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Comparison among Hamiltonian light-front formalisms at q¿Ä0 and q¿Å0:
Spacelike elastic form factors of pseudoscalar and vector mesons

Silvano Simula
Istituto Nazionale di Fisica Nucleare, Sezione Roma III Via della Vasca Navale 84, I-00146 Roma, Italy

~Received 27 March 2002; published 26 September 2002!

The electromagnetic elastic form factors of pseudoscalar and vector mesons are analyzed for spacelike
momentum transfers in terms of relativistic quark models based on the Hamiltonian light-front formalism
elaborated in different reference frames (q150 andq1Þ0). As far as the one-body approximation for the
electromagnetic current operator is concerned, it is shown that the predictions of the light-front approach at
q150 should be preferred, particularly in case of light hadrons, because of~i! the relevant role played by the
Z graph atq1Þ0, and~ii ! the appropriate elimination of spurious effects, related to the orientation of the null
hyperplane where the light-front wave function is defined.
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I. INTRODUCTION

The Hamiltonian light-front~LF! formalism is one of the
most popular techniques developed to treat relativistic bo
states of systems containing a fixed number of constitu
@1#. The LF formalism is characterized by the fact that
maximizes the dimension of the subgroup of kinemati
~interaction-free! generators of the Poincare´ group. As a mat-
ter of fact, the interaction term appears only in three out
the ten Poincare´ generators, namely in the ‘‘minus’’ compo
nent of the four-momentum (P2[P02Pz) and in the two
transverse rotations about thex and y axes, with the null
plane being defined byx15t1z50.

Hamiltonian LF quantum models have been widely us
for the investigation of hadronic form factors, such as
electroweak form factors of mesons and baryons within
framework of the constituent quark picture of hadrons, or
elastic electromagnetic~em! form factors of the deuteron
viewed as a composite two-nucleon system. A relevant is
is to know to what extent the response of a composite sys
can be understood in terms of the properties of its cons
ents. To this end the one-body approximation for the curr
operator has been extensively considered. In case of spin
constituents and for the em current operator, which are
interest in this work, one has

Jm.J(1)
m 5(

j
F f 1

( j )~q2!gm1 f 2
( j )~q2!

ismnqn

2mj
G , ~1!

whereq25q•q is the squared four-momentum transferred
the system andf 1(2)

( j ) is the Dirac~Pauli! form factors of the
j th constituent with massmj . In this paper we will limit
ourselves to spacelikeq ~i.e., q2,0).

While the full currentJm is covariant with respect to th
~interaction-dependent! transverse rotations, its one-body a
proximation~1! is not, and the most direct manifestation
the loss of the rotational covariance is the so-called ang
condition. Indeed, it is well known@1# that all the form fac-
tors appearing in the covariant decomposition of a conser
current can be expressed in terms of the matrix element
only one component of the current, namely theplus compo-
nentJ1[J01Jz. It may occur, however, that the number
0556-2813/2002/66~3!/035201~13!/$20.00 66 0352
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form factors is less than the number of independent ma
elements of thepluscomponent obtained from general pro
erties of the current operator. This means that in such si
tions a relation among the matrix elements~the angular con-
dition! should occur in order to constrain their numb
further. The use of the one-body current~1! may lead to
important violations of the angular condition, which do n
allow us to extract uniquely the form factors from the mat
elements ofJ(1)

1 ~cf. Refs.@2,3# for the case of ther meson!.
Within the LF formalism two different approaches@4,5#

have been proposed to overcome the angular condition p
lem. Both approaches really solve the angular condit
problem and make use of theplus and transversecompo-
nents of the one-body current~1!. However, the approach o
Ref. @4# is realized atq150 and does not introduce explic
itly any covariant current, whereas the approach of Ref.@5# is
developed atq1Þ0 and a covariant approximation of th
current Jm is explicitly constructed. The two approache
which we stress are both based on the one-body approx
tion ~1!, are inequivalent, because the Lorentz transforma
connecting a frame whereq150 to a frame whereq1Þ0 is
interaction dependent. In other words, the impact of the
ditional many-body currents needed to construct the full c
rent Jm might be substantially different atq150 and atq1

Þ0.
The aim of this paper is to address the issue of the

evance of the many-body currents by comparing the pre
tions of the approaches of Refs.@4,5# in case of the~space-
like! em elastic form factors of both light and heav
pseudoscalar and vector mesons adopting the general fr
work of the constituent quark model. It will be shown th
the two above-mentioned LF approaches are inequivalent
cause of the different contribution of the so-calledZ graph
@6# at q150 and atq1Þ0. While atq150 it is possible to
cancel out theZ graph exactly~see Ref.@4#!, the latter is
active atq1Þ0, but ignored in Ref.@5#. Moreover, it will be
shown that theZ graph provides an important contribution
case of light hadrons, whereas it vanishes in the heavy-qu
limit, where the two LF approaches predict the same univ
sal Isgur-Wise~IW! function @7,8#. It will be pointed out that
within the approach of Ref.@5# the form factors are functions
of Q2/M2, whereM is the mass of the hadron, and such
©2002 The American Physical Society01-1
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SILVANO SIMULA PHYSICAL REVIEW C 66, 035201 ~2002!
dependence is not efficient for describing the phenome
ogy of light hadrons. Furthermore, in case of vector meso
the spurious effects related to the orientation of the null
perplane where the LF wave function is defined can be pr
erly eliminated in the LF approach atq150 @4#, while they
are ignored and cannot be eliminated within the LF appro
at q1Þ0 @5#. Thus, the latter approach appears to maxim
the impact of the additional many-body currents needed
achieve consistency with experiment, and therefore, as fa
the one-body current~1! is concerned, the predictions of th
LF approach atq150 should be preferred, particularly i
case of light hadrons.

The plan of the paper is simply as follows. Section II
devoted to a brief description of the two LF approach
which are then applied to the evaluation of the elastic fo
factor of both light and heavy pseudoscalar mesons. The
of vector mesons, where the angular condition becom
manifest, is illustrated in Sec. III. The conclusions are su
marized in Sec. IV.

