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Reaction and elastic differential cross sections are calculated for light nuclei in the framework of the Glauber
theory. The optical phase-shift function is evaluated by Monte Carlo integration. This enables us to use the
most accurate wave functions and calculate the phase-shift functions without approximation. Examples of
proton-nucleuse.g.,p- °He, p- ®Li) and nucleus-nucleu&.g. He-12C) scatterings illustrate the effectiveness
of the method. This approach gives us a possibility of a more stringent analysis of the high-energy reactions of

halo nuclei.
DOI: 10.1103/PhysRevC.66.034611 PACS nunider21.60.Ka, 21.106-k, 25.10+s
[. INTRODUCTION on the effect of the valence particles only. One can also ex-
pand the multiple-scattering operator as a sum of two-,
The study of hundreds of new unstable nuclei has becomthree; . . ., A-body operators and truncate the expansion at

possible in the new radioactive beam facilities. The measuresome level. The most popular method is the “optical-limit
ment of the cross sections at high energies is an importargpproximation” (OLA) where the complicated multiple-
experimental tool for studying these elemeft$ The ob-  scattering operator is replaced by a simple two-body operator
served interaction cross sections can be related to the wawe a somewhatd hocway.
functions of these nuclei through Glauber the§?y; thus The problem of these approximations is that as the “ex-
one can obtain information on the structure of these exoti@ct” scattering amplitude is not available, it is very difficult
isotopes. This direct relation between the structure and reade judge how good they are. Some of the assumptions sound
tion cross section is, however, hampered by several probrery serious; the usage of one-body densities most definitely
lems. The first and most serious one is that the calculation ofvashes out the effects of nuclear correlations. Some of these
the cross section by using accurate nuclear wave functions epproximations may be especially bad for weakly bound
difficult. Also the solution of the nuclear many-body problem halo nuclei as has been discussed by many aufi2e+g].
is notoriously complicated. To avoid the complication of the analytical calculation of
In Glauber theory the nucleus-nucleus elastic scatteringhe cross section we will use Monte Carlo integration. We
amplitude is obtained by integrating the optical phase-shifiwill show that the accuracy of this approach is very good and
function over the impact parameter. The optical phase-shifone can obtain very reliable results with very little effort
function is the matrix element of the multiple-scattering op-compared to the previous approaches. Moreover, unlike the
erator between the product of wave functions of the targeprevious calculations, no approximation has to be introduced
and projectile. The difficulty of the evaluation of this matrix in the evaluation of the Glauber amplitude. We use many-
element stems from the fact that the multiple-scattering opbody wave functions directly without losing delicate correla-
erator is anA-body (A is the total number of nucleons in- tion effects. In the framework of Glauber theory, Monte
volved) operator, a product of pairwise nucleon-nucleonCarlo integration has been used to calculate the nuclear
scattering operators. To avoid the calculation of the matrixransparency in then—ar~p process in“He and %0 in
element of anA-body operator several simplifying approxi- Ref.[8] and in the study of quasielastic scattering of protons
mations have been introduced over the years. One populand He [9].
method is to replace the wave function of the target or both This approach also allows us to use the most advanced
the projectile and the target by densities. This is then furthequantum Monte CarldQMC) wave functions available for
simplified by assuming that the density of the nucleus is dight nuclei. These wave functions are obtained by the solu-
product of one-body densities. In that case the matrix eletion of the nuclear Hamiltonian with realistic two- and three-
ment of the multiple-scattering operator becomes a produdtody interactions. Thesab initio QMC calculations of the
of two-body matrix elements and is easy to calculate. Anenergy spectra and other nuclear properties are in good
other popular approach is to use an inert core and concentraégreement with experiments in the<8 region[10]. The
QMC predicts the radii of the light nuclei quite reliably so
that a direct comparison of the nuclear sizes and reaction

*Email address: vargak@ornl.gov cross sections becomes possible.

