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Covariant description of inelastic electron-deuteron scattering:
Predictions of the relativistic impulse approximation
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Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross
section for deuteron electrodisintegration,d(e,e8p)n, is studied. The relativistic kinematics are reviewed, and
simple theoretical formulas for the relativistic impulse approximation~RIA! are derived and discussed. Nu-
merical predictions for the scattering in the highQ2 region obtained from the RIA and five other approxima-
tions are presented and compared. We conclude that measurements of the unpolarized coincidence cross
section and the asymmetryAf , to an accuracy that will distinguish between different theoretical models, is
feasible over most of the wide kinematic range accessible at Jefferson Lab.
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I. INTRODUCTION

Inelastic scattering of electrons from the deuteron is
important source of information about the nuclear curre
deuteron structure, and theNN force. The exclusive scatter
ing cross section,d(e,e8p)n, was first measured forty year
ago @1#, and since then it has been measured under a w
variety of kinematic conditions@2#. There is a substantia
body of data for this reaction, including cross section m
surements@3–6# as well as separations of various respon
functions @7–16# which differentiate between absorption
longitudinal and transverse photons.

In this paper we survey results that might be expec
from a new generation ofd(e,e8p)n coincidence measure
ments proposed for Jefferson Laboratory~JLab!. At JLab it is
possible to carry out a comprehensive program of meas
ments at both highQ2 and largeW ~whereW is the invariant
mass of the finalnp state!. A broad program of such mea
surements offers the best hope of independently determi
effects of final state interactions and the nuclear current,
mitting the extraction of important new information abo
the short rangeNN interaction.

Electrodisintegration of the deuteron has been stud
theoretically by many groups. Recently, Arenho¨vel, Beck,
and Wilbois@17# have emphasized that the relativistic effec
in inelastic scattering can be very large, even at modest
menta, and it is therefore particularly important to have
fully relativistic theory available for the analysis of th
higher momenta data that will be measured at JLab. Rela
istic calculations of this reaction date back to the early w
of Durand@18# and McGee@19# and lead up to more recen
work by Tjon @20#. One of the goals of this paper is t
present a fully modern, covariant treatment of this proc
suitable for the analysis of JLab data.

This paper imbeds the dynamical calculation in the g
eral formalism developed in Ref.@21#, where a covariant
systematic treatment of most of the polarization observa
0556-2813/2002/66~4!/044003~35!/$20.00 66 0440
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that can be measured in thed(e,e8p)n reaction were classi-
fied and defined. There it was found that the use of trans
sity amplitudes~closely related to helicity amplitudes! gave a
very efficient description of the reaction. Transversity amp
tudes were discussed by Goldstein and Moravcsik@22#, who
found that they build in the constraints imposed by par
and rotational invariance in the most efficient way. In a tra
versity basis, the constraints imposed by these symme
ensure that half of the possible amplitudes vanish identica
so that the cumbersome linear relations needed in other
malisms@23# are unnecessary. This economy will be ess
tial some time in the future when large data sets exist, an
may be important to know whether or not a proposed n
measurement will really be independent of amplitudes
ready measured.

The details of the calculation are carried out using
covariant spectator theory, which has been successfully
plied to the description ofNN scattering@24# and the elec-
tromagnetic form factors of the deuteron@25#. One feature of
this theory is that the deuteron bound state is described
the covariantdnp vertex with one nucleon on mass she
and this is precisely the amplitude that is needed for
relativistic impulse approximation~RIA!, making the theory
well suited to the analysis of thed(e,e8p)n coincidence re-
action@26#. In this first application of the covariant spectat
theory using the transversity basis, we present the RIA
culation only. This provides the opportunity to work out se
eral new technical details for the simplest case, and to c
pare to other approximations. The inclusion of final sta
interactions and interaction currents will be the subject
future work.

A second purpose of this paper is to estimate the size
the unpolarizedd(e,e8p)n cross sections expected over th
broad range ofQ2 and W accessible to JLab. In preparin
this survey we found that relativistic and nonrelativistic pr
dictions ford(e,e8p)n at highQ2, where the cross section i
most sensitive to the theory, often differ by as much as
©2002 The American Physical Society03-1
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order of magnitude, extending the observations of Ar
hövel, Beck, and Wilbois@17#. Since nonrelativistic calcula
tions cannot be taken seriously at such high energies,
report our results for a variety of relativistic or sem
relativistic models only. In this first exploratory study th
goal is to provide only a rough survey of the landscape. T
simplicity of the RIA allows a uniform treatment over th
entire kinematic range, but is, of course, very incomplete
is our intention to follow up this study with complete calc
lations for cases where the theoretical effects look espec
interesting.

Our notation for the cross section and the spectator the
for the RIA are reviewed briefly in Sec. II, numerical resu
presented in Sec. III, and conclusions given in Sec. IV. Ma
theoretical details are given in the several Appendices, wh
are important parts of this paper.

II. THEORY

In this section we define the coincidence cross section
the RIA matrix element. All other theoretical details can
found in the Appendices.

A. The cross section

Figure 1 shows the kinematics for the processe1d→e8
1p1n ~using the notation of Ref.@21#!. The incident and
scattered electron momenta form a plane called the ‘‘sca
ing plane’’ while the momenta of the proton and neutron
the final state form a second plane called the ‘‘ejec
plane.’’ The virtual photon momentum is common to the tw
planes and is chosen as the direction of thez axis. The two
planes, which are represented by the (x,y,z) and (x8,y8,z8)
coordinate systems, are oriented at a relative azimuthal a
of f. A rotation of the response tensor~defined below! from
the unprimed to the primed frame can be used to extrac
of the f dependence from the tensor. Using this along w
the explicit form of the electron tensor, the cross section
be shown to be of the form~cf. Eq. ~95! of Ref. @21#!

FIG. 1. The kinematics of electron scattering when the fi
hadronic state is broken into two fragments with momentap1 and
p2.
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d5s

dV8dE8dS
5

sM

4pMd

Q2

q
L

2 H R̃L
(I)1sTR̃T

(I)2
1

2
@cos 2fR̃TT

(I)

1sin2fR̃TT
(II) #1sLT@cosfR̃LT

(I) 1sinfR̃LT
(II) #

12hsT8R̃T8
(II)

12hsLT8@sinfR̃LT8
(I)

1cosfR̃LT8
(II)

#J , ~2.1!

where

sM5F a cos
1

2
u

2E sin2
1

2
u
G 2

~2.2!

is the Mott cross section anddS is defined below. The quan
tities u, E, E8, andV8 are the electron scattering angle, th
energies of the initial and final electron, and the solid an
of the final electron, all in the lab frame. The deuteron m
is Md and h561/2 is the helicity of the incident electron
The electron kinematical factors are

sT5
1

2
1j2, sLT52

1

A2
~11j2!1/2,

sT85j~11j2!1/2, sLT852
1

A2
j, ~2.3!

where

j5
q

L

Q
tan

u

2
~2.4!

with

q252Q25n22q
L

25n0
22q0

2 ~2.5!

the square of the virtual photon four-momentum, with$n,qL%
and $n0 ,q0% the energy and three-momentum of the virtu
photon in the lab and center of momentum~c.m.! systems,
respectively, andq05uq0u, etc.

There are two inertial reference frames that are of inte
in the calculation of deuteron electrodisintegration: the la
ratory frame which coincides with the rest frame of the tar
deuteron, and c.m. frame in which the total three-moment
of the final state proton-neutron pair~or of the initial virtual
photon and the target deuteron! is zero. One of the virtues o
Eq. ~2.1! is that the response functionsR̃ arecovariant, and
hence Eq.~2.1! can be used to describe the cross section
either the c.m. of the outgoingnp pair or the laboratory
frame by the replacement ofdS by

dSuc.m.5pdV* ~2.6!

in the c.m. frame or

l

3-2
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COVARIANT DESCRIPTION OF INELASTIC . . . PHYSICAL REVIEW C 66, 044003 ~2002!
dSu lab5p1 dV1R ~2.7!

in the laboratory frame.@Except for special notation used i
Eq. ~2.5!, we use a roman character for the magnitude o
three-momentum, so that p15up1u, to distinguish it from the
corresponding four-momentum,p1.# The factor

R5
W

Md

1

S 11
np12E1q cosu1

Mdp1
D

L

~2.8!

is the recoil factor, whereW is the invariant mass of the
outgoing pair and the subscriptL means that each variable i
the parentheses is to be replaced by its value in the lab fr
~for example,q→q

L
and p1 is a function ofu1, the angle

between the outgoing proton and theẑ axis in the lab sys-
tem!. We will sometimes use an asterisk (* ) to denote a
variable in the c.m. system. Notation for some of the m
important variables is summarized in Table I.

The c.m. frame~referred to as the ‘‘antilab’’ frame in Ref
@17#! is of interest for theoretical reasons because integra
over the final state kinematical variables is particularly co
venient in this frame and the partial wave expansion of
final state is normally carried out in this frame. While th
partial wave expansion is particularly convenient at low a
medium energies of a few hundred MeV, we would like
point out that the partial wave approach becomes extrem
tedious and/or impractical at GeV energies. At such ener
Glauber theory @27#, or the new so-called ‘‘three
dimensional’’ methods of calculating theNN amplitude di-
rectly without partial wave expansions@28#, are better. In any
case, since the final scattering state is by far the most c
plicated ingredient in the calculation of the transition mat
elements, it is important to be able to carry out calculatio
in this frame and to translate them to the lab frame. T
necessity of boosting the calculation from the c.m. frame
the lab frame requires that the Lorentz properties of the
trix elements be understood. This goal is conveniently
complished by using the Jacob and Wick helicity formalis
@29# provided that it can be shown that the various ingre
ents in the calculation of the matrix elements, such as
wave functions, are covariant. We will assume for the m

TABLE I. Notation for frequently used variables.

Variable Lab c.m.

Photon energy n n0

Magnitude of photon three-momentum q
L

q0

Deuteron four-momentum P P*
Deuteron energy Md D0

Proton four-momentum p1 p1*
Neutron four-momentum p2 p2*
Proton angle u1 u*
Neutron angle u2 u* 1p
Magnitude of proton three-momentum p1 p
Magnitude of neutron three-momentum p2 p
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ment that this is the case and will demonstrate later that
true for the particular calculations which are described in t
paper.

The nine response functions of Eq.~2.1! are related to
sums over the squares of matrix elements of the deute
current. In the helicity basis, withlg the helicity of the vir-
tual photon,l1 andl2 the helicities of particles 1 and 2 in
the final state, andld the helicity of the initial deuteron, the
current operator is written̂l1l2uJlg

(q)uld&. Following the
conventions of Jacob and Wick@29# we choose particle 1 in
the final state to be the proton and particle 2 to be the n
tron. The current operator conserves parity, which means
the matrix elements satisfy the condition

^l1l2uJlg
~q!uld&56^2l1 ,2l2uJ2lg

~q!u2ld&, ~2.9!

where the phase depends on the helicities~see Ref.@21#!. For
this reason it is convenient to introduce symmetric and a
symmetric combinations of theulgu51 amplitudes

Jsl1l2

ld ~p1 ,p2 ,q![^l1l2uJs~q!uld&

5
1

2
$^l1l2uJ1~q!uld&

2^l1l2uJ21~q!uld&%,

Jal1l2

ld ~p1 ,p2 ,q![^l1l2uJa~q!uld&

5
1

2
$^l1l2uJ1~q!uld&

1^l1l2uJ21~q!uld&%, ~2.10!

where, because of the phases,Js is symmetricunder theY
parity transformation~parity followed by rotation byp about
the y axis! and Ja is antisymmetric@and we note for future
reference thatJ0 l1 l2

ld [^l1l2uJ0(q)uld& is alsosymmetric#.

We then define the deuteron response tensorsRgg8
(I) andRgg8

(II) ,

Rgg8
(I)

5
m2

2p2W
(

l18l1l2

ld8ld

(
r56

$~rN
r !l

18l1
Jg l1l2

ld ~p1 ,p2 ,q!

3~rD
r !ldl

d8
J

g8l
18l2

†ld8 ~p1 ,p2 ,q!%,

Rgg8
(II)

5
m2

2p2W
(

l18l1l2

ld8ldr

(
r56

$~rN
r !l

18l1
Jgl1l2

ld ~p1 ,p2 ,q!

3@rD
(2r)#ldl

d8
J

g8l
18l2

†ld8 ~p1 ,p2 ,q!%, ~2.11!

whereg andg85$0,s,a%, andrN
r andrD

r are the spin density
matrices for one nucleon in the final state or the deute
target, withr1 being the part of the density matrixsymmet-
ric under Y parity andr2 the partantisymmetricunder Y
parity. Symmetry under theY parity operation then ensure
that those observables of type~II ! must include one, and only
one factor of the antisymmetric currentJa ~further details
3-3
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can be found in Ref.@21#!. The relation between the nin
response functions that appear in Eq.~2.1! and the tensors
defined in Eq.~2.11! are given in Table II. The normalizatio
of Eq. ~2.11! and the density matrices is consistent, for u
polarized reactions, to summing over final state spins
averaging over the initial deuteron spin.