II. PSEUDOSCALAR MESONS

In this section we consider a pseudoscalar~PS! meson
with massMPS, made of two constituent quarksq1 and q̄2

with massm1 andm2, and with electric chargese1 and ē2.
The matrix elements of the em current for the elastic chan
are given by

^P8uJmuP&5FPS~Q2!~P1P8!m, ~2!

where Q2[2q252(P82P)2 is the squared four-
momentum transfer (Q2>0) andFPS(Q

2) is the elastic form
factor. For both the approaches of Refs.@4# and @5# we use
the same LF wave function, which as well known@1# can be
factorized into the product of a center-of-mass part and
intrinsic part. In terms of the intrinsic LF variables, defin
as

j5p1
1/P1512p2

1/P1,

kW'5pW 1'2jPW'52pW 2'1~12j!PW' , ~3!

one gets@9,10#

uP&LF5R(PS)~j,kW'!wPS~k!AA~j,kW'!

4p
uPW' ,P1&, ~4!

whereuPW' ,P1& describes the LF center-of-mass state@nor-
malized according to ^PW'8 ,P81uPW' ,P1&52P1d(PW'8

2PW')d(P812P1)], A(j,kW')[M0@12(m1
22m2

2)2/M0
4#/4j(1

2j) is a normalization factor for the intrinsic LF wave fun
tion, wPS(k) is the radial wave function@normalized as
*0

`dk k2wPS
2 (k)51] with k[Ak'

2 1kz
2, kz5M0(j21/2)

1(m2
22m1

2)/2M0, andM0 is the free mass given explicitly
by

M0
25

m1
21k'

2

j
1

m2
21k'

2

12j
. ~5!
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Finally, the quantityR(PS) appearing in Eq.~4! is the product
of ~generalized! Melosh rotation spin matrices@11#, viz.,

@R(PS)~j,kW'!#l1l2

5 (
l18l28

^l1uRM
† ~j,kW' ,m1!ul18&^

1
2 l18

1
2 l28u00&

3^l2uRM
† ~12j,2kW' ,m2!ul28&, ~6!

with

RM~j,kW' ,m1!5
m11jM02 isW •~ ẑ3kW'!

A~m11jM0!21k'
2

. ~7!

In terms of the LF spinorsū(p1 ,l1) and v(p2 ,l2) the
Melosh factorR(PS) can be conveniently written as„cf. Refs.
@9#~b! and @4#…

@R(PS)~j,kW'!#l1l2

5
1

A2

1

AM0
22~m12m2!2

ū~p1 ,l1!g5v~p2 ,l2!.

~8!

As for wPS(k), in what follows we will consider a specific
choice, namely the eigenfunctions of the quark poten
model of Ref.@12#, because the latter nicely reproduces t
mass spectra of both light and heavy mesons, which ar
interest in this work.1 The constituent quark masses us
throughout this paper are taken from Ref.@12#, namely,mu
5md50.220 GeV, ms50.419 GeV, mc51.628 GeV, and
mb54.977 GeV. The masses of the corresponding char
PS and vector mesons are taken from Ref.@13#, namely:
Mp(M r)50.1396~0.767! GeV, MK (MK* )50.4937~0.892!
GeV, MD(MD* )51.869~2.010! GeV, and MB(MB* )
55.279~5.325! GeV.

Let us now briefly describe the basic features of the
proaches of Refs.@4# and @5#. In the former approach the
working frame is a Breit frame whereq150 and the em
current operator is given by the one-body approximation~1!.
However, the matrix elements of the one-body current do
have the decomposition given by Eq.~2!. This is related to
the fact that the LF wave function~4! is specified on the null
hyperplane, whose orientation can be identified by its norm
four-vectorv. The standard choice ofv is along theminus
axis. Note thatv is a null four-vector (v•v50) andv•q
5q1.

As firstly pointed out in Ref.@14# and subsequently de
rived from an analysis of the Feynmann triangle diagram
Ref. @4#,2 the matrix elements of an approximate current
depend upon the four-vectorv, while only the amplitudes of

1Actually different choices forwPS(k) are clearly possible, but the
qualitative results presented in this paper will not change.

2The appearance of the four-vectorv in the Feynmann triangle
diagram can be understood as due to the need of expressin
off-mass-shell constituent momenta, which naturally appears in
Feynmann diagram, in terms of the on-mass-shell constituent
menta, which characterize the LF formalism~see Ref.@4#!.
1-2
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the full current are completely independent ofv @see Eq.
~2!#. Then the general structure of the matrix elements of
one-body current~1! for an elastic process involving a P
meson is given by@14,4#

LF^P8uJ(1)
m uP&LF5FPS

(1)~Q2!~P1P8!m1BPS
(1)~Q2!

vm

v•P
,

~9!

whereBPS
(1)(Q2) represents a spurious form factor. Since t

standard choice ofv is along theminusaxis, the physical
form factorFPS

(1)(Q2) can be obtained using thepluscompo-
nent of the one-body current~1!. Adopting the usual Breit
frame where q15q250, one has P815P1

5AMPS
2 1Q2/4 and PW'8 52PW'5qW'/2 with Q25q'

2 . As-
suming for sake of simplicity pointlike constituents, the ela
tic form factorFPS

(1)(Q2) can be cast in the following form:

FPS
(1)~Q2!5e1H1~Q2!1ē2H2~Q2!, ~10!

where@4,9,10#

H1~Q2!5E
0

1

djE dkW'
AA~j,kW'!A~j,kW'8 !

wPS~k!wPS~k8!

4p

3
m2~j!1kW'•kW'8

Am2~j!1k'
2Am2~j!1k8'

2
~11!

with m(j)[m1 (12j)1m2 j andkW'8 5kW'1(12j)qW' . The
explicit expression for the form factorH2(Q2), correspond-
ing to the coupling of the virtual photon with the antiqua
q̄2, can be easily obtained from Eq.~11! by using simply
kW'8 5kW'2jqW' . Note that the form factor~10! is a function of
Q2 and of the constituent massesm1 andm2.

