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Exact and approximate postform distorted-wave Born approximation amplitudes
for the Coulomb breakup of neutron halo nuclei

M. Zadro*
Rudjer Bosˇković Institute, P.O. Box 180, 10002 Zagreb, Croatia

~Received 18 April 2002; published 4 September 2002!

The Coulomb breakup of neutron halo nuclei is considered within the framework of the postform distorted-
wave Born approximation~DWBA!. The quality of commonly used additional approximations to the DWBA
theory is investigated by comparing the approximate with the exact DWBA calculations. The exact DWBA
amplitude is expressed in momentum space as a three-dimensional integral and evaluated numerically. Calcu-
lations are presented for the Coulomb breakup of deuteron and11Be at very forward angles at the beam energy
of ;70 MeV/nucleon. The factorization approximation to the DWBA amplitude is studied and found to be
suspected.
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I. INTRODUCTION

Neutron halo nuclei are very weakly bound two-body s
tems consisting of a charged core, with normal nuclear d
sity, and a valence neutron~or pair of neutrons!, e.g., Refs.
@1–3#. The loosely bound valence neutron~s! extend far out
in space surrounding the core and form a diffuse halo
unique signature of such nuclei is the large total react
cross section@4,5#. The Coulomb breakup is a significan
reaction channel for highly charged targets@6–9#. The study
of the Coulomb breakup reactions provides informations
the structure of these nuclei.

There has been a number of different theoretical analy
both semiclassical and quantum mechanical, of the Coulo
breakup of neutron halo nuclei. In the first-order semiclas
cal perturbation theory of Coulomb excitation@10,11# the
breakup cross section is directly related to the electrom
netic transition matrix element, which contains informati
on the projectile ground state wave function. For examp
the one-neutron halo nuclei11Be and19C have been studied
in this way@8,9#. Various approaches have been used to t
into account higher order effects. The main methods in
semiclassical description of the breakup process are
coupled-channel calculations@12,13#, the direct numerical
integration of the time dependent Schro¨dinger equation for
the relative motion of the core and halo@14–20#, and explicit
inclusion of higher order terms@21,22#. In these semiclassi
cal approaches classical trajectories are used to describ
relative motion between the projectile and the target.

Another approach for the analysis of the Coulom
breakup reactions is a fully quantum mechanical treatmen
the postform distorted-wave Born approximation~DWBA!
theory @23#. The theory is first order in the interaction b
tween the core and valence particle but the interaction
tween the core and target is taken into account to all ord
However, in applications of this theory to the Coulom
breakup of neutron halo nuclei the finite-range transition a
plitude has not been calculated exactly. The additional
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proximations have been used, such as the Baur-Trautm
approximation@24# or the local momentum approximation
@25–27#, where the finite-range effects are included appro
mately.

Recently, an adiabatic theory of the Coulomb breakup
neutron halo nuclei has been developed@25,28#. It includes
the initial and final state interactions to all orders. The the
leads to an expression for the breakup amplitude simila
forms obtained using approximations to the DWBA theo
However, assumptions underlying the two theories are q
different @25#. While the adiabatic approach assumes that
citation of the projectile is to the low-energy continuum, t
DWBA assumes that excitation of the projectile is weak a
so needs be treated only to first order.

Several calculations of the Coulomb breakup of11Be and
19C, based on the DWBA with an effective momentum a
proximation, have been reported recently@25–27#. The re-
sults have been compared with those obtained within
adiabatic breakup theory. In most of the cases studied
two theoretical approaches produced similar results. Ho
ever, since the DWBA breakup amplitude has not be
evaluated exactly, conclusions suggested by such a com
son, regarding the assumptions made in the two theories
questionable.

In this paper, we reexamine approximate methods for
calculations of the Coulomb breakup of neutron halo nuc
in the framework of the postform DWBA theory. The theo
is applied to the deuteron, as an example of a loosely bo
two-body system, and to the one-neutron halo nucleus11Be.
The results of the exact DWBA calculations for the break
into very forward angles, at the beam energy
;70 MeV/nucleon, are presented and compared with th
obtained using different simplifying approximations. Com
parisons of the exact DWBA calculations with experimen
data, or with the results of other theories of the Coulom
breakup, are outside the scope of this work.

In Sec. II the theoretical formalism is given. Calculatio
are presented and discussed in Sec. III. Summary and
clusions are given in Sec. IV.

II. FORMALISM

We consider the reactionp1t→c1n1t, where the two-
body composite projectilep5c1n, of chargeZp , breaks up
©2002 The American Physical Society03-1
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into the charged fragmentc and the neutral particlen in the
Coulomb field of a targett, of chargeZt ; ~see, e.g., Refs
@25,26#!. The total angular momentum of the particlep is Jp ,
with projectionM p . The spins of the fragmentsc andn are
Jc andS, with projectionsMc ands, respectively. The targe
is assumed spinless. The internal wave functions of the
ticles are denoted byF(j), wherej are the internal coordi-
nates. The particle masses aremp5mc1mn andmt .