TEmail address: spieper@anl.gov The road map of this paper is as follows. First we intro-
*Email address: suzuki@nt.sc.niigata-u.ac.jp duce the most important quantities of Glauber theory in Sec.
$Email address: wiringa@anl.gov Il. Next we show some of the details of the calculation in
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Sec. Il and of the wave functions in Sec. IV. The presentacross sections must be corrected for medium effects related
tion of the results can be found in Sec. V. A brief summaryto Pauli blocking and effective masgdd]. UsuallyI" is not

and outlook closes the paper in Sec. VI. calculated from the bare nucleon-nucleon interaction but pa-
rametrized in a convenient forfsuch as Gaussianso as to
Il. GLAUBER THEORY fit the empirical nucleon—nucleon scattering amplitude

. . ) through Eq.(2):
Glauber’s multiple-scattering theory2] of high-energy

collisions, which is based on the eikonal and adiabatic ap- o, _ b?
proximations, is widely accepted as a standard tool for cal- I'(b)= 4w (11 “r)eXF< 28 )
culating various cross sections. The probability that two col- 7 7
liding nucleons in the projectile and the target lead to thewhere the parameters depend on the isospin of the nucleons
excitation of the nuclei is almost unity in high-energy reac-(r=pp,nn,pn). Other operators, like spin orbit and tensor,
tions (at several hundred MeV/nucleprSince the nuclear may also be necessafgspecially if the spins of the target
force is short ranged, the probability of nuclear excitation inand projectile are nonzerobut those are most often ne-
the collision reflects the geometrical size of the nuclei. Theglected. Their inclusion would not cause any problem in the
interaction or reaction cross section can thus be related to thsresent approach.

©)

size and structure of the nuclei. As seen in Eq(1), the optical phase-shift function is de-
The basic quantity in the Glauber theory is the opticalfined by a many-body multiple-scattering operator and obvi-
phase-shift functiory.(b) defined by ously its calculation is very involved. One often uses some
simplification like the OLA, which is just the first-order ap-
eixe,(b):@gq)gu‘[ H [1-T(b+ SP_ s,T)]|<I>E<1>$>, proximation in the cumulant expansida]:
lePjeT

@ eiXOLA<b>=exp[— f f drPdrTpP(rP) pT (T (P sT+ b) |
whereb is the impact parameter, amr;(cpg) is the intrinsic (6)
projectile (targe} wave function with its center-of-mass ' ' _ '
wave function removed. The profile functidn is a two- ~ Where, e.g.p™(rP) is the single-particle density of the pro-

dimensional Fourier transform of the nucleon-nucleon scatjectile nucleus.
tering amplitude Several authors have shown that a treatment beyond the

OLA is necessary for a quantitative analysis of the reaction
L igeb cross section$3-5] as well as the elastic scattering cross
f(6,8)= ﬁf dbe r(b). 2) sections[6,7]. This is particularly true for loosely coupled
systems such as halo nuclei because breakup effects are not
In Eq. (1) one integrates over aflndependentintrinsic co-  properly accounted for in the OLA. There have been consid-

ordinatesip andro. The two-dimensional vectorsf ands', erable efforts which attempt to calculate higher-order or all-
are the projections of. and ro onto thexy plane which is  order terms of the multiple-scattering operator. It is known
perpendicular to the incident direction of the projectile. ~ that the matrix elements of higher-order terms should be

The nucleus-nucleus elastic scattering amplitude is easil§valuated by two- and more-particle densifigs Using the

obtained once the optical phase-shift function is available: density constructed from uncorrelated wave functiph®—
15] is thus not sulfficient to understand the importance of the

K iqb ya(B) correlated motion in nuclei even if all-order terms are
fe|(0,¢)—%J dbe " 1—e e, 3 evaluated.