In case of the approach of Ref.@5# the working frame is a
special Breit frame where the four-momentum transferq is
along the spin-quantization axis, i.e., thez axis. Therefore
one hasv•q5q1Þ0, more precisely:q152q25Q, qW'

50, P15AMPS
2 1Q2/42Q/2, P815AMPS

2 1Q2/41Q/2,

and PW'5PW'8 50. In such a special frame and in case
elastic processes a choicej m for the em current operato
compatible with~extended! Poincare´ covariance and hermi
ticity is given by @5#

j m5
1

2
$Cm1Lmn@r x~2p!#eipSxCn* e2 ipSx%, ~12!

wherer x(2p) represents a (2p) rotation around thex axis,
Sx is thex component of the LF spin operator, andL( l ) is the
element of the Lorentz group corresponding tol«SL(2,C). In
Eq. ~12! the operatorCm should fulfill the ~extended! Poin-
carécovariance and the specific choice made in Ref.@5# is as
follows:

C15J(1)
1 ,

CW '5JW (1)' ,

C25J(1)
1 , ~13!
03520
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where the last equation ensures the gauge invariance o
current operator j m. The covariant decomposition o
LF^P8u j muP&LF is therefore given by

LF^P8u j muP&LF5FPS
(1)~P1P8!m, ~14!

where no spurious structure is present thanks to the ga
invariance ofj m and to the fact thatv•q5q1Þ0. Then, the
elastic form factorFPS

(1) can be calculated using thepluscom-
ponentj 1, whose matrix elementLF^P8u j 1uP&LF reduces to
the corresponding one of theplus component of the one
body currentJ(1)

1 evaluated atq152q25Q ~see Ref.@5#!.
Therefore, one gets

FPS
(1)5e1H1~Q2/MPS

2 !1ē2H2~Q2/MPS
2 !, ~15!

with

H1~Q2/MPS
2 !

5
12k

12k/2E0

1

djE dkW'
AA~j,kW'!A~j8,kW'!

3
wPS~k! wPS~k8!

4p

m~j!m~j8!1k'
2

Am2~j!1k'
2Am2~j8!1k'

2
,

~16!

wherej85k1(12k)j and

k[
q1

P81
5

Q/MPS

A11Q2/4MPS
2 1Q/2MPS

5A Q4

4MPS
4

1
Q2

MPS
2

2
Q2

2MPS
2

. ~17!

The explicit expression for the form factorH2(Q2/MPS
2 ) can

be easily obtained from Eq.~16! by using simplyj85(1
2k)j. Note that the factor (12k)/(12k/2) in the right-
hand side~r.h.s.! of Eq. ~16! is nothing else than the facto
2P1/(P11P81), where the numerator comes from the no
malization of the LF center-of-mass states. Moreover, o
has 0<k<1.

In Eq. ~15! we have explicitly taken into account tha
within the approach of Ref.@5# the elastic form factorFPS

(1) is
not a function ofQ2, but of the ratioQ2/MPS

2 ~and of the
constituent massesm1 andm2). This is an important feature
which naturally emerges when a ‘‘longitudinal’’ frame wit
q1Þ0 andqW'50W is chosen. As a matter of fact, since on
the LF fractionj changes in the final state, the form fact
FPS

(1) cannot be a function ofq1 only, but of q1/P1 ~or
equivalentlyq1/P815k). Thus, the dependence of the ela
tic form factors upon the ratio between the momentum tra
fer and the mass of the system is expected to characteriz
predictions of the LF approach of Ref.@5# for a generic
hadron3 and this fact has important consequences. The m
direct one is that the charge radius of a hadron is expecte

3This means that the LF approach atq1Þ0 provides naturally
implicit many-body contributions associated with the hadron ma
1-3
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be approximately proportional to the inverse of its ma
Such a behavior is completely at variance with the pheno
enology of light hadrons. Indeed, for instance, the exp
mental charge radii of the pion, the kaon, and the nucleon
approximately the same„r ch

p 50.66060.024 fm @15~a!#, r ch
K

50.5860.04 fm @15~b!# andr ch
p 50.88360.014 fm@15~c!#…,

while the kaon~nucleon! mass is larger than the pion ma
by a factor of.3.5 (6.7).

From the above considerations it is quite clear that
approach of Ref.@5# is likely to be not efficient for the de
scription of the phenomenology of light hadrons; in oth
words, substantial effects of additional many-body curre
should be explicitly considered in order to achieve cons
tency with experiment. An explicit demonstration is provid
by the pion case. The results obtained using Eqs.~15! and
~16!, are reported in Fig. 1 and compared with the cor
sponding results of the approach of Ref.@4# based on Eqs
~10! and~11!. The form factor evaluated atq1Þ0 exhibits a
very rapid falloff with increasingQ2, corresponding to a
charge radius of.5 fm. On the contrary, the form facto
obtained atq150 is much higher and corresponds to
charge radius of.0.46 fm. Similar results hold as well in
case of the kaon, whose charge radius turns out to be.2 fm
at q1Þ0 and.0.43 fm atq150. All the calculations have
been done assuming pointlike constituents and therefore
within the approach atq150 it is possible to recover the
agreement with the experimental charge radius of the p
~and the kaon! by introducing a constituent size o
.0.45 fm, as already proposed in Ref.@10#. The same con-
stituent size is suggested also by the recent analysis o
elastic nucleon form factors carried out within the covaria
LF approach atq150 in Ref. @16#.

The question to be addressed now is clearly the origin
the large differences in the pion form factor evaluated
q150 andq1Þ0. The answer is already well known from
the works of Ref.@6# and more recently from the results o
Refs.@4,17#. There it has been shown that the one-body
form factor atq150 @Eqs. ~10! and ~11!# matches exactly

FIG. 1. Elastic form factor of the pion,Fp(Q2), versusQ2.
Solid line: LF approach of Ref.@4# at q150, corresponding to Eqs
~10! and ~11!. Dashed line: LF approach of Ref.@5# at q1Þ0,
corresponding to Eqs.~15! and ~16!. Pointlike constituent quarks
are assumed in the calculations. The radial wave functionwPS(k) is
taken to be the eigenfunction of the quark potential model of R
@12#.
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the form factor embedded in the Feynmann triangle diagr
evaluated using the one-body current~1! and adopting the
appropriate bound-state vertex corresponding to the LF w
function~4! @see Eq.~11! of Ref. @4##. The matching is due to
the vanishing of the contribution of theZ graph atq150.
Thus, one hasFPS

(1)5FPS
(triangle). Due to the covariance prop

erty of the triangle diagram, the same form factor can
obtained in a frame whereq1Þ0. However, in such a frame
the anatomy of the form factor is different in the sense tha
is given by the sum of two nonvanishing contributions, t
spectator and the Z-graph terms: FPS

(triangle)5FPS
(sp.)