The coordinates used to describe the reaction are sh
in Fig. 1. The incident momentum of the projectile in th
center of mass~c.m.! frame of the projectile and target i
\K i . The momenta corresponding tor , R, r ct , andRn in the
final channel are\k, \K f , \kct , and \Kn , respectively.
The position vectors and the wave vectors satisfy the follo
ing relations:

r ct5R2ar , Rn5bR1gr , ~1!

kct5gK f2bk, Kn5aK f1k, ~2!

where

a5
mn

mc1mn
, b5

mt

mc1mt
, g512ab. ~3!

The interactions involved are the core-valence particle bi
ing potentialVnc(r ) and the core-target point Coulomb p
tential Vct(r ct).

The exactT-matrix element in the postform is given by

TMcs;M p
5^x (2)~kct ,r ct!FJcMc

~jc!e
iKn•RnFSs~jn!u

3Vnc~r !uCJpM p

~1 ! ~jc ,jn ,r ,R!&. ~4!

Here CJpM p

(1) (jc ,jn ,r ,R) is the full solution of the three-

body scattering problem with the systemp1t in the initial
channel and with outgoing spherical waves. T
x (2)(kct ,r ct) is the Coulomb distorted wave function wit
incoming spherical waves, describing thec-t relative motion
in the final state. SinceVnt50, the particlen is described by
the plane wave in the final state.

FIG. 1. Definition of the coordinate vectors used in the text.c, n,
and t represent the charged core, the neutral valence particle,
the target, respectively.
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In the DWBA the full solutionC (1) is approximated by
the product

CJpM p

(1) ~jc ,jn ,r ,R!'FJpM p
~jc ,jn ,r !x (1)~K i ,R!, ~5!

whereFJpM p
(jc ,jn ,r ) is the ground state wave function o

the projectile andx (1)(K i ,R) is the Coulomb distorted wave
describing the relative motion of the c.m. of the project
with respect to the target, with outgoing spherical waves. T
integral over the internal coordinates in Eq.~4! can be ex-
pressed as

^FJcMc
~jc!FSs~jn!uFJpM p

~jc ,jn ,r !&

5 (
lm jm

Sl j
1/2^JcMcj muJpM p&^ lmSsu j m&Fp

lm~r !. ~6!

HereSl j
1/2 is the usual spectroscopic amplitude andFp

lm(r ) is
the wave function of the relative motion of the fragmentsc
andn in the ground state of the projectilep,

Fp
lm~r !5 i lul~r !Ylm~ r̂ !, ~7!

where ul(r ) is the radial wave function andYlm( r̂ ) is the
spherical harmonic. In Eqs.~6! and~7!, l is the orbital angu-
lar momentum of the relative motion between particlesc and
n, andj is the total angular momentum of the particlen in the
ground state of the particlep5c1n.

Using Eq.~6! the T matrix can be written as

TMcs;M p
5 (

lm jm
Sl j

1/2^JcMcj muJpM p&^ lmSsu j m&Blm ,

~8!

where the reduced transition amplitudeBlm is

Blm5^x (2)~kct ,r ct!e
iKn•RnuVnc~r !uFp

lm~r !x (1)~K i ,R!&.
~9!

The triple differential cross section of the reaction is giv
by

d3s

dEcdVcdVn
5

2pmpt

\2Ki

1

~2Jp11! (
McsM p

uTMcs;M p
u2

3r~Ec ,Vc ,Vn!, ~10!

where r(Ec ,Vc ,Vn) is the three-body phase space fac
@29#,

r~Ec ,Vc ,Vn!5
mcmn\kc\kn

~2p\!6

3F mt

mn1mt1mn~kc2K0!•kn /kn
2G .

~11!

Here\K0 is the total momentum of the system, and\kc and
\kn are the momenta of the particlesc and n in the final

nd
3-2
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EXACT AND APPROXIMATE POSTFORM DISTORTED- . . . PHYSICAL REVIEW C 66, 034603 ~2002!
state. Substituting Eq.~8! into Eq. ~10! and carrying out the
spin projection summations one gets

d3s

dEcdVcdVn
5

2pmpt

\2Ki
(
j lm

Sl j

~2l 11!
uBlmu2r~Ec ,Vc ,Vn!.

~12!

A. Approximations to the DWBA theory

The calculation of the reduced transition amplitudesBlm
is quite difficult task because a six-dimensional integration
involved. Therefore, different additional approximatio
have been used, such as the zero-range approxima
~ZRA!, e.g., Ref.@30#, the Baur-Trautmann approximatio
~BTA! @31#, or the local momentum approximation~LMA !,
e.g., Refs.@32–34#. These approximate methods provide
separation of the amplitudeBlm into two factors, each in-
volving a three-dimensional integral.

