon current

In the spectator formalism used in this paper, bl
_ . . interaction kernel has a form factt(p?) [h(m?)=1] at-
Using Eq.(A40), the current matrix elemeii2.27), inthe  tached to each off-shell nucleon which enters or leaves the

1. The plane wave matrix elements

c.m. frame, becomes interaction. Alternatively, this form factor can be removed
Nnald N from the kernel and attached to the nucleon propagators,
(Aah2ldy (@)[hg) which then have the form
(D(p* p* — g* ~ h?(p?)
1677Nd }\E {Ul(pl A)]x (pl P1—0%) Se(p)= — ) (B5)

X[uy(p3 ,)\)<I5|A|(p2)—2)\17/5u2(p’2c N) @ |(P2)1E2 Gauge invariancé32] will be ensured if we introduce -
u; j d d I M ,l 1
—Uuy(p} ,Az)lg\?(p; p3 —q*)[uy(p? a)\)¢f§\|(pl) ucednucleon currenfg(p’,p)
i“(p' —h'i&(n'
(B1) j“(p",p)=h"jr(p",p)h, (B6)
whereh=h(p?) andh’=h(p’?), which satisfies the Ward-

= 2N7°us(pY N B (PO 1E L),

where TakahashiWT) identity using the dressed propagator
= _ 1) (1/2) (1/2) ) ) - .1,
E2=di (0o mdy (w2t (w2), Q4P P =5 (p) -S4 (p). (B7)
Elzd(l) (61)d(1/2)( l)O|(1/2)( D, (B2) A simple choice for the reduced current which satisfies this

identity is[25, 32,48
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ioch"q, results are simplified if we consider the symmetric and anti-
+Foy* symmetric combinations of the transverse helicity ampli-
tudes, which are found from

JR(P'P) =Fo[F1(Q?) = 1]y + FoF »(Q%) —

+Go[F3(Q?) —1]JA _(p")y*A_(p)

1 1
+GoA_(p")Y*A_(p), (B8) 8525(81_8—1):E(0a_110a0),
where Fl,z(Qz) are the on-shell nucleon form factors, 1 1 .
F3(Q?) is a completely unknown form factor describing the 8a=§(81+871)zﬁ(0,0,—l,0)- (B14)
off-shell structure of the nucleofsubject to the constraint
that F3(0)=1], A_(p)z_(m—b)/SZm), 7’2‘: y*—qrdlo?, Using the explicit form of the spinors given in Eq#4)
andF, and G, are functions ofp” andp’“ completely de-  and(A6) we can show that the current matrix elements have
termined by the WT identity: the form
2_ 12 2__ 12 - (i) , - (i)
Ozirz mz prz i2 njz pz' O adig 2N Ol
h’® p=p’® h"p’“—p (D0 (6% q0) = for {p.g}=(+.,0),(+,s),(—,a),
( 1 l) 4m? ©9) VNG 2)\'5>\',—Aj(1lép+5w,>\j(zlép
0: _/__ ’ ) for ’ = _,O,_,S,+,a,
h2 h2|p2—p? {p.9}=(=,0),(—,8)( ()815)

Since the final nucleon is always on-shell in the RIA ap-whereg=1{0,s,a} replaces the helicity. If the protdiparticle

H H 12 _ A2 HSNH !
pro&r;}waﬂ_on,p =m* and the terms multiplied bA _(p’) 1) matrix elements are calculated first, the neutron elements
vanish, giving

follow from
o 1 ~ io”"q, q“q i (p,6%,00)=Ux(P N, 6% +
jr(p ,D)ZE[Fl(QZ)'y’H—FZ(QZ) >m +? ) Ix )\;g(pﬁ ,0o) =Ux(P,\", 0% + )
(B10) Xj (P35 ,p5 —a*)us(p, 6%)
Furthermore, the terms proportional ¢¢ vanish when the =—4N'Nug(p N 0F)R,

current is contracted with the photon helicity vectors. Hence,
the current for use in the RIA reduces to the traditional cur-
rent divided byh,

