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Exact and approximate postform distorted-wave Born approximation amplitudes
for the Coulomb breakup of neutron halo nuclei
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The Coulomb breakup of neutron halo nuclei is considered within the framework of the postform distorted-
wave Born approximatioflDWBA). The quality of commonly used additional approximations to the DWBA
theory is investigated by comparing the approximate with the exact DWBA calculations. The exact DWBA
amplitude is expressed in momentum space as a three-dimensional integral and evaluated numerically. Calcu-
lations are presented for the Coulomb breakup of deuterort'Bwlat very forward angles at the beam energy
of ~70 MeV/nucleon. The factorization approximation to the DWBA amplitude is studied and found to be

suspected.
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I. INTRODUCTION proximations have been used, such as the Baur-Trautmann

approximation[24] or the local momentum approximations
Neutron halo nuclei are very weakly bound two-body sys{25—27, where the finite-range effects are included approxi-
tems consisting of a charged core, with normal nuclear denmately. ) _
sity, and a valence neutrdor pair of neutronk e.g., Refs. Recently, an adiabatic theory of the Coulomb breakup of

[1-3]. The loosely bound valence neuttenextend far out neutron halo nuclei has been developg8,2§. It includes

in space surrounding the core and form a diffuse halo. A‘;he initial and final state interactions to all orders. The theory

, . o - "leads to an expression for the breakup amplitude similar to
unique signature of such nuclei is the large total reactionmg ohtained using approximations to the DWBA theory.
cross sectior{4,5]. The Coulomb breakup is a significant {owever, assumptions underlying the two theories are quite
reaction channel for highly charged targgds-9]. The study different[25]. While the adiabatic approach assumes that ex-
of the Coulomb breakup reactions provides informations ortitation of the projectile is to the low-energy continuum, the
the structure of these nuclei. DWBA assumes that excitation of the projectile is weak and

There has been a number of different theoretical analyses0 needs be treated only to first order.
both semiclassical and quantum mechanical, of the Coulomb, Several calculations of the Coulomb breakup'tBe and
breakup of neutron halo nuclei. In the first-order semiclassi- C based on the DWBA with an effective momentum ap-
cal perturbation theory of Coulomb excitati§d0,13 the ~Proximation, have been reported recerf86—27. The re-
breakup cross section is directly related to the electromagSt/ts have been compared with those obtained within the
netic transition matrix element, which contains informa’[ionadl"jlbatlc br_eakup theory. In most of th_e cases studied the

o ' . two theoretical approaches produced similar results. How-
on the projectile ground state Wavi)functlon. For exa_mpleever, since the DWBA breakup amplitude has not been
the one-neutron halo nuclétBe and*C have been studied eyajuated exactly, conclusions suggested by such a compari-
in this way([8,9]. Various approaches have been used to takgon, regarding the assumptions made in the two theories, are
into account higher order effects. The main methods in thgjuestionable.
semiclassical description of the breakup process are the In this paper, we reexamine approximate methods for the
coupled-channel calculatiorfd2,13, the direct numerical calculations of the Coulomb breakup of neutron halo nuclei
integration of the time dependent Schimger equation for in the framework of the postform DWBA theory. The theory
the relative motion of the core and hatt4—20, and explicit  is applied to the deuteron, as an example of a loosely bound
inclusion of higher order term1,22. In these semiclassi- two-body system, and to the one-neutron halo nucléBe.
cal approaches classical trajectories are used to describe th&e results of the exact DWBA calculations for the breakup
relative motion between the projectile and the target. into very forward angles, at the beam energy of

Another approach for the analysis of the Coulomb~70 MeV/nucleon, are presented and compared with those
breakup reactions is a fully quantum mechanical treatment iQPtained using different simplifying approximations. Com-
the postform distorted-wave Born approximatiBWBA) parisons of the exact DWBA calculat|on§ with experimental
theory[23]. The theory is first order in the interaction be- dat@, or with the results of other theories of the Coulomb
tween the core and valence particle but the interaction be2"€@kup, are outside the scope of this work. ,
tween the core and target is taken into account to all orders. !N Sec. Il the theoretical formalism is given. Calculations
However, in applications of this theory to the Coulomb &€ presented_and_dlscussed in Sec. Ill. Summary and con-
breakup of neutron halo nuclei the finite-range transition am¢!usions are given in Sec. V.

plitude has not been calculated exactly. The additional ap- Il FORMALISM

We consider the reactiop+t—c+n+t, where the two-
*Email address: zadro@rudjer.irb.hr body composite projectilp=c+n, of chargeZ,, breaks up
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n In the DWBA the full solution¥ (") is approximated by
the product

W (Ee b TR~ Py (£o.60. DX (K LR), ()