1FPS
(Z graph). The spectator term~see Ref.@17#!, evaluated in

the Breit frame whereq152q25Q, turns out to coincide
with Eqs. ~15! and ~16!, i.e., with the form factor predicted
by the approach of Ref.@5#: FPS

(1)5FPS
(sp.). Thus, finally one

has

FPS
(1)5FPS

(1)1FPS
(Z graph), ~18!

where FPS
(Z graph) is the contribution of theZ graph in the

triangle diagram evaluated in the Breit frame whereq1

52q25Q. Thus, the origin of the differences in the pio
form factor evaluated within the LF approaches of Refs.@4#
and @5# is the Z-graph contribution atq1Þ0, which is ig-
nored in Ref.@5#. From Fig. 1 it is clear that theZ graph
dominates the pion form factor atq1Þ0, while the contri-
bution of the spectator term is almost negligible~except at
the photon point!. Therefore, since theZ graph is a many-
body process, we can conclude that the approach of Ref.@5#,
based on the specific choice~13! and on the Breit frame
whereq152q25Q, appearsto maximize the impact of th
many-body currents needed for consistency with experim,
particularly in case of light hadrons.

Since theZ graph is expected to vanish in the heavy-qua
limit, it is worthwhile to study the behavior of the two LF
approaches in that limit. We expect that for fixed values
the dot productw of the initial and final meson four-
velocities, given by

w5P•P8/MPS
2 511Q2/2MPS

2 , ~19!

one should have

lim
m1→`

H1~Q2!5 lim
m1→`

H1~Q2/MPS
2 !5j IW~w!, ~20!

where j IW(w) is the Isgur-Wise~IW! form factor @7,8#,
which has been already calculated within the LF approac
q150 in Ref. @18#. We have therefore calculated the for
factorsH1(Q2) @Eq. ~11!# and H1(Q2/MPS

2 ) @Eq. ~16!# for
various values of the constituent massm1 pertaining to the
cases ofp, K, D, andB mesons, keeping fixed the constitu
ent massm2 at the valuem250.220 GeV. The results ar
reported in Fig. 2 in terms of the variablew and compared
with the IW functionj IW(w) calculated in Ref.@18#.

A few comments are in order:~i! Eq. ~20! is fulfilled, i.e.,
the two LF approaches predict the same asymptotic IW fu

f.
1-4
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FIG. 2. The PS form factors~a! H1 @Eq. ~11!# and ~b! H1 @Eq. ~16!# versus the variablew @Eq. ~19!#. Triple-dot-dashed, dotted
dot-dashed, and dashed lines correspond to the cases ofp, K, D, andB mesons, respectively. In~a! and ~b! the solid line is the same IW
function j IW(w) as calculated in Ref.@18#. In ~b! the dashed line almost coincides with the solid line. Pointlike constituent quarks
assumed in the calculations. The radial wave functionswPS(k) are taken to be the eigenfunctions of the quark potential model of Ref.@12#.
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tion. This confirms that the differences between the result
q150 andq1Þ0 are entirely due to theZ-graph contribu-
tion ignored atq1Þ0; ~ii ! the convergence of the calculate
form factors to the asymptotic IW function occurs from b
low at q1Þ0 and from above atq150 and it is much faster
in the former case:H1.j IW already at theB-meson mass
@see Fig. 2~b!#; ~iii ! the dependence of the calculated for
factor atq1Þ0 upon the constituent massm1 is quite mild at
q1Þ0, which implies that in terms of the variablew the
approach of Ref.@5# predicts quite similar form factors fo
light and heavy mesons. Such a prediction is not reasona
indeed, the dynamics of a heavy quark is characterized
the heavy quark symmetry~HQS! @7,8#, which makes a
heavy quark blind to the spin and flavor of light specta
quarks. The situation is opposite for light hadrons, wh
already the mass spectrum clearly exhibits a rich spin-
flavor-dependent structure. Thus, atq1Þ0 the form factors
of light hadrons are basically dominated theZ graph, while
the one-body spectator term@i.e., Eqs.~15! and ~16!# plays
only a marginal role. On the contrary, atq150 theZ graph
is suppressed and the main contribution to the form factor
given by the one-body spectator term@i.e., Eqs.~10! and
~11!#. Therefore, the approach of Ref.@5# should be im-
proved by making a choice of the operatorCm different from
Eq. ~13!. If this will be done in such a way to include th
effects of theZ graph, we expect that the present one-bo
predictions atq150 will be recovered as the sum of on
body and additional many-body contributions atq1Þ0.

If we scale the result obtained forr ch
p at q1Þ0 ~i.e., r ch

p

;5 fm) according to the 1/M dependence, whereM is the
mass of the system, one may obtain a charge radius
;0.7 fm for M;1 GeV, i.e., around the nucleon mass.
other words, it might happen that the approach of Ref.@5#
could reproduce the proton charge radius even assum
pointlike ~or almost pointlike! constituents. Moreover, thank
to the approximate dipole behavior of the proton form fact
at least forQ2&M2.1 GeV2, a good agreement with th
experimental data at lowQ2 might be achieved atq1Þ0
03520
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without the need of introducing a finite size for the consti
ent quarks. However, it should be clear that such an ag
ment is not physically meaningful unless one demonstra
that theZ graph gives a negligible contribution. This is likel
not to be the case as shown in Fig. 3, where the quantityRZ ,
defined as

RZ5
H12H1

H1
, ~21!

is reported as a function of the variablew for the various
pseudoscalar mesons so far considered. The quantityRZ is a
measure of the relative importance of theZ graph with re-
spect to the calculated form factor atq1Þ0. SinceMK is
almost half of the nucleon mass andMD approximately twice
the nucleon mass, we expect that, as a conservative estim
the Z-graph contribution for a system with a mass arou
1 GeV should be between the dotted and dashed lines sh
in Fig. 3, and therefore not negligible.

The above criticisms can be directly extended to the
cent results obtained in Ref.@19# for the nucleon elastic form

FIG. 3. The ratioRZ @Eq. ~21!# obtained using the results show
in Fig. 2, versus the variablew @Eq. ~19!#. The meaning of the lines
is the same as in Fig. 2. The vertical long-dashed line atw51.5
corresponds toQ25M2, whereM is the mass of the system.
1-5
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SILVANO SIMULA PHYSICAL REVIEW C 66, 035201 ~2002!
factors within the so-called point form spectator approxim
tion ~PFSA!. Such an approach was firstly proposed and
lustrated in Ref.@20#; here it suffices to say that it is based o
the one-body approximation~1! for the em current operator
but carried out within a form of the dynamics different fro
the LF one, namely, the point form. However, as in the c
of the LF approach atq1Þ0, within the PFSA the elastic
form factors of a hadron are not function ofQ2, but of
Q2/M2, whereM is the mass of the hadron~cf. Ref. @20#!.
Moreover, within the PFSA theZ graph is totally ignored
~i.e., no match with the Feynmann triangle diagram!. There-
fore, the agreement with the elastic nucleon data obtaine
Ref. @19#, assuming pointlike constituent quarks, is likely
be physically meaningless in the same way and with
same arguments already explained in case of the LF
proach atq1Þ0. A more detailed analysis of the PFSA is
progress.