1. Zero-range approximation

The ZRA is defined by@30#

Vnc~r !Fp
lm~r !5D0d~r !, ~13!

whereD0 is the usual zero-range constant,

D05E drVnc~r !Fp
lm~r !. ~14!

The effect of the ZRA isr ct→R, Rn→bR, so thatBlm be-
comes a three-dimensional integral,

Blm
ZRA5D0^x

(2)~kct ,R!eibKn•Rux (1)~K i ,R!&. ~15!

Thus, in the ZRA one assumes that the product of the th
scattering waves in the integral in Eq.~9! is constant over the
range ofVnc(r )Fp

lm(r ). The approximation cannot be just
fied for higher energies and heavier projectiles@28,34#.
Moreover, the ZRA implies that thec-t relative motion in the
projectile hass state only.

2. Baur-Trautmann approximation

Baur and Trautmann@31# have proposed to replace th
projectile-target relative coordinateR in the projectile dis-
torted wave by the core-target relative coordinater ct , i.e.,

x (1)~K i ,R!→x (1)~K i ,r ct!. ~16!

With this approximation~BTA! the reduced amplitude sepa
rates in the following way:

Blm
BTA5^eiKn•ruVnc~r !uFp

lm~r !&

3^x (2)~kct ,r ct!e
ibKn•rctux (1)~K i ,r ct!&. ~17!

It has been argued@24,31# that through this approximation
one takes into account, in a certain way, the fact that
projectile is polarized in the Coulomb field of the targ
nucleus. This approximation can also be looked upon as
03460
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placing the exact three-body wave function in Eq.~4! by the
productFJpM p

(jc ,jn ,r )x (1)(K i ,r ct).

3. Local momentum approximation

Another approximation scheme that leads to the factor
tion is the LMA @33,34#. The Coulomb distorted wave
x (1)(K i ,R) may be expanded about the pointr ct ,

x (1)~K i ,r ct1ar !5ear•“x (1)~K i ,r ct!, ~18!

where“ operates on the coordinater ct . In the LMA the
operator2 i“ is replaced by the local momentumK i8 in the
projectile-target potentialVpt(R), evaluated at some repre
sentative distanceR0. This approximation provides a facto
ization of the reduced amplitude,

Blm
LMA 5^ei [k2a(K i82K f )] •ruVnc~r !uFp

lm~r !&

3^x (2)~kct ,r ct!e
ibKn•rctux (1)~K i ,r ct!&. ~19!

Similarly, applying the LMA to the final channel Coulom
distorted wave, i.e.,

x (2)~kct ,R2ar !'e2 iakct8 •rx (2)~kct ,R!, ~20!

wherekct8 is the local momentum in the core-target potent
Vct(r ct), one obtains the following factorized form of th
reduced amplitude:

Blm
LMA 5^ei [k2a(kct8 2kct)] •ruVnc~r !uFp

lm~r !&

3^x (2)~kct ,R!eibKn•Rux (1)~K i ,R!&. ~21!

The validity of the LMA and the choice of the magnitude a
direction of the local momentum are discussed in Re
@25,26#. In the following, the LMA amplitudes of Eqs.~19!
and ~21! will be referred to as the ILMA~initial channel
LMA ! and FLMA ~final channel LMA! amplitudes, respec
tively.

4. Asymptotic momentum approximation

The distorted wave functionx (1)(K i ,R) can be written in
the form

x (1)~K i ,R!5eiK i•RD (1)~K i ,R!, ~22!

where D (1)(K i ,R) is a distortion function. Assuming tha
the distortion function does not change significantly over
range ofVnc(r )Fp

lm(r ), we can write

x (1)~K i ,R!5eiK i•(rct1ar )D (1)~K i ,r ct1ar !

'eiK i•(rct1ar )D (1)~K i ,r ct!

5eiaK i•rx (1)~K i ,r ct!. ~23!

Substituting Eq.~23! into Eq. ~9! gives

Blm
AMA 5^ei [k2a(K i2K f )] •ruVnc~r !uFp

lm~r !&

3^x (2)~kct ,r ct!e
ibKn•rctux (1)~K i ,r ct!&. ~24!
3-3
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TABLE I. Abbreviations used in the text for various approximations to the distorted-wave Born app
mation ~DWBA!.