R, WheredepMp(gC ,&€n,1) is the ground state wave function of

the projectile angk(™)(K; ,R) is the Coulomb distorted wave
describing the relative motion of the c.m. of the projectile

R with respect to the target, with outgoing spherical waves. The
t integral over the internal coordinates in Eg) can be ex-
c I, pressed as

(M (E) Pss(£n)| Py (£c.én 1))

FIG. 1. Definition of the coordinate vectors used in the text,
andt represent the charged core, the neutral valence particle, and => SIAIM j ] IM p)(ImSo|j ) @ (1), (6)
the target, respectively. Imju

12 ; : : :
into the charged fragmentand the neutral particle in the ~ HereS;j” is the usual spectroscopic amplitude anffi(r) is
Coulomb field of a target, of chargeZ,; (see, e.g., Refs. the wave function of the relative motion of the fragmeats

[25,26)). The total angular momentum of the partiplés J,,, andn in the ground state of the projectif®
with projectionM . The spins of the fragmentsandn are Mmoo ~
J. andS with projectionsM and o, respectively. The target O =1u(r)Yim(r), (7)

is assumed spinless. The internal wave functions of the par- ) ) ] a

ticles are denoted b (£), where¢ are the internal coordi- Whereu,(r) is the radial wave function antf,y(r) is the

nates. The particle masses ang=m,+m, andm, . spherical harmonic. In qu§6) and_(?), I is the orb|ta_l angu-
The coordinates used to describe the reaction are showi momentum of the relative motion between partidesd

in Fig. 1. The incident momentum of the projectile in the ™ @ndj is the total angular momentum of the partialén the

center of masgc.m) frame of the projectile and target is 9round state of the partice=c+n.

#K; . The momenta correspondingitoR, r.,, andR, in the Using Eq.(6) the T matrix can be written as

final channel arehik, nK;, #ik,, andaK,, respectively.

The pos!tion vectors and the wave vectors satisfy the follow- TMCU:Mp: E 3|1j/2<JcMcJ ,u|JpMp><ImSa|j 2)Bim

ing relations: Imju

8

fa=R—ar, Ry,=pR+1, @ where the reduced transition amplituBg, is

Koe= yKy= K, Kn=aKitk, @ Bim=(x (ke T €0 Rl Vo)D) X (K R)).
9

where
The triple differential cross section of the reaction is given
my, m 1 3 by
T mm,’ B_mc+mt' y=1-ap. ©®

do 2w 1 2
The interactions involved are the core-valence particle bind- dE.dQ.d(}, a 72K, (23p,+1) MaaM,
ing potentialV,,(r) and the core-target point Coulomb po-
tential Vg, (rqp) . Xp(Ec,Qc,Qp), (10
The exactT-matrix element in the postform is given by

|TMCU;Mp|2

where p(E.,Q.,Q,) is the three-body phase space factor

T, = X Kot Fed @ (£o) €0 Fod, (£,)] (28],
(+) mempfikcAk
XVnc(r)N’JpMp(fc'fnarvR»- (4) P(Ech,Qn):Lcen
(27h)

Here xpg;&p(gc,gn,r,R) is the full solution of the three- "
body scattering problem with the systgu-t in the initial X : 51
channel and with outgoing spherical waves. The My + Mg+ miy(ke—Ko) - Kn /K5
x ) (Ket,Ter) is the Coulomb distorted wave function with (11)

incoming spherical waves, describing ttw relative motion
in the final state. Sinc¥,;=0, the particlen is described by HerefiK, is the total momentum of the system, alkl. and
the plane wave in the final state. tk, are the momenta of the particlesand n in the final
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state. Substituting Eq8) into Eq. (10) and carrying out the placing the exact three-body wave function in E4). by the
spin projection summations one gets productd; y (£c.én DX UK T

3. Local momentum approximation

d3o 27 Sij
= Biml2p(Ec,Qc, Q).
dE.dQcdQ, 72K, %:1 (2|+1)| iml"P(Ee Ll (2n) Another approximation scheme that leads to the factoriza-
(120  tion is the LMA [33,34. The Coulomb distorted wave
x(K;,R) may be expanded about the point,

A. Approximations to the DWBA theor .
PP y YUK et ar)=e VO (K; T, (18)

The calculation of the reduced transition amplitudzs
is quite difficult task because a six-dimensional integration isvhere V operates on the coordinatg,. In the LMA the
involved. Therefore, different additional approximations operator—iV is replaced by the local momentuid| in the
have been used, such as the zero-range approximatigmojectile-target potentiaV/,,(R), evaluated at some repre-
(ZRA), e.g., Ref.[30], the Baur-Trautmann approximation sentative distanc®,. This approximation provides a factor-