For unpolarized particles,

~rN
1!l

18l1
5

1

2
dl

18l1
, ~rN

2!l
18l1

50,

~rD
1!ldl

d8
5

1

3
dldl

d8
~rD

2!ldl
d8
50, ~2.12!

so the observables of type~II ! are zero. If we also limit
discussion to unpolarized electrons, the terms proportiona
the electron helicityh average to zero, and the cross sect
depends on only four response functions:

d5s

dV8dE8dS
5

sM

4pMd

Q2

q
L

2 H R̃L
(I)1sTR̃T

(I)

2
1

2
cos 2fR̃TT

(I) 1sLTcosfR̃LT
(I) J .

~2.13!

TABLE II. Response functions.

R̃L
(I)5R00

R̃T
(I)52(Raa1Rss) R̃T8

(II)
54ReRsa

R̃TT
(I) 52(Raa2Rss) R̃TT

(II) 524Im Rsa

R̃LT
(I) 54ReR0s R̃LT

(II) 54Im R0a

R̃LT8
(I)

54Im R0s R̃LT8
(II)

54ReR0a
04400
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A second, independent combination of the same four
sponse functions gives the asymmetry

Af5

d5s

dV8dE8dS
~f50!2

d5s

dV8dE8dS
~f5p!

d5s

dV8dE8dS
~f50!1

d5s

dV8dE8dS
~f5p!

5
sLTR̃LT

(I)

R̃L
(I)1sTR̃T

(I)2
1

2
R̃TT

(I)

, ~2.14!

where the electron kinematics is held fixed and the outgo
proton is measured forward to the direction of the virtu
photon momentumq ~at f50) and backward~at f5p).

The longitudinal contributionsR̃L
(I)2

1
2

R̃TT
(I) can be separated

from the transverse responseR̃T
(I) by measuring the cros

section for the same kinematics at forward and backw
electron scattering angles, but the transverse interfere
term R̃TT

(I) can be separated fromR̃L
(I) only by an out-of-plane

measurement~for example,f5p/2).
These four unpolarized structure functions are only

small fraction of the structure functions which can be me
sured. Withpolarizedelectrons, targets, and recoiling nucl
ons many more can be studied@21,23#, but these observable
tend to be very sensitive to final state interactions and in
action currents. In this first paper we have omitted final st
interactions and interaction currents, and hence also limit
discussion to unpolarized observables.
s
ematically

el.
FIG. 2. Left panel is theQ2n plane, and the right panel theW2n plane. In each panel lines with constantx are shown, and the case
analyzed in the following section are shown as dots. The shaded area in each panel is the region where pion production is kin
possible. Note that pions cannot be produced near the linex52, but that inelasticity sets in even at smallQ2 along the quasielastic ridge
(x51) and at smaller values ofx. The dashed line in the left panel corresponds toW259m2, just above the region shown in the right pan
3-4
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B. Kinematics

The response functionsR̃ depend on three variables:Q2,
n, and the angleu1 betweenp1 and q, where p1 is the
three-momentum of the particle detected in coincidence w
the final electron~assumed here to be the proton!. The vari-
ables Q2 and n are fixed by the virtual photon, and w
chooseu* ~the lab value ofu1) rather thanu1 because it is
independent ofQ2 and n and always varies between 0 an
p. In place of n, it is often convenient to useW2 or x
5Q2/2mn, the Bjorken scaling variable. The mass of t
final state,W, is related ton ~or x) by

W25Md
212Mdn2Q25Md

212MdnS 12
mx

Md
D .

~2.15!

The region of allowed values ofQ2 andn is shown in Fig. 2.
If the scattering is elastic, so that the deuteron remains bo
after the scattering,x.2, and this defines one boundary
the allowed scattering region. It is sometimes assumed
pions must necessarily be produced asQ2 increases, but as
long asx remains close to 2, the final state remains below
pion production threshold up to very large values ofQ2, and
one may try to explain the largeQ2 behavior of these inelas
tic processes using a theory with no pion rescattering in
final state. The linex51 is the quasielastic peak; whenQ2 is
large the region betweenx51 andx50 is the region where
y ~or x) scaling is observed. Ifx is small, pions will be

FIG. 3. The relativistic impulse approximation~RIA! to deu-
teron electrodisintegration in the lab frame and the c.m. frame.
open circles denote the deuteron wave function, the filled circles
nucleon form factor, and the nucleon propagating between the
is off-shell. Note that the wave functionsc always have one particle
off-shell.
04400
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produced more and more easily asQ2 increases~penetrating
further and further into the shaded region in Fig. 2!, and
explicit treatment of the pion degrees of freedom will
necessary.

The variablesQ2, n ~or x or W2), andu* are convenient
for thinking about final state interactions. However the R
depends primarily on only two variables,Q2 and pmiss,
wherepmiss is the value of thespectatormomentum in the
lab system. The spectator momentumpmiss may be either p1
or p2 depending on which of the two nucleons was struck
the virtual photon~in the absence of final state interactions
interaction currents, this is all that can happen!, and the cross
section is therefore the coherent sum of two terms. Symb
cally, the RIA current is

JRIA~p1 ,p2 ,q!5uFp~Q2!c~p2!6Fn~Q2!c~p1!u2,
~2.16!

where explicit formulas for the magnitudes of the rest fra
three momenta, p1 and p2, are given in Eq.~2.19! below. The
two terms contributing to this sum are illustrated in Fig.
Sincec(p) is normally a rapidly decreasing function of p
these two terms are normally dominated by the one with
smallest pmiss.

The momentap1 and p2 are most easily obtained b
boosting from the c.m. frame. Theirx andz components are

pi
x56p sinu* ,

pi
z5

q
L

2
6p

EW

W
cosu* , ~2.17!

where the upper~lower! sign is for i 51 (i 52), p is the
magnitude of the nucleon momenta in the c.m. frame,EW is
the energy of the outgoing pair in the lab frame, with

p5A@W22~m11m2!2#@W22~m12m2!2#

4W2

.
1

2
AW224m2,

EW5AW21q
L

25Md1n, ~2.18!

and the other variables were previously defined~recall Table
I!. Hence

pi
25S q

L

2
6p

EW

W
cosu* D 2

1p2sin2u* . ~2.19!

The behavior of the magnitudes of p1 and p2, and the
anglesu1 andu2, for six choices ofQ2 andx, can be inferred
from Fig. 4. The solid lines in each panel are the locus
points swept out by Eq.~2.17!, and the dashed lines by Eq
~2.17! with EW5W ~for a Galilean boost!. For x>1 the two
vectorsp1 andp2 always lie in the first or fourth quadran
but for x,1 the vectors may lie in any quadrant.

The restriction of both momentap1 andp2 to the first and
fourth quadrants, which happens forx.1, produces a curi-

e
e
o
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ous singularity in the lab cross section. For fixed elect
kinematics the lab angle is only a function of the c.m. an
@u15u1(u* )#, and whenx.1 there is a point where the la
angleu1 reaches a maximum valueu1

max,90° at a c.m. angle
u* 5ucrit* . At this point

du1

du*
uu

crit* 50. ~2.20!

Near this point, infinitesimal linear variations of the c
angleu* 5ucrit* 1e lead to a quadradic variation of the la
angle,

u1.u1
max2

1

2
ae21•••, ~2.21!

FIG. 4. Polar plots showing the locus of the momentum vec
p1 in the lab system~solid lines are relativistic; dashed lines no

relativistic!. The horizontal axis in each panel isẑ; the vertical isx̂.
The three left-hand panels haveQ251 GeV2 and the various val-
ues ofx andq shown on each panel; the right-hand panels are
Q253 GeV2. In all panels theq vector points to the right along th

ẑ axis and sets the scale. The other two vectors arep1 andp2 for the
symmetry case discussed in the text.
04400
n
e

where a5d2u1 /du* 2uu
crit* . The differential cross section in

the c.m. is always finite, but the lab cross section, defined
the transformation

ds

du1
5uM lab~u1!u2[

ds

du*

du*

du1
5

uM c.m.~u* !u2

du1 /du*
,

~2.22!

has a singularity at the critical pointu1
max because of the

vanishing of the Jacobian~2.20!. The integrated cross sec
tion is independent of frame, because Eq.~2.22! implies ~for
an infinitesmal intervalueu<d arounducrit* )

Dsc.m.[E
ucrit* 2d

ucrit* 1d
du* uM c.m.~u* !u2

52E
u1

max
2(1/2)ad2

u1
max

du1uM lab~u1!u25Ds lab,

~2.23!

where we have used Eq.~2.21!. Because of thefinite resolu-
tion of any physical apparatus,real experiments always mea
sure an averagecross section~with dÞ0), and the singular-
ity never shows up in any real measurement. This singula
is further discussed in detail in Appendix C. In this paper
present c.m. cross sections only, so we do not encounter
singularity.

For the special case whenu* 5p/2 ~where the relativistic
ellipse touches the nonrelativistic circle! the magnitudes of
p1 and p2 are equal, and the RIA depends uniquely on t
wave function at only one momentum point. We will refer
this as thesymmetry point. Since the angle betweenp1 and
p2 is 90° in the nonrelativistic limit, this is referred to a
perpendicular kinematics. Were there no final state inter

r

r

FIG. 5. The symmetry momenta ps and the symmetry anglesus

as functions ofQ2 for five values ofx: x52 ~solid line!, 1.8 ~long
dashes!, 1.5 ~medium dashes!, 1.0 ~dashes!, and 0.5~dots!. The
momenta rise withQ2 and the angles fall withQ2. For x52 the
angleus50 and is not shown.
3-6
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TABLE III. Wave function combinations that enter the current.

f0
1(p)5

1

A3

E

m
@u(p)1A2 w(p)# f0

2~p!5
1

A3
H p

m
@u~p!1A2w~p!#2A3 vs~p!J

f1
1(p)5

1

A3

E

m
@A2 u(p)2w(p)# f1

2~p!5
1

A3
H p

m
@A2 u~p!2w~p!#1A3 v t~p!J
a
t

-

to

th

or

.

-
16
trix
-

are
ly,

the
tions or interaction currents, the symmetry point would be
optimal place to measure the wave function. The symme
point momenta ps5up1u5up2u and anglesus5u152u2 are

ps5Ap21q2.
Q

4mx
A8m2x1Q2

us5tan21F2p

q G.tan21FA4m2x~22x!

4m2x21Q2 G . ~2.24!

These are shown in Fig. 5 as a function ofQ2 for several
fixed values ofx. The figure shows that if we wish to mea
sure the wave function at large ps ~near one GeV! and at
large x where pion production is not large, we must go
largeQ2 ~about 2 –3 GeV2).

We now turn to a discussion of the RIA.

C. Matrix element for the relativistic impulse approximation

The RIA approximation used in this paper is based on
simple pole diagrams shown in Fig. 3. We use a~standard but
unfamiliar! notation in which matrix elements of an operat
betweentwo outgoingDirac particles are written in the form

^O&5ū~p1 ,l1! O C ūT~p2 ,l2! , ~2.25!

whereC52 ig0g2 is the Dirac charge conjugation matrix
This notation is very convenient becauseC ūT transforms like
04400
n
ry

e

an incomingv spinor ~but is not to be interpreted as an
antiparticle in this application!, and therefore the most gen
eral operatorO can be constructed from the standard
independent Dirac bilinear covariant operators. The ma
representation~2.25! is equivalent to a direct product repre
sentation

ūa~p1 ,l1!@OC#abūb
T~p2 ,l2!

↔ūa~p1 ,l1!ūb~p2 ,l2!@OC#ab , ~2.26!

but is more convenient for relativistic calculations.@Note that
the right hand side and left hand side of this equation
identical as long as the Dirac indices are shown explicit
but only the left hand side can be turned into Eq.~2.25! by
dropping explicit reference to the indices. Beware that
order of the momenta in Eqs.~2.25! and ~2.26! is opposite
from that used in a previous reference~@30#! whereū(p2 ,l2)
was multiplied from the left andu(p1 ,l1) from the right; see
Appendix A.#

Including the isospin factor

K 1

2

1

2
,
1

2
2

1

2U00L 5
1

A2

the Feynman amplitudes for the RIA inany frame can be
written
TABLE IV. Matrix elements of the current. All variables are in the c.m. frame, andE5Am21p2, p'

5p sinu* , and pz5p cosu* . For the proton current,j (1), we substitute proton form factors forF1 andF2 and
set the phased51. For the neutron current,j (2), we substitute neutron form factors and setd52.

j 1
105

1
Q

(F1q02d 2tF2pz) j 2
105F1

n0p'

mQ

j 1
1s52d

1

A2
F2

n0 p'

2m2 j2
1s5

1

A2m
S F1pz1d

1

2
F2q0D

j 1
1a5d

1

A2
F2sinu*

q0E

2m2 j2
1a5

1

A2m
S d F1p1

1

2
F2q0cosu* D

j 1
2052d

cosu*
Q

(F1n022tF2E) j 2
205

sinu*
mQ

(F1n0E22tF2m
2)

j1
2s5d

sinu*

A2
S F11F2

n0E

2m2D j 2
2s5

cosu*

A2m
S F1E1

1

2
F2n0D

j 1
2a52d

1

A2
F2

q0p'

2m2 j2
2a5d

1

A2m
S F1E1

1

2
F2n0D
3-7
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^l1l2uJg~q!uld&

5
1

A2Nd

@ ū1~p1 ,l1! j g
(1)~p1 ,p12q!cl2 ,ld

(2) ~p2 ,P!