Very recently a method of calculating the complete
whereK is the wave number of the relative motion betweenGlauber amplitudg16] has been proposed and applied to
the two nuclei. The effects of the Coulomb interaction can bep+®He elastic scattering using a microscopict n+n
easily incorporated as well, but, since they are importanthree-cluster wave function fiide [17]. It uses an expansion
only at extreme forward angles, we omitted the Coulombicof the multiple-scattering operator and evaluates each term
contribution in the present analysis. The total reaction crosanalytically provided that the profile functidn is expressed
section is obtained by subtracting the elastic cross sectioby Gaussians. The method has been extended to a nucleus-
from the total cross section: nucleus case as well with considerable suc¢és8s How-

ever, this method is limited by two things: one is that the
@) number of terms in the expansion becomes prohibitively
large for heavier nuclei; another is thaflifis not a Gaussian

) ) . _then the analytic integration for correlated wave functions is
Glauber theory is a nonperturbative theory; its strength is,gpeless.

that it directly employs information on the bare nucleon-

nucleon interaction and thereby makes it possible to relate
the reaction dynamics to the underlying interaction of the
constituent particles. At lower energies and for heavier nuclei Our purpose is to present a powerful method of calculat-
than those considered in this paper, the bare nucleon-nucledmg the matrix element of the multiple-scattering operator

O'reac:f db(1_|eixel(b)|2)-
I1l. MONTE CARLO INTEGRATION
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completely by taking another route, a Monte Carlo integra- it
tion (MCI) of the multiple-scattering operator. No method ]
has so far been available to calculate the Glauber amplitude o ML
completely for general correlated wave functions. The Monte o 1x10°[
Carlo integration seems to be the most natural way to calcu- %
late the phase-shift function. Its advantages are quite clear: % oF
(i) there is no restriction on the form of the target or projec- & X107
tile wave functions (general few- or many-body wave func- L
tions can be used)ii) the full multiple-scattering operator fv: 1x10’2:—

S

can be used (there is no need for expansion or truncation)
(iii ) it is very simple compared to earlier calculations :

In our present approach the multiple-scattering operator is 1X10-4(; P R
assumed to be independent of spins, depending only on the
spatial coordinates and the isospins. The isospin dependence
arises when different profile functions are used between the FIG. 1. Center-of-mass differential cross section versus four-
pp (nn) and pn pairs. The wave function@f; and (I)g are momentum transfer squared fow+a elastic scattering at

: i A 5.07GeVE. The solid curve is the result of the analytical calcula-

represented by a multicompondipproximately 2x (5)] > _ _ analy
vector in the spin-isospin space. The matrix elements ar%on, while the result of Monte Carlo integration is shown for
calculated by taking the scalar product of the bra and the ke 00000 points.

in the spin-isospin space and using a MCl in the coordmat%ma” number of MCI points is sufficient to get reliable re-

space. : ; )
. . . sults. For larger momenta the oscillatory behavior coming
In a MCI, the integration points are generated by the Me-from e i%b hecomes more rapid, requiring more accurate

tropolis algorithm using®g®g|? as a guiding function. One _integration for relatively larg®, but even for the 10points
may pc2)55|bFI,y get better accuracy and convergence by Uusingseq the computational time is still almost negligibly small.
(atbr)|dodo|” (r is the root mean-square radius of the Tapje | shows ther+ a reaction cross section and the mean-
projectilg or some similar expression which increases thegq are(rms) radius of thee particle obtained from this cal-
weight OfgheT asymptotic part, but as will be shown later theg|ation. Naturally, the analytically calculated values are per-
simple |®o®,|? form is sufficient for the present purposes. fectly reproduced provided one uses a sufficiently large
In the MCI we first generate a set bfintegration points  nymber of MCI configurations. These tests show that one can

by a Metropolis random walk and store them. Then the opgonfidently use the MCI in calculation of the optical phase-
tical phase-shift function is calculated over these configurashift function and related quantities.

tions for each discretized value of the impact paramietém

this way we not only save computational time but we have a IV. WAVE FUNCTIONS

“correlated sampling” for different impact parameters avoid-

ing the independent statistical errors of multiple Metropolis The wave functions, except fdC, are obtained by the
walks. The reaction cross section or the elastic differentiaQMC method[ 10,19 using the Argonne ;g two-body inter-
cross section is calculated by numerical integration over thaction[20] and the lllinois three-body interaction IL21].