(BTA) [31], or the local momentum approximatidhMA ), ization of the reduced amplitude,
e.g., Refs[32-34. These approximate methods provide a ,
separation of the amplitudB,,, into two factors, each in- BILn’\{'A=<ei[k—a(Ki—Kf>]~r|\/nc(r)|<p'pm(r)>

volving a three-dimensional integral. O Kt ()
X (KT €Pn el x V(K yr ). (19)

1. Zero-range approximation o . )
, i Similarly, applying the LMA to the final channel Coulomb
The ZRA is defined by30] distorted wave, i.e.,

Vnc(r)dJLm(r)=D05(r), (13 X(_)(kct,R—ar)”e_iakét'r)((_)(kct-R): (20)

whereD, is the usual zero-range constant, wherek,, is the local momentum in the core-target potential
V(rep), one obtains the following factorized form of the

Dozf drVnc(f)‘DLm(f)- (14)  reduced amplitude:

LMA _ /ailk—a(kl —kepl-r Im
The effect of the ZRA ig,—R, R,— B8R, so thatB,, be- Bim =(€ ot eIV (1) [ 7(r))
comes a three-dimensional integral, X (x ) (Kep, RIEFKN R (K, R)).  (21)

B =Do(x (Ke,R)EPKn R} (I(K;,R)). (15  The validity of the LMA and the choice of the magnitude and
direction of the local momentum are discussed in Refs.

Thus, in the ZRA one assumes that the product of the threps 26, In the following, the LMA amplitudes of Eq$19)
scattering waves in the integral in H§) is constant over the  and (21) will be referred to as the ILMA(initial channel
range ofV,,o(r)®"(r). The approximation cannot be justi- LMA) and FLMA (final channel LMA amplitudes, respec-
fied for higher energies and heavier projectilg28,34. tively.
Moreover, the ZRA implies that thet relative motion in the
projectile hass state only. 4. Asymptotic momentum approximation

N The distorted wave functiop(™)(K; ,R) can be written in
2. Baur-Trautmann approximation the form
Baur and Trautmanf31] have proposed to replace the _
projectile-target relative coordinaf@ in the projectile dis- X (K R =" " FDI(K; ,R), (22
torted wave by the core-target relative coordingie i.e.,
where D(*)(K; ,R) is a distortion function. Assuming that
X UKL R) = x (K ey (16)  the distortion function does not change significantly over the
range of\/nc(r)CD'pm(r), we can write
With this approximatiofBTA) the reduced amplitude sepa- _
rates in the following way: XK R)y=ei Uet DD )(K 1o+ ar)

~e kiUt e (K, 1)

=e i Ty (K, rep). (23

B = (e n |V ()| ()

X(X(_)(kctvrct)eiBKn-r°t|X(+)(Ki'rct)>- (17)
Substituting Eq(23) into Eq. (9) gives
It has been arguef24,31] that through this approximation 9 Ea23y a©g
one takes_ into ac.coun'F, in a certain way, the fact that the BmﬂA:<el[k*a(Ki*Kf)]-r|VnC(r)|q)|pm(r)>
projectile is polarized in the Coulomb field of the target ‘
nucleus. This approximation can also be looked upon as re- X(X(‘)(kct,rct)e'BKn"ct|x(+)(Ki Te)). (29
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TABLE |. Abbreviations used in the text for various approximations to the distorted-wave Born approxi-

mation (DWBA).
Abbreviation Explanation
ZRA Zero-range approximation
BTA Approximation of Baur and Trautmann
LMA Local momentum approximation
ILMA Local momentum approximation to the distorted
wave in the initial channel
FLMA Local momentum approximation to the distorted
wave in the final channel
AMA Asymptotic momentum approximation
IAMA Asymptotic momentum approximation to the
distorted wave in the initial channel
FAMA Asymptotic momentum approximation to the
distorted wave in the final channel
EDWBA Exact distorted-wave Born approximation

Similarly, assuming that the distorted wave function for the
exit channel can be approximated as

B. Evaluation of the approximate transition amplitude

The common result of all these approximation schemes is

. that the transition amplitude separates in the following way:
X (Kep,rep =€ e R7aNDOI* (ko R—ar)