Before closing this section, we want to stress again
main result so far achieved, namely, among various Ham
tonian formalisms~point as well as light-front forms! based
on the one-body em current~1!, the predictions of the LF
approach atq150 should be preferred, particularly in cas
of light hadrons. This is due to the fact that whenq1Þ0 the
relevance of many-body currents appears to be amplified
the occurrence of theZ-graph term, which turns out to b
essential also to compensate the unwantedQ2/M2 depen-
dence of the one-body form factors calculated in ‘‘longitu
nal’’ frames. Finally, we point out that the choiceq150 is
possible only for spacelikeq (q2<0). Indeed, for timelike
q(q2.0) one has alwaysq1Þ0. In this case one needs t
perform an analytic continuation from spacelike to timeli
q. This cannot be easily done in the standard LF formali
because the contribution of theZ graph cannot be eliminate
whenq2.0 ~see Refs.@17,21#!. However, a proper analytic
continuation can be achieved for the Feynmann triangle
gram by means of the so-called dispersion approach, w
is described in Ref.@22# and has been extensively applied
timelike processes, like heavy meson weak decays, in
@23#. We stress that for spacelikeq the dispersion approac
result matches the LF one atq150 ~see Ref.@22#!.

III. VECTOR MESONS

The elastic em response of a vector system is describe
three physical form factorsFi(Q

2) ( i 51, 2, 3), which ap-
pear in the following covariant decomposition of the mat
elements of the em current operatorJm:

Jm~s8,s!52~P1P8!mH F1~Q2!e* ~P8,s8!•e~P,s!

1
F2~Q2!

2MV
2 @e* ~P8,s8!•q#@e~P,s!•q#J

1F3~Q2!$@em~P8,s8!#* @e~P,s!•q#

2em~P,s!@e* ~P8,s8!•q#%, ~22!
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wheree(P,s) is the LF polarization four-vector of the spin-
system~with massMV) corresponding to spin projections
and total four-momentumP.

In the standard LF approach atq150 ~see Ref.@2#! only
the matrix elements of theplus component of the one-bod
approximation~1!, which will be denoted byJ(1)

1 (s8,s), are
taken into account. After considering general properties
the current operator~such as the time reversal symmetry! the
number of independent matrix elementsJ(1)

1 (s8,s) turns out
to be four, while the physical form factors are three. A furth
condition arises from the rotational invariance of the cha
density, which, however, involves transformations bas
upon Poincare´ generators depending on the interaction. Su
an additional constraint, known as the angular condit
@24#, reads as

~112h!J(1)
1 ~1,1!1J(1)

1 ~1,21!2A8hJ(1)
1 ~1,0!2J(1)

1 ~0,0!

50, ~23!

whereh[Q2/4MV
2 . The angular condition~23! is not satis-

fied by the matrix elementsJ(1)
1 (s8,s) and therefore the ex

traction of the one-body form factorsFi
(1)(Q2) is not unique.

In Ref. @4# the problem of the violation of the angula
condition ~23! is solved by considering the matrix elemen
of the tensorT(1)

m,ab , which are related to those of the on
body current by

J(1)
m ~s8,s!5ea* ~P8,s8! T(1)

m,ab eb~P,s!. ~24!

In terms of spin-1 LF wave function one has

T(1)
m,ab5 LF^P8,auJ(1)

m uP,b&LF , ~25!

where for anS-wave vector system

uP,b&LF5R(V)~j,kW' ;b! wV~k! AA~j,kW'!

4p
uPW' ,P1&,

~26!

with

@R(V)~j,kW' ;b!#l1l2
5

1

A2

1

AM0
22~m12m2!2

ū~p1 ,l1!

3Fgb2
~p12p2!b

M01m11m2
Gv~p2 ,l2!.

~27!

Following Refs.@4# and@3,14# the general decomposition o
the tensorT(1)

m,ab reads as

T(1)
m,ab5I (1)

m,ab1B(1)
m,ab~v!, ~28!

where the tensorI (1)
m,ab is independent of the four-vectorv,

while B(1)
m,ab(v) contains all the possible covariant structur

depending onv. One gets@3,4#
1-6
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I (1)
m,ab52~P1P8!mH F1

(1)~Q2!Fgab2
PaPb

MV
2

2
P8aP8b

MV
2

1
P8aPb

MV
2

P•P8

MV
2 G1

F2
(1)~Q2!

2MV
2 S qa2

P8•q

MV
2

P8aD S qb2
P•q

MV
2 PbD J

1F3
(1)~Q2!H S gma2

P8mP8a

MV
2 D S qb2

P•q

MV
2 PbD 2S gmb2

PmPb

MV
2 D S qa2

P8•q

MV
2

P8aD J
2~P1P8!mH H1

(1)~Q2!
P8aPb

MV
2

1
H2

(1)~Q2!

2MV
2 ~qaPb2qbP8a!J 1H3

(1)~Q2!~gmaPb1gmbP8a!

1H4
(1)~Q2!qm

qaPb1qbP8a

MV
2

~29!

and

B(1)
m,ab~v!5

MV
2

2~v•P!
vmFB1

(1)~Q2!gab1B2
(1)~Q2!

qaqb

MV
2

1MV
2B3

(1)~Q2!
vavb

~v•P!2
1B4

(1)~Q2!
qavb2qbva

2~v•P! G
1~P1P8!mFMV

2B5
(1)~Q2!

vavb

~v•P!2
1B6

(1)~Q2!
qavb2qbva

2~v•P! G1
MV

2

~v•P!
B7

(1)~Q2!

3F S gma2
qmqa

q2 D vb1S gmb2
qmqb

q2 D vaG1B8
(1)~Q2!qm

qavb1qbva

2~v•P!
, ~30!

where all the covariant structures included in Eqs.~29! and ~30! satisfy both parity and time reversal symmetries.
In Eq. ~29! there are seven form factors, namely, the three form factorsFi

(1)(Q2) ( i 51, 2, 3) and the four form factors
H j

(1)(Q2) ( j 51,...,4). Theform factors Fi
(1)(Q2) appear in covariant structures that are transverse to all the ext

momentaP, P8, andq, while the form factorsH j
(1)(Q2) describe the loss of transversity~including the possible loss of gaug

invariance! of the tensor~29!. Therefore, sincee(P,s)•P5e(P8,s8)•P850, the form factorsH j
(1)(Q2) do not appear in the

decomposition of the matrix elementsJ(1)
m (s8,s).