2ū2~p2 ,l2! j g
(2)~p2 ,p22q!cl1 ,ld

(1) ~p1 ,P!#, ~2.27!

wherel i are the nucleon helicities andld the helicity of the
deuteron, andNd is a normalization constant defined an
discussed below. The subscript on the nucleon heli
spinor, ūi @suppressed in Eq.~2.25!#, refers to whether it is
particle 1 or particle 2, in the sense of Jacob and Wick@29#
~see the discussion in Appendix A!. The nucleon current is

j g
( i )~p,p2q!5«g

m j m
( i )~p,p2q!, ~2.28!

wherep andp2q are nucleon four-momenta withp on-shell
(p25m2) and p2q off-shell, the superscripti 51 ~proton!
or 2 ~neutron!, and the virtual photon has a polarization ve
tor «g , whereg5$0,s,a% with s anda the linear combination
of photon helicities introduced in Eq.~2.10! @for more de-
tails, see Eq.~B14!#. The relativistic deuteron wave functio
@30# for a nucleon with momentumP2p off-shell and a
nucleon with momentump and helicityl on-shell ~so that
p25m2) is definedto be cl,ld

(p,P), and is related to the

normalizeddnp vertex functionG by

cl,ld

( i ) ~p,P![
m1P” 2p”

m22~P2p!2
NdGm~p,P!Cūi

T~p,l!jld

m ~P!,

~2.29!

where the normalization constant

Nd5@2Md~2p!3#21/2 ~2.30!

is chosen to give the defined wave functionc a convenient
normalization@see Eq.~A15!#. The superscript~i! labels the
choice of helicity convention~particle 1 or 2! for the on-shell
particle, Gm(p,P) is the normalizeddnp deuteron vertex
~with the off-shell particle on the left! first defined by Blan-
kenbecler and Cook@31#, andjld

m (P) is the deuteron polar

ization vector for a state with helicityld and four-
momentumP. We use the notation of Ref.@30# for G. Note
that the normalization constants in Eqs.~2.27! and ~2.29!
cancel; the Feynman amplitude depends only on the norm
ization ofG and not on the convention used to normalizec.
For further details, see Appendix A.

D. The issue of gauge invariance

The RIA is not gauge invariant by itself. This issue mu
be dealt with before we can proceed with the calculati
Here we discuss how this is done.

Using the method of Ref.@32#, the RIA, together with
final state interactions~FSI! and interaction currents~IntC!,
are part of a gauge invariant calculation. Once all of th
pieces have been calculated and assembled, the result w
gauge invariant. Here we describe a convenient prescrip
that is ~i! covariant,~ii ! renders each of the individual con
04400
y

-

l-

t
.

e
be
n

tributions ~RIA, FSI, and IntC! separatelygauge invariant
without altering their sum, and~iii ! modifies each of the
individual contributions as little as possible. The method w
introduced in Ref.@33#, where it was also shown that th
prescription guarantees that the RIA also gives the cor
asymptotic result for deep inelastic scattering.

If the individual contributions to the total current are d
notedJRIA , JFSI, and JIntC , then the prescription calls fo
each to be modified by the replacement

J̃X
m5JX

m2
qm

q2
q•JX , ~2.31!

whereX is any of the RIA, FSI, or IntC terms. Since the tot
current is gauge invariant,q•Jtotal50, and

J̃total
m 5Jtotal

m ~2.32!

so the prescription does not modify the total current. Furth
more, since the photon helicity vectors are all orthogona
q, «

l
•q50,

«
l
• J̃x5«

l
•Jx ~2.33!

and the prescription hasno effect on the contribution of eac
of the terms in the current. This prescription meets all thre
of the conditions listed above.

Unfortunately, there is no uniquely correct way to modi
the RIA so that it is gauge invariant. The choice propos
here is only one of many possibilities.

E. Calculation of the structure functions

The structure functions are obtained by squaring the m
trix element~2.27! and summing over spins. There will b
three terms: the two ‘‘diagonal’’ terms coming from th
square of the proton term and the square of the neutron te
and the interference term. The diagonal terms can be ca
lated by expanding the density matrices

N ( i )~p!5(
ldl

clld

( i ) ~p,P! ^ clld

( i )†~p,P! ~2.34!

in terms of independent Dirac spin invariants, and then p
forming the sum over the off-shell particle degrees of fre
dom using Feynman trace techniques. The final result, gi
in Ref. @34#, is a sum of squares of invariant functions a
scalar products of four vectors, and is manifestly covaria

In this paper we present an alternative method in wh
the structure functions are calculated by first expanding
off-shell nucleon in terms of on-shell nucleon degrees
freedom, and then computing the squares of the matrix
ments. It is possible that this method will simplify the calc
lation of polarization observables planned for future wo
Unfortunately, the results obtained using this method are
3-8
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manifestly covariant~but they are, nevertheless, covarian!,
and, unless one is extremely careful, it is easy to make
mistakes by dropping one of the many phases that arise w
transforming helicity amplitudes. As a check of the resu
presented here, we have shown explicitly that our final a
lytical result for the diagonal term isidentical to the result
obtained in Ref.@34#.

The discussion of this method begins by noting that
physical content of the matrix element~2.27! can be dis-
played by decomposing the off-shell nucleon into posit
energy (u spinor! and negative energy (v spinor! states. For
example, if we choose a four-momentumk5$Ek ,k%, then
the statesu(k,l) and g5u(k,l) ~which we use in place o
the v spinors!, with helicity l56 1

2 , are complete, and

15(
l

$u~k,l!ū~k,l!1g5u~k,l!ū~k,l!g5%.

~2.35!

~The definitions and normalization of the helicity states
discussed in Appendix A.! It is important to realize that while
this decomposition can be carried outin any frameusing
nucleon states withany on-shell four-momentum, the result
may appearvery different depending on the frame and t
spinor states used to do the decomposition~even though the
final numerical result will always be independent of the
choices!.

In this subsection we record the results for the current
~2.27! if the decomposition is made in terms of the states
where the currents are

04400
n
en
s
a-

e

e

e

q.
f

the spectatornucleon~with four-momentump2 for the pro-
ton term and four-momentump1 for the neutron term!. The
final result in the c.m. frame@see Eq.~B4!# is

^l1l2uJg~q* !uld&

5A 3

16p

1

Nd
(
l r

(
l18l28

$hr~2l18! j l1l,g
(1)r ~p,u* ,q0!

3f uLu
r ~p2!dL, ld

(1) ~u22p!dl
28 l2

(1/2)
~v2!dl

18 l

(1/2)
~v2!hr~2l28!

3 jl2l,g
(2)r ~p,u* ,q0!f uLu

r ~p1!d2L,ld

(1) ~u1!dl
18l1

(1/2)
~v1!dl

28l

(1/2)
~v1!%,

~2.36!

where thed’s are the rotation matrices,L5l181l28 , v j are
the Wigner rotation angles resulting from the boost of t
spectator nucleons with four-momentumpj from the lab to
the c.m. frame, and pj and u j are the magnitudes of th
on-shell spectator three-momenta and polar angles in the
frame of the deuteron~i.e., the lab frame; recall Table I!. The
phasehr(x) is

hr~x!5H 1 if r51

2x if r52
, ~2.37!

and the matrix elements of the single nucleon current, in
c.m. system, are
olarized
n

j l il,g
( i )r ~p,u* ,q0!5H ūi~pi* ,l i ! j g

( i )~pi* ,pi* 2q* !uj~pj* ,l! if r51,

ūi~pi* ,l i ! j g
( i )~pi* ,pi* 2q* !g5uj~pj* ,l! if r52,

~2.38!

with j 51 or 2, butj Þ i . The deuteron matrix elements are defined in the deuteron rest frame using the expansion~2.35!, and
are written

c
l

i8 ,ld

( i )
~pi ,P!5A 3

8p(
l j8

$ui~pi ,l j8!f uLu
1 ~pi !22l j8 g5ui~pi ,l j8!f uLu

2 ~pi !%3H d2Lld

(1) ~u1! if i 51,

dLld

(1) ~u22p! if i 52.
~2.39!

Thef ’s are combinations of the four scalar deuteron wave functions defined by Eq.~2.29!. These are theSstateu, theD state
w, and the twoP-state wave functionsv t andvs , and expressions for thef ’s are given in Table III. The final result~2.36! was
obtained by boosting this result to the c.m. frame, as shown in Appendix A.

This form of the Born term makes it easy to examine polarization observables, and gives a simple form for the unp
response tensors~2.11!. Squaring the proton term@with ( i )5(1)] andsumming over spins~averaging over the initial deutero
polarization! gives

Rgg85
m2

12p2W
^JgJg8

† &5
m2

12p2W (
l1l2ld

Jg l1 l2

(1) ld ~p1* ,p2* ;P* !J
g8l1l2

(1)ld†
~p1* ,p2* ;P* !5

m2Md

W
$Jgg8

1
@$f0

1~p2!%21$f1
1~p2!%2#

1Jgg8
2

@$f0
2~p2!%21$f1

2~p2!%2#1~Jgg8
c cosv21Jgg8

s sinv2!@f0
1~p2!f0

2~p2!1f1
1~p2!f1

2~p2!#%, ~2.40!
3-9
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Jgg8
1

5 j 1g
(1)1 j 1g8

(1)1
1 j 2g

(1)1 j 2g8
(1)1 ,

Jgg8
2

5 j 1g
(1)2 j 1g8

(1)2
1 j 2g

(1)2 j 2g8
(1)2 ,

Jgg8
c

5 j 1g
(1)1 j 1g8

(1)2
1 j 1g8

(1)1 j 1g
(1)22 j 2g

(1)1 j 2g8
(1)2

2 j 2g8
(1)1 j 2g

(1)2 ,

Jgg8
s

5 j 1g
(1)1 j 2g8

(1)2
1 j 2g8

(1)1 j 1g
(1)21 j 2g

(1)1 j 1g8
(1)2

1 j 1g8
(1)1 j 2g

(1)2 .
~2.41!

FIG. 6. The Bernheim data at low missing momentum. Note t
the relativistic effects~mostly from the current operator! are signifi-
cant.~Three of the lowestpm data points, possibly contaminated b
bremsstrahlung, have been omitted from the figure.!

FIG. 7. The acceptance averaged relativistic RIA calculat
compared to the Bernheim data.
04400
Recall thatg and g8 can be either 0,s, or a. The 12 indi-
vidual current matrix elements are given in Table IV. The
exact expressions are easily evaluated, and the resp
functions determined from Table II. The square of the ne
tron term@with ( i )5(2)] is obtained by replacing 1↔2, and
the result for the interference term is given in Appendix B

F. The cross section in the quasielastic limit

We may use expression~2.40! to look at the cross section
at the quasielastic peak, where p250 andx.1 ~we assume
here thatMd52m). Near p250 the minus components o
the wave functions are both suppressed, and the leading
tribution to the cross section comes only from the term p
portional to

~f0
1!21~f1

1!25
E2

m2 @u21w2#.@u21w2#[4pn~p2!,

~2.42!

where the momentum density is approximately normalized

E n~p!d3p5
1

4pE d3p@u2~p!1w2~p!#'1 ~2.43!

@the exact relativistic normalization is given in Eq.~A15!#.
At the quasielastic peaku* 50 and the c.m. momentum
that enters the current matrix elements given in Table IV
fixed. From Eq.~2.17! and the conditionx51 we obtain

p5
Wq

L

2EW
5

W2q0

2EWMd
.

q0

2
. ~2.44!

This givesRTT50 and RLT50, and the following simple
formula for the coincidence cross section:

t

n

FIG. 8. The ratio of the Bernheim data to the acceptance a
aged relativistic RIA calculation shown in Fig. 7. The triangles a
the low pm data set, and the circles the highpm set.
3-10
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d5s

dV8dE8dS
5sM

m2

W
n~0!H GE

2~Q2!1tGM
2 ~Q2!

11t
12tGM

2 ~Q2!tan2u/2J . ~2.45!