B~ (glnc |V CI)lm
me_ikct'(R—ar)D(—)*(kct,R) Im <e | ”C(r)| P(r)>

_ (-) Nal By T () (K. !
:e'“kcer(*)*(kct,R), (25) X<X (Ket,r")e |X (Ki,r )> (27
. i The first factor in this equation is the so called vertex func-
the transition amplitude becomes tion and it involves the information about the internal struc-
AMA . | ture of the projectile. It can be expressed as
Bim" = (" [Vne(r)]@57())
X<X(_)(kct,R)eiIBKn'Rlx(‘*)(Ki,R)>_ (26) <elq”°-r|vnc(r)|q)|pm(r)>:F(an):FI(an)YIm(an).(28)
Similar approximation to distortion function has been used in here
a distorted-wave description of knockout reactions, e.g., Ref"
[35]. Equations(24) and (26) can also be obtained in the
LMA by replacing the local momentd; andk/, in Egs.(19) = :47Tf drr2i Ve (FYU(r). 29
and (21) by their asymptotic valuek; andk.,. It may be ({Chno) Ji(@nef ) Vacrui(r) @9

noted that the approximate amplituti®) is identical to the
amplitude recently derived within the adiabatic model of theThe amplitudes of Eqg15), (17), (19), (21), (24), and(26)
Coulomb breakup reaction28]. However, the underlying differ only through the momentg, . that appear in the vertex

physical picture is differen{25]. In the following, the
asymptotic momentum approximatioAMA ) amplitudes of
Egs. (24) and (26) will be referred to as the IAMA(initial
channel AMA and FAMA (final channel AMA amplitudes,
respectively.

function F(q,.). The expressions for these momenta are
summarized in Table II.

The second term in Eq27) contains the dynamics of the
breakup process. The same type of integral appears in the
calculations of the bremsstrahlung cross sections where it has

Abbreviations used in this paper for different approxima-been expressed in terms of hypergeometric functi86s37.
tions to the DWBA breakup amplitude are explained inUsing the following expressions for the Coulomb distorted

Table I.

waves in the initial and final channel:

TABLE Il. Momentaq,. which appear in the vertex functidn(q,.) for different approximation meth-
ods: the zero-range approximatiGiRA), the Baur-Trautmann approximatidBTA), the local momentum
approximationgILMA and FLMA), and the asymptotic momentum approximatig#sMA and FAMA).

ZRA BTA ILMA

FLMA IAMA FAMA

O k+aKf k—a(Ki'—Kf)

k_a(k(,:l_kct)

k—a(Ki—Kf) k
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x UK R)=e" " 2T (1+i 5, €K R F [ =i e, Li (KiR=K;-R) ], (30)
X (Key T o) =€ 77T (1+i p) e et Tet ) F oyl — i ey, L (Kol oo+ Ko Fen) 1, (31)

one obtains for the second factor
(X (keq 1P T YUK, 1))y =~ "ot 1) 2D (141 5 ) T (1+i 7). (32

In this equation is the bremsstrahlung integral given [87,38

. d . :
IZ_“mE{A(‘S)ZFl[_'npta_lnct;l;z(s)]}v (33
e—0
where
am 2, .2 : i V2 L2 : in
A@0=(Q2+8%LH%H4%£Q +£2-2Q-K;—2ieK;) (Q%+ &2+ 2Q- ko — 2i ekey) 7, (34)
2(e)= 2(Q%+ &%) (Kike+Ki- ko) = 4(Q- K +i2K;)(Q- ke—igke) (35
(Q%+&2-2Q-K;—2ieK;)(Q*+ &2+ 2Q -k —2icky)
|
with whereF(q), g=k—a(Q;—Kj), is the vertex function de-
fined by Eq.(28). We note that the vertex function now ap-
Q=Kj—Ket— BKn=K;—Kj. (36)  pears within the integrand while it enters as a multiplicative

factor in Eq.(27) for the approximate DWBA amplitude.

Heree is a real positive parameter. In E¢80)—(34) 7, and The Coulomb wave in momentum space was derived by

7¢t are the Coulomb parameters, Guth and Mullin[39]
Z,Z,€? Z.Z.e°
_ £p4tE Mt Ll Ut o _
Mpt= nK, Tet= 72k, , (37) ¢(+)(kij ,Qij) = —4me "7 2F(1+|7]ij)

2 . 24im:
G (kj+i 7ij

wherew,; andu are the reduced masses in the correspond- xlimi| Laij — (kij Tie)7] _ ]

ing channels. e—0d€ | [ gy —kij|>+ 2117

(41)
C. Transition amplitude in momentum space
The reduced amplitude of Eq9) can be expressed in |t can be expressed as
terms of momentum wave functions as a three-dimensional
integral. The Fourier transform of a Coulomb wave function

x(kij 1)) is defined by (ki ,ai) = ¢ (kij ,0) — 8w kije” TP (1+i ;)
: [af — (ki +ie)?] 117
“>w,~=fdnfwwu“>wm~, 38 X lim { ——- — 42
o ij q'J) ij X ij Ij) (39 e [|qij_kij|2+82]l+ln” (42)
1 . i . ) .
x (ki ,rij) = —3f dai;e'%i M (ki ,q;))- Here the first term is the Coulomb asymptotic state in the
(2m) momentum representatiddO]. It is a 5-function-type term

B9 with support at the poingj; =kj; .