XiP(p% ,p5 —a* )R 'us(p\, 0 + )

=—4\'A7' (g)us(p\',6%)

. ’ 1 iO-MVqV X(Z) *1 *_A* ’)\’0*+
JM(p ,p):h(pz) Fl(Q2)7”+F2(Q2) o ] Jg (pl P1—q )Uz(p 77)
= =AM N7 (Q)fN4(P.0* ), (B16)
(when p'?=m?). (B11)

where the rotation byr about the§/ axis has changeg?
Even when one of the particles is off-shilé only modifi-  —p¥, g*—g*=(v0,0,0—0o), and eg— —(—0o,0,010)
cation to the on-shell current which survives is the appear¢so that the effect on thg=0 amplitude is to change the

ance of the factor of b. _ ~ phase and to changg,— —qo), and therefore the phase
The photon helicity states in the c.m. frame, as defined i’ (g), arising from the rotation of the photon helicity vec-
Ref.[21], are tors, is negativéfor g=0 ors) or positive(for g=a). The

change in the operatgf”)—j " corresponds to the replace-

_i(o =1.-i.0) ment of the neutron form factors with proton form factors.
£x17 J2 D The effect of the phase 4\’ \ is an additional change in the
1 sign of all j, type elements. Combining all of these effects
.. (2 (1
80:6(%’0’0’1}0)' (B12) allowsusto obtalr](x,))\fg(p,e* ,o) from J(A,);g(p,f)* ,0o) by

changing proton to neutron form factogg— —do, j1(0s)
Hence, the single nucleon current operator, defined in Eqsﬁ)};sjel(op%ésjez(gﬁ;éé(ggére] 1rae;>ojrl(§1éd ?ﬂ?odé?w—;h_ej Zfaa;:tor
(2.28 and(B1), is shown in Table IV

.éA q

J(@(pi* Pt —q*)= Fl(Qz)é)\ —F,(Q?) 2r7n , (B13 3. The hadronic structure functions

Substituting the form(B15) for the current into the ex-
where the factor of I has been omittedt is absorbed into  pression(B4) allows the sum ovek to be carried out. Ify
the wave functioh As discussed above and in REZ1], the =0 orsthe result is
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(Jg,,(PT.P3 )—\/K 2 X {7y (ANADL B ()AL 2, (02)+ 2050 by (P) ALY (02)10
MM

p

= 7,(AN A 27y ( m)dil, (01 +2X5] 557 60y (py) d‘lk (01)1V1}, (B17)

where
» ; 20 d{ 2 (w))d5 2 (w)) = dYD(7—20w))
Vo= (o)) (0, ),
=2bd{}?(2w;),
Y=di(0nd®), (0. (B19)
If g=a the phase &, in the first square bracket multiplies E d(llz)( J)d(m) (0;)=0, (B21)

j ) instead off &), and the phase), in the second square
bracket multiplies {3 instead ofj . This different phase
ensures that there i |s no interference betw&geand the other
components of the curreni, contributes only quadratically
in the termJ,J} .

The unpolarized hadronic structure functions are now ob-
tained by squaring the curreiiB17), summing over final
hadron helicities, averaging over the initial deuteron helicity,<‘]9‘]9’>|i:
and multiplying by the kglr:)ematic factors given in E@-40.
The structure functionR"" are identically zero in the RIA. (i)e (i)s
The others are proportional to [Jgg'cosw' JagrSino; 1L i () Hia (P I}

and (2)%=1, gives

[¢\A (py) ]2+Jgg [pia(P)]?

