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Monte Carlo integration in Glauber model analysis of reactions of halo nuclei
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Reaction and elastic differential cross sections are calculated for light nuclei in the framework of the Glauber
theory. The optical phase-shift function is evaluated by Monte Carlo integration. This enables us to use the
most accurate wave functions and calculate the phase-shift functions without approximation. Examples of
proton-nucleus~e.g.,p- 6He, p- 6Li) and nucleus-nucleus~e.g.,6He-12C) scatterings illustrate the effectiveness
of the method. This approach gives us a possibility of a more stringent analysis of the high-energy reactions of
halo nuclei.
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I. INTRODUCTION

The study of hundreds of new unstable nuclei has beco
possible in the new radioactive beam facilities. The meas
ment of the cross sections at high energies is an impor
experimental tool for studying these elements@1#. The ob-
served interaction cross sections can be related to the w
functions of these nuclei through Glauber theory@2#; thus
one can obtain information on the structure of these ex
isotopes. This direct relation between the structure and r
tion cross section is, however, hampered by several p
lems. The first and most serious one is that the calculatio
the cross section by using accurate nuclear wave function
difficult. Also the solution of the nuclear many-body proble
is notoriously complicated.

In Glauber theory the nucleus-nucleus elastic scatte
amplitude is obtained by integrating the optical phase-s
function over the impact parameter. The optical phase-s
function is the matrix element of the multiple-scattering o
erator between the product of wave functions of the tar
and projectile. The difficulty of the evaluation of this matr
element stems from the fact that the multiple-scattering
erator is anA-body (A is the total number of nucleons in
volved! operator, a product of pairwise nucleon-nucle
scattering operators. To avoid the calculation of the ma
element of anA-body operator several simplifying approx
mations have been introduced over the years. One pop
method is to replace the wave function of the target or b
the projectile and the target by densities. This is then furt
simplified by assuming that the density of the nucleus i
product of one-body densities. In that case the matrix e
ment of the multiple-scattering operator becomes a prod
of two-body matrix elements and is easy to calculate. A
other popular approach is to use an inert core and concen
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on the effect of the valence particles only. One can also
pand the multiple-scattering operator as a sum of tw
three-, . . . , A-body operators and truncate the expansion
some level. The most popular method is the ‘‘optical-lim
approximation’’ ~OLA! where the complicated multiple
scattering operator is replaced by a simple two-body oper
in a somewhatad hocway.

The problem of these approximations is that as the ‘‘e
act’’ scattering amplitude is not available, it is very difficu
to judge how good they are. Some of the assumptions so
very serious; the usage of one-body densities most defin
washes out the effects of nuclear correlations. Some of th
approximations may be especially bad for weakly bou
halo nuclei as has been discussed by many authors@3–7#.

To avoid the complication of the analytical calculation
the cross section we will use Monte Carlo integration. W
will show that the accuracy of this approach is very good a
one can obtain very reliable results with very little effo
compared to the previous approaches. Moreover, unlike
previous calculations, no approximation has to be introdu
in the evaluation of the Glauber amplitude. We use ma
body wave functions directly without losing delicate corre
tion effects. In the framework of Glauber theory, Mon
Carlo integration has been used to calculate the nuc
transparency in thegn→p2p process in4He and 16O in
Ref. @8# and in the study of quasielastic scattering of proto
and 8He @9#.

This approach also allows us to use the most advan
quantum Monte Carlo~QMC! wave functions available for
light nuclei. These wave functions are obtained by the so
tion of the nuclear Hamiltonian with realistic two- and thre
body interactions. Theseab initio QMC calculations of the
energy spectra and other nuclear properties are in g
agreement with experiments in theA<8 region @10#. The
QMC predicts the radii of the light nuclei quite reliably s
that a direct comparison of the nuclear sizes and reac
cross sections becomes possible.

The road map of this paper is as follows. First we intr
duce the most important quantities of Glauber theory in S
II. Next we show some of the details of the calculation
©2002 The American Physical Society11-1
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Sec. III and of the wave functions in Sec. IV. The presen
tion of the results can be found in Sec. V. A brief summa
and outlook closes the paper in Sec. VI.