Using the Fourier representations of the Coulomb wave o o

functions of Eqs(30) and(31) the reduced amplitude can be 1. Factorization approximation

written as We now assume that the dominant contribution to the in-
tegral in Eq.(40) comes from the region around a poi@t

= Qi0 and that the vertex functiofR(q) is the slowly varying
function of Q; so that it can be factored out of the integral at
the pointg,.=k— a(QY—Kjy). The transition amplitude then
X (ket, Q= Ki+ke) (K, Q). (40)  reads

_ 1
(2m)3

BIm

f dQiF[k—a(Q;—Kj)]
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. . 1 energy of 140 MeV, and for th&'Be breakup orf%Pb at the
Bim~Bin=F[k—a(Q;—Kj)] 3f dQ; beam energy of 72 MeV/nucleon, for very forward angles.
(27) Localization of these breakup processes in momentum,

(—-)* o (. A which enters the vertex function was investigated numeri-
X P (Kot Qi =Kyt ke 7(K, Qi) cally. The results are analyzed and the validity of the factor-
= F(qnc)<X(7)(kct:R)ei'BKn‘R|X(+)(Ki R)). (43 ization approximation is discussed.

The deuteron breakup reaction was chosen because the

The exact transition amplitude can be rewritten as deuteron is a representative example of a weakly bound two-
0 body system with a charged core and a neutral valence par-
Bim=Bim+ABim, (44 fticle. It has been showf28] that the DWBA with the BTA

underestimates thed(pn) breakup cross sections at beam
energies=30 MeV/nucleon. Furthermore, it has been ar-
gued[28] that the zero-range approximation to the DWBA
AB,,= 1 3] dQ{F[k—a(Q;—K)] breakup amplitude cannot be ju;tified for these energies, ei-
(2m) ther in the case of thed(pn) reaction or for halo nuclei. The
o Coulomb breakup of the one-neutron halo nuclétBe has
—Flk—a(Q/=K]} been studied within the local momentum approximations to
yx the DWBA, ILMA [25], and FLMA[26], as well as within
X P (ket, Q= Kitko) #(K Q). (45 {he BTA[26]. The ILMA and FLMA gave results that are
similar to those obtained within the adiabatic breakup theory,
and consistent with experimental dégb,26] while the BTA
failed to explain the datf26].

where

If the Coulomb distortion is weak, then the Coulomb dis-
torted wavesp ) (K;,Q;) and ¢ (ke,Qi—K¢+keyp) in
Eq. (40) are sharply peaked &,=K; andQ;=K;, respec-
tively. Consequently, we assume that the most important con-
tributions to the integral in Eq40) come from the regions A. The (d,pn) reaction
around these two points. If we choo®=K; in Eq. (43), The triple differential cross sectiond®o/dE,dQ,d(,
thenqnc=k—a(K;—Kj), and we obtain the IAMA ampli- were calculated as a function of the proton enefgy for
tude of Eq.(24). Alternatively, if we approximat€® by K;  several pairs of very forward angleg, and 6,. [In this
in Eq. (43), thenqg,.=k, and we obtain the FAMA amplitude
of Eq. (26). Similarly, if we choose fOIQiO the value corre-

sponding to an effective momentum in the entrance channel 800 [ "#C(d,pn)'*c — EDWBA
(K/), or in the exit channelk(,), for which the integrand in - E4=140 MeV E;ﬁ
Eq. (40 is large, we obtain the ILMA and FLMA amplitudes 500 [ 0,=1° 8,=0° —e—s IAMA
of Egs.(19) and(21), respectively. In general, the ZRA and L i — — FAMA
BTA cannot be obtained from Ed43) with a reasonable ; a0 (a)
choice ofQ?. The ZRA is equivalent to theQ®=k+ aK; O i
approximation and the BTA corresponds to m@?zo ap- g 200 |
proximation to Eq.(43). 'g [
Thus, the approximations which lead to the amplitudes of ~— olerlieae® | % .
Egs.(15), (17), (19), (21, (24), and(26) are equivalent to the O}C 40 60 80 100
assumption that the vertex functiét(q) in Eq. (40) can be T, [ 208pyy(d.on)2¢PD
replaced by the value given by the effective momentym G 8000 [ E _140’ MeV
specified in Table II. Numerical tests of the accuracy of these Ca o eo
approximations are presented in the following section. "-'d 6000 k- 6p=1", 6,=0
B |
IIl. NUMERICAL RESULTS QO