Abbreviation Explanation

ZRA Zero-range approximation
BTA Approximation of Baur and Trautmann
LMA Local momentum approximation
ILMA Local momentum approximation to the distorted

wave in the initial channel
FLMA Local momentum approximation to the distorted

wave in the final channel
AMA Asymptotic momentum approximation
IAMA Asymptotic momentum approximation to the

distorted wave in the initial channel
FAMA Asymptotic momentum approximation to the

distorted wave in the final channel
EDWBA Exact distorted-wave Born approximation
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Similarly, assuming that the distorted wave function for t
exit channel can be approximated as

x (2)* ~kct ,r ct!5e2 ikct•(R2ar )D (2)* ~kct ,R2ar !

'e2 ikct•(R2ar )D (2)* ~kct ,R!

5eiakct•rx (2)* ~kct ,R!, ~25!

the transition amplitude becomes

Blm
AMA 5^eik•ruVnc~r !uFp

lm~r !&

3^x (2)~kct ,R!eibKn•Rux (1)~K i ,R!&. ~26!

Similar approximation to distortion function has been used
a distorted-wave description of knockout reactions, e.g., R
@35#. Equations~24! and ~26! can also be obtained in th
LMA by replacing the local momentaK i8 andkct8 in Eqs.~19!
and ~21! by their asymptotic valuesK i and kct . It may be
noted that the approximate amplitude~24! is identical to the
amplitude recently derived within the adiabatic model of t
Coulomb breakup reactions@28#. However, the underlying
physical picture is different@25#. In the following, the
asymptotic momentum approximation~AMA ! amplitudes of
Eqs. ~24! and ~26! will be referred to as the IAMA~initial
channel AMA! and FAMA ~final channel AMA! amplitudes,
respectively.

Abbreviations used in this paper for different approxim
tions to the DWBA breakup amplitude are explained
Table I.
03460
n
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B. Evaluation of the approximate transition amplitude

The common result of all these approximation scheme
that the transition amplitude separates in the following w

Blm'^eiqnc•ruVnc~r !uFp
lm~r !&

3^x (2)~kct ,r 8!eibKn•r8ux (1)~K i ,r 8!&. ~27!

The first factor in this equation is the so called vertex fun
tion and it involves the information about the internal stru
ture of the projectile. It can be expressed as

^eiqnc•ruVnc~r !uFp
lm~r !&5F~qnc!5Fl~qnc!Ylm~ q̂nc!,

~28!

where

Fl~qnc!54pE drr 2 j l~qncr !Vnc~r !ul~r !. ~29!

The amplitudes of Eqs.~15!, ~17!, ~19!, ~21!, ~24!, and~26!
differ only through the momentaqnc that appear in the vertex
function F(qnc). The expressions for these momenta a
summarized in Table II.

The second term in Eq.~27! contains the dynamics of th
breakup process. The same type of integral appears in
calculations of the bremsstrahlung cross sections where it
been expressed in terms of hypergeometric functions@36,37#.
Using the following expressions for the Coulomb distort
waves in the initial and final channel:
TABLE II. Momenta qnc which appear in the vertex functionF(qnc) for different approximation meth-
ods: the zero-range approximation~ZRA!, the Baur-Trautmann approximation~BTA!, the local momentum
approximations~ILMA and FLMA !, and the asymptotic momentum approximations~IAMA and FAMA !.

ZRA BTA ILMA FLMA IAMA FAMA

0 k1aK f k2a(K i82K f) k2a(kct8 2kct) k2a(K i2K f) k
3-4
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x (1)~K i ,R!5e2phpt/2G~11 ihpt!e
iK i•R

1F1@2 ihpt,1;i ~KiR2K i•R!#, ~30!

x (2)* ~kct ,r ct!5e2phct/2G~11 ihct!e
2 ikct•rct

1F1@2 ihct,1;i ~kctr ct1kct•r ct!#, ~31!

one obtains for the second factor

^x (2)~kct ,r 8!eibKn•r8ux (1)~K i ,r 8!&5e2p(hpt1hct)/2G~11 ihpt!G~11 ihct!I . ~32!

In this equationI is the bremsstrahlung integral given by@37,38#

I 52 lim
«→0

d

d«
$A~«! 2F1@2 ihpt ,2 ihct ;1;z~«!#%, ~33!

where

A~«!5
4p

~Q21«2!11 ihpt1 ihct
~Q21«222Q•K i22i«Ki !

ihpt~Q21«212Q•kct22i«kct!
ihct, ~34!

z~«!5
2~Q21«2!~Kikct1K i•kct!24~Q•K i1 i«Ki !~Q•kct2 i«kct!

~Q21«222Q•K i22i«Ki !~Q21«212Q•kct22i«kct!
, ~35!
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Q5K i2kct2bKn5K i2K f . ~36!

Here« is a real positive parameter. In Eqs.~30!–~34! hpt and
hct are the Coulomb parameters,

hpt5
ZpZte

2mpt

\2Ki

, hct5
ZcZte

2mct

\2kct

, ~37!

wherempt andmct are the reduced masses in the correspo
ing channels.