II. GLAUBER THEORY

Glauber’s multiple-scattering theory@2# of high-energy
collisions, which is based on the eikonal and adiabatic
proximations, is widely accepted as a standard tool for c
culating various cross sections. The probability that two c
liding nucleons in the projectile and the target lead to
excitation of the nuclei is almost unity in high-energy rea
tions ~at several hundred MeV/nucleon!. Since the nuclear
force is short ranged, the probability of nuclear excitation
the collision reflects the geometrical size of the nuclei. T
interaction or reaction cross section can thus be related to
size and structure of the nuclei.

The basic quantity in the Glauber theory is the opti
phase-shift functionxel(b) defined by

eixel(b)5^F0
PF0

Tu)
i PP

)
j PT

@12G~b1si
P2sj

T!#uF0
PF0

T&,

~1!

whereb is the impact parameter, andF0
P(F0

T) is the intrinsic
projectile ~target! wave function with its center-of-mas
wave function removed. The profile functionG is a two-
dimensional Fourier transform of the nucleon-nucleon sc
tering amplitude

f ~u,f!5
ik

2pE dbe2 iq•bG~b!. ~2!

In Eq. ~1! one integrates over all~independent! intrinsic co-
ordinatesr i

P andr j
T . The two-dimensional vectors,si

P andsj
T ,

are the projections ofr i
P and r j

T onto thexy plane which is
perpendicular to the incident direction of the projectile.

The nucleus-nucleus elastic scattering amplitude is ea
obtained once the optical phase-shift function is availabl

f el~u,f!5
iK

2pE dbe2 iq•b@12eixel(b)#, ~3!

whereK is the wave number of the relative motion betwe
the two nuclei. The effects of the Coulomb interaction can
easily incorporated as well, but, since they are import
only at extreme forward angles, we omitted the Coulom
contribution in the present analysis. The total reaction cr
section is obtained by subtracting the elastic cross sec
from the total cross section:

s reac5E db~12ueixel(b)u2!. ~4!

Glauber theory is a nonperturbative theory; its strength
that it directly employs information on the bare nucleo
nucleon interaction and thereby makes it possible to re
the reaction dynamics to the underlying interaction of
constituent particles. At lower energies and for heavier nu
than those considered in this paper, the bare nucleon-nuc
03461
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cross sections must be corrected for medium effects rel
to Pauli blocking and effective masses@11#. UsuallyG is not
calculated from the bare nucleon-nucleon interaction but
rametrized in a convenient form~such as Gaussians! so as to
fit the empirical nucleon–nucleon scattering amplitu
through Eq.~2!:

G~b!5
st

4pbt
~12 iat!expS 2

b2

2bt
D , ~5!

where the parameters depend on the isospin of the nucl
(t5pp,nn,pn). Other operators, like spin orbit and tenso
may also be necessary~especially if the spins of the targe
and projectile are nonzero!, but those are most often ne
glected. Their inclusion would not cause any problem in
present approach.

As seen in Eq.~1!, the optical phase-shift function is de
fined by a many-body multiple-scattering operator and ob
ously its calculation is very involved. One often uses so
simplification like the OLA, which is just the first-order ap
proximation in the cumulant expansion@2#:

eixOLA(b)5expH 2E E drPdrTrP~rP!rT~rT!G~sP2sT1b!J ,

~6!

where, e.g.,rP(rP) is the single-particle density of the pro
jectile nucleus.

Several authors have shown that a treatment beyond
OLA is necessary for a quantitative analysis of the react
cross sections@3–5# as well as the elastic scattering cro
sections@6,7#. This is particularly true for loosely couple
systems such as halo nuclei because breakup effects ar
properly accounted for in the OLA. There have been cons
erable efforts which attempt to calculate higher-order or
order terms of the multiple-scattering operator. It is know
that the matrix elements of higher-order terms should
evaluated by two- and more-particle densities@2#. Using the
density constructed from uncorrelated wave functions@12–
15# is thus not sufficient to understand the importance of
correlated motion in nuclei even if all-order terms a
evaluated.