In this section the results of calculations with different
approximate DWBA methods are compared with those ob-
tained with the exact DWBAEDWBA). The calculations of i
the exact DWBA transition amplitude was performed by us- 60 80 100

ing Egs.(43)-(45). The approximate amplitudBPm in Eq. E. (MeV)
(44) was calculated within the ZRA or FAMA model. After a P
suitable transformation of the integral in E@5) the inte- FIG. 2. Triple differential cross sections as a function of the

gration was carried out numeric_ally usi_ng th_e computer cod@roton energyE, for the (d,pn) breakup atEq=140 MeV, 6,
DCUHRE [41]. The procedure of integration will be described = 1°, andd,=0°, (a) on a'2C target andb) on a2°%Pb target. The
in more detail elsewhere. curves represent the EDWB#@ghick solid), the BTA (dotted, the

The triple differential cross sections were calculated forzrA (thin solid), the IAMA (thick dash dotted and the FAMA
the deuteron breakup offC and?°%b nuclei at the deuteron (thick dashedl calculations.
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1.1
g 7YY VT » 208Pb(11Be,1°Be n)208Pb
I - - FAMA — — FLMA E,=72 MeV/nucleon —— EDWBA
1 j — ZRA 10000 | ec=001 en=20 soee ggﬁ
L ’.,_‘,—A"— "\\} (\T:
oo ¥ X @ (a)
.7 AN > 5000 [
CRER q)
s \. N
L \. g
0.8 - (a) A Y 8
o L R ! ! 0 M S B !
§ 14 %0 60 80 100 %;“ 60 70 80 )
' 208F,b do 600 i 208Pb(11Be,1°Be n)208Pb
I T - E,=72 MeV/nucleon
1+ L i
- — S 400
r &""-f = N‘t‘?\$\\ o i
0.9 —/':.’./‘/// '\\.\'\.\ - o
L2 AN -
| -~ P rd c\.\'\\. 200 |
Fs N\, [
0.8 - (b) ., [
! ° & 80 100
60 80 100 E (MeV
E, (MeV) n (MeV)

) ) FIG. 4. Triple differential cross sections as a function of the
FIG. 3. Ratios of the approximate to the exact DWBA crossautron energyE, for the 2%Pb(!Be,°Ben)2%%Ph reaction at the

sections as a function of the proton energy for thle2 d,pn) beam energf,=72 MeV/nucleon(a) at §.=0° andg,=2°, and
breakup aEy=140 MeV, §,=1°, and,=0°, (@) ona**Ctarget () 4t g.=1° and 4,=0°. The curves compare the exact DWBA

20 H
and (b) on a **Pb target. The curves compare the IAMMICK  (thick solid), the BTA (dotted, the ZRA (thin solid), the IAMA
dash dottey] the FAMA (thick dasheyl the ILMA (thin dash dot-  (hjck dash dotteg and the ILMA (thin dash dottedresults.
ted), the FLMA (thin dashey] and the ZRA(thin solid) results.

section, in the case of thed(pn) reaction, the projectile, c4jcylations. In the!?C case, the results of the IAMA and
core, and valence particle are denoted dydeuteron, p  FapmA are nearly identical to the results of ILMA and

(proton, and n (ne_utrorj, respectively, The_calc_ulanons FLMA, respectively. Similar results are obtained for the
were performed using the Hulthevertex function given ex- other angles studied
plicitly in Ref. [31]. The local moment&; andk/,, used in '
the ILMA and FLMA calculations, were evaluated at 10 fm
with the directions being the same as those of the asymptotic
momentaK; andkg,, respectively. The bound state of thé'Be was assumed to have &,2
Figure 2 shows the cross sections f6€ and 2°6Pb tar-  neutron coupled to the 0 *°Be core with a binding energy
gets atE4=140 MeV, 6,=1°, and 6,=0°. The thick of 504 keV. The corresponding single particle wave function
curves show the breakup cross sections calculated using théas calculated from a Woods-Saxon potential with radius
EDWBA amplitude. The results obtained within the approxi-and diffuseness parameters 1.15 fm and 0.5 fm, respectively.
mate DWBA methods are represented by the thin curvedhe depth of the potential was adjusted to reproduce the
(ZRA), thick dash-dotted curveslAMA), thick dashed binding energy. The spectroscopic factor was set to unity
curves(FAMA), and dotted curve$BTA). It can be noted throughout the calculations.
that the results of the ZRA and AMA methods are close to The triple differential cross sections were calculated as a
the results obtained with the exact DWBA while the BTA function of the neutron energy for a few pairs of forward
underestimates them considerably. The effects of the zer@ngles of the outgoing particles. The results figr=0°, 6,
range and asymptotic momentum approximations to the=2°, andf.=1°, 6,=0° are presented in Fig. 4. The local
DWBA in the energy integrated cross sections are 5% anghomentaK; andkg, used in the LMA calculations, were
6—7 %, respectively, for both targets. The results of theevaluated in the same way as for thah[§n) reaction. The
LMA calculations (not shown in this figureare similar to  results of the FLMA and FAMA(not shown in this figure
those of the AMA. are almost identical to the results of the ILMA and IAMA,
The ratios of the ZRA, LMA, and AMA to the EDWBA respectively.
cross sections are shown in Fig. 3 as a function of the proton Figure 5 shows the ratios of the approximate to the ED-
energy. We observe that the IAMALMA) and FAMA  WBA cross sections as a function of the neutron ené&gy
(FLMA) results are close to each other and that the ZRAor the same angles as in Fig. 4. We can see that the errors of
method yields the best overall agreement with the EDWBAhe approximate DWBA models can be significant. Again,