In Eq. ~30! all the Bk
(1)(Q2) (k51, 2,...,8) arespurious form factors, which can contribute to the matrix eleme

J(1)
m (s,s8), namely:

J(1)
m ~s8,s!52~P1P8!mH F1

(1)~Q2!e* ~P8,s8!•e~P,s!1
F2

(1)~Q2!

2MV
2 @e* ~P8,s8!•q#@e~P,s!•q#J 1F3

(1)~Q2!

3$@em~P8,s8!#* @e~P,s!•q#2em~P,s!@e* ~P8,s8!•q#%1ea* ~P8,s8! B(1)
m,abeb~P,s!. ~31!
e
r
n

or

s:

F3
(1)~Q2!5

Q
2A

h Q
.

For the angular condition one has@3#

~112h!J(1)
1 ~1,1!1J(1)

1 ~1,21!2A8hJ(1)
1 ~1,0!2J(1)

1 ~0,0!

52B5
(1)~Q2!2B7

(1)~Q2!Þ0, ~32!

which implies that atq150 the loss of rotational covarianc
of the one-body current~1!, i.e., the violation of the angula
condition ~23!, is described by the spurious structures co
tainingB5

(1)(Q2) andB7
(1)(Q2) in Eq. ~30!. Finally, note that

the loss of gauge invariance of the one-body current~1! at
v•q5q150 is described by the spurious form fact
B8

(1)(Q2) appearing in Eq.~30!.
As explained in Ref.@4#, in the Breit frame whereq1

50 the physical one-body form factorsFi
(1)(Q2) ( i

51, 2, 3) can be obtained through the following equation
03520
-

F1
(1)~Q2!5

T(1)
1,yy

2P1
,

F2
(1)~Q2!5

1

2h

T(1)
1,yy2T(1)

1,xx

2P1
1

1

2~11h!

T(1)
1,11

2P1

2
1

Ah~11h!

T(1)
1,x1

2P1
, ~33!

T(1)
y,xy 11h T(1)

y,1y
1-7



-

f

s.

g
-

,

,
r

SILVANO SIMULA PHYSICAL REVIEW C 66, 035201 ~2002!
FIG. 4. Charge form factor
G0(Q2) for ~a! low and ~b! high
values ofQ2. The solid line is the
result obtained within the LF ap
proach atq150 @Eq. ~33!#, while
the dashed line is the prediction o
the LF approach atq1Þ0 @Eq.
~36!#. Pointlike constituent quarks
are assumed in the calculation
The radial wave functionwr(k) is
taken to be the correspondin
eigenfunction of the quark poten
tial model of Ref.@12#.

FIG. 5. The same as in Fig. 4
but for the magnetic form factor
G1(Q2).

FIG. 6. The same as in Fig. 4
but for the quadrupole form facto
2G2(Q2).
035201-8
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At variance with the PS case the components of the ten
~28! with m5y are essential for the extraction of the physic
form factors, more precisely for the determination
F3

(1)(Q2). Note also that the form factorsF1
(1)(Q2) and

F2
(1)(Q2) are determined only by the components w

m51.
We stress that by means of Eq.~33! the extraction of the

physical form factorsFi
(1)(Q2) is not plagued at all by spu

rious effects, including those related to the loss of rotatio
covariance and gauge invariance. The angular condi
problem ~32! is therefore completely overcome without in
troducing explicitly any covariant current operator.

As far as the approach of Ref.@5# is concerned, the matrix
elementsj m(s8,s) of the covariant current~12! can be ex-
pressed in terms of the LF wave function~26! and ~27! as
j m(s8,s)5^P8,s8u j muP,s& with uP,s&5eb(P,s)uP,b&LF . In
Ref. @5# it is assumedthat the matrix elementsj m(s8,s) have
the following decomposition:

j m~s8,s!52~P1P8!mH F 1
(1)e* ~P8,s8!•e~P,s!

1
F 2

(1)

2MV
2 @e* ~P8,s8!•q#@e~P,s!•q#J

1F 3
(1)$@em~P8,s8!#* @e~P,s!•q#2em~P,s!

3@e* ~P8,s8!•q#%, ~34!

and it is shown that there are only three independent ma
elementsj m(s8,s), namely, j 00

1 , j 11
1 , and j 10

x .4 Thanks to
the choice~13!, the latter are very simply related to the m
trix elements of the one-body current~1! evaluated atq1

Þ0, which will be denoted byJ (1)
m (s8,s) to distinguish

them from the matrix elementsJ(1)
m (s8,s) evaluated atq1

50. Ignoring for the moment the possible presence of s
rious structures, in the Breit frame whereq152q25Q,
one has

j 00
1 5J(1)

1 ~00!52MVA11h$~112h!F 1
(1)

22h~11h!F 2
(1)22hF 3

(1)%,

j 11
1 5J (1)

1 ~11!52MVA11hF 1
(1) ,

j 10
x 5

1

2
@J (1)

x ~10!2J (1)
x ~01!#52MVA11hAh/2F 3

(1) .

~35!

Thus, the form factorsF i
(1) ( i 51, 2, 3) may be uniquely

determined through the following relations:

F 1
(1)~Q2/MV

2 !5
1

2MVA11h
J(1)

1 ~11!,

4Note that the matrix elementj 10
y is not independent fromj 10

x

because one hasj 10
y 5 i j 10

x @5#.
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F 2
(1)~Q2/MV

2 !5
1

4MVh~11h!
$J (1)

1 ~00!2~1

12h!J (1)
1 ~11!1A2h@J(1)

x ~10!