This can be compared to the cross section for scattering from a free proton, which is

FIG. 9. The differential cross sectionin the c.m. systemat Q250.5 GeV2 and forx50.5,1,1.25,1.5,1.8, and 1.89. The differential cro
section is in mb/sr2 MeV and u is in degrees. Each panel shows the six calculations described in the text: C-IIB~long-dashed line!,
C-IIB-noP~solid line!, C-AV18 ~dashed line!, AA-v/c ~widely dotted line!, JD-full ~dash-dotted line!, and JD-1st~closely dotted line!. Note
that the different approximations are hard to distinguish, as discussed in the text.
044003-11
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FIG. 10. The differential cross section atQ251 GeV2 and for variousx. The meaning of the curves is the same as in Fig. 9.
t

-
a

d2s

dV8
5sM

E8

E H GE
2~Q2!1tGM

2 ~Q2!

11t
12tGM

2 ~Q2!tan2u/2J .

~2.46!

In both of these formulas,t5Q2/(4m2), and GE and GM
are the familiar electric and magnetic form factors, related
F1 andF2:

GE5F12tF2 ,
04400
o

GM5F11F2 . ~2.47!

III. PREDICTIONS OF THE RELATIVISTIC IMPULSE
APPROXIMATION

A. How good is the RIA?

The low energy Bernheim~1981! data @3# are shown in
Fig. 6. This figure shows~i! that the nonrelativistic calcula
tion is inadequate and~ii ! at these low missing moment
3-12
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FIG. 11. The differential cross section atQ252 GeV2 and for variousx. The meaning of the curves is the same as in Fig. 9.
in
c
s
he
e
o
s,
in-

o
ox

l
of
ent

e
id
there is no evidence for relativistic effects of higher order
v/c, nor for model dependencies coming from the differen
between the Argonne V18 and Model IIB wave function
The inadequacies of nonrelativistic calculations of t
d(e,e8p)n reaction have already been emphasized in R
@17#, and are confirmed in our calculations. For this reas
we will dispense with further nonrelativistic calculation
and present only calculations with relativistic effects
cluded.

Figure 6, and the accompanying Figs. 7 and 8, also sh
that the low energy cross section is reasonably well appr
04400
e
.

f.
n

w
i-

mated by the~relativistic! RIA. The agreement is at the leve
of 650% for a drop in the cross section of four orders
magnitude. We take this as evidence that the RIA is suffici
for the kind of crude survey carried out in this paper.

B. Covariant RIA predictions for high Q2

We surveyed thed(e,e8p)n reaction over the wide rang
of kinematical conditions summarized in Table V. We d
calculations at four different four-momentum transfersQ2

5 0.5, 1, 2, and 3 GeV2, and six different values of the
3-13
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FIG. 12. The differential cross section atQ253 GeV2 and for variousx. The meaning of the curves is the same as in Fig. 9.
w
Bjorken variablex5 0.5, 1.0, 1.25, 1.5, 1.8, and just belo
2, near the highest value accessible in thed(e,e8p)n reac-
tion at a given Q2. ~The value ofx52 can be reached only in
the elastic reaction, not in electrodisintegration.! In addition
to Q2 and x, Table V gives the transferred energyn, the
magnitude of the transferred three-momentumq

L
5uq

L
u, and

the range in missing momentum, wherep2
min corresponds to a

value of u* 50°, and p2
max corresponds to a value ofu*

5180°. In addition, we list the value of the final statenp
relative energy~in the c.m. system!, Enp , which is
04400
Enp5A~n1Md!22q
L

22mp2mn , ~3.1!

and the kinetic energy of thepn system in the lab frame,

Tpn
lab5

Md
2

2m
22m1

Q2

2m S Md

mx
21D . ~3.2!

The highest accessible value ofx for a certainQ2 is given by
3-14
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FIG. 13. Dimensionless ratios of the differential cross sectionin the c.m. systemfor the cases shown in Fig. 9 (Q250.5 GeV2). The c.m.
angleu is in degrees. Here five of the calculations are divided by the C-IIB-noP calculation: C-IIB~solid line!, C-AV18 ~long-dashed line!,
AA-v/c ~short-dashed line!, JD-full ~dotted line!, and JD-1st~dash-dotted line!.
r

by

rgy

es
xmax5
Q2Md

m~4m22Md
21Q2!

, ~3.3!

which comes from the requirement thatTpn
lab.0. In Table V,

we list the kinematic variables forx5xmax in the last line for
eachQ2. The closestx value to that is the highest one fo
04400
which we present calculations later on; it is characterized
a kinetic energy in the lab frame of roughly 10 MeV.

Table V shows that the values of the transferred ene
and transferred three-momentum are closest for lowx. In
nonrelativistic reduction schemes one often assum
n!q

L
, which is clearly not the case for lowx. Note also that

the np relative energy is highest for lowx. These imply
3-15
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FIG. 14. Ratios of the differential cross section atQ251 GeV2 and for variousx. The meaning of the curves is the same as in Fig.
The estimated errors for a JLab measurement using existing equipment, shown in panels forx50.5,1.0,1.5, and 1.95, are discussed in t
text.
n
te

is
his

e
di-
one
r-

ing
that relativistic effects should be very strong in this regio
This is interesting as it allows for a description of final sta
interaction by Glauber theory@27#. Although final state in-
teractions~FSI! are not considered in this present study, it
useful to know that they can be calculated reliably in t
kinematic region.
04400
. At high x, the np relative energy is very small, on th
order of a few tens of MeV. Under these kinematic con
tions, the system is reminiscent of a bound system, and
might realistically expect wave function physics to be impo
tant here, e.g., the presence of the relativisticP waves. The
calculation of final state interactions proceeds by includ
3-16
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FIG. 15. Ratios of the differential cross section atQ252 GeV2 and for variousx. The meaning of the curves is the same as in Fig.
The estimated errors for a JLab measurement using existing equipment, shown in panels forx50.5,1.0, and 1.5, are discussed in the te
fo

ed

e
to

all
-

ed
ant
the lowest partial waves. So, we have reliable methods
the calculation of FSI both at highx and at lowx. In the
region in between, the description of FSI is more involv
and accordingly more difficult.

The case ofx51 roughly corresponds to the quasifre
case. Strictly speaking, the quasifree case corresponds

n5
Q2

2mN
2Eb , ~3.4!
04400
rwhere the binding energyEb leads to a small deviation from
x51. However, the binding energy for the deuteron is sm
and we will refer tox51 as the quasifree case in the follow
ing discussion.

C. Six approximations

Six different theoretical approximations will be discuss
in the following. The first three are based on the covari
3-17
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FIG. 16. Ratios of the differential cross section atQ253 GeV2 and for variousx. The meaning of the curves is the same as
Fig. 13. The estimated errors for a JLab measurement using existing equipment, shown in panels forx50.5,1.0,1.5, and 1.98, are discuss
in the text.
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spectator RIA presented in detail in this paper, and will
denoted ‘‘C-IIB,’’ ‘‘C-IIB-noP,’’ and ‘‘C-AV18.’’

‘‘C-IIB’’ is calculated using the covariant IIB deutero
wave function obtained from the successful IIBNN interac-
tion @24#. This wave function and the relativistic spectat
model have been previously used to successfully explain
04400
e

e

elastic deuteron form factors@25#. The full wave function has
four components: the familiarS andD states, and two smal
P states of relativistic origin.

‘‘C-IIB-noP’’ is calculated using covariant IIBS and D
state wave functions, but setting the small relativisticP state
components to zero.
3-18
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COVARIANT DESCRIPTION OF INELASTIC . . . PHYSICAL REVIEW C 66, 044003 ~2002!
‘‘C-AV18’’ is calculated from the covariant spectator RI
formulas using theS and D state Argonne V18 deutero
wave functions@35# ~instead of the wave functions derive
from the IIB one boson exchange model! and setting theP
state components to zero. This is included among the co
riant models even though, strictly speaking, the wave fu
tion is not consistent with the covariant formalism. Th
model is very similar to the ‘‘covariant model’’ previousl
discussed by Arenho¨vel et al. @17#, but they used ordinary
spin instead of helicity, and the Paris deuteron wave fu
tions instead of the~very similar! AV18 wave functions.

The next three calculations are not consistently covari
but they do use relativistic current operators. They all use
nonrelativistic Argonne V18 wave function. The first of the
is based on the work of Adam, Jr. and Arenho¨vel @36#.

‘‘AA- v/c’’ uses a current operator that results from av/c
expansion of the intrinsic current@37,36#. Matrix elements of
this current are made frame independent by replacing
approximate noninvariant effective three-momentum tran

TABLE V. Overview over the kinematics employed in the ca
culation of the differential cross section and asymmetryAf .

Q2

(GeV2)
x q

L

~GeV!
n

~GeV!
p2

min

~GeV!
p2

max

~GeV!
Enp

~GeV!
Tpn

Lab

~GeV!

0.5 0.5 0.885 0.533 0.214 1.099 0.362 0.79
0.5 1.0 0.756 0.266 0.004 0.752 0.126 0.26
0.5 1.25 0.738 0.213 0.081 0.657 0.076 0.15
0.5 1.5 0.729 0.178 0.152 0.577 0.041 0.08
0.5 1.8 0.722 0.148 0.246 0.477 0.012 0.02
0.5 1.89 0.721 0.141 0.285 0.436 0.005 0.01
0.5 1.97 0.720 0.136 0.360 0.360 0 0

1 0.5 1.461 1.065 0.265 1.726 0.674 1.59
1 1.0 1.133 0.533 0.003 1.130 0.247 0.52
1 1.25 1.087 0.426 0.108 0.979 0.151 0.31
1 1.5 1.061 0.355 0.207 0.854 0.084 0.17
1 1.8 1.043 0.296 0.340 0.703 0.027 0.05
1 1.95 1.037 0.273 0.446 0.590 0.004 0.00
1 1.98 1.035 0.269 0.518 0.518 0 0

2 0.5 2.557 2.130 0.310 2.867 1.206 3.18
2 1.0 1.770 1.065 0.003 1.768 0.470 1.05
2 1.25 1.651 0.852 0.141 1.510 0.293 0.63
2 1.5 1.582 0.710 0.280 1.303 0.167 0.34
2 1.8 1.533 0.592 0.473 1.060 0.055 0.11
2 1.97 1.514 0.541 0.667 0.847 0.005 0.01
2 1.99 1.512 0.535 0.756 0.756 0 0

3 0.5 3.634 3.195 0.331 3.966 1.658 4.78
3 1.0 2.356 1.598 0.002 2.354 0.673 1.58
3 1.25 2.153 1.278 0.162 1.991 0.427 0.95
3 1.5 2.033 1.065 0.329 1.704 0.247 0.52
3 1.8 1.946 1.946 0.574 1.372 0.084 0.17
3 1.98 1.911 0.807 0.859 1.052 0.005 0.01
3 1.99 1.909 0.802 0.954 0.954 0 0
04400
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derived in Refs.@37,36# by its invariant extension, defined t
be

qW e f f
2 5

Q2

11
Q2

16mN
2

1~ed2W!2, ~3.5!

whereed ,W are energies of thepn pair in its respective c.m
frame in the initial and final states. This prescription is sim
lar to one proposed long ago for the elastic scattering
Friar @38#, but differs from calculations by Arenho¨vel et al.
@17#.

The next two versions are from Amaro, Donnelly, a
Jeschonnek@39,40#.

‘‘JD-full’’ uses a fully relativistic, positive energy curren
operator. This covariant current differs from the specta
one by certain off-mass-shell extensions studied in a rec
paper by two of the authors@34#.

‘‘JD-1st’’ uses a current operator expanded to first order
the initial nucleon momentum, with all other terms retain
fully. This approximate ‘‘first order’’ form should be close
to the covariant one than the traditionalv/c current men-
tioned above, since an expansion is made only in terms
the moderate momenta of nucleons in the initial nucleus

The relativistic one-nucleon current used here in the J
full calculation has been recently employed by Donne
et al. @39,40# in studies of (e,e8N) reactions. In these studie
relativistic models appeared to be far more successful t
nonrelativistic ones@17,39#. It is, however, a nontrivial task
to extend them beyond RIA.

Final state interaction and meson-exchange currents h
been so far included into realistic calculations mostly with
approximate frameworks based on various expansions of
nuclear operators in terms of supposedly small mome
@39–42#. We do not intend to give an exhaustive survey
those techniques, neither do we dare to compete in comp
ness and consistency with recent elaborate calculat
@41,43#. We only show in our figures the results obtain
with the various one-nucleon currents introduced above.

While a much more comprehensive study of relativis
effects, including relativistic expansions ofp exchange cur-
rents and heavy meson-exchange currents including b
terms,gpr andgpv currents, and isobar contributions, wa
performed by Ritzet al. @41# for lower energies, we focus on
high energies. Here, high energies mean the GeV reg
accessible at Jefferson Lab and even the new kinematic
gime opening up with the planned 12 GeV upgrade of JL
Our C-IIB calculation given here is fully covariant, and pa
of a consistent treatment of the nuclear dynamics and
one-body current that does not rely on any kind of nonre
tivistic expansion.