(B22)

(Odg)= 2 ()%, (P PE.a*)(Ig )% (PT P %),
e (B19)  Where the current3yy were given in Eq(2.41). Since these
currents do not depend on the helicities, we may complete
This generates three terms: the proton contributfmopor-  the sums using
tional to [[¥]?), the neutron contributioriproportional to
[1(2)]2) and an interference terngproportional to j*

x j2)y, .
The proton and neutron terms simplify easily. The sum ,E, ¢FA\(pJ)¢rAI(pi)
over Ay and\, (for the proton termor A\, (for the neutron Mh2
term) collapses the sum ovar; and\ 5 (associated withd ' '
) collap 2 ( o) =20 (P 66 () + B4R @4 ()] (B23)

and the sum ovex’] and\} (associated W|thJT ) reducing
the “diagonal” terms to

This gives the result reported in E@.40.

t i)+ g+ The interference term does not simplify as nicely. The
Jod )i ANIN] : .
(adg = 167Nj xEA {[=4hshizg” dia (o) sums oveir4,\1, and\, can be carried out, but there are no
\ delta functions to collapse the remaining four sums. The re-
) - 1 sult is
183 i ()10 () +[2018) " bl ()
/
— 20318 o (p)ldy () o~} (820 T 3 1
<Jngr>|12=W 2 d (6= 7—6y)
wherei =1 (for the proton or 2 (for the neutrof j=1 or 2 THd X}f”
(but j#i), and we usedd';? (w)=— 4)\1)\d(1/2) ). MAa
1
Next, using the identities X[ng)\]g,)vLJ;l,)Jéz)], (B24)

a2 (1/2) 2), 122
d- d- =1= d d
2;' ( @) >‘( 2 E (@)dy\ (@), whereA=\]+\5, A’=\]+\}5, and
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IP=[-2035 i)+ dE (501914 (p2)

. 1/2
+[ifgd%

hr(8) =2\

15 A ()1 (p2)

12)

(1/2)
d )\")\

”; 1
IP=I-2n55 0 00 (6, +ig d

2l1g (5+)]¢|A/|(p1)
12)

05y dU0 (=60

i (2)—

(1/2)
2] 29 d

Ve (B25)

(—o- )]¢|A,|(|01)

APPENDIX C: KINEMATIC SINGULARITY IN THE LAB
CROSS SECTIONS

In Sec. Il B it was shown that, >1, the lab angleg,,

reaches a maximum value in the first quadrant, leading to the

condition (2.20. In this Appendix we show that this condi-
tion generates a true singularity in the lab cross se¢sag-
gested by Eq(2.22], but that, because of the finite resolu-

tion of any detector, all observable cross sections remain

finite.

Mathematically, this singularity arises from a zero in the
recoil factorR defined in Eq(2.8). The denominator of Eqg.
(2.8) vanishes if

Ewp:=E;q.cosby, (Cy

whereEy=My+ v=/W?+ qu is the energy of the finalp
pair in the lab frame. We will first show that the condition by

which this denominator vanishes is identical to the condition

(2.20.
To see this, it is convenient to differentiate épswith
respect tod*. Using Eq.(2.17) gives

dcosf; d [P
Tdor de*\p,

E

pEwsing*  pi |Ew .
=W 22| W a.psing

p W 2p;

%
L % ain 0%
+ W22 pPcosé* sin g

p sing*

——-\ E —(Qcosé
DEW { wP1—dL 1

}

qLcoselEl},

1

q
X|5 Ew+ V—\L/p coso*

psmﬁ*

E
pW ——1EwpP1—

(C2

where, in the last step, we used

q

1E + —“pcogy*
W VV p ’

E]_:_

5 (€3
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FIG. 22. The left panel showg =cos6; as a function ofz
=cos¢* and the right panel shows Az In all casesQ?
=3 Ge\?, My=2 GeV, m=1 GeV, and the lines show=0.5
(solid), x=1.0 (very long dashes x=1.25 (long dashes x=1.5
(dashed, x=1.8 (dotted, andx=1.98 (dot dashed

easily obtained from the same boost that gave @dL7).
Equation(C2) shows that the two conditior®.20 and(C1)
are equivalentexcept when si@* =0, when there is no sin-
gularity). It is instructive to see how the cosine,