Very recently a method of calculating the comple
Glauber amplitude@16# has been proposed and applied
p16He elastic scattering using a microscopica1n1n
three-cluster wave function for6He @17#. It uses an expansion
of the multiple-scattering operator and evaluates each t
analytically provided that the profile functionG is expressed
by Gaussians. The method has been extended to a nuc
nucleus case as well with considerable success@18#. How-
ever, this method is limited by two things: one is that t
number of terms in the expansion becomes prohibitiv
large for heavier nuclei; another is that ifG is not a Gaussian
then the analytic integration for correlated wave functions
hopeless.

III. MONTE CARLO INTEGRATION

Our purpose is to present a powerful method of calcu
ing the matrix element of the multiple-scattering opera
1-2
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completely by taking another route, a Monte Carlo integ
tion ~MCI! of the multiple-scattering operator. No metho
has so far been available to calculate the Glauber ampli
completely for general correlated wave functions. The Mo
Carlo integration seems to be the most natural way to ca
late the phase-shift function. Its advantages are quite cl
~i! there is no restriction on the form of the target or proje
tile wave functions (general few- or many-body wave fu
tions can be used); ~ii ! the full multiple-scattering operato
can be used (there is no need for expansion or truncatio;
~iii ! it is very simple compared to earlier calculations.

In our present approach the multiple-scattering operato
assumed to be independent of spins, depending only on
spatial coordinates and the isospins. The isospin depend
arises when different profile functions are used between
pp (nn) and pn pairs. The wave functionsF0

P and F0
T are

represented by a multicomponent@approximately 2A3(Z
A)]

vector in the spin-isospin space. The matrix elements
calculated by taking the scalar product of the bra and the
in the spin-isospin space and using a MCI in the coordin
space.

In a MCI, the integration points are generated by the M
tropolis algorithm usinguF0

PF0
Tu2 as a guiding function. One

may possibly get better accuracy and convergence by u
(a1br2)uF0

PF0
Tu2 (r is the root mean-square radius of th

projectile! or some similar expression which increases
weight of the asymptotic part, but as will be shown later t
simple uF0

PF0
Tu2 form is sufficient for the present purposes

In the MCI we first generate a set ofN integration points
by a Metropolis random walk and store them. Then the
tical phase-shift function is calculated over these configu
tions for each discretized value of the impact parameterb. In
this way we not only save computational time but we hav
‘‘correlated sampling’’ for different impact parameters avoi
ing the independent statistical errors of multiple Metropo
walks. The reaction cross section or the elastic differen
cross section is calculated by numerical integration over
impact parameter.

The impact parameterb is a two-dimensional vecto
which can be parametrized as (b sinf, b cosf). For spheri-
cal nuclei the phase-shift function has no dependence onf,
so the integration in Eqs.~3! and~4! overb can be reduced to
that over the radial variableb. In the nonspherical case, on
has a two-dimensional integration over the impact parame
which increases the number of discretization points. T
practical example studied in this paper shows that the de
dence onf is almost negligible.

To test the MCI evaluation of the optical phase-shift fun
tion, a simple but nontrivial example,a1a scattering at
5.07 GeV/c (Ta52.57 GeV), has been considered. Taking
single harmonic-oscillator shell-model wave function for t
a particle, the phase-shift function and the reaction cr
section can be analytically calculated@16#. The MCI results
are tested against this analytical example. Figure 1 shows
elastic differential cross section as a function of fou
momentum transfer squared2t5\2q2 using 100 000 MCI
points. For small momentum transfer~this is the region
where the present day experiments can be performed! a very
03461
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small number of MCI points is sufficient to get reliable r
sults. For larger momenta the oscillatory behavior com
from e2 iq•b becomes more rapid, requiring more accura
integration for relatively largeb, but even for the 105 points
used the computational time is still almost negligibly sma
Table I shows thea1a reaction cross section and the mea
square~rms! radius of thea particle obtained from this cal
culation. Naturally, the analytically calculated values are p
fectly reproduced provided one uses a sufficiently la
number of MCI configurations. These tests show that one
confidently use the MCI in calculation of the optical phas
shift function and related quantities.