2J(1)
x ~01!#%,

F 3
(1)~Q2/MV

2 !5
1

2MVA11hA2h
@J (1)

x ~10!2J (1)
x ~01!#,

~36!

where we have explicitly taken into account that the fo
factorsF i

(1) are not functions ofQ2, but of the ratioQ2/MV
2 ,

due also to the fact that the matrix elementsJ(1)
m (s8,s) are

proportional to 2P1 because of the normalization of the L
center-of-mass states. Note that the form factorF 3

(1) is de-
termined through thex component of the one-body curren
while F 1

(1) depends on theplus component only.
The predictions of the LF approaches atq150 @Eq. ~33!#

and atq1Þ0 @Eq. ~36!#, obtained in case of ther meson
adopting forwr(k) the corresponding eigenfunction of th
quark potential model of Ref.@12#, are compared in Figs
4–6 in terms of the conventional chargeG0(Q2), magnetic
G1(Q2), and quadrupoleG2(Q2) form factors, defined as

G0~Q2!5F1~Q2!1
2h

3
@F1~Q2!2F3~Q2!

2~11h!F2~Q2!#,

G1~Q2!5F3~Q2!,

G2~Q2!5
A8h

3
@F1~Q2!2F3~Q2!2~11h!F2~Q2!#.

~37!
It can be seen that~i! the charge radius,r ch

[A26dG0(Q2)/dQ2uQ250, turns out to ber ch51.1 fm at
q1Þ0 andr ch50.57 fm atq150;5 ~ii ! the charge form fac-
tor calculated at q150 exhibits a node at Q2

.3.4 (GeV/c)2 at variance with the result obtained atq1

Þ0; ~iii ! the magnetic moment,mr[G1(Q250), is remark-
ably larger atq1Þ0 (mr511.6) than the corresponding on
at q150 (mr52.35), which is quite close to the nonrelativ
istic limit mr52 ~cf. Ref. @4#!; moreover, the magnetic form
factor G1(Q2) calculated atq1Þ0 has a sharp upturn nea
the photon point completely at variance with the result o
tained atq150; ~iv! the quadrupole form factorG2(Q2) is
predicted to be quite small atq1Þ0 both at low and high
values ofQ2. All these findings are a direct manifestation
the lack of theZ graph in the LF approach atq1Þ0. Thus,
for the r meson theZ graph plays an important role both a
low and high values ofQ2. We want to point out that the
node obtained in the charge form factorG0(Q2) at q150
may be~at least partially! related to the nature of the spin

5Taking into account a constituent size of.0.45 fm as in the pion
and kaon cases, the LF approach atq150 predicts a charge radiu
of the r meson equal to.0.75 fm.
1-9
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SILVANO SIMULA PHYSICAL REVIEW C 66, 035201 ~2002!
FIG. 7. Charge form factorG0(w) versus the variablew, calculated within the LF approach~a! of Ref. @4# at q150, corresponding to
Eq. ~33!, and the one of~b! Ref. @5# at q1Þ0, corresponding to Eq.~36!. Triple-dot-dashed, dotted, dot-dashed, and dashed lines corres
to the cases ofr, K* , D* , andB* mesons, respectively. In~a! and~b! the solid line is the same IW functionj IW(w) as calculated in Ref.
@18#. In ~a! the dot-dashed and dashed lines almost coincide. Pointlike constituent quarks are assumed in the calculations. The ra
functionswV(k) are taken to be the eigenfunctions of the quark potential model of Ref.@12#.

FIG. 8. The same as in Fig. 7
but for the magnetic form factor
G1(w).

FIG. 9. The same as in Fig. 7
but for the quadrupole form facto
G2(w).
035201-10
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spin term of the quark potential model of Ref.@12#, which is
repulsive in the triplet spin state at short interquark distanc

Let us now consider the heavy quark limit in which on
one quark is coupled to the virtual photon and its mass g
to infinity, i.e., m1→`. Due to the HQS we expect that fo
fixed values of the variablew[P•P8/MV

2511Q2/2MV
2 one

should have

limm1→` G0~Q2!5j IW~w!,

limm1→` G1~Q2!5j IW~w!,

limm1→` G2~Q2!50, ~38!

wherej IW(w) is the same IW function encountered in the P
case. We have calculated the form factorsGi ( i 51, 2, 3) for
various values of the constituent massm1 pertaining to the
cases ofr, K* , D* , andB* mesons, keeping fixed the con
stituent massm2 at the valuem250.220 GeV. The results
are reported in Figs. 7–9 in terms of the variablew and
compared with the IW functionj IW(w) calculated in Ref.
@18#.
03520
s.

es

It can clearly be seen that Eq.~38! is fulfilled, confirming
in this way that also in the case of vector mesons the dif
ences between the results atq150 andq1Þ0 are due to the
lack of theZ-graph contribution atq1Þ0. We want to stress
that the universality of the calculated IW function, implie
by the fulfillment of Eqs.~20! and~38!, is in good agreemen
with the predictions of the HQS, which is an exact symme
of QCD in the heavy-quark limit. Finally, from Figs. 8 and
a few comments are in order:~i! the difference in the calcu
lated magnetic moment is still remarkably sizable at theD*
mass~i.e., aroundMV.2 GeV), and~ii ! the lack of theZ
graph atq1Þ0 makes the quadrupole form factorG2 very
small even at quite large values of the~active! quark mass.

Let us now consider the question whether the decomp
tion ~34! is complete without introducing spurious structur
analogous to those appearing atq150 in Eqs.~30! and~31!.
It is clear that the dependence of em amplitudes upon
four-vector v, which identifies the orientation of the nu
hyperplane where the LF wave function is defined, can oc
independently of the value ofq1. Therefore, atq1Þ0 one
expects that the following general decomposition holds
the matrix elementsJ(1)(s8,s) of the one-body current:
ause

ain-
J(1)~s8,s!52~P1P8!mH F 1
(1)e* ~P8,s8!•e~P,s!1

F 2
(1)

2MV
2 @e* ~P8,s8!•q#@e~P,s!•q#J

1F 3
(1)$@em~P8,s8!#* @e~P,s!•q#2em~P,s!@e* ~P8,s8!•q#%1ea* ~P8,s8!B(1)

m,abeb~P,s!, ~39!

with

B(1)
m,ab~v!5

MV
2

2~v• P̃!
vmFB 1

(1) gab1B 2
(1) qaqb

MV
2

1MV
2B 3

(1) vavb

~v• P̃!2
1B 4

(1) qavb2qbva

2~v• P̃
D 1~P1P8!mFMV

2B 5
(1) vavb

~v• P̃!2

1B 6
(1) qavb2qbva

2~v• P̃!
G1

MV
2

~v• P̃!
B 7

(1)F S gma2
qmqa

q2 D vb1S gmb2
qmqb

q2 D vaG1B 8
(1)qm

qavb1qbva

2~v• P̃!
, ~40!