B. 2%%Ph(1Be,'%Ben)?%%Pb reaction
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FIG. 5. Ratios of the approximate to the exact DWBA cross
sections as a function d&, for the 2°%Pb(*'Be,'%Ben)?°%b reac-

tion atEy=72 MeV/nucleon(a) at §.=0° and6,=2°, and(b) at
0.=1° andfd,=0°. The curves compare the BTdotted, the ZRA
(thin solid), the IAMA (thick dash dotted and the ILMA(thin dash

dotted calculations.

WBA triple differential cross sections better than the other
models. The effect of the ZRA in the energy integrated cros
sections is~12%, while the effects of the AMA and LMA
are ~20%, and that of the BTA is-27%.

C. Validity of the factorization approximation

In order to clarify these results, calculations were per-
formed to investigate the localization of the DWBA ampli-

PHYSICAL REVIEW C 66, 034603 (2002
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FIG. 7. Localization ing of the contributions to the transition

amplitude.(a) Ratios|AR(qg)| as a function of the momentuny,
and proton energ§, for the **C(d,pn)*C reaction a,=1° and
6,=0°. (b) Ratios|AR(q)| as a function of the momentugy and

neutron energ\E, for the 2°Pb(*'Be,'®Ben)?°%b reaction at,

tude in momentung which enters the vertex functidfy(q).
To this end the following quantities have been introduced:

9
& &r
o
S
S
0 L L L L | . |
0 0.05 0.1 0.15
4
q (fm)

LMA (stars.

do

_ 20

R(go) = Bog

and
ABQS
AR(qg)=R(go)—R(go—TI')= B’
00

. =0° andd,=2°. The calculations us=0.02 fm . Also shown
the ZRA reproduces the shape and magnitude of the E are the momentay,. relevant to the approximate models: IAMA

solid curve$, FAMA (dashed curvesILMA (dotted curves and

(46)

(47)

Here ng denotes the transition amplitude obtained by mul-
tiplying the integrand in Eq(40) by the near-rectangular
cutoff functionf(q,,I";q), shown by the solid curve in Fig.
6, wherel is the width of the smooth cutoff region. The
amplitudeA ng corresponds to the cutoff function shown by
the dotted curve in Fig. 6. If the contribution to the transition
amplitude comes from a regiap<g=<q,, thenR(qy)=0

for qo<d,—I', R(gg)=1 for qo>q,, andAR(qy)=0 for
Jo<gs—1T orgo>qp+1I. Thus, the ratidAR(qg) is a mea-
sure of the contribution to the transition amplitude in the
regionq~qo.
Figure 7 shows the ratida R(qg)|, with ' =0.02 fm %,

FIG. 6. Cutoff functionf(qgq,I';q) used in test calculations of

the ratiosR(qg) (solid curve and AR(q,) (dotted curvg, as a

function of g, with go=0.1 fm ! and['=0.02 fri L.

(a) for the case of thé*C(d,pn)*°C reaction, as a function

of go and the energyE,, and (b) for the case of the
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FIG. 8. Histograms ofA|R(qp)|, usingI'=0.01 fm %, for the FIG. 9. Histograms ofA|R(qg)|, usingI'=0.01 fm %, for the
deuteron breakup process al,=1° and 6,=0°, for E,  !'Be breakup on®*Pb, for E,=78 MeV, (a) at 6,=0° and 6,
=55 MeV, (@) on *?C and (b) on 2°%b. Also presentedsolid =1°, and(b) at .=1° and6,=0°. The solid curves represent the

curves is the vertex functionF,(qo) calculated for the Hulthe  vertex functionFq(qo) for *'Be. The symbols show the momenta
deuteron wave function. The symbols show the momemia  q,. probed by the approximate transition amplitudes.
probed by the approximate transition amplitudes.