IV. WAVE FUNCTIONS

The wave functions, except for12C, are obtained by the
QMC method@10,19# using the Argonnev18 two-body inter-
action @20# and the Illinois three-body interaction IL2@21#.
The QMC method with these interactions provides a relia
description of the energy levels and different properties
light nuclei. Previous calculations are based on cluster, f
body, shell-model or mean-field wave functions to calcul
the optical phase-shift functions. These calculations h
used schematic effective interactions with adjustable par
eters and other simplifying approximations. The use of QM
methods provides us with a realistic,ab initio, microscopic
wave function. The12C nucleus is not yet accessible in QM

FIG. 1. Center-of-mass differential cross section versus fo
momentum transfer squared fora1a elastic scattering at
5.07GeV/c. The solid curve is the result of the analytical calcul
tion, while the result of Monte Carlo integration is shown f
100 000 points.

TABLE I. Comparison of a1a reaction cross section a
5.07 GeV/c and the rms radius of thea particle calculated analyti-
cally and by Monte Carlo integration with 100 000 points. T
wave function of thea particle is taken as the simple (0s)4 Slater
determinant. The statistical error of the Monte Carlo integration
given in parentheses.

Method s reac ~mb! ^r 2&(fm2)

Analytic 242.91 2.250
MCI 242.8~7! 2.251~3!
1-3
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and for the 12C a three-a microscopic cluster-model wav
function is used. In this model the internal wave functions
thea particles are single shell-model Slater determinants
the relative motion between the clusters is represented
linear combinations of Gaussians. The combination coe
cients are determined variationally by solving the 12-nucle
Schrödinger equation with an effective~Minnesota @22#!
two-nucleon interaction.

The QMC methods include variational Monte Car
~VMC! and Green’s function Monte Carlo~GFMC! methods.
The VMC is an approximate method that is used as a star
point for the more accurate GFMC calculations. The VM
method starts with the construction of a variational trial fun
tion of specified angular momentum, parity, and isosp
CT(Jp;T), using products of two- and three-body corre
tion operators acting on a fully antisymmetrized set of o
body basis states. Metropolis Monte Carlo integration is u
to evaluatê CTuHuCT&, giving an upper bound to the en
ergy of the state. The GFMC method is a stochastic met
that systematically improves onCT by projecting out excited
state contamination using the Euclidean propagationC(t)
5exp@2(H2E0)t#CT . In the limit t→`, this leads to the
exact ground state energy. Details of the structure calc
tions can be found in Ref.@10#.

The calculation of expectation values directly using

^O~t!&5
^C~t!uOuC~t!&

^C~t!uC~t!&
~7!

is complicated and computationally too demanding. In o
calculations we have used the approximate expression

^O~t!&'^O~t!&mixed1@^O~t!&mixed2^O&T#, ~8!

where the ‘‘mixed’’ expectation value betweenCT andC(t)
is

^O&mixed5
^CTuOuC~t!&

^CTuC~t!&
, ~9!

and ^O&T is just the variational expectation value. This a
proximation is very good, provided that the difference b
tween the VMC trial functionCT and the exact wave func
tion is reasonably small.

V. RESULTS

In this section we present our results for total reaction a
elastic differential cross sections of different projectile-tar
systems. The proton, neutron, and matter rms radii of
nuclei predicted by the structure calculations are shown
Table II. The VMC gives a very good wave function for th
alpha particle, but underbinds theA56 nuclei. The GFMC
energies of6He and 6Li are in very good agreement wit
experiment. The GFMC improvement of the wave functi
is especially important for the loosely bound6He.

As a first application we have calculated the different
cross section forp1a elastic scattering atTp50.7 GeV~see
Fig. 2!. ~The parameters of the profile function~5! are taken
from Ref. @16#.! The agreement with the observed cross s
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tion @23,24# is perfect, but unfortunately the experiment
data are only available up to 0.05 (GeV/c)2. The differential
cross section obtained by a simple harmonic-oscilla
a-particle wave function is also included for compariso
The realistic and simple shell-model prediction is nea
identical in the experimentally accessible region. For lar
momentum transfer the two wave functions predict sign
cantly different cross sections despite the fact that they g
the same nuclear radius.