None of our calculations is complete; the purpose is rat
to explore various experimentally feasible kinematical
gions to find those for which the complete microscopic c
culations and precise measurements would be worthwh
Nevertheless, the variations between results obtained
versions of covariant currents and their approximations,
well as those between two covariant or two approximate f
3-19
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TABLE VI. Sensitivity to relativistic effects~R! compared to estimated measurement errors~M! for selectedQ2 andx.

Q2 (GeV)2 1 2 3
x 0.5 1.0 1.5 1.95 0.5 1.0 1.5 1.97 0.5 1.0 1.5 1.98

ds R ~in precent! 50 20 10 10 100 50 20 10 1001 50 50 20
ds M ~in precent! 1 1 1–3 5 5 1–10 1–10 101 1–20 1–20 50
Af R ~absolute! 0.1 ,0.1 ,0.1 ,0.05 0.2 0.1 0.1 0.01 0.5 0.2 0.1 ,0.05
Af M ~absolute! 0.1–0.2 0.1 0.2–0.5 0.1–0.2 ,0.1 .0.5
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mulations themselves, should provide some insight on
region of validity of the expansions and approximatio
used.

D. Differential cross section

The differential cross section~2.1! is given in Figs. 9–12.
The six panels in each figure all have the same scale, so
relative size of the cross section may be seen at a gla
Examination of these figures shows that the magnitude of
cross section depends strongly onQ2, x, andu* . The bulk
feature of the differential cross section consists of the t
peaks atu* 50° andu* 5180°. The first peak correspond
to the impulse approximation contribution, where the pho
couples to the proton which is detected later on, and
second peak at 180° corresponds to the Born contribut
where the photon interacts with the neutron. Forx<1.5 the
two peaks are well separated because~cf. Fig. 4! the nucle-
ons have very different momenta atu* .0 and 180°. In this
case one of the two RIA contributions@recall Eq.~2.16! and
Fig. 3# is much larger than the other.

However, if we wish to probe the deuteron wave functi
at high momentum, we will seek the region nearu* .90°,
where both nucleons have nearly the same momenta
only high momentum components of the wave function c
contribute. In this region the RIA cross section is very sm
and FSI are expected to be important. At largex, and in
particular nearx.2, the two diagrams will always hav
large momenta~because the relative momentum of the fin
state is low!, and the cross section shows no sharp forward

TABLE VII. Cuts used to arrive at the statistical uncertaintie

Q2 (GeV)2 x Q2 cut x cut

1 0.5 0.8–1.2 0.4–0.6
1.0 0.8–1.2 0.8–1.2
1.5 0.8–1.2 1.3–1.7
1.95 0.8–1.2 1.9–2.0

2 0.5 1.8–2.2 0.4–0.6
1.0 1.8–2.2 0.8–1.2
1.5 1.8–2.2 1.3–1.7
1.97 1.8–2.2 1.9–2.0

3 0.5 2.6–3.4 0.4–0.6
1.0 2.6–3.4 0.8–1.2
1.5 2.6–3.4 1.3–1.7
1.98 2.6–3.4 1.95–2.0
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backward peak. Here high momentum components of
deuteron contribute over the whole angular range. Figu
9–12 seem to suggest that, forx.0.5, the differential cross
section is relatively insensitive to the model used. Howev
this is largely an artifact of the log scales used in the figur
and to show more clearly therelative sizeof the different
calculations, Figs. 13–16 show theratio of each approxima-
tion to the C-IIB-noP calculation. Therelative variation is
largest for lowx (x50.5), but is significant at allx, varying
from about 610% to 650%, particularly nearu* .90°,
depending on the values ofQ2 and x. These variations are
summarized in Table VI for the larger values ofQ2. Since
the cross sections vary by many orders of magnitude,
model dependence is not large enough to prevent these
culations from providing a useful estimate of the size of t
cross section over a wide range of kinematics.

For a few choices of kinematics, we have estimated
size of the experimental errors that can be expected fro
measurement of this reaction at JLab using existing eq
ment. We find, for many kinematics, that the experimen
errors would be small enough to distinguish between
different theoretical models shown in the figures. Our e
mates of the experimental errors are shown in Figs. 13
and in Table VI. In all cases that we have examined, exc
possibly at the largest values ofx at the largestQ2, we could
distinguish these models from one another. Of course,
final state interactions and exchange current contributi
must be calculated before one has a complete picture of
process, but our results suggest that such a calculatio
likely to be worthwhile.

To estimate these errors we assumed the measure
would be carried out in Hall A with the hadron arm of th
high resolution spectrometer~HRS! spectrometer pair place
either in the direction of the momentum transfer vectorq

L

~data points with solid circles! or to the left ~triangles! or
right ~inverted triangles! of q

L
. Each spectrometer setting

able to measure a range of anglesu* , with the settings to the
left and the right ofq

L
able to measure largeru* ’s than the

setting alongq
L

~which samples angles nearu* .0). The

errors grow asu* gets close to the limit of the acceptance
the spectrometer, and this explains the large errors at ce
angles shown in the figures~see for example, the case whe
x51.5 and Q253, where there are large errors atu*
.25°, u* .50°, andu* .80°). This is clearly an artifact of
our crude estimates, and could be removed by reposition
the spectrometers. The statistics are based on running for
day at each setting under normal JLab operating conditio
3-20
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FIG. 17. The dimensionless asymmetryAf at Q250.5 GeV2 and for variousx. The c.m. angleu is in degrees. The meaning of the curv
is the same as in Fig. 9.
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These graphs show statistical errors only. The estimate
the statistical uncertainties were made by acceptance ave
ing @44# and radiatively folding@45# the plane wave Born
approximation model of Jeschonnek and Donnelly@39#. An
alternate three-pole parametrization of the MMD nucle
form factors@46# and the Argonne V18NN interaction@35#
were used. The simulations were done using a realistic
04400
of
ag-

n

c-

ceptance model for the JLab-Hall A HRS pair. A maximu
beam energy of 4 GeV~except 6 GeV was used for theQ2

53 GeV2, x50.5 case!, a beam current of 100mA on a 15
cm liquid deuterium target, and measurement time per ki
matic setting of 24 h were assumed. The cuts shown in Ta
VII were used to restrict the simulations to reasonable in
vals around the desired kinematics.
3-21
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FIG. 18. TheAf at Q251 GeV2 and for variousx. The meaning of the curves is the same as in Fig. 9. The estimated errors for a
measurement using existing equipment, shown in panels forx50.5 and 1.95, are discussed in the text.
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E. The asymmetryAf

Next, we present our results for the asymmetryAf ,
which is closely related to the transverse-longitudinal
sponseR̃LT ; see Eq.~2.14!. The numerical results are show
in Figs. 17–20. The asymmetry is zero foru* 50°, then
becomes negative, with an extremum aroundu* 560° for
04400
-

Q250.5 GeV2 and x50.5. The extremum shifts to smalle
angles for increasingx and to larger angles for increasin
Q2. Then, the asymmetry changes sign and exhibits ano
peak aroundu* 5140° for Q250.5 GeV2 and x50.5. The
positive peak shifts to lower angles both for increasingx and
Q2. The appearance of the positive valued part ofAf de-
3-22
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FIG. 19. TheAf at Q252 GeV2 and for variousx. The meaning of the curves is the same as in Fig. 9. The estimated errors for a
measurement using existing equipment, shown in panels forx50.5 and 1.97, are discussed in the text.
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pends on the presence of the Born graph contribution;
impulse approximation alone would only lead to one ne
tive peak. Accordingly, when both processes start to in
fere, i.e., for the highestx values, the minimum tends t
wash out, especially for the situations where the peak aro
u* 5180° has vanished in the cross section.
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One can see at first glance that the asymmetry is
sensitive to the differences in the calculations than is
differential cross section, except nearx50.5. Perhaps the
most interesting feature of these calculations is the irreg
shape of the asymmetry atx50.5 forQ252 and 3 GeV2. At
Q252 GeV2 both versions of the JD and the C-AV18 calc
3-23
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FIG. 20. TheAf at Q253 GeV2 and for variousx. The meaning of the curves is the same as in Fig. 9. The estimated errors for a
measurement using existing equipment, shown in panels forx50.5,1, and 1.98, are discussed in the text.
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lations develop an extra dip. AtQ253 GeV2, the results for
x50.5 develop even more structure, with the AA-v/c calcu-
lation having the opposite sign nearu* near 0°, and the
C-IIB-noP showing an extra peak aroundu590°. At Q2

53 andx50.5, Af could give unique insight both into th
effects of relativity and different wave functions. By co
trast, at largex and largeQ2 the asymmetry is very small an
04400
not measurable with sufficient accuracy.
The uncertainties inAf were generated by propagatin

the errors in the cross sections, where the latter inclu
statistical errors folded in quadrature with an overall 5% s
tematic uncertainty. Further, to simplify the procedure, t
integrated yields for protons within the right and left hem
spheres about the momentum transfer direction were
3-24
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COVARIANT DESCRIPTION OF INELASTIC . . . PHYSICAL REVIEW C 66, 044003 ~2002!
sumed to correspond tof50 andf5p. Finally, the values
of the cross sections, needed to propagate the errors foAf
were taken from the point~i.e., not acceptance average!
values; the statistical uncertainties in the cross sections w
of course, determined using the full acceptance.

IV. CONCLUSIONS

In this paper we have estimated thed(e,e8p)n coinci-
dence cross section using the relativistic impulse approxi
tion ~RIA!. Our calculations span the range 0.5<Q2

<3 GeV2 and x from 0.5 to just less than 2. In this kine
matic region, we find that the results are sensitive to differ
approximate treatments of the single nucleon current,
conclude the following:

Using equipment already in existence at JLab, it is f
sible to measure the unpolarized coincidence cross sec
over this entire kinematic range. The asymmetryAf can be
measured at smallx where it is large.

The coincidence cross section is sensitive to the the
over the entire kinematic range, and it appears that meas
ments can be done to an accuracy sufficient to distinguis
large variety of relativistic models from each other, exce
possibly whenboth xandQ2 are very large.

The asymmetry is less sensitive to the theory, excep
the smallest value ofx50.5 where measurements can eas
distinguish between different theoretical models.

To complete this preliminary study, we must add relat
istic final state interactions and interaction currents that
consistent with the RIA. This is certainly feasible at lar
values ofx, where the low relative momentum in the fin
state makes it possible to use existing relativisticNN inter-
action models. It may also be feasible at lowx, where the
large excitation energy deposited into the final state may
tify the use of a relativistic generalization of the Glaub
approximation.
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APPENDIX A: THE DEUTERON WAVE FUNCTION

1. Helicity spinors

Following the conventions of Jacob and Wick@29#, the
helicity spinors for a particle with four-momentump
5$E,p% are obtained from spinors with four-momentu

$m,0% and spins up or down in theẑ direction. The state is
first boosted along theẑ axis until its momentum is$E,0,0,p%
and then is rotated in the direction ofp. The Lorentz trans-
formation that does this is therefore

S~ p̂,zp!5R~ p̂!B~zp!5S@L~ p̂,zp!#, ~A1!
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R

whereB is the Dirac operator for a pure boost along thez
axis,

B~zp!5ea3 zp/2, ~A2!

with tanhzp5p/E, andR is the Dirac rotation operator

R~ p̂!5R~f,u,2f!5e2 iS3f/2e2 iS2u/2eiS3f/2 ~A3!

that takes the momentum from along theẑ axis into its final
direction. Using this transformation in thex̂ẑ plane (f
50), the helicity spinors for particle 1 are defined as
Refs.@24,47#,

u~p,l![u1~p,l!5S~ p̂,zp!u~0,l!

[u1~p,l,u1!

5Ry~u1!u1~p,l,0!

5S cosh
1

2
zp

2l sinh
1

2
zp

D x
l
~u1!,

v~2p,l![v1~p,l!52~21!1/22lCu* ~p,2l!

[v1~p,l,u1!

5Ry~u1!v1~p,l,0!

5Ry~u1!g5g0u1~p,l,0!

5S 22l sinh
1

2
zp

cosh
1

2
zp

D x
l
~u1!,

~A4!

whereRy(u)5R(0,u,0), u1 is the polar angle of the vecto
p5p1 ~see Fig. 21!, and

x1/2~u!5S cos
1

2
u

sin
1

2
u
D , x

21/2
~u!5S 2sin

1

2
u

cos
1

2
u
D .

~A5!

FIG. 21. The definitions of the momenta and anglesu1 andu2.
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Note that theu(p,l) andv(2p,l) of Ref. @47# are identical
to the u1(p,l) and v1(p,l) of Ref. @24#. Following Jacob
and Wick@29#, the helicity spinors for particle 2 are define
as

u~2p,l![u2~p,l!5~21!1/22lRy~u1!Ry~p!B~zp!u~0,l!

[u2~p,l,u2!

5Ry~u2!u2~p,l,0!

5Ry~u2!~21!1/22lu1~p,l,0!

5S cosh
1

2
zp

2l sinh
1

2
zp

D x
2l

~u1!,

v~p,l![v2~p,l!5~21!1/22lCu* ~2p,2l!

[v2~p,l,u2!