C. Transition amplitude in momentum space

The reduced amplitude of Eq.~9! can be expressed i
terms of momentum wave functions as a three-dimensio
integral. The Fourier transform of a Coulomb wave functi
x (1)(k i j ,r i j ) is defined by

f (1)~k i j ,qi j !5E dr i j e
2 iqi j •r i j x (1)~k i j ,r i j !, ~38!

x (1)~k i j ,r i j !5
1

~2p!3E dqi j e
iqi j •r i j f (1)~k i j ,qi j !.

~39!

Using the Fourier representations of the Coulomb wa
functions of Eqs.~30! and~31! the reduced amplitude can b
written as

Blm5
1

~2p!3E dQiF@k2a~Qi2K f !#

3f (2)* ~kct ,Qi2K f1kct!f
(1)~K i ,Qi !, ~40!
03460
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where F(q), q5k2a(Qi2K f), is the vertex function de-
fined by Eq.~28!. We note that the vertex function now ap
pears within the integrand while it enters as a multiplicat
factor in Eq.~27! for the approximate DWBA amplitude.

The Coulomb wave in momentum space was derived
Guth and Mullin@39#,

f (1)~k i j ,qi j !524pe2ph i j /2G~11 ih i j !

3 lim
«→0

d

d« H @qi j
2 2~ki j 1 i«!2# ih i j

@ uqi j 2k i j u21«2#11 ih i j
J .

~41!

It can be expressed as

f (1)~k i j ,qi j !5w (1)~k i j ,qi j !28ph i j ki j e
2ph i j /2G~11 ih i j !

3 lim
«→0

H @qi j
2 2~ki j 1 i«!2#211 ih i j

@ uqi j 2k i j u21«2#11 ih i j
J . ~42!

Here the first term is the Coulomb asymptotic state in
momentum representation@40#. It is a d-function-type term
with support at the pointqi j 5k i j .

1. Factorization approximation

We now assume that the dominant contribution to the
tegral in Eq.~40! comes from the region around a pointQi

5Qi
0 and that the vertex functionF(q) is the slowly varying

function ofQi so that it can be factored out of the integral
the pointqnc5k2a(Qi

02K f). The transition amplitude then
reads
3-5
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Blm'Blm
0 5F@k2a~Qi

02K f !#
1

~2p!3E dQi

3f (2)* ~kct ,Qi2K f1kct!f
(1)~K i ,Qi !

5F~qnc!^x
(2)~kct ,R!eibKn•Rux (1)~K i ,R!&. ~43!

The exact transition amplitude can be rewritten as

Blm5Blm
0 1DBlm , ~44!

where

DBlm5
1

~2p!3E dQi$F@k2a~Qi2K f !#

2F@k2a~Qi
02K f !#%

3f (2)* ~kct ,Qi2K f1kct!f
(1)~K i ,Qi !. ~45!

If the Coulomb distortion is weak, then the Coulomb d
torted wavesf (1)(K i ,Qi) and f (2)* (kct ,Qi2K f1kct) in
Eq. ~40! are sharply peaked atQi5K i andQi5K f , respec-
tively. Consequently, we assume that the most important c
tributions to the integral in Eq.~40! come from the regions
around these two points. If we chooseQi

05K i in Eq. ~43!,
then qnc5k2a(K i2K f), and we obtain the IAMA ampli-
tude of Eq.~24!. Alternatively, if we approximateQi

0 by K f

in Eq. ~43!, thenqnc5k, and we obtain the FAMA amplitude
of Eq. ~26!. Similarly, if we choose forQi

0 the value corre-
sponding to an effective momentum in the entrance chan
(K i8), or in the exit channel (kct8 ), for which the integrand in
Eq. ~40! is large, we obtain the ILMA and FLMA amplitude
of Eqs.~19! and ~21!, respectively. In general, the ZRA an
BTA cannot be obtained from Eq.~43! with a reasonable
choice ofQi

0 . The ZRA is equivalent to theaQi
05k1aK f

approximation and the BTA corresponds to theaQi
050 ap-

proximation to Eq.~43!.
Thus, the approximations which lead to the amplitudes

Eqs.~15!, ~17!, ~19!, ~21!, ~24!, and~26! are equivalent to the
assumption that the vertex functionF(q) in Eq. ~40! can be
replaced by the value given by the effective momentumqnc
specified in Table II. Numerical tests of the accuracy of th
approximations are presented in the following section.

