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One-body overlap functions, equations of motion, and phenomenological potentials
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One-body overlap functions play an important role for the description of nuclear structure and nuclear
reactions. Equations of motion for the one-body overlaps, based on particle-only, hole-only, and particle-hole
approaches, are studied. A given overlap function is shown to satisfy four differentd8aeolike equations,
all of which can be derived in the framework of the Feshbach projection operator formalism. Approximating
the relevant potential by a local potential is only valid in the particle-hole approach. Previously proposed
one-body functions, which can be derived from the overlap functions, are also considered. It is argued that the
latter do not satisfy a Schdinger-like equation with an approximately local potential.
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[. INTRODUCTION models such as the cluster model or the Feshbach general-
ized optical mode[2,7]. However, the situation is subtle as
Overlap functions play an important role in the descrip-we show through a study of the properties of the various
tion of quantum-mechanical many-body systems. They aréunctions in the limit of a simple two-component model
obtained by integrating a state of a many-particle systengomprised of am-body cluster plus a single nucleon. Irre-
multiplied by a state of a subsystem with fewer particles ovespective of the question of whether the potentials involved in
the coordinates of the latter. In the context of nuclear physthe equations are local or not, the alternative functions ex-
ics, where extensive experimental data shows that singldlibit interesting properties. For example, they can be used to
particle states correspond to physical reality, one-body overnvestigate the goodness of shell closures in even-even nu-
lap functions have been widely used and thoroughly studiegl€i [8]-
[1]. One-body overlaps associated with bound many-body The dichotomy between the particle-hole and particle-
states are also called spectroscopic amplitudes and thely approaches to describing single-particle features of
norms are known as spectroscopic factors. The one-bodjuclear structure has motivated the work presented here. To
overlap of a scattering state with a bound ground state of &harpen the question under consideration we show in Fig. 1 a
smaller system can be identified with the Feshbach generagomparison of a spectroscopic amplitude obtained from a
ized optical-model wave functiof2]. cluster-model calculatiorf9] with a single-particle wave
In their 1991 review 3], Mahaux and Sartor argue that it function calculated in the framework of a simple potential
is the one-body overlap functions, rather than alternativénodel. The spectroscopic amplitude shown describes the
functions such as the natural orbitals or the maximum-overlap of the’Be+ p configuration with the ground state of

overlap orbitals, which provide a theoretical foundation for 0.6 : :

empirical single-particle states. Since analysis of direct one-

nucleon transfer reactions indicate that the one-body overlap 05 L A —r¢(r)

functions of low-lying single-particle excitations can be gen- ’ A Y

erated from a single-particle model, it becomes plausible to / P

identify the corresponding potential with the nuclear mean 0.4 - ! ¥y

field. Mahaux and Sartor investigate this point in some detail o I

using the particle-hole formalism. 503 [ 7
Other authors prefer to use alternative one-body functions - .'

which can, however, be derived from the one-body overlaps 02 r 7

advocated by Mahaux and Sartor. In the context of the clus-

ter model[4] and cluster radioactivityderivedfunctions are 0.1 H .

introduced which are nearly complete in the space of particle

(or hole states. One-body overlap functions, in contrast, re- 0.0 L ' ' L

quire the full particle-plus-hole space for completenigss 6 3 6 9 12 15

This and normalization differenc§s,6] suggest that it is the r(fm)

derived functions that satisfy Sclinger-like equations FIG. 1. Comparison of a one-body overlap functiégr) cal-

with a (nearly local potential rather than the one-body over- ¢jateq in a cluster modéb] with single-particle wave functions
lap functions the_mselves. Indeed, the equations fo_r the ON&y. (r) and y(r) obtained from simple potential-model approaches
body overlaps will take a very nonlocal form in particle-only yhich employ Woods-Saxon potentials. The functignwas calcu-
lated with the parametrization used by Bark&®] and i, refers to
the parameter set of Tombrel[@1]. All three calculations are nor-
*Electronic address: escher@triumf.ca malized to the spectroscopic factor obtained in the cluster-model
Electronic address: jennings@triumf.ca approach.
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8B (for channel spifl =2). The cluster model calculation is whereW3 , and ¥y’ denote wave functions of nuclei with
fully microscopic and uses a two-body potential. TheA—1 andA nucleons, respectively. In Dirac notation, the
potential-model calculation is macroscopic; a Woods-Saxomne-body overlap takes the following form:

potential is used with parameters taken from REf§] and

[11], respectively. The normalization of the single-particle

wave function was adjusted to agree with the norm of the A n m

spectroscopic amplituclje, the spegtroscopic factor. Note that Fnn(1) =W a-[a(r)[¥3). @
the proper norm for the single-particle wave function cannot

be calculated in the simple potential model and has to be i ) N .

taken from a microscopic approafi, here provided by the Here a(r) [a'(r)] is an annihilation(creation operator
cluster model. We find very good agreement between the tw¥hich destroysicreates a nucleon at positiom and obeys
calculations. For the case shown here we can conclude thHt€ usual anticommutation relations. Often the reference
the spectroscopic amplitude does indeed satisfy a “Schrétate¥y is understood and the superscipand subscripm
dinger equation with a local potential. This is surprisingare dropped from the notation, iéh,(r)— ¢n(r). The spa-
since a local potential does not arise naturally in the clustetial dependence o&ﬁm(r) is related to the properties of the
model. single-particle orbital of theAth nucleon in the larger sys-

It is the purpose of the present paper to elucidate theem. For a givenA-body state, there are many one-body
formalisms underlying these two approaches and their relegverlap functions, namely, one for each excited state of the
tionship to each other. In particular, we will address the questA—1)-body nucleus. Given the structural information on
tion of why the nuclear structure features encapsulated in ththe (A—1)-body system that enters the wave functions
functions shown in Fig. 1 agree so well with each other,&’} . the one-body overlap functions completely determine
despite some quite dramatic differences in the actual calcihe wave function®'Y'. The one-body overlaps can also be
lations. Is this agreement coincidental or can we identify sed to evaluate matrix elements of one-body operators be-
a_pproach these issues by considering_ several sets. of eqUppendix A). When Wh_ and W7 refer to bound states,
tIOI’IS.VIVhICh the one—body ove_r!ap functions must satisfy. Wehen the overlam’)ﬁm(r) is also called a spectroscopic ampli-
specifically show that, in addition to a set of nonlocal €4Ua% 4 and the associated integBi,= [ dr| dnm(r)|? is the

tions originating from a particle-only or hole-only approach,We”_kn0Wn and frequently used spectroscopic fadth].

one can derive equations which contain potentials that arg o quantityS, ., provides a measure of the structural simi-

approximately local. The latter set of equations requires Iﬁarity of the nth excited A—1)-body state and an

Enac:':ilglr?}?)?lt?\eagr?ssgg ' g\r/\ee”;l/a;l%urz dpigtfjlsbslgdeigu;ggnl? IOA_ 1)-body subcluster of the fulk-nucleon system.
y P o i The one-body overlap functiong,(r) associated with the
Sec. Il we then explore properties of several auxiliary func-

; . ! . . different excited states of theA(-1)-body system are not
tions associated with one-body overlaps. We discuss reallstll%de endent of each other. Thev are related by a model-
nuclear spectra in order to identify low-lying weak states. P ‘ Y Y

which cannot be easily explained in a simple potentialdependent sum ruleL3] and, moreover, they satisfy a set

model. We argue that theéerivedfunctions associated with of complicated cogp.led dlffe_r ential Integr al equations
. . ; .11,5,14—18. For obtaining equations of motion which are
these states cannot satisfy a simple set of equations wi . . .
X ) . decoupled, one has essentially two different methods avail-
local potentials. To illustrate the formalism we employ, we

consider two simple models in Sec. IV: We discuss noninter-able' One can employ the full particle-plus-hole space and

acting particles in a potential well and the spatially uniform study the combined particle-hole propagator. The resulting

system. Our conclusions are presented in Sec. V. In Appen(—:-_quatlons of motion contain a self-energy operator which has

dix A we show how the one-body overlap functions arise® complicated form and requires energy averaging before a