5Ry~u2!v2~p,l,0!

5Ry~u2!g5g0u2~p,l,0!

5S 22l sinh
1

2
zp

cosh
1

2
zp

D x
2l

~u1!,

~A6!

whereu25p1u1 is the polar angle of the vector2p5p2
~see Fig. 21! and u(2p,l) and v(p,l) are identical to the
u2(p,l) and v2(p,l) of Ref. @24#. Note that the angula
conventions have 0<u1<p and havep<u2<2p. Useful
relations, valid on the two-component subspace, are

Ry~u2!x
l
~0!52lx

2l
~u1!,

Ry~p!x
l
~u!52lx

2l
~u!, ~A7!

and, on the full four-component space,u1 andu2 are related
by

u2~p,l,u2!52lRy~p!u1~p,l,u1!. ~A8!

@Note that 2l[(21)1/22l.# This last formula is useful for
the applications in this paper.

2. Deuteron wave functions in the rest frame

The deuteron wave function~2.29! is manifestly covari-
ant, and we use this feature to simplify the treatment. App
ing Eqs.~A4! and~A6! in the deuteron rest frame, the spin
for either particle 1 or 2 can be written in terms of the spin
with the momentum in theẑ direction,

ui~p,l!5ui~p,l,u i !5Ry~u i !ui~p,l,0!. ~A9!
04400
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r

Note that this equation holds for particle 2 even though,
applications, we restrictu2>p. The active rotation of the
deuteron helicity vector from an initial direction along theẑ

axis to an angleu with respect to theẑ axis is given in terms
of the spin 1 rotation matrices

j
ld

~u!5(
ld8

d
ldl

d8
(1)

~u!j
ld8

~0!. ~A10!

Substituting ~A9! into ~2.29!, working the operatorR
through the rest of the expression, and then using Eq.~A10!

to realign the deuteron helicity vector in theẑ direction by
rotating it through angle2u gives

cl,ld

( i ) ~p,P![clm
( i ) ~p,u i !jld

m ~0!

5Ry~u i !(
ld8

clm
( i ) ~p,0!j

ld8
m ~0!dl

d8ld

(1)
~u i !,

~A11!

where we usedd
ldl

d8
(1)

(2u)5d
l

d8ld

(1)
(u). This argument works

only in the deuteron rest frame where there is no total thr
momentum to be rotated byRy .

In theoriginal Ref. @30# the on-shell particle was taken t
be particle 1 with four-momentump1, and the wave function
in the deuteron rest frame was expanded in terms of~on-
shell! particle 2 spinors@24#. ~Also, be aware that the spinor
used in Ref.@30# were quantized along the fixedẑ axis, and
for v spinors the notation2s corresponded to spin projec
tion 1s in the ẑ direction.! In the notation of Eq.~A6! this
becomes

cl1 ,ld

(1) ~p1 ,P!5(
l2

@u2~p1 ,l2 ,u2!cl1l2 ,ld

1 ~p1!

1v2~p1 ,l2 ,u2!cl1l2 ,ld

2 ~p1!#. ~A12!

Using the fact thatu25p1u1, so thatu25p whenu150,
and using Eq.~A11! gives

cl1 ,ld

(1) ~p1 ,P!5 (
l2 ,ld8

@u2~p1 ,l2 ,u2!cl1l2 ,l
d8

1
~p1z!

1v2~p1 ,l2 ,u2!cl1l2 ,l
d8

2
~p1z!#dl

d8ld

(1)
~u1!,

~A13!

where the componentsc
l1l2 ,l

d8
6

(p1z) have the relative mo-
mentum vector~same as the momentum of particle 1 in t
rest system! aligned along the1 ẑ direction. The6 compo-
nents of the wave functions follow from the helicity spino
defined above and the expansions given in Ref.@30#:
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cl1l2 ,ld

1 ~p!5
1

A4p
x

2l2

† Fu~p!s•j
ld

1
w~p!

A2
~3p̂•j

ld
s•p̂2s•j

ld
!G is2

A2
x

l1
,

cl1l2 ,ld

2 ~p!5A 3

4p
x

2l2

† Fvs~p!p̂•j
ld

2
v t~p!

A2
~s•p̂s•j

ld
2p̂•j

ld
!G is2

A2
x

l1
.

~A14!

Here u(p) andw(p) are the momentum space radial wa
functions for theS and D states andv t(p) and vs(p) are
triplet and singletP-state wave functions, which appear in
manner similar to the lower component wave functions
the Dirac equation. These wave functions are functions of
variable p5upu and satisfy the normalization condition@30#

E
0

`

p2dp$u2~p!1w2~p!1v t
2~p!1vs

2~p!%51. ~A15!

The wave functions~A14! can be simplified by specifying
the helicity states of the deuteron~in the rest frame!. Since
the deuteron is a particle 2 in the sense of Jacob and Wick
helicity states are

j
ld

[j
ld

2 5~21!s2lde2 ipJyj
ld

1

5H 1

A2
~61,2 i ,0! if ld56,

~0,0,1! if ld50.

~A16!

Note, for future reference, that

Rpj
ld

5~21!12ldj
2ld

, ~A17!

where Rp[Ry(p). If p is in the 1 ẑ direction, it is not
difficult to evaluate Eq.~A14!, giving

cl1l2 ,ld

1 ~pz!5
1

A8p
dld ,l22l1

f uldu
1 ~p!,

cl1l2 ,ld

2 ~pz!52
2l1

A8p
dld ,l22l1

f uldu
2 ~p!, ~A18!

where

f 0
1~p!5u~p!1A2w~p!, f 0

2~p!5A3vs~p!,

f 1
1~p!5A2u~p!2w~p!, f 1

2~p!5A3v t~p!. ~A19!

Combining the expressions~A13! and ~A18! gives
04400
r
e
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cl1 ,ld

(1) ~p1 ,P!5
1

A8p
(
l2

@u2~p1 ,l2 ,u2! f ul22l1u
1 ~p1!

22l1v2~p1 ,l2 ,u2! f ul22l1u
2 ~p1!#

3dl22l1 ,ld

(1) ~u1!. ~A20!

One disadvantage of the expansion~A20! is that the four-
momentum of particle 2, which isp25$Md2Ep1

,2p1% in
the rest system, isnot the same as the four-momentum of th
spinoru2, which is p̃25$Ep1

,2p1%. This difference can lead

to confusion, especially because the four-momentump̃2 is
not one of the four-momenta that naturally occurs in t
problem. Inthis paper we avoid this confusion, exploit th
freedom to expand the off-shell particle in terms spinors w
any four-momentum, and choose the four-momentum of
on-shell particle~i.e., the spectator! for the expansion. The
advantage of this choice is that four-momentum used to
scribe the off-shell particle is now one of the naturally o
curring momenta in the problem. Also, we find that the fo
malism is simplified if we useg5u instead ofv spinors to
describe the negative energy states~as in Ref.@47#!. With
this choice, we find the following expansion for the wa
function:

cl1 ,ld

(1) ~p1 ,P!5A 3

8p(
l2

@u1~p1 ,l2 ,u1!f ul21l1u
1 ~p1!

22l2g5u1~p1 ,l2 ,u1!f ul21l1u
2 ~p1!#

3d2l22l1 ,ld

(1) ~u1!, ~A21!

where and extra factor ofA3 has been introduced for conve
nience. Projecting out the independent components, give

f0
1~p!5

Ep

A3m
f 0

1~p!, f0
2~p!5

1

A3
F p

m
f 0

1~p!2 f 0
2~p!G ,

f1
1~p!5

Ep

A3m
f 1

1~p!, f1
2~p!5

1

A3
F p

m
f 1

1~p!1 f 1
2~p!G ,

~A22!

where the new wave functions were given in Table III.
Comparison of the expansions~A20! and~A21! underline

the fact thatthe separation of the wave function into positi
and negative energy parts is a matter of convention; only the
total result is independent of this separation.

By a similar argument, we expect the expansion forc (2)

to be

cl2ld

(2) ~p2 ,P!5A 3

8p(
l1

@u2~p2 ,l1 ,u2!f ul21l1u81 ~p2!

22l1g5u2~p2 ,l1 ,u2!f ul21l1u82 ~p2!#

3dl21l1 ,ld

(1) ~u22p!. ~A23!
3-27
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One can prove thatf65f86by finding the expansions fo
c (2) directly from those forc (1). Using Eq.~A23! and or-
thogonality relations for the spinors gives

~3/8p!1/2f
uLu

81

~p2!dL,ld

(1) ~u1!

5ū2~p2 ,l1 ,u2!cl2 ,ld

(2) ~p2 ,P!

5ū2~p2 ,l1 ,u2!Gld
~p2 ,P!Cū2

T~p2 ,l2 ,u2!

54l1l2ū1~p2 ,l1 ,u1!RpGld
~p2 ,P!

3CR p
21ū1

T~p2 ,l2 ,u1!

54l1l2~21!12ldū1~p2 ,l1 ,u1!G2ld
~p1 ,P!

3Cū1
T~p2 ,l2 ,u1!

5~21!L2ldū1~p2 ,l1 ,u1!G2ld
~p1 ,P!Cū1

T~p2 ,l2 ,u1!,

~A24!

where L5l11l2 , Gld
(p,P)[Gm(p,P)jld

m (P), Ry(p)p2

5p1, and we used the relations~A8! and ~A17!. However,
from Eq. ~A21!

~3/8p!1/2f uLu
1 ~p1!dL,ld

(1) ~u22p!

5~3/8p!1/2~21!L2ldf uLu
1 ~p1!d2L,2ld

(1) ~u1!

5~21!L2ldū1~p1 ,l2 ,u1!cl1 ,2ld

(1) ~p1 ,P!

5~21!L2ldū1~p1 ,l2 ,u1!G2ld
~p1 ,P!

3Cū1
T~p1 ,l1 ,u1!. ~A25!

Since this equation is symmetric under the interchange ol1
and l2, and p15p2 in the c.m. system, the two Eqs.~A24!

and~A25! are equal, andf15f81. A similar argument holds
for f2.

The wave functions used in this paper were obtained
solving the spectator equation using a kernel adjusted t
the NN data below 350 MeV lab energy@24#.

3. Boosting helicity spinors

In order to boost the spectator equation wave function
is necessary to have expressions for the pure boosts o
helicity spinors. Indeed, for the applications to elastic d
teron electromagnetic form factors and the response fu
tions for deuteron electrodisintegration, it is only necess
to study the case where the boosts are made along thez axis.
Since the Dirac spinors for arbitrary momentum are defin
in terms of a Lorentz transformation of the rest fram
spinors, it is useful to define the four-momentum in the p
ticle rest frame as

p̃5~m,0!. ~A26!
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Three basic Lorentz transformations are required in the
lowing discussion. In the notation of Eq.~A1!, these are:

p5S~ p̂,zp! p̃[R~ p̂!B~zp!p̃,

p85S~ p̂8,zp8!p̃[R~ p̂8!B~zp8!p̃,

p85B~zz!p. ~A27!

The first Lorentz transformation connects the particle r
frame with the initial frame of the particle and is compos
of a pure boost along thez axisB(zp) followed by a rotation
into the direction of the initial particle directionR( p̂). The
second Lorentz transformation connects the particle
frame with the final frame of the particle and is also co
posed of a pure boost along thez axis followed by a rotation.
The third Lorentz transformation connects the initial and
nal particle frames with a pure boost along thez axis.

Now consider the boost of a helicity spinor@eitheru1 of
Eq. ~A4! or u2(p,l) of Eq. ~A6!# along thez axis

B~zz!ui~p,l!5B~zz!S~ p̂,zp!ui~0,l!

5S~ p̂8,zp8!S
21~ p̂8,zp8!B~zz!S~ p̂,zp!ui~0,l!

5S~ p̂8,zp8!S@L21~ p̂8,zp8!

3B~zz!L~ p̂,zp!#ui~0,l!, ~A28!

where S( p̂,zp)5S@L( p̂,zp)# is the representation of th
Lorentz transformationL( p̂,zp) and the group composition
property of the Lorentz transformations has been used
writing the final step. Since

L21~ p̂8,zp8!B~zz!L~ p̂,zp! p̃5 p̃, ~A29!

this combination of Lorentz transformations must be equi
lent to a rotation and is referred to as the Wigner rotation
this case, where the boost is along thez axis and the mo-
menta are in thex̂ẑ plane, the Wigner rotation is a rotatio
about theŷ axis, denotedRy(v i). The boosted spinor can
therefore be written

B~zz!ui~p,l!5S~ p̂8,zp8!Ry~v1!ui~0,l!

5S~ p̂8,zp8!(
l8

ui~0,l8!dl8l
(1/2)

~v i !

5(
l8

ui~p8,l8!dl8l
(1/2)

~v i !. ~A30!