whereP̃[(P1P8)/2. With respect to Eq.~30! we have introduced a different notation for the spurious form factors, bec
the latter may depend in general onv•q, i.e., they can be different atq150 andq1Þ0. Note that atq1Þ0 the loss of gauge
invariance of the one-body current is described not only by the spurious structure containingB 8

(1) ~as in the caseq150), but
also by the ones proportional toB k

(1) with k51,...,4.
By means of the four-vectorv the choice~13! for the operatorCm can be conveniently cast into the following form:Cm

5J(1)
m 2vm(q•J(1))/(v•q). Therefore, using Eqs.~39! and~40! one immediately obtains that the spurious structures cont

ing the form factorsB k
(1) with k51, . . . ,4 cannot appear in the decomposition of the matrix elementsCm(s8,s) of the

gauge-invariant operatorCm. Consequently, also for the matrix elementsj m(s8,s) we generally expect that

j m~s8,s!52~P1P8!mH F 1
(1)e* ~P8,s8!•e~P,s!1

F 2
(1)

2MV
2 @e* ~P8,s8!•q#@e~P,s!•q#J

1F 3
(1)$@em~P8,s8!#* @e~P,s!•q#2em~P,s!@e* ~P8,s8!•q#%1ea* ~P8,s8!B̄(1)

m,abeb~P,s!, ~41!

with
1-11
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B̄(1)
m,ab~v!5~P1P8!mFMV

2B 5
(1) vavb

~v• P̃!2
1B 6

(1) qavb2qbva

2~v• P̃!
G1

MV
2

~v• P̃!
B 7

(1)F S gma2
qmqa

q2 D vb1S gmb2
qmqb

q2 D vaG
1B 8

(1)Fqm2vm
q2

~v•q!Gq
avb1qbva

2~v• P̃!
. ~42!
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In order to prove that the decomposition~34! is not com-
plete, it is enough to demonstrate that at least one of the
spurious form factorsB528

(1) is nonvanishing. To this end le
us first consider that the possible presence of spurious s
tures corresponds to replace Eq.~35! with

j 00
1 5J(1)

1 ~00!52MVA11h

3H ~112h!F 1
(1)22h~11h!F 2

(1)22hF 3
(1)

1
B 5

(1)

11h
12hB 6

(1)2
h

11h
B 7

(1)22hB 8
(1)J ,

j 11
1 5J (1)

1 ~11!52MVA11hF 1
(1) ,

j 10
x 5

1

2
@J (1)

x ~10!2J (1)
x ~01!#

52MVA11hAh/2HF 3
(1)1

1

2~11h!
B 7

(1)J . ~43!

Therefore, the extraction of the form factorsF 2
(1) andF 3

(1)

may be plagued by spurious effects, while onlyF 1
(1) is free

from spurious effects. We want to point out that the relat
j 10
y 5 i j 10

x is not modified by the possible presence of spu
ous structures in Eqs.~41! and~42!; in other words, the num-
ber of independent matrix elements of the current operatoj m

is still three even in presence of the spurious form fact
appearing in Eq.~42!.

In addition to Eq.~43! one has

1

2
@J (1)

x ~10!1J (1)
x ~01!#52

MV

A2
B 7

(1) , ~44!

which allows us to calculate the spurious form factorB 7
(1)

directly in terms of matrix elements of the one-body curre
The explicit calculation of the l.h.s. of Eq.~44!, carried out
for the case of ther meson, is reported in Fig. 10. It can b
seen thatB 7

(1) is just a small fraction ofF 3
(1) and therefore its

impact on the extraction ofF 3
(1) is quite limited. However,

what really matters is not the quantitative impact ofB 7
(1) ,

but the conceptual fact that it is nonvanishing, which de
onstrates that the covariant decomposition~34! is not com-
plete. Note that at the photon pointB 7

(1)50, so that the
anomalous resultmr511.6 obtained atq1Þ0 does not de-
pend on spurious effects. Furthermore, the other spur
form factorsB 5

(1) , B 6
(1) , andB 8

(1) entering Eq.~43!, cannot
be calculated in terms of matrix elements of the one-bo
current. Thus we can conclude that the approach of Ref.@5#
not only ignores the spurious terms arising from the orien
03520
ur

c-

n
-

s
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-

us

y

-

tion of the null hyperplane, but also it is not able to elimina
consistently such spurious effects in the extraction of
physical form factors.

IV. CONCLUSIONS

In this paper we have carried out a detailed comparison
the predictions of the light-front approaches of Refs.@4# and
@5# in case of the~spacelike! electromagnetic elastic form
factors of both light and heavy pseudoscalar and vector
sons adopting the general framework of the constituent qu
model. The two approaches are based on the one-body
proximation~1! for the electromagnetic current operator, b
they are elaborated in different Breit frames, namely atq1

50 @4# and q1Þ0 @5#. The following has been shown:~i!
The two light-front approaches are inequivalent because
the different contribution of theZ graph atq150 or q1

Þ0. While atq150 it is possible to cancel out exactly theZ
graph~see Ref.@4#!, the latter is active atq1Þ0, but ignored
in Ref. @5#, ~ii ! the Z graph provides an important contribu
tion in case of light hadrons, whereas it vanishes in
heavy-quark limit, where the two light-front approaches p
dict the same universal Isgur-Wise function.

We have also pointed out an important feature of the
proach of Ref.@5#, namely, the elastic form factors of a ha
ron are basically functions ofQ2/M2, whereM is the mass
of the hadron. We have shown that such a depende
~shared also by the point-form approach of Refs.@19,20#! is
not efficient for describing the phenomenology of light ha
rons. In other words, the light-front approach atq1Þ0 maxi-
mizes the impact of the many-body currents needed
achieve consistency with experiment.

FIG. 10. Ratio of the spurious form factorB 7
(1) , calculated from

Eq. ~44!, to the magnetic form factorF 3
(1) , obtained from Eq.~36!

in case of ther meson within the approach of Ref.@5# at q1Þ0
~dashed line!.
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Finally, in the case of vector mesons, the spurious effe
related to the orientation of the null hyperplane where the
wave function is defined have been analyzed in detail. W
such unwanted effects are properly eliminated in the
proach of Ref.@4#, they are ignored and cannot be eliminat
within the approach of Ref.@5#. Thus, we can conclude tha
as far as the one-body current~1! is concerned, the predic
03520
ts
F
le
-

tions of the light-front approach atq150 should be pre-
ferred, particularly in case of light hadrons.
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