zL=c0361
P
qLW+ 2pE\z
 JOPW+4q pWE,z+4p°07Z2+ ApPWP

(C4

of the proton lab anglef;, varies withz=coség*. For fixed
x andQ?, z depends only oz as given by Eq(C4). As an

example, Fig. 22 shows how varies withz for selected
values ofx when Q?=3. The value ofz at whichz, is a
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minimum, denoted,,;, can be computed from E¢C4). In dS 1 [zo(1+6)
the approximation that,=m,=m we obtain — ] = —j
PP n= M dQ'dE'dQ,| | 200

d®c )
—— |dz.
dQ’'dE'dQ,/ *
(C10

2

VW22 (WP —4m?)
Wq

(C5  This average will be finite only if the singularity is inte-
L grable, and this will now be shown explicitly. That it must be

_ _ so follows from general physical considerations, and also
Moreover, solving Eq(C1) for z gives thesamevalue, and o the behavior of the differential cross section in the c.m.

hence we recover again the observation that the singularifyame where there is a smooth, nonsingular behavior for all

occurs at the kinematic boundary of égs _ kinematical conditions. In the lab frame, for fixed electron
The values oft;, py, andz,_at the critical point can be  yinematics, thez_ dependent part of the integrand is con-

found using the additional constraint that follows from en-i5ined in the kinematic factors

ergy conservation. Energy conservation gives the following

general formula forzL:

Zeit™ —

- Wp? _
le{R(L|)+ )= —{R(L|)+ -3 (C1)
2,2 2 2 Ewpi—E1q 7,
qc+mp—mg+2E;(Mg+v) = (Mg+v) t
ZL:

2p1qL At first glance, if we assume that the factgrpis an ana-
lytical function ofz , Eq.(C1) suggests that the singularity

will be a simple pole, which is not integrable. However, it is
easy to show that the dependence gRkpon z is not ana-

lytic. We begin by using Eq(C3) to rewrite Eq.(C4)

2By E; W2

) C6
X} (%)

where we have defined?=W?—mZ2+m2. For fixed elec-

tron kinematics, Eq9.C1) and(C6), taken together, give the aE,—b Ew W2
proton energyE,, proton momentum ¢ and anglez, at z = , a=—, b=2—, (C12
which the denominatofC1) is singular: P1 a. L

X and solve this equation for;ms a function osz (recalling
2miE m = i
_ “MpEw %—%m- thata and b depend only on the electron variables and are

Eo w2 B not functions ofz ). The result is
= 2 2_ o2\ 2 22
/4E\2ng_w4 . _sz+aw/b +(zL a )mp_ szvLam,,\/zL Z
- F 1~ - '
%o 2myq, 7 a*-7 a’-7

(C13
Of course, the value d&, must be physical, i.e., the denomi-

nator has to be positive anBl,=m,. The first condition where we used EJC7) to express, in terms ofa andb

leads to the constraint
S Stral \/m
2 2 2 Zp=———. (C19
W2>mi—mg, (C My

which is always satisfied, while the second one requires From Eq.(C13 we obtain the following expression for the
energyE;:
QZ
Q222v(mn—ed)—ed(2mn—ed):7, (C9) mez, \/2°~ 25+ ba

where Mg=m,+m,—¢€4 and in the last step we pun,

=m,=m, €=0, andv=Q?/(2mx). This is the mathemati- sypstituting Eqs(C13 and (C15) into the recoil factor we
cal proof that the differential cross section is singular if andgptain

only if x>1.

We conclude this discussion by showing that, even though Wp? Wp?
the cross section is singular, the physical observables ob- piR= — = = (Cl9
tained from it are not. Becausany measuring apparatus Ewpi—E10,2, mpqL\/ZL_ZO

must necessarily have fanite resolution, all physical mea-

surements must necessariyeragethe differential cross From this it is clear that in the vicinity of the end point
section (2.1) over this finite resolution. At the kinematic singularity atz,, the cross section E¢(C10 behaves as
boundary this average is 1/ zf—z0 and the singularity is integrable.
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