) ) ral in Eq.(40), at a point from the region yielding dominant
2%%Pb(*'Be,'Ben) **Pb reaction, as a function af, and the gontribut(i]ons to theﬁntegral, can Iea?d toya poo? approxima-
energy E,. We see that for a given enerdy, (E,) the ton Also evident in these figures is a strong interference in
contributions to the the transition amphtude come mostlyihe momentum region contributing to the breakup amplitude.
from a narrow range of moment This reflects the local- Thys one may expect a significant sensitivity of the breakup

ization of the integrand in Eq40) in momentumQ; . Also  gmplitude to the nonconstancy of the vertex function in this
shown in this figure are the momertg, that enter the ver-  yggjon.

tex function in the AMA and LMA models. The momenta | the application of the FLMA model to the Coulomb
corresponding to the BTA are relatlv€ll3/ Iarge,llzZ fm breakup of neutron rich nuclei, e.g., Refl@6,27], the mag-
for the deuteron case andl1.5-2.0 fm - for the “'Be case. pjtyde of the local momenturk/, has been evaluated at 10
In the ZRA the vertex function is evaluated @f.=0. We  y, The direction ok., has been taken to be the same as that
observe that the dominant contributions to the DWBA am-g¢ o asymptotic momenturk,,. In this paper, the local
. . ct- il
plltuoiet C(t)r?qufI(/lo,Ln thz rleglon around the momeyg rek- momentaK; andk/; are evaluated in the same way. We can
evant to the MOJe’s. N see from Figs. 7, 8, and 9 that this choice of the local mo-
Figures 8 and 9 |I!ustrate the localizationgrof thegeu- menta is not generally justified. In tHEC case(low Z,), it
teron breakup reaction fo, =55 MeV, s_;md of fche Be leads to the momentgq,,. almost identical to those corre-
breakup react|on_foE_n:78 MeV, respectively. Histograms sponding to the asymptotic momenta. On the other hand, in
show the contributionsA|R(do)|=[R(do)| —|R(do—T)], the case off%Pb, for both reactions, the momerdg, cor-

. _ 71 .
with F_O'O.l fm, as a fu_nctlon 0fjo. Also shown are the responding to the AMA appear to be a better approximation
vertex functionsFo(go) .(SOI'd curve_$ and the_ momentdne 4, e momenta] which contribute to the process.
which enter the approximate transition amplitu@g@smbols.

We see in these two figures that the value§& gfq) sampled

by the exact transition amplitude come from the neighbor-
hood of the values relevant to the AMA models. However, it
appears that the exact DWBA results are closer to the ZRA In this paper, we have studied the validity of different
predictions, for which the absolute value of the vertex func-approximations to the postform DWBA transition amplitude
tion is larger than that for the AMA models. This means thatfor the Coulomb breakup of neutron halo nuclei. Test calcu-
the factorization of the vertex functida(q) out of the inte- lations were performed within commonly used approximate

IV. SUMMARY AND CONCLUSIONS
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DWBA models as well as within the exact DWBA. The ex- which enters the vertex function has been studied. It appears
act DWBA breakup amplitude is expressed in momentunthat the dominant contributions to the breakup processes
space as a three-dimensional integral and evaluated numedeme from the neighborhood of the asymptotic momenta
cally. Onc, relevant to the AMA models. However, these contribu-
Triple differential cross sections were calculated for thetions interfere destructively and the resulting transition am-
Coulomb breakup of deuteron dfC and?°%b, and of''Be  plitude can be very sensitive to the behavior of the vertex
on 2%pp, at the beam energy of 70 MeV/nucleon, for function in the region around these momenta. Consequently,
very forward angles. For both reactions the BTA cross secthe factorization of the vertex function out of the integral at
tions deviate from the exact DWBA calculations mosta point from the region yielding the dominant contributions
strongly. Qualitatively, the results of the ZRA, AMA, and to the process can lead to a significant error. This is the case
LMA models for the @,pn) reaction are similar to those for for the AMA and LMA models. In the case of the LMA
the 'Be breakup reaction. In the case of tlief{n) reaction, models, there is also uncertainty regarding the choice of the
the results of these models for the energy integrated crosffective local momentum. The ZRA and BTA cannot be
section differ from the exact DWBA calculations by justified even in the case that the factorization approximation
~5-7 %. In the case of thé'Be breakup reaction, the dif- works. The relative success of the ZRA in the present calcu-
ferences between the exact and approximate DWBA modelations appears to be a numerical coincidence.
are larger~12% for the ZRA and~20% for the AMA and In conclusion, the present calculations show that the com-
LMA. The results of the LMA and AMA models are similar monly used approximations to the DWBA amplitude for the
to each other. For both reaction the ZRA gives the breakugoulomb breakup of neutron halo nuclei are very suspecting.
cross sections closest in shape and magnitude to those calcsince the numerical evaluation of the exact DWBA ampli-
lated with the exact DWBA. tude is rather time consuming, it is desirable to find approxi-
The localization of the transition amplitude in momentummations that reduce the computational complexity.
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