Next we consider thea1a elastic scattering a
5.07 GeV/c. In this case the experimental data@25# are
available for a wider range of momentum transfer~see Fig.
3!. While the simple shell-model wave function fails to e
plain the observed data points, the realistic wave funct
leads to good agreement with the experiments. The disag
ment between the simple shell-model and realistic wa
function predictions is almost an order of magnitude. To e
plain the data with a simple shell-model wave function o
has to increase the harmonic-oscillator size parameter d
tically and that would lead to an unrealistica particle radius
~about 20% too large!. This example clearly shows the im
portance of the realistic wave functions and the sensitivity

TABLE II. Point proton, neutron, and matter rms radii and r
action cross sections for the collision with a 0.7 GeV proton. T
Monte Carlo statistical errors fors reac are 1 mb in all cases.

System Wave function r p ~fm! r n ~fm! r m ~fm! s reac ~mb!

a VMC 1.46 1.46 1.46 100
6He VMC 1.96 2.81 2.56 163
6He GFMC 1.92 2.87 2.61 172
6Li VMC 2.47 2.47 2.47 165
6Li GFMC 2.47 2.47 2.47 166
12C cluster 2.36 2.36 2.36 254

FIG. 2. Comparison of the differential cross section forp1a
elastic scattering atTp50.7 GeV obtained by a simple shell-mod
~dashed line! and a realistic~solid line! wave function of thea
particle. The two wave functions give the same rms radius; Mo
Carlo error estimates are shown for the latter case. The data
available only for2t<0.05(GeV/c)2 ~Refs. @23,24#!, but are not
shown because they are hardly distinguishable from the theore
curves.
1-4
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the experimental results to the details of the nucl
structure.

Table III compares the reaction cross sections calcula
for various systems with measured interaction cross secti
s int . The interaction cross section is defined as the sum
the cross sections for all channels in which the nucleo
composition of the projectile changes. In high-energy co
sions, the projectile can only lose nucleons, that is, the pr
ability of pickup processes is negligible, and the differen
betweens reac ands int is expected to be small. Possible d
ferences between them come from two processes: one i

FIG. 3. Comparison of the experimental and theoretical diff
ential cross sections fora1a elastic scattering at 5.07 GeV/c. The
solid line shows the results with a realistica-particle wave func-
tion, while the dashed line is obtained by a simple 0s shell-model
wave function. The two wave functions give the same rms rad
The data are taken from Ref.@25# and are connected by the dotte
line.

TABLE III. Calculated reaction cross sections. Experimen
data are the interaction cross sections taken from Ref.@29#. Cross
sections with† are the reaction cross sections at 0.87 GeV/nucl
@30#. The statistical error of the Monte Carlo integration is given
parentheses. The reaction cross sections marked by * are obt
in the OLA case.

System Energy~GeV/nucleon! s reac~mb! s int ~mb! ~experiment!

p1a 0.7 100~1!

p16He 0.7 172~1!

p16Li 0.7 166~1!

p16He 0.7 166*
p16Li 0.7 164*
6He112C 0.7 721~2!
6Li112C 0.7 708~2!

a1a 0.6425 235~1!

p112C 0.8 261~1! 262613.5†

a112C 0.8 506~1! 50365,527626†

p16He 0.8 178~1!

p16Li 0.8 171~1!
6He112C 0.8 733~2! 72266
6Li112C 0.8 712~2! 688610
12C112C 0.8 865~1! 85669,939649†
03461
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inelastic excitation of the projectile, which may occur if th
projectile has a particle-bound excited state. Another i
process in which the projectile remains in its ground st
while the target gets excited. These processes contribut
s reac but not tos int . When the projectile is a halo nucleu
that has no particle-bound state, such as6He, the second
process can be ignored because the halo nucleus is e
broken by a small shock so it is unlikely that it remains in
ground state while exciting the target. The example of
6He112C collision at 0.8 GeV/nucleon bears out this arg
ment; the calculated reaction cross section is indeed clos
the measured interaction cross section. The6Li112C reac-
tion cross section is slightly larger than the interaction cr
section. It remains an open question whether this differe
can be accounted for by the above processes. A similar c
ment may be applied to the12C112C case. For the sake o
reference the reaction cross sections measured
0.87 GeV/nucleon are included in the table.