. ) relation to the nuclear mean field can be established. This
naturally when calculating expectation values of One'bOdyapproach will be outlined in the next subsection. Alterna-

operators and in Appendix B we explore the properties of th% L . .
natural orbitals which play an important but hidden role |ve_Iy, It is pos_5|b|e to separate particle and hole states by
throughout the paper. The Hamiltonians associated with thgrqectmg on either the. particle or hole subspace. This yields
particle-only, hole-only, and particle-hole approaches studie&(:"p"’lralte sets of equations, one for ea}ch _subspace. The _Iatter
here are related to each other in Appendix C approach was u;ed in Feshbach’s Qerlvatlon of a generalized
' optical potential in the context of his theory for nuclear re-
Il. ONE-BODY OVERLAP FUNCTIONS AND EQUATIONS actions[2,7]. It also plays an essential role in the cluster
OF MOTION model[4]. We will discuss the projection-operator method in
Sec. Il B. By considering both approaches it is possible to set
The simplest type of overlap function is a one-body over-up four different, formally exact, equations for each one-

lap, which can be written as followd]: body overlap. The question to be addressed is not “which set
A1 of equations is correct?”—they all are. The question to be
A nx addressed is rather “which formalism is most useful in a
r=vA-1 dry v (ST N ) :
$nm(") .1:[1 Waza(r A-1) given context and which result corresponds most closely to a

. particular approximation scheme, for example, the nuclear
XWA(ry, oo Fa-1al), (1 mean field or the cluster model?”

034313-2



ONE-BODY OVERLAP FUNCTIONS, EQUATIONS ©. .. PHYSICAL REVIEW C 66, 034313 (2002

A. Mass operator and equations of motion #2
) L (EA+1 EA)+_V2 ¢A+1(r)
The formally simplest approach to obtaining a decoupled
equation of motion for the one-body overlap functions makes
use of the propagator method. It involves the full particle- _f dr'S(r.r A+l = 9
hole propagator and the self-energy or mass operator. We 21" Bm) dom (1) =0, ©

start with the time-ordered particle-hole Green’s function,

Fourier-transformed over the time compong&it7] and the corresponding equation for the hole states is obtained
with the replacements E,"'—Ef)=(E;—EL 1) and
G(r,r';E)=Gp(r,r";E)+Gy(r,r';E), (3 @hit(r)=¢ho(r)*. The squared norm of a discrete particle

or hole statepy,(r), the spectroscopic fact@,,,, can also
be expressed in terms of the self-enedyr,r’;E,) (see
aT(r’)Itﬁg), Refs.[3,18]). With the normalized one-body overlap func-

(4 tion (1) = dnm(r)/\/Sam ONe obtains

1oy — /00
Gp(r,r ,E) <¢A|a(r)E_(H_E8)+ €

n(r.r';E)=(yala’(r )E+(I:|——E§)—|ea(r)|¢A>'

d
(5) {1—d—Ef drdr’ ot (r)*
Here |¢2> is the (normalized Heisenberg ground state for -1
the A-particle system anEé the corresponding eigenvalue, X2(r,r' E)¢A+1( r') (10
a(r) [a'(r)] is a nucleon annihilatiorfcreation operator, E=E

andH denotes the nuclear many-body Hamiltonian. The full .
Green's functiorG(r,r'; E) represents both particle and hole for the particle states and analogously for t+he hale states.
propagation in the many-body system. Inserting a completQ:(z\r theAh?Ie state/;erl'g is necessary io replc’Eﬁ Eo) by

set of (A+1) [(A—1)]-body eigenfunctions of the Hamil- (Eo—Em ) andﬁ (r) ?y bmo(N)*-] N
tonianH into Eq.(4) [Eq. (5)], we obtain the Lehmann rep- Introducmg the modified mass operatobA(r,r';E)