Sinceg5 and Cg0 both commute with the boost, and sinc
the boost is real,~A30! also holds for g5ui(p,l) and
Cūi

T(p,l).
In this paperB(zz) will be chosen to be the boost from th

c.m. frame whereP* 5$D0 ,0,0,2q0% to the lab frame where
P5$Md,0,0,0%. This is accomplished by a boost in the pos
tive ẑ direction with tanhzz5q0 /D0. In the notation we have
introduced, the basic equations are
3-28
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B~zz!Cūi
T~pi* ,l!5(

l8
Cūi

T~pi ,l8!dl8l
(1/2)

~v i !, ~A31!

and the inverse relations

B 21~zz!Cūi
T~pi ,l!5(

l8
Cūi

T~pi* ,l8!dl8l
(1/2)

~2v i !,

~A32!

where the variables without asterisks are in the deuteron
frame ~the lab frame! and the variables with asterisks are
the c.m. frame of the electrodisintegration process.

The Wigner rotation angles can be computed from
standard relations

B 21~zz!Ry~u i !B~zpi
!5Ry~u i* !B~zp!Ry~7v i !,

~A33!

where the upper sign holds fori 51 and the lower fori 52
@the change in sign is a consequence of the phase relatio
Eq. ~A8!#, andu1* 5u* andu2* 5u* 1p @recall Table I; the
form of u2* is a consequence of the extra rotation byp in Eq.
~A8!#. Writing the rotation and boost operators in clos
form, Eq. ~A33! can be written

Fcosh
1

2
zz2a3sinh

1

2
zzG S cos

1

2
u i2 iS2sin

1

2
u i D

3[cosh
1

2
zpi

2a3sinh
1

2
zpi

]

5S cos
1

2
u i* 2 iS2sin

1

2
u i* D Fcosh

1

2
zp

2a3sinh
1

2
zpG (cos

1

2
ṽ1 iS2sin

1

2
ṽ), ~A34!

whereṽ is a shorthand for eitherv1 or 2v2, depending on
the case under consideration. This operator relation can
separated into four independent equations relatingṽ to the
lab variables$pi ,u i% to the c.m. variables$p,u i* %. A conve-
nient form of these equations is

C21cos
1

2
u i5A2Md~E1m!cos

1

2
~u i* 2ṽ !,

C22cos
1

2
u i5A2Md~E2m!cos

1

2
~u i* 1ṽ !,

C11sin
1

2
u i5A2Md~E1m!sin

1

2
~u i* 2ṽ !,

C12sin
1

2
u i5A2Md~E2m!sin

1

2
~u i* 1ṽ !, ~A35!

where

Cab5A~D01Md!~Ei1am!1bA~D02Md!~Ei2am!,
~A36!
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with E5Am21p2 andEi5Am21pi
2. The following identi-

ties, derived from these equations, are very useful:

E

m
sinu i* cosṽ2cosu i* sinṽ5

Ei

m
sinu i ,

E

m
sinu i* sinṽ1cosu i* cosṽ5cosu i ,

2
E

m
cosu i* sinṽ1sinu i* cosṽ5

D0

Md
sinu i ,

E

m
cosu i* cosṽ1sinu i* sinṽ5

D0Ei

Mdm
cosu i2

q0pi

Mdm
,

2p cosṽ5
q0

Md
Ei cosu i2

D0

Md
pi ,

p sinṽ5
m

Md
q0 sinu i . ~A37!

4. Boosting the deuteron wave function

In order to calculate the response functions for deute
electrodisintegration it is necessary to boost the deute
wave functions from the center of momentum frame of t
final state proton-neutron pair to the rest~lab! frame of the
deuteron~where the decomposition of the wave functio
onto S, D, and P states has been defined!. If the system is
quantized such that the three-momentum transferq lies along
thez axis, then the deuteron wave functions in the c.m. m
be boosted to the rest frame by a pure active boostB(zz) in
the ẑ direction with tanhzx5q0 /D0, as defined in the previou
section.

The rest frame wave functions are obtained by apply
the operatorB5B(zz) to the wave functions~2.29!, which
gives

Bclld

( i ) ~pi* ,P* !

5B
m1P” * 2p” i*

m22~P* 2pi* !2
NdGld

~pi* ,P* !Cūi
T~pi* ,l!

5H B
m1P” * 2p” i*

m22~P* 2pi* !2
B 21J $BNdGld

~pi* ,P* !B 21%

3@BCūi
T~pi* ,l!#

5(
l8

m1P” 2p” i

m22~P2pi !
2

NdGld
~pi ,P!Cūi

T~pi ,l8!dl8l
(1/2)

~v i !

5(
l8

cl8ld

( i )
~pi ,P!dl8l

(1/2)
~v i !, ~A38!

where, in the next to last step, we used the boost prope
of the helicity spinors~A31! and the fact that the propagato
and Gld

(pi ,P) are Lorentz scalars. Note that there is
3-29
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Wigner rotation of the deuteron helicity vector because
boost is in the same direction as its momentum~but the
components of the vectorj0 do change!. The wave function
in the c.m. frame can therefore be written in terms of the r
frame wave function

clld

( i ) ~pi* ,P* !5(
l8

B 21cl8ld
~p,P!dl8l

(1/2)
~v i !.

~A39!

Using the representations~A21! or ~A23!, and the boost for-
mulas~A39! and~A30!, the wave function in the c.m. fram
becomes

cl i ,ld

( i ) ~pi* ,P* !5A 3

8p (
l j8l i8

B 21@ui~pi ,l j8!f uLu
1 ~pi !

22l j8g
5ui~pi ,l j8!f uLu

2 ~pi !#

3d7L,ld

(1) ~ ũ i !dl
i8l i

(1/2)
~v i !,

5A 3

8p (
l j8l i8l

@ui~pi* ,l!f uLu
1 ~pi !

22l j8g
5ui~pi* ,l!f uLu

2 ~pi !#

3d7L,ld

(1) ~ ũ i !dl
i8l i

(1/2)
~v i !dl

j8l

(1/2)
~v i !,~A40!

where L5l i81l j8 , ũ15u1 , ũ25u22p, and the upper
~lower! sign in theL index of d(1) is for i 51(2). Note that
the notation is mixed in the last equation: the momentum
the spinors is expressed in the c.m. frame and the varia
of the f ’s andd(1) are in the deuteron rest frame.

APPENDIX B: THE HADRONIC MATRIX ELEMENT

1. The plane wave matrix elements

Using Eq.~A40!, the current matrix element~2.27!, in the
c.m. frame, becomes

^l1l2uJlg
~q!uld&

5A 3

16p

1

Nd
(

l18l28l

$ū1~p1* ,l1! j lg

(1)~p1* ,p1* 2q* !

3@u2~p2* ,l!f uLu
1 ~p2!22l18g

5u2~p2* ,l!f uLu
2 ~p2!#J2

2ū2~p2* ,l2! j lg

(2)~p2* ,p2* 2q* !@u1~p1* ,l!f uLu
1 ~p1!

22l28g
5u1~p1* ,l!f uLu

2 ~p1!#J1%, ~B1!

where

J25dL,ld

(1) ~u22p!dl
28l2

(1/2)
~v2!dl

18l

(1/2)
~v2!,

J15d2L,ld

(1) ~u1!dl
18l1

(1/2)
~v1!dl

28l

(1/2)
~v1!, ~B2!
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andL and the Wigner rotation anglesv i were defined above
The matrix elements of the single nucleon current ope

tor, in the c.m. system, are defined to be

j l il;lg

( i )r ~p,u* ,q0!

5H ūi~pi* ,l i ! j lg

( i )~pi* ,pi* 2q* !uj~pj* ,l! if r51

ūi~pi* ,l i ! j lg

( i )~pi* ,pi* 2q* !g5uj~pj* ,l! if r52.

~B3!

These are calculated in the next section. Using this notat
the current matrix elements~B1! can be written in the fol-
lowing compact notation:

^l1l2uJlg
~q!uld&5~Jlg

!l1l2

ld ~p1* ,p2* ,q* !

5A 3

16p

1

Nd
(
lr

(
l18l28

$hr~2l18!

3 j l1l;lg

(1)r ~p,u* ,q0!f uLu
r ~p2!

3dL,ld

(1) ~u22p!dl
28l2

(1/2)
~v2!dl

18l

(1/2)
~v2!

2hr~2l28! j l2l;lg

(2)r ~p,u* ,q0!f uLu
r ~p1!

3d2L,ld

(1) ~u1!dl
18l1

(1/2)
~v1!dl

28l

(1/2)
~v1!%,

~B4!

wherehr(x) is the phase defined in Eq.~2.37!. The unpolar-
ized cross section will be calculated from this matrix elem
after the matrix elements of the nucleon current have b
discussed.

2. The single nucleon current

In the spectator formalism used in this paper, theNN
interaction kernel has a form factorh(p2) @h(m2)51# at-
tached to each off-shell nucleon which enters or leaves
interaction. Alternatively, this form factor can be remov
from the kernel and attached to the nucleon propagat
which then have the form

S̃F~p!5
h2~p2!

m2p”
. ~B5!

Gauge invariance@32# will be ensured if we introduce are-
ducednucleon currentj R

m(p8,p),

j m~p8,p!5h8 j R
m~p8,p!h, ~B6!

whereh5h(p2) andh85h(p82), which satisfies the Ward
Takahashi~WT! identity using the dressed propagator

qm j R
m~p8,p!5S̃F

21~p!2S̃F
21~p8!. ~B7!

A simple choice for the reduced current which satisfies t
identity is @25, 32, 48#
3-30
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j R
m~p8,p!5F0@F1~Q2!21#g̃m1F0F2~Q2!

ismnqn

2m
1F0gm

1G0@F3~Q2!21#L2~p8!g̃mL2~p!

1G0L2~p8!gmL2~p!, ~B8!

where F1,2(Q
2) are the on-shell nucleon form factor

F3(Q2) is a completely unknown form factor describing th
off-shell structure of the nucleon@subject to the constrain
that F3(0)51], L2(p)5(m2p” )/(2m), g̃m5gm2qmq” /q2,
and F0 and G0 are functions ofp2 and p82 completely de-
termined by the WT identity:

F05
1

h82

m22p82

p22p82
1

1

h2

m22p2

p822p2
,

G05S 1

h82
2

1

h2D 4m2

p822p2
. ~B9!

Since the final nucleon is always on-shell in the RIA a
proximation,p825m2 and the terms multiplied byL2(p8)
vanish, giving

j R
m~p8,p!5

1

h2 H F1~Q2!g̃m1F2~Q2!
ismnqn

2m
1

qmq”

q2 J .

~B10!

Furthermore, the terms proportional toqm vanish when the
current is contracted with the photon helicity vectors. Hen
the current for use in the RIA reduces to the traditional c
rent divided byh,

j m~p8,p!5
1

h~p2!
H F1~Q2!gm1F2~Q2!

ismnqn

2m J
~when p825m2!. ~B11!

Even when one of the particles is off-shellthe only modifi-
cation to the on-shell current which survives is the appe
ance of the factor of 1/h.

The photon helicity states in the c.m. frame, as defined
Ref. @21#, are

«615
1

A2
~0,71,2 i ,0!,

«05
1

Q
~q0 ,0,0,n0!. ~B12!

Hence, the single nucleon current operator, defined in E
~2.28! and ~B11!, is

j lg

( i )~pi* ,pi* 2q* !5F1~Q2!«”
lg

2F2~Q2!
«”

lg
q”

2m
, ~B13!

where the factor of 1/h has been omitted~it is absorbed into
the wave function!. As discussed above and in Ref.@21#, the
04400
-
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-

r-
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s.

results are simplified if we consider the symmetric and a
symmetric combinations of the transverse helicity amp
tudes, which are found from

«s5
1

2
~«12«21!5

1

A2
~0,21,0,0!,

«a5
1

2
~«11«21!5

1

A2
~0,0,2 i ,0!. ~B14!

Using the explicit form of the spinors given in Eqs.~A4!
and~A6! we can show that the current matrix elements ha
the form

j l8l;g
( i )r

~p,u* ,q0!55
dl8,2l j 1g

( i )r12l8dl8,l j 2g
( i )r

for $r,g%5~1,0!,~1,s!,~2,a!,

2l8dl8,2l j 1g
( i )r1dl8,l j 2g

( i )r

for $r,g%5~2,0!,~2,s!,~1,a!,
~B15!

whereg5$0,s,a% replaces the helicity. If the proton~particle
1! matrix elements are calculated first, the neutron eleme
follow from

j l8l;g
(2)1

~p,u* ,q0!5ū2~p,l8,u* 1p!

3 j g
(2)~p2* ,p2* 2q* !u1~p,l,u* !

524l8lū1~p,l8,u* !Rp

3 j g
(2)~p2* ,p2* 2q* !R p

21u2~p,l,u* 1p!

524l8lh8~g!ū1~p,l8,u* !

3 j g
(2)~p1* ,p1* 2q̂* !u2~p,l,u* 1p!