P R IR
0.2 0.4 0.6 0.8 1

[(GeV/e)]

impact parameter. The QMC method with these interactions provides a reliable
The impact parameteb is a two-dimensional vector description of the energy levels and different properties of
which can be parametrized als §in ¢, b cos¢). For spheri-  light nuclei. Previous calculations are based on cluster, few-

cal nuclei the phase-shift function has no dependence,on body, shell-model or mean-field wave functions to calculate
so the integration in Eq$3) and(4) overb can be reduced to the optical phase-shift functions. These calculations have
that over the radial variable. In the nonspherical case, one used schematic effective interactions with adjustable param-
has a two-dimensional integration over the impact parametegters and other simplifying approximations. The use of QMC
which increases the number of discretization points. Thenethods provides us with a realistiah initio, microscopic
practical example studied in this paper shows that the depenvave function. The'?C nucleus is not yet accessible in QMC
dence ong is almost negligible.

To test the MCI evaluation of the optical phase-shift func- TABLE I. Comparison of a+a reaction cross section at
tion, a simple but nontrivial exampley+ « scattering at 507 GeVE and the rms radius of the particle calculated analyti-
5.07 GeVE (T,=2.57 GeV), has been considered. Taking acally and t_)y Monte Carlq int.egration with 1Q0 000 points. The
single harmonic-oscillator shell-model wave function for theWave function of thex particle is taken as the simple ¢ Slater
a particle, the phase-shift function and the reaction CrOsg_eterrr_unamt. The statistical error of the Monte Carlo integration is
section can be analytically calculatgts]. The MCI results ~ 9'Ven in parentheses.
are tested against this analytical example. Figure 1 shows t
elastic diffe?ential Cross gection as pa fur?ction of four-t}\‘;lethOd Treac (MD) (r)(fm’)
momentum transfer squaredt=7%2g* using 100000 MCI  Analytic 242.91 2.250
points. For small momentum transféthis is the region mcI 242.87) 2.2513)
where the present day experiments can be performegry
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and for the’C a threee microscopic cluster-model wave ~ TABLE II. Point proton, neutron, and matter rms radii and re-
function is used. In this model the internal wave functions oféction cross sections for the collision with a 0.7 GeV proton. The
the a particles are single shell-model Slater determinants andflonte Carlo statistical errors fare,care 1 mb in all cases.

the relative motion between the clusters is represented b

linear combinations of Gaussians. The combination coeffi—gyStem Wave functionry, (fm) 1y (fm) 1 (fM)  0reac (Mb)

cients are determined variationally by solving the 12-nucleon, VMC 1.46 1.46 1.46 100
Schralinger equation with an effectivéMinnesota[22])  6ye VMC 196 281 256 163
two-nucleon interaction. SHe GEMC 1.92 287 261 172

The QMC methods include variational Monte Carlo s ; VMC 247 247 247 165
(VMC) and Green’s function Monte Carl@FMC) methods. s ; GEMC 247 247 247 166

The VMC is an approximate method that is used as a startin
point for the more accurate GFMC calculations. The VMC
method starts with the construction of a variational trial func-

tion of specified angular momentum, parity, and 1S0SPN 1y [23,24 is perfect, but unfortunately the experimental

P(J™;T), using products of two- and three-body correla- . ; .
tion operators acting on a fully antisymmetrized set of one—data are only available up to 0.05 (Gey?. The differential

body basis states. Metropolis Monte Carlo integration is use§'0SS section obtamgd .by a s.|mple harmonlc-osc_lllator
to evaluate(W+|H|W+), giving an upper bound to the en- a-partlclg wave funf:non is also included fpr_comparlson.
ergy of the state. The GFMC method is a stochastic methoE:irhe .real|'st|c and S'mple shell—model' predlcpon is nearly
that systematically improves of; by projecting out excited Identical in the experimentally accessible region. For larger