III. NUMERICAL RESULTS

In this section the results of calculations with differe
approximate DWBA methods are compared with those
tained with the exact DWBA~EDWBA!. The calculations of
the exact DWBA transition amplitude was performed by u
ing Eqs.~43!–~45!. The approximate amplitudeBlm

0 in Eq.
~44! was calculated within the ZRA or FAMA model. After
suitable transformation of the integral in Eq.~45! the inte-
gration was carried out numerically using the computer c
DCUHRE @41#. The procedure of integration will be describe
in more detail elsewhere.

The triple differential cross sections were calculated
the deuteron breakup on12C and208Pb nuclei at the deutero
03460
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energy of 140 MeV, and for the11Be breakup on208Pb at the
beam energy of 72 MeV/nucleon, for very forward angle
Localization of these breakup processes in moment
which enters the vertex function was investigated num
cally. The results are analyzed and the validity of the fact
ization approximation is discussed.

The deuteron breakup reaction was chosen because
deuteron is a representative example of a weakly bound t
body system with a charged core and a neutral valence
ticle. It has been shown@28# that the DWBA with the BTA
underestimates the (d,pn) breakup cross sections at bea
energies*30 MeV/nucleon. Furthermore, it has been a
gued @28# that the zero-range approximation to the DWB
breakup amplitude cannot be justified for these energies
ther in the case of the (d,pn) reaction or for halo nuclei. The
Coulomb breakup of the one-neutron halo nucleus11Be has
been studied within the local momentum approximations
the DWBA, ILMA @25#, and FLMA @26#, as well as within
the BTA @26#. The ILMA and FLMA gave results that are
similar to those obtained within the adiabatic breakup theo
and consistent with experimental data@25,26# while the BTA
failed to explain the data@26#.

A. The „d,pn… reaction

The triple differential cross sectionsd3s/dEpdVpdVn
were calculated as a function of the proton energyEp , for
several pairs of very forward anglesup and un . @In this

FIG. 2. Triple differential cross sections as a function of t
proton energyEp for the (d,pn) breakup atEd5140 MeV, up

51°, andun50°, ~a! on a 12C target and~b! on a 208Pb target. The
curves represent the EDWBA~thick solid!, the BTA ~dotted!, the
ZRA ~thin solid!, the IAMA ~thick dash dotted!, and the FAMA
~thick dashed! calculations.
3-6
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section, in the case of the (d,pn) reaction, the projectile
core, and valence particle are denoted byd ~deuteron!, p
~proton!, and n ~neutron!, respectively.# The calculations
were performed using the Hulthe´n vertex function given ex-
plicitly in Ref. @31#. The local momentaK i8 andkct8 , used in
the ILMA and FLMA calculations, were evaluated at 10 f
with the directions being the same as those of the asymp
momentaK i andkct , respectively.

Figure 2 shows the cross sections for12C and 208Pb tar-
gets at Ed5140 MeV, up51°, and un50°. The thick
curves show the breakup cross sections calculated using
EDWBA amplitude. The results obtained within the appro
mate DWBA methods are represented by the thin cur
~ZRA!, thick dash-dotted curves~IAMA !, thick dashed
curves~FAMA !, and dotted curves~BTA!. It can be noted
that the results of the ZRA and AMA methods are close
the results obtained with the exact DWBA while the BT
underestimates them considerably. The effects of the z
range and asymptotic momentum approximations to
DWBA in the energy integrated cross sections are 5%
6 –7 %, respectively, for both targets. The results of
LMA calculations ~not shown in this figure! are similar to
those of the AMA.

The ratios of the ZRA, LMA, and AMA to the EDWBA
cross sections are shown in Fig. 3 as a function of the pro
energy. We observe that the IAMA~ILMA ! and FAMA
~FLMA ! results are close to each other and that the Z
method yields the best overall agreement with the EDW

FIG. 3. Ratios of the approximate to the exact DWBA cro
sections as a function of the proton energyEp for the (d,pn)
breakup atEd5140 MeV, up51°, andun50°, ~a! on a 12C target
and ~b! on a 208Pb target. The curves compare the IAMA~thick
dash dotted!, the FAMA ~thick dashed!, the ILMA ~thin dash dot-
ted!, the FLMA ~thin dashed!, and the ZRA~thin solid! results.
03460
tic

the
-
s

o

o-
e
d
e

n

A

calculations. In the12C case, the results of the IAMA an
FAMA are nearly identical to the results of ILMA an
FLMA, respectively. Similar results are obtained for th
other angles studied.

B. 208Pb„11Be,10Ben…208Pb reaction

The bound state of the11Be was assumed to have a 2s1/2
neutron coupled to the 01 10Be core with a binding energy
of 504 keV. The corresponding single particle wave functi
was calculated from a Woods-Saxon potential with rad
and diffuseness parameters 1.15 fm and 0.5 fm, respectiv
The depth of the potential was adjusted to reproduce
binding energy. The spectroscopic factor was set to un
throughout the calculations.