524l8lh8~g! j l8l;g
(1)1

~p,u* ,2q0!, ~B16!

where the rotation byp about theŷ axis has changedp2*

→p1* , q* →q̂* 5(n0,0,0,2q0), and «0→2(2q0,0,0,n0)
~so that the effect on theg50 amplitude is to change th
phase and to changeq0→2q0), and therefore the phas
h8(g), arising from the rotation of the photon helicity vec
tors, is negative~for g50 or s) or positive~for g5a). The
change in the operatorj g

(2)→ j g
(1) corresponds to the replace

ment of the neutron form factors with proton form factor
The effect of the phase24l8l is an additional change in th
sign of all j 2 type elements. Combining all of these effec
allows us to obtainj l8l;g

(2)1 (p,u* ,q0) from j l8l;g
(1)1 (p,u* ,q0) by

changing proton to neutron form factorsq0→2q0 , j 1(0,s)
→2 j 1(0,s) , j 2(0,s)→ j 2(0,s) , j 1a→ j 1a , and j 2a→2 j 2a .
These phase changes are recorded through the factd
shown in Table IV.

3. The hadronic structure functions

Substituting the form~B15! for the current into the ex-
pression~B4! allows the sum overl to be carried out. Ifg
50 or s the result is
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~Jg!l1l2

ld ~p1* ,p2* ,q* !5A 3

16p

1

Nd
(

r
(

l18l28
$hr~4l1l18!@ j 1g

(1)rf uLu
r ~p2!dl

182l1

(1/2)
~v2!12l1 j 2g

(1)rf uLu
r ~p2!dl

18l1

(1/2)
~v2!#Y2

2hr~4l2l28!@ j 1g
(2)rf uLu

r ~p1!dl
282l2

(1/2)
~v1!12l2 j 2g

(2)rf uLu
r ~p1!dl

28l2

(1/2)
~v1!#Y1%, ~B17!
s
e

ob

ity

m

lete

he
o
re-
where

Y25d
l

28l2

(1/2)
~v2!dL,ld

(1) ~u22p!,

Y15d
l

18l1

(1/2)
~v1!d2L,ld

(1) ~u1!. ~B18!

If g5a the phase 2l1 in the first square bracket multiplie
j 1g
(1)r instead ofj 2g

(1)r , and the phase 2l2 in the second squar
bracket multipliesj 1g

(2)r instead ofj 2g
(2)r . This different phase

ensures that there is no interference betweenJa and the other
components of the current;Ja contributes only quadratically
in the termJaJa

† .
The unpolarized hadronic structure functions are now

tained by squaring the current~B17!, summing over final
hadron helicities, averaging over the initial deuteron helic
and multiplying by the kinematic factors given in Eq.~2.40!.
The structure functionsR(II) are identically zero in the RIA.
The others are proportional to

^JgJg8
† &5 (

l1l2ld

~Jg!l1l2

ld ~p1* ,p2* ,q* !~Jg8
†

!l1l2

ld ~p1* ,p2* ,q* !.

~B19!

This generates three terms: the proton contribution~propor-
tional to @ j (1)#2), the neutron contribution~proportional to
@ j (2)#2), and an interference term~proportional to j (1)

3 j (2)).
The proton and neutron terms simplify easily. The su

over ld andl2 ~for the proton term! or l1 ~for the neutron
term! collapses the sum overl18 andl28 ~associated withJg)
and the sum overl19 andl29 ~associated withJg8

† ) reducing
the ‘‘diagonal’’ terms to

^JgJg8
† &u i5

3

16pNd
2 (

l18l28
l

$@24l18l j 1g
( i )1f uLu

1 ~pj !

1 j 1g
( i )2f uLu

2 ~pj !#d2l
18l

(1/2)
~v j !1@2l j 2g

( i )1f uLu
1 ~pj !

22l18 j 2g
( i )2f uLu

2 ~pj !#dl
18l

(1/2)
~v j !%$g→g8%, ~B20!

wherei 51 ~for the proton! or 2 ~for the neutron!, j 51 or 2
~but j Þ i ), and we usedd

l
182l

(1/2)
(v i)524l18ld

2l
18l

(1/2)
(v i).

Next, using the identities

(
l

d
2l

18l

(1/2)
~v j !d2l

18l

(1/2)
~v j !515(

l
d

l
18l

(1/2)
~v j !dl

18l

(1/2)
~v j !,
04400
-

,

(
l

2ldal
(1/2)~v j !dbl

(1/2)~v j !5d2ab
(1/2)~p22v j !

52bdab
(1/2)~2v j !,

(
l

d
l

18l

(1/2)
~v j !d2l

18l

(1/2)
~v j !50, ~B21!

and (2l)251, gives

^JgJg8
† &u i5

3

16pNd
2 (

l18l28
$Jgg8

( i )1
@f uLu

1 ~pj !#
21Jgg8

( i )2
@f uLu

2 ~pj !#
2

1@Jgg8
( i )ccosv j1Jgg8

( i )ssinv j #@f uLu
1 ~pj !f uLu

2 ~pj !#%,

~B22!

where the currentsJgg8 were given in Eq.~2.41!. Since these
currents do not depend on the helicities, we may comp
the sums using

(
l18l28

f uLu
r ~pj !f uLu

r8 ~pj !

52@f0
r~pj !f0

r8~pj !1f1
r~pj !f1

r8~pj !#. ~B23!

This gives the result reported in Eq.~2.40!.
The interference term does not simplify as nicely. T

sums overld ,l1, andl2 can be carried out, but there are n
delta functions to collapse the remaining four sums. The
sult is

^JgJg8
† &u125

3

16pNd
2 (

l18l28

l19l29

dL2L8
(1)

~u22p2u1!

3@Jg
(1)Jg8

(2)
1Jg8

(1)Jg
(2)#, ~B24!

whereL5l181l28 , L85l191l29 , and
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Jg
(1)5@22l18 j 1g

(1)1d
l

18l
19

(1/2)
~d1!1 j 2g

(1)1d
2l

18l
19

(1/2)
~d1!#f uLu

1 ~p2!

1@ j 1g
(1)2d

2l
18l

19
(1/2)

~d2!22l18 j 2g
(1)2d

l
18l

19
(1/2)

~d2!#f uLu
2 ~p2!

Jg8
(2)

5@22l29 j 1g8
(2)1d

l
29l

28
(1/2)

~d1!1 j 2g8
(2)1d

2l
29l

28
(1/2)

~d1!#f uL8u
1

~p1!

1@ j 1g8
(2)2d

2l
29l

28
(1/2)

~2d2!

22l29 j 2g8
(2)2d

l
29l

28
(1/2)

~2d2!#f uL8u
2

~p1!. ~B25!

APPENDIX C: KINEMATIC SINGULARITY IN THE LAB
CROSS SECTIONS

In Sec. II B it was shown that, ifx.1, the lab angle,u1,
reaches a maximum value in the first quadrant, leading to
condition ~2.20!. In this Appendix we show that this cond
tion generates a true singularity in the lab cross section@sug-
gested by Eq.~2.22!#, but that, because of the finite resol
tion of any detector, all observable cross sections rem
finite.

Mathematically, this singularity arises from a zero in t
recoil factorR defined in Eq.~2.8!. The denominator of Eq
~2.8! vanishes if

EW p15E1qLcosu1 , ~C1!

whereEW5Md1n5AW21q
L

2 is the energy of the finalnp

pair in the lab frame. We will first show that the condition b
which this denominator vanishes is identical to the condit
~2.20!.

To see this, it is convenient to differentiate cosu1 with
respect tou* . Using Eq.~2.17! gives

d cosu1

du*
5

d

du* S p1
z

p1
D

5
pEW sinu*

p1W
2

p1
z

2p1
3 FEW

W
q

L
p sinu*

1
q

L

2

W2
2p2cosu* sinu* G

5
p sinu*

p1
2W

H EW p12qLcosu1

3F1

2
EW1

q
L

W
p cosu* G J

5
p sinu*

p1
2W

$EWp12q
L
cosu1E1%, ~C2!

where, in the last step, we used

E15
1

2
EW1

q
L

W
p cosu* , ~C3!
04400
e

in

n

easily obtained from the same boost that gave Eq.~2.17!.
Equation~C2! shows that the two conditions~2.20! and~C1!
are equivalent~except when sinu*50, when there is no sin-
gularity!. It is instructive to see how the cosine,

z
L
5cosu1

5
p1

z

Ap1
z21p2sin2u*

5
q

L
W12pEWz

Aq
L

2W214q
L
pWEWz14p2q

L

2z214p2W2
, ~C4!

of the proton lab angle,u1, varies withz5cosu* . For fixed
x andQ2, z

L
depends only onz as given by Eq.~C4!. As an

example, Fig. 22 shows howz
L

varies with z for selected

values ofx when Q253. The value ofz at which zL is a

FIG. 22. The left panel showsz
L
5cosu1 as a function ofz

5cosu* and the right panel shows 12z
L
. In all cases Q2

53 GeV2, Md52 GeV, m51 GeV, and the lines showx50.5
~solid!, x51.0 ~very long dashes!, x51.25 ~long dashes!, x51.5
~dashed!, x51.8 ~dotted!, andx51.98 ~dot dashed!.
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minimum, denotedzcrit , can be computed from Eq.~C4!. In
the approximation thatmn5mp5m we obtain

zcrit52
A~W21q

L

2!~W224m2!

Wq
L

. ~C5!

Moreover, solving Eq.~C1! for z gives thesamevalue, and
hence we recover again the observation that the singula
occurs at the kinematic boundary of cosu1.

The values ofE1 , p1, andz
L

at the critical point can be
found using the additional constraint that follows from e
ergy conservation. Energy conservation gives the follow
general formula forz

L
:

zL5
qL

21mn
22mp

212E1~Md1n!2~Md1n!2

2p1q
L

5
2EWE12W̃2

2p1q
L

, ~C6!

where we have definedW̃25W22mn
21mp

2 . For fixed elec-
tron kinematics, Eqs.~C1! and~C6!, taken together, give the
proton energyE0, proton momentum p0, and anglez0 at
which the denominator~C1! is singular:

E05
2mp

2EW

W̃2
, p05

mp

W̃2
A4EW

2 mp
22W̃4,

z05
A4EW

2 mp
22W̃4

2mpq
L

. ~C7!

Of course, the value ofE0 must be physical, i.e., the denom
nator has to be positive andE0>mp . The first condition
leads to the constraint

W2.mn
22mp

2 , ~C8!

which is always satisfied, while the second one requires

Q2>2n~mn2ed!2ed~2mn2ed!.
Q2

x
, ~C9!

where Md5mp1mn2ed and in the last step we putmn
.mp.m, ed.0, andn5Q2/(2mx). This is the mathemati-
cal proof that the differential cross section is singular if a
only if x.1.

We conclude this discussion by showing that, even tho
the cross section is singular, the physical observables
tained from it are not. Becauseany measuring apparatu
must necessarily have afinite resolution, all physical mea
surements must necessarilyaverage the differential cross
section ~2.1! over this finite resolution. At the kinemati
boundary this average is
04400
ity

-
g

h
b-

K d5s

dV8dE8dV1
L

d

[
1

z0dEz0

z0(11d)S d5s

dV8dE8dV1
D dz

L
.

~C10!

This average will be finite only if the singularity is inte
grable, and this will now be shown explicitly. That it must b
so follows from general physical considerations, and a
from the behavior of the differential cross section in the c.
frame, where there is a smooth, nonsingular behavior for
kinematical conditions. In the lab frame, for fixed electr
kinematics, thez

L
dependent part of the integrand is co

tained in the kinematic factors

p1R$R̃L
(I)1•••%5

Wp1
2

EWp12E1q
L
zL

$R̃L
(I)1•••%. ~C11!

At first glance, if we assume that the factor p1R is an ana-
lytical function of z

L
, Eq. ~C1! suggests that the singularit

will be a simple pole, which is not integrable. However, it
easy to show that the dependence of p1R on z

L
is not ana-

lytic. We begin by using Eq.~C3! to rewrite Eq.~C4!

z
L
5

aE12b

p1
, a5

EW

q
L

, b5
W̃2

2q
L

, ~C12!

and solve this equation for p1 as a function ofz
L

~recalling
that a and b depend only on the electron variables and a
not functions ofz

L
). The result is

p15
z

L
b1aAb21~z

L

22a2!mp
2

a22z
L

2
5

z
L
b1ampAz

L

22z0
2

a22z
L

2
,

~C13!

where we used Eq.~C7! to expressz0 in terms ofa andb

z05
Aa2mp

22b2

mp
. ~C14!

From Eq.~C13! we obtain the following expression for th
energyE1:

E15
mpz

L
Az

L

22z0
21ba

a22z
L

2
. ~C15!

Substituting Eqs.~C13! and ~C15! into the recoil factor we
obtain

p1R5
Wp1

2

EWp12E1q
L
z

L

5
Wp1

2

mpq
L
Az

L

22z0
2

. ~C16!

From this it is clear that in the vicinity of the end poin
singularity at z0, the cross section Eq.~C10! behaves as
1/Az

L

22z0
2 and the singularity is integrable.
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