T . ; momentum transfer the two wave functions predict signifi-
state contamination using the Euclidean propagatitr) cantly different cross sections despite the fact that they give
—exf—(H—Eg)7¥;. In the limit 7—c, this leads to the y P Y9

. the same nuclear radius.

exact ground state energy. Details of the structure calcula- . . .

. . Next we consider thea+a elastic scattering at

tions can be found in Ref10]. 5.07 GeVE. In this case the experimental dafta5] are

The calculation of expectation values directly using . : . P .
available for a wider range of momentum transfeee Fig.
(¥ (7)|O|¥ (7)) 3). While the simple shell-model wave function fails to ex-
(O(1))= W (7) plain the observed data points, the realistic wave function
T T leads to good agreement with the experiments. The disagree-

is complicated and computationally too demanding. In ourMent between the simple shell-model and realistic wave
calculations we have used the approximate expression funpﬂon predlctlt_)ns is glmost an order of magnltude: To ex-
plain the data with a simple shell-model wave function one

(O(71))=~(O(7))mixed™ [{O( 7)) mixed— {O) 11, (8)  has to increase the harmonic-oscillator size parameter dras-
o ) tically and that would lead to an unrealisticparticle radius
where the “mixed” expectation value betwedhy and¥(7)  (about 20% too large This example clearly shows the im-

cluster 2.36 2.36 2.36 254

IS portance of the realistic wave functions and the sensitivity of
(V1[O|¥ (7))
<O>mixed: W ) (9 1><103 L L AL B S —
and(O) is just the variational expectation value. This ap- - of N\ 3
proximation is very good, provided that the difference be- g !X10 W\
tween the VMC trial function¥; and the exact wave func- E ' Ny
tion is reasonably small. = af N e
=} Ix10° \\ , g B
N:‘ A4
V. RESULTS = \/
e 6F Y E
In this section we present our results for total reaction and = 1x10 !
elastic differential cross sections of different projectile-target i
systems. The proton, neutron, and matter rms radii of the IO
nuclei predicted by the structure calculations are shown in 0 02 04 06 08 1
Table Il. The VMC gives a very good wave function for the -t [(GeV/e)']

alpha particle, but underbinds ti#e=6 nuclei. The GFMC FIG. 2. Comparison of the differential cross section for «

energies of®He and °Li are in very good agreement with g|,tic scattering al,=0.7 GeV obtained by a simple shell-model

experiment. The GFMC improvement of the wave function gashed ling and a realistic(solid line) wave function of the

is especially important for the loosely boufite. particle. The two wave functions give the same rms radius; Monte
As a first application we have calculated the differentialcarlo error estimates are shown for the latter case. The data are

cross section fop+ « elastic scattering al,=0.7 GeV(see  available only for—t<0.05(GeVt)? (Refs.[23,24), but are not

Fig. 2). (The parameters of the profile functi¢h) are taken shown because they are hardly distinguishable from the theoretical

from Ref.[16].) The agreement with the observed cross seceurves.
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1><104 T T T T 10*
= 1x10” ] o 6He (GFMC)
> T — "He (VMC) |
3 E 5 = 10 6 .
< : 3 > * °Li (GFMC)
2 1x10°F q ®
£ O] ®He (cluster)
o : =
: I T I
=] F ]
= 1x10°f - = -E- 10°
\\\\ [aV)
-4 . L . I . L . 1 D
Ix10 ¢ 0.2 04 0.6 03 1 =
5 =
-t[(GeV/e)] 102 <
FIG. 3. Comparison of the experimental and theoretical differ- | | | | wT

ential cross sections far + « elastic scattering at 5.07 Ged/The 00 01 0.2 03 04 05

solid line shows the results with a realisticparticle wave func- 2
tion, while the dashed line is obtained by a simpkedhell-model (@) (GeVic)']
wave function. The two wave functions give the same rms radius. = | : ‘
The data are taken from R425] and are connected by the dotted i"I!gg PR p—
line. _ \\\\x,! :Li(GFMC)
3 pao’t \!\‘I:i;ﬁ:,z <t |

the experimental results to the details of the nuclear g i NS
structure. = - \I\"Ii