The triple differential cross sections were calculated a
function of the neutron energy for a few pairs of forwa
angles of the outgoing particles. The results foruc50°, un
52°, anduc51°, un50° are presented in Fig. 4. The loc
momentaK i8 and kct8 , used in the LMA calculations, were
evaluated in the same way as for the (d,pn) reaction. The
results of the FLMA and FAMA~not shown in this figure!
are almost identical to the results of the ILMA and IAMA
respectively.

Figure 5 shows the ratios of the approximate to the E
WBA cross sections as a function of the neutron energyEn ,
for the same angles as in Fig. 4. We can see that the erro
the approximate DWBA models can be significant. Aga

FIG. 4. Triple differential cross sections as a function of t
neutron energyEn for the 208Pb(11Be,10Ben)208Pb reaction at the
beam energyE0572 MeV/nucleon,~a! at uc50° andun52°, and
~b! at uc51° andun50°. The curves compare the exact DWB
~thick solid!, the BTA ~dotted!, the ZRA ~thin solid!, the IAMA
~thick dash dotted!, and the ILMA~thin dash dotted! results.
3-7
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the ZRA reproduces the shape and magnitude of the
WBA triple differential cross sections better than the oth
models. The effect of the ZRA in the energy integrated cr
sections is;12%, while the effects of the AMA and LMA
are;20%, and that of the BTA is;27%.

C. Validity of the factorization approximation

In order to clarify these results, calculations were p
formed to investigate the localization of the DWBA amp
tude in momentumq which enters the vertex functionF0(q).
To this end the following quantities have been introduced

FIG. 5. Ratios of the approximate to the exact DWBA cro
sections as a function ofEn for the 208Pb(11Be,10Ben)208Pb reac-
tion atE0572 MeV/nucleon,~a! at uc50° andun52°, and~b! at
uc51° andun50°. The curves compare the BTA~dotted!, the ZRA
~thin solid!, the IAMA ~thick dash dotted!, and the ILMA~thin dash
dotted! calculations.

FIG. 6. Cutoff functionf (q0 ,G;q) used in test calculations o
the ratiosR(q0) ~solid curve! and DR(q0) ~dotted curve!, as a
function of q, with q050.1 fm21 andG50.02 fm21.
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R~q0!5
B00

q0

B00
~46!

and

DR~q0!5R~q0!2R~q02G!5
DB00

q0

B00
. ~47!

HereB00
q0 denotes the transition amplitude obtained by m

tiplying the integrand in Eq.~40! by the near-rectangula
cutoff function f (qo ,G;q), shown by the solid curve in Fig
6, whereG is the width of the smooth cutoff region. Th
amplitudeDB00

q0 corresponds to the cutoff function shown b
the dotted curve in Fig. 6. If the contribution to the transiti
amplitude comes from a regionqa<q<qb , thenR(q0)50
for q0,qa2G, R(q0)51 for q0.qb , andDR(q0)50 for
q0,qa2G or q0.qb1G. Thus, the ratioDR(q0) is a mea-
sure of the contribution to the transition amplitude in t
regionq;q0.

Figure 7 shows the ratiosuDR(q0)u, with G50.02 fm21,
~a! for the case of the12C(d,pn)12C reaction, as a function
of q0 and the energyEp , and ~b! for the case of the

FIG. 7. Localization inq of the contributions to the transition
amplitude.~a! RatiosuDR(q0)u as a function of the momentumq0

and proton energyEp for the 12C(d,pn)12C reaction atup51° and
un50°. ~b! RatiosuDR(q0)u as a function of the momentumq0 and
neutron energyEn for the 208Pb(11Be,10Ben)208Pb reaction atuc

50° andun52°. The calculations useG50.02 fm21. Also shown
are the momentaqnc relevant to the approximate models: IAMA
~solid curves!, FAMA ~dashed curves!, ILMA ~dotted curves!, and
FLMA ~stars!.
3-8
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208Pb(11Be,10Ben)208Pb reaction, as a function ofq0 and the
energy En . We see that for a given energyEp (En) the
contributions to the the transition amplitude come mos
from a narrow range of momentaq. This reflects the local-
ization of the integrand in Eq.~40! in momentumQi . Also
shown in this figure are the momentaqnc that enter the ver-
tex function in the AMA and LMA models. The moment
corresponding to the BTA are relatively large,;1 –2 fm21

for the deuteron case and;1.5–2.0 fm21 for the 11Be case.
In the ZRA the vertex function is evaluated atqnc50. We
observe that the dominant contributions to the DWBA a
plitude come from the region around the momentaqnc rel-
evant to the AMA models.