Figures 4~a! and 4~b! present the elastic differential cros

-

s.

l

n

ed

FIG. 4. ~a! Differential cross section versus four-momentu
transfer squared forp16He and p16Li elastic scatterings atTp

50.7 GeV. Ana1n1n cluster-model result~Ref. @16#! is shown
for p16He at Tp50.717 GeV. The statistical error of the Mont
Carlo integration is shown for the GFMC and VMC results.~b!
Theoretical and experimental~Ref. @26#! differential cross sections
for p16He andp16Li elastic scatterings atTp50.7 GeV.
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sections forp16He andp16Li at Tp50.7 GeV. The experi-
mental data @24,26# are available only up to 2t
50.05 (GeV/c)2. In that region@Fig. 4~b!# the best theoret-
ical ~GFMC! cross sections slightly underestimate the e
perimental data, especially for6He. An a1n1n cluster-
model result@16# for p16He at Tp50.717 GeV, which is
obtained by using the wave function@17# solved in a re-
stricted model space with the Minnesota effective inter
tion, is also included for comparison. The cluster-model
sult agrees perfectly with the experimental data.~See Fig. 2
of Ref. @16#.! The matter rms radius is 2.51 fm in the cluste
model, 2.56 fm in the VMC, and 2.61 in the GFMC calc
lations. An analysis in a few-body model has also conclud
that thep16He scattering can be reproduced with an6He rms
radius of 2.5 fm@27#. The slight underestimation of the dif
ferential cross section by the GFMC method might be due
the fact that the size of6He given by GFMC is a little too
large. For higher momentum transfer, there is a substa
difference between6He and 6Li as well as the cluster and
QMC results.

To understand the behavior of the different cross sec
curves, we made a very simple example by using a sim
shell model of 6He and 6Li. In this model thea-particle
core is described by a single shell-model configuration
the two valence nucleons occupy the appropriatep-shell or-
bits. This is the major component of the wave functions
both 6He and6Li. The parameters of the harmonic-oscillat
functions of the core and the valence particles are allowe
be different, so one can change the size of the nuclei
model the neutron halo of6He. The details of the three dif
ferent model wave functions used in this example are sho
in Table IV. The size of thea-particle core was kept fixed in
each case. Table IV shows that increasing the radius in
simple wave function does not significantly change the re
tion cross section. The reaction cross section depends m
distinctly on the difference of thenp and pp profile func-
tions: the identical spatial wave function for6He and 6Li
gives a significantly larger reaction cross section for6Li.
Figures 5~a! and 5~b! show the differential cross section
calculated by using these wave functions. Here again
effects of the different profile functions are more importa
than the difference in the rms radii. Figure 5~b! shows that
for small 2t the change in size mostly changes the slope
the curve. The difference in thenp andpp profile functions
are responsible for shifting the curves up and down. Th
characteristic behaviors are also observed by Al-Khalili@28#.
In the case of a more complex and realistic wave funct
one expects a more complicated interplay between the eff
of the spatial components and the profile functions.

TABLE IV. Radii ~in fm! and reaction cross sections~in mb! of
6He and6Li in a very simple shell model. See the text for detai
The reaction cross section is for proton collision atTp50.8 GeV.

6He 6He 6Li

r a 1.5 1.5 1.5
r m 2.3 2.6 2.6
s reac 160 163 174
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The full and OLA calculations are compared for the rea
tion and elastic differential cross sections. Table III compa
the reaction cross section forp16He and p16Li at Tp
50.7 GeV. The OLA cross section is slightly smaller th
that of the full calculation, which, differently from a nucleu
nucleus case, holds true for a proton-nucleus system@4,16#.
Figures 6~a! and 6~b! compare the elastic differential cros
sections ofp16He andp16Li at Tp50.7 GeV. The differ-
ence in the cross sections at small four-momentum tran
between the full and OLA calculations is magnified in Fi
6~b!. Some difference can be seen in the cross section ve
the 2t slope for the case of6He or in the magnitude of the
cross section for the case of6Li at small utu, but the more
conspicuous differences appear near and beyond the firs
of the cross section.