Table 11l compares the reaction cross sections calculated = e %3 ]
for various systems with measured interaction cross sections, = \gﬁii |
oint- The interaction cross section is defined as the sum of & ?*i 1]
the cross sections for all channels in which the nucleonic , <t
composition of the projectile changes. In high-energy colli- Ix107H L o { E

sions, the projectile can only lose nucleons, that is, the prob- 0 00l 002 0.03 0.04 0.05
ability of pickup processes is negligible, and the difference  ® A[(GeV/e)']
betweeno ¢,cand oy is expected to be small. Possible dif-

ferences between them come from two processes: one is the FIG. 4. @ Dmere“@'a‘ cross Sef,Ct_'on Versus four'-momentum
transfer squared fop+°He andp+°Li elastic scatterings aT,

) ) ) =0.7 GeV. Ana+n+n cluster-model resultRef. [16]) is shown
TABLE lll. Calculated reaction cross sections. Expenmentalfor p+P®He atT,=0.717 GeV. The statistical error of the Monte
p=0. .

data are the interaction cross sections taken from [R8]. Cross Carlo integration is shown for the GFMC and VMC results)

. - T . .
sections with" are the reaction cross sections at 0.87 GeV/nucleonryeqetical and experimentéRef. [26]) differential cross sections
[30]. The statistical error of the Monte Carlo integration is given in ¢, p+°He andp-+Li elastic scatterings af,=0.7 GeV
»=0. .

parentheses. The reaction cross sections marked by * are obtained
in the OLA case.

inelastic excitation of the projectile, which may occur if the

System  EnergyGeV/nucleol o,.,.(Mmb) o, (Mb) (experiment  projectile has a particle-bound excited state. Another is a

process in which the projectile remains in its ground state
p+§‘ 0.7 10a1) while the target gets excited. These processes contribute to
p+6He 0.7 1731) Treac BUL NOt to o, When the projectile is a halo nucleus
p+°Li 0.7 1661) that has no particle-bound state, such %de, the second
p+°He 0.7 166 process can be ignored because the halo nucleus is easily
p+°Li 0.7 164 broken by a small shock so it is unlikely that it remains in its
®He+1'°C 0.7 7212) ground state while exciting the target. The example of the
oLi+1C 0.7 7082) ®He+2C collision at 0.8 GeV/nucleon bears out this argu-
ata 0.6425 23%1) ment; the calculated reaction cross section is indeed close to
p+1C 0.8 2611) 262135 the measured interaction cross section. Phe+12C reac-
a+1?C 0.8 5061) 503+ 5,527+ 26" tion cross section is slightly larger than the interaction cross
p+%He 0.8 1781) section. It remains an open question whether this difference
p+SLi 0.8 171(1) can be accounted for by the above processes. A similar com-
SHe+12C 0.8 7332) 722+6 ment may be applied to th&€+%C case. For the sake of
6Li+12C 0.8 7122) 688+ 10 reference the reaction cross sections measured at
1204 12 0.8 86%1) 856+ 9,939+ 49" 0.87 GeV/nucleon are included in the table.