: ol =>(r,r";E+ie) (valid for real energyE) allows one to
resentation of the particle-hole propagator work with a quantity that can be analytically continued from

the real axis into the upper plane of the complex energy
G(r,1;E)= E SAFI(r) A+11 — ATL(pryx, plane. With this operator, the equation for the overlap func-
E—(E, —Eg+tie tions becomes

(6)

ﬁZ
. 5m+ﬁV?)¢m<r>—J dr” M(r,r";Ep) ¢in(r') =0,
Gh(r,r;E)=2 ¢ho(r')* Bmol1)- (11

E—(Ef—EL Y —ie
(77 where&,=(EA" - Eg\) D)= P (r) holds for particle
states and&,=(Ef—EAS 1), ¢m(r)=dho(r)* holds for
The ¢(r) are unambiguously identified by the requirementhole states. The above. equation of motion defines a Hamil-
that the complete set inserted in E¢) [Eq. (5)] be com-  tonian
prised of eigenfunctions dfl—they are the one-body over-
lap functions introduced in the preceding section.
The equation of motion for the particle-hole propagator

can be written as

hZ
HM(r,r’)z—ﬁvfé(r—r’)JrM(r,r’;E). (12

Thus, the modified mass operator plays a role similar to that

#2 5 of a potential in a single-particle problem. Equatidd) is
E+%Vr)6(r,r’;E)—f dr"(r,r";E)G(r",r";E) an elegant, formally exact, one-body equation for the one-
body overlap functions—the complexities of the many-body
=5(r—r'), (8) system are contained iM(r,r’;E): The influence of the

nuclear medium leads to a nonlocal, energy-dependent, com-

where 2 (r,r"”;E) denotes the mass operatéor “self- plex form for this operator. Usually, the mass operator is
energy”), which describes the interaction of the propagatinggenerated perturbatively, which yields—to lowest order—the
particle or hole with all the other particles or holes in the Hartree-Fock approximation.
medium. It is also related to the Green’s function by Dyson’s The above development treats the particle and the hole
equation[3,17]. states which are built on a giveabody reference statd ,)