Differential cross sections versus four-momentum trans
squared are plotted in Fig. 7 for elastic scattering of seve
nuclei on a 12C target at 0.8 GeV/nucleon incident energ
The angular distributions show Fraunhofer-type diffracti
patterns and the first dips move to smaller angles with
creasing mass number. The basic feature of these trends
be understood in a strong absorption model~SAM!, which is
quite reasonable for high-energy collisions of nuclei. In
extreme version of the SAM, the phase-shift function is
sumed to satisfy the relation

eixel(b)5Q~b2R![H 0 b,R

1 b>R,
~10!

FIG. 5. Comparison of differential cross sections forp16He
andp16Li elastic scatterings atTp50.8 GeV. The wave functions
of6He and6Li are described in a simple shell model.
1-6
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MONTE CARLO INTEGRATION IN GLAUBER MODEL . . . PHYSICAL REVIEW C 66, 034611 ~2002!
whereR is a cutoff radius, and is on the order of the sum
the radii of the two colliding nuclei.@In reality eixel(b) has a
smooth cutoff distribution.# In the SAM the incoming flux
corresponding to the collision withb,R is completely ab-
sorbed, while the collision withb.R receives no effect.
~Note that the Coulomb interaction is ignored.! Substitution
of Eq. ~10! into Eq. ~3! leads to the scattering amplitude

FIG. 6. Comparison of the full and OLA differential cross se
tions. See the caption of Fig. 4. The GFMC results are used
calculate the cross sections.

FIG. 7. Differential cross sections versus four-momentum tra
fer squared for elastic scatterings ofp, a, 6He, and12C on 12C at
0.8 GeV/nucleon.
03461
f

f el(u,f)}J1(qR)/qR. The differential cross section
u f el(u,f)u2 thus vanishes at the zeros of the Bessel funct
J1(qR), whose zeros occur atqR'3.83,7.02, . . . . With in-
creasingA, R in general increases, thus the first zero appe
at smaller values of2t. The value ofR extracted from the
dip in the figure corresponds to the empirical radius rat
well. The 6He and 12C cases do not follow this rule as th
size of 6He is larger than that of12C. This is mainly due to
the fact that the sharp cutoff assumption is not good for6He
because of its halo structure. The momentum trans
squared corresponding to the second dip is predicted
(7.02/3.83)2'3.4 times that of the first dip in the sharp cu
off model.

VI. SUMMARY AND OUTLOOK

The Monte Carlo integration was used to facilitate t
evaluation of the complete Glauber amplitude involving t
multiple-scattering operator. There was no need to introd
any ad hocapproximation or assumption in this approac
The great advantage of this method is that it enables u
use accurate, sophisticated wave functions of projectile
target nuclei. A number of calculations confirmed that it
possible to directly relate the wave functions to react
cross sections measured at high energy.

The calculations presented here focused on light nuc
One can carry out similar investigations for heavier eleme
provided that suitable wave functions are available. One v
often replaces the wave function of the target nucleus wit
density distribution. This approximation renders calculatio
for heavier targets (27Al or 208Pb) accessible. In that cas
one has to construct a reliable nucleon-target profile func
to replace the nucleon-nucleon profile function, but the r
of the calculation is the same as presented in this work. O
further possible approximation is to use an inert core w
correlated valence nucleons to construct the wave functio
the projectile. Such a step might be necessary to investi
the cross sections of oxygen or sodium isotopes,
example.

The experimental results mostly cover the low
momentum transfer region where the elastic differen
cross section is not too sensitive to the details of the w
functions and simple models do quite well. We have show
however, that there is a strong discrepancy between the
dictions of simple model and realistic wave functions. T
high-energy reactions therefore may give information on
details of the nuclear structure. For example, thea1a scat-
tering at 5.07 GeV/c, where the experimental data is ava
able for larger momentum transfers, can only be descri
using realistic wave functions for the alpha particle. O
hopes that the new radioactive beam facilities will provide
experimental data at higher momentum transfer and fur
tests of the wave functions will become possible.
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