Figures 4a) and 4b) present the elastic differential cross
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TABLE IV. Radii (in fm) and reaction cross sectiofis mb) of " T " T T " T

6He and®Li in a very simple shell model. See the text for details. EN — e =26tm)
The reaction cross section is for proton collisionTgt= 0.8 GeV. T ol o fifz:"'; ]
IR a2ty
Q
SHe SHe oLj 3
r, 1.5 1.5 1.5 £ 0 ]
- 23 2.6 2.6 o DO
Oreac 160 163 174 g
1x107 -

sections fop+°He andp+°Li at T,=0.7 GeV. The experi-
mental data [24,26 are available only up to—t
=0.05 (GeVk)2. In that regionFig. 4(b)] the best theoret-
ical (GFMC) cross sections slightly underestimate the ex- L
perimental data, especially fdtHe. An a+n-+n cluster-
model result[16] for p+°He at T,=0.717 GeV, which is
obtained by using the wave functidi7] solved in a re-
stricted model space with the Minnesota effective interac-
tion, is also included for comparison. The cluster-model re-
sult agrees perfectly with the experimental dd&ee Fig. 2

of Ref.[16].) The matter rms radius is 2.51 fm in the cluster- I o
model, 2.56 fm in the VMC, and 2.61 in the GFMC calcu- =y
lations. An analysis in a few-body model has also concluded

— “He (1=2.6 fm)
-+ OHe (1=2.3 fm)
—— °Li (=2.6 fm)

—_
X
<

W)

T

I58,9)1° [mbAGeV/c) ]

20 -
that thep + ®He scattering can be reproduced witflda rms ] S S T
) i N . 0 0.01 0.02 0.03 0.04 0.05
radius of 2.5 fm[27]. The slight underestimation of the dif- (b) A(GeV/e]
ferential cross section by the GFMC method might be due to
the fact that the size ofHe given by GFMC is a little too FIG. 5. Comparison of differential cross sections fof ®He

large. For higher momentum transfer, there is a substanti@indp+°Li elastic scatterings aF,=0.8 GeV. The wave functions
difference betweditle and ®Li as well as the cluster and ©of°He and®Li are described in a simple shell model.
QMC results.

To understand the behavior of the different cross section The full and OLA calculations are compared for the reac-
curves, we made a very simple example by using a simpléon and elastic differential cross sections. Table Ill compares
shell model of °He and °Li. In this model thea-particle  the reaction cross section fgy+°He and p+°Li at T,
core is described by a single shell-model configuration ané=0.7 GeV. The OLA cross section is slightly smaller than
the two valence nucleons occupy the appropraghell or-  that of the full calculation, which, differently from a nucleus-
bits. This is the major component of the wave functions ofnucleus case, holds true for a proton-nucleus sy$t 6.
both 8He and®Li. The parameters of the harmonic-oscillator Figures 6a) and Gb) compare the elastic differential cross
functions of the core and the valence particles are allowed tgections ofp+°He andp+°Li at T,=0.7 GeV. The differ-
be different, so one can change the size of the nuclei angnce in the cross sections at small four-momentum transfer
model the neutron halo dfHe. The details of the three dif- between the full and OLA calculations is magnified in Fig.
ferent model wave functions used in this example are showg(b). Some difference can be seen in the cross section versus
in Table IV. The size of thex-particle core was kept fixed in the —t slope for the case ofHe or in the magnitude of the
each case. Table IV shows that increasing the radius in thisross section for the case 6ti at small |t|, but the more
simple wave function does not significantly change the reaceonspicuous differences appear near and beyond the first dip
tion cross section. The reaction cross section depends moeg the cross section.
distinctly on the difference of thep and pp profile func- Differential cross sections versus four-momentum transfer
tions: the identical spatial wave function f8He and ®Li  squared are plotted in Fig. 7 for elastic scattering of several
gives a significantly larger reaction cross section fai. nuclei on a*’C target at 0.8 GeV/nucleon incident energy.
Figures %a) and §b) show the differential cross sections The angular distributions show Fraunhofer-type diffraction
calculated by using these wave functions. Here again thpatterns and the first dips move to smaller angles with in-
effects of the different profile functions are more importantcreasing mass number. The basic feature of these trends can
than the difference in the rms radii. Figuréobbshows that be understood in a strong absorption ma@AM), which is
for small —t the change in size mostly changes the slope otjuite reasonable for high-energy collisions of nuclei. In an
the curve. The difference in thep andpp profile functions  extreme version of the SAM, the phase-shift function is as-
are responsible for shifting the curves up and down. Thessumed to satisfy the relation
characteristic behaviors are also observed by Al-KhiZ2#].