Figures 8 and 9 illustrate the localization inq of the deu-
teron breakup reaction forEp555 MeV, and of the11Be
breakup reaction forEn578 MeV, respectively. Histogram
show the contributionsDuR(q0)u5uR(q0)u2uR(q02G)u,
with G50.01 fm21, as a function ofq0. Also shown are the
vertex functionsF0(q0) ~solid curves! and the momentaqnc
which enter the approximate transition amplitudes~symbols!.
We see in these two figures that the values ofF0(q) sampled
by the exact transition amplitude come from the neighb
hood of the values relevant to the AMA models. However
appears that the exact DWBA results are closer to the Z
predictions, for which the absolute value of the vertex fun
tion is larger than that for the AMA models. This means th
the factorization of the vertex functionF(q) out of the inte-

FIG. 8. Histograms ofDuR(q0)u, usingG50.01 fm21, for the
deuteron breakup process atup51° and un50°, for Ep

555 MeV, ~a! on 12C and ~b! on 208Pb. Also presented~solid
curves! is the vertex functionF0(q0) calculated for the Hulthe´n
deuteron wave function. The symbols show the momentaqnc

probed by the approximate transition amplitudes.
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gral in Eq.~40!, at a point from the region yielding dominan
contributions to the integral, can lead to a poor approxim
tion. Also evident in these figures is a strong interference
the momentum region contributing to the breakup amplitu
Thus, one may expect a significant sensitivity of the break
amplitude to the nonconstancy of the vertex function in t
region.

In the application of the FLMA model to the Coulom
breakup of neutron rich nuclei, e.g., Refs.@26,27#, the mag-
nitude of the local momentumkct8 has been evaluated at 1
fm. The direction ofkct8 has been taken to be the same as t
of the asymptotic momentumkct . In this paper, the loca
momentaK i8 andkct8 are evaluated in the same way. We c
see from Figs. 7, 8, and 9 that this choice of the local m
menta is not generally justified. In the12C case~low Zt), it
leads to the momentaqnc almost identical to those corre
sponding to the asymptotic momenta. On the other hand
the case of208Pb, for both reactions, the momentaqnc cor-
responding to the AMA appear to be a better approximat
to the momentaq which contribute to the process.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have studied the validity of differe
approximations to the postform DWBA transition amplitud
for the Coulomb breakup of neutron halo nuclei. Test cal
lations were performed within commonly used approxim

FIG. 9. Histograms ofDuR(q0)u, usingG50.01 fm21, for the
11Be breakup on208Pb, for En578 MeV, ~a! at uc50° and un

51°, and~b! at uc51° andun50°. The solid curves represent th
vertex functionF0(q0) for 11Be. The symbols show the momen
qnc probed by the approximate transition amplitudes.
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M. ZADRO PHYSICAL REVIEW C 66, 034603 ~2002!
DWBA models as well as within the exact DWBA. The e
act DWBA breakup amplitude is expressed in moment
space as a three-dimensional integral and evaluated num
cally.

Triple differential cross sections were calculated for t
Coulomb breakup of deuteron on12C and 208Pb, and of11Be
on 208Pb, at the beam energy of;70 MeV/nucleon, for
very forward angles. For both reactions the BTA cross s
tions deviate from the exact DWBA calculations mo
strongly. Qualitatively, the results of the ZRA, AMA, an
LMA models for the (d,pn) reaction are similar to those fo
the 11Be breakup reaction. In the case of the (d,pn) reaction,
the results of these models for the energy integrated c
section differ from the exact DWBA calculations b
;5 –7 %. In the case of the11Be breakup reaction, the dif
ferences between the exact and approximate DWBA mo
are larger,;12% for the ZRA and;20% for the AMA and
LMA. The results of the LMA and AMA models are simila
to each other. For both reaction the ZRA gives the brea
cross sections closest in shape and magnitude to those c
lated with the exact DWBA.

The localization of the transition amplitude in momentu
u

K
to

v.

ys

B

ys
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which enters the vertex function has been studied. It app
that the dominant contributions to the breakup proces
come from the neighborhood of the asymptotic mome
qnc , relevant to the AMA models. However, these contrib
tions interfere destructively and the resulting transition a
plitude can be very sensitive to the behavior of the ver
function in the region around these momenta. Conseque
the factorization of the vertex function out of the integral
a point from the region yielding the dominant contributio
to the process can lead to a significant error. This is the c
for the AMA and LMA models. In the case of the LMA
models, there is also uncertainty regarding the choice of
effective local momentum. The ZRA and BTA cannot b
justified even in the case that the factorization approximat
works. The relative success of the ZRA in the present ca
lations appears to be a numerical coincidence.

In conclusion, the present calculations show that the co
monly used approximations to the DWBA amplitude for t
Coulomb breakup of neutron halo nuclei are very suspect
Since the numerical evaluation of the exact DWBA amp
tude is rather time consuming, it is desirable to find appro
mations that reduce the computational complexity.
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