Inserting the Lehmann representation into E8), one  on equal footing and yields bound as well as elastic scatter-
obtains an equation of motion for the one-body overlap funcing overlap functions. This is also what is required of the
tions[3,18]. For the particle states it takes the form nuclear mean field—that it be able to simultaneously de-
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scribe particle and hole states, bound and scattering statdsach in his work on the generalized optical potentfl In
Equations(11) and(12) above seem to imply that the modi- this approach, the total many-body wave function is parti-
fied mass operatoM(r,r’;E) can be identified with the tioned into an “open-channel” segment, i.e., a part that is of
nuclear mean field. Such conclusion, however, is probleminterest for studying a particular phenomenon, and a
atic, since the solutions of Eq(11), which contains “closed-channel” segment, the remaining part of the wave
M(r,r";E), include states that cannot be easily described irffunction. By eliminating the closed channels, a Scimger
a mean-field approach. This applies in particular to certairequation is obtained for the open channels, and an effective
low-lying states in the spectra ofA¢-1)-nucleon systems Hamiltonian can be derived, which in turn can be used to
adjacent to nuclei for which the independent-particle modebnalyze various aspects of the nuclear many-body problem.
predicts a closed-shell structure. These states have thhe formalism is quite general. The resulting equations de-
“wrong” quantum numbers, i.e., quantum numbers that arepend only on the existence of an appropriate projection op-
not compatible with a description of the state as a hole oerator, not on an explicit realization thereof. We make use of
particle with respect to the neighboring closed-siebody  the flexibility of this technique and construct three different
configuration. The associated spectroscopic factors for ongsrojection operators which allow us to derive three different,
nucleon transfer to/from thA-body ground state are small. formally exact, equations of motion for one-body overlap
For example, the 5/2 state at 5.270 MeV and the 17Ztate  functions—one describing particle states, one for hole states,
at 5.299 MeV in*®N and the 1/2 state at 3.104 MeV id’/E and one which applies to both. The expressions we obtain
have associated overlaps that can be obtained from the maglarify the relationships between the particle-only, hole-only,
operator approach but not from an independent particlend particle-hole approaches, and they highlight the limita-
model. In the independent particle model, the ground state dfons of the former two. The fact that all three sets of equa-
180 is a closed-shell configuration with the,(, Ops,, and  tions can be derived in the projection operator formalism
0py,, orbitals completely filled. In this picture, thEF 5/2" demonstrates that these limitations are defined by the chosen
ground state, the 172state at 0.495 MeV, and the 3/Ztate ~ model space, not by the formalism employed.
at 5.000 MeV can be easily understood as an additional pro- We first derive equations of motion for one-body overlaps
ton placed in the 8s,, 1S5, or 0ds, orbitals, respectively. Which correspond to particle states. We start with the Schro
Similarly, the ®N 1/2~ ground state and the 372state at dinger equation for theA+ 1)-body system
6.324 MeV can be explained as proton holes in tpg.Oand
0pg, orbitals of the'®0 ground state, respectively. Single- H|‘PE+1>:E$H|‘I’T+1>' (13
particle wave functions corresponding to these states can be
easily generated in a potential model with a harmonic osciland introduce the following projection operator:
lator or WOOdS-SEll;(OH shape plus a spin-grbit term. Thé 5/2
and 1/2 states in™°N and the 1/2 state in'’F, however, do , o ,
not have such a simple structure. While these states do not P,E:f drdr’a’(n[ )N T P Rlalr).
exist in the independent particle model in this energy range, (14
they can be understood as hole or particle states with respect
to the %0 ground state provided the latter contains correlafHere /\/(n,r,m,r’)=<‘If2|a(r)a*(r’)|\lf2) plays an impor-
tions beyond the simple mean field. Such many-body corretant role for the projection into the space of particle states:
lations result in partial occupancies of the single-particle or-The operatorfdra’(r)|wh)(Wh|a(r), without theN ™%, is
bitals, e.g., in*® one obtains weakly occupiedd), and ot a projection operator, although it has a simple complete-
1s4pn orbitgls and a 1, orbit that is not quite full. Conse- pess relation associated with iTA‘lznfdraT(r)PIfR)
quently, it is possible t06remov(eado) a nucleon frorr(to) & (W a(r)|as1)=|¥as1) holds for any completely anti-
small component of thé.O many-body wave function. The symmetric A+ 1)-body staté . 1). (See also Appendix A
associated spectroscopic factors are small, but nonzero. TPE)%/ Ref. [5].) Since A(n,r,m,r’) might be singular, caution

— — 15 . . v tth '
measured values a8y =0.019,S,,-=0.018 for the™N ig required when inverting this operator. For the present pur-
system[19]; the exact value 08, for the *'F case has not g6 e can simply exclude the space spanned by the eigen-
yet been determined experimentally, but_ is know_n to be small,\tions corresponding to zero eigenvalugZor more in-
[20]. It then foIIovy; fr(_)m Eq.(lO) thgt in _the vicinity of_ formation on the operatok{(n,r,m,r’), see Appendix A and
these levels\i(r,r’;E) is rapidly varying with energy. This ﬁefs.[2,4].] The statePh| W}, ), which is obtained by pro-
suggests that the nuclear mean field should be identified wit Lction from an ei e“ fatew of the (A+1)-bod
an energy-averaged version of the mass operator rather th L gens A+1) ¢ )-body .
with the modified mass operator itself. This conclusion is in ﬂnllltonlan, nhas tge nsqame onne—body n?verlap funptlon
agreement with the definition of the mean field given by¢’nm (r_):_<\I,A|a(r)P'?|\.I,A+1>:<.\I,A|a(r)|q,/*+l>’ assoct-
Mahaux and Sartof3]. ated with it as the originalunprojectedl state.

We can now define a projection operator that is comple-
mentary toPP,, QP=1—PPF