In the case of a more complex and realistic wave function

: ; , 0 b<R
one expects a more complicated interplay between the effects elxe® =@ (h—R)= (10)
of the spatial components and the profile functions. 1 b=R,
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FIG. 6. Comparison of the full and OLA differential cross sec-
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fa(0,0)<J1(qR)/qR. The differential cross section
|fe(6,4)|? thus vanishes at the zeros of the Bessel function
J1(qR), whose zeros occur a@tR~3.83,7.02. .. . With in-
creasingA, Rin general increases, thus the first zero appears
at smaller values of-t. The value ofR extracted from the
dip in the figure corresponds to the empirical radius rather
well. The ®He and'“C cases do not follow this rule as the
size of ®He is larger than that of?C. This is mainly due to
the fact that the sharp cutoff assumption is not good®fée
because of its halo structure. The momentum transfer
squared corresponding to the second dip is predicted as
(7.02/3.83%~3.4 times that of the first dip in the sharp cut-
off model.

VI. SUMMARY AND OUTLOOK

The Monte Carlo integration was used to facilitate the
evaluation of the complete Glauber amplitude involving the
multiple-scattering operator. There was no need to introduce
any ad hocapproximation or assumption in this approach.
The great advantage of this method is that it enables us to
use accurate, sophisticated wave functions of projectile and
target nuclei. A number of calculations confirmed that it is
possible to directly relate the wave functions to reaction
cross sections measured at high energy.

The calculations presented here focused on light nuclei.
One can carry out similar investigations for heavier elements
provided that suitable wave functions are available. One very
often replaces the wave function of the target nucleus with a
density distribution. This approximation renders calculations
for heavier targets%(Al or 2%Pb) accessible. In that case

tions. See the caption of Fig. 4. The GFMC results are used Qne has to construct a reliable nucleon-target profile function

calculate the cross sections.

to replace the nucleon-nucleon profile function, but the rest
of the calculation is the same as presented in this work. One

whereR is a cutoff radius, and is on the order of the sum offurther possible approximation is to use an inert core with

the radii of the two colliding nuclei.In reality e'xe(® has a
smooth cutoff distributior.In the SAM the incoming flux
corresponding to the collision with<R is completely ab-
sorbed, while the collision witth>R receives no effect.
(Note that the Coulomb interaction is ignore&ubstitution
of Eqg. (10) into Eg. (3) leads to the scattering amplitude of

1x10*

2

[mb/(GeV/c)]

1x10°F i}

1x10°F

(£0,)I°

—
X
[N
o,
o

” E 3
IxX10"g 0.1 0.2 0.3 0.4 0.5
A[(GeV/e)]

correlated valence nucleons to construct the wave function of
the projectile. Such a step might be necessary to investigate
the cross sections of oxygen or sodium isotopes, for

example.

The experimental results mostly cover the Ilow-
momentum transfer region where the elastic differential
Cross section is not too sensitive to the details of the wave
functions and simple models do quite well. We have shown,
however, that there is a strong discrepancy between the pre-
dictions of simple model and realistic wave functions. The
high-energy reactions therefore may give information on the
details of the nuclear structure. For example, édhea scat-
tering at 5.07 GeW, where the experimental data is avail-
able for larger momentum transfers, can only be described
using realistic wave functions for the alpha particle. One
hopes that the new radioactive beam facilities will provide us
experimental data at higher momentum transfer and further
tests of the wave functions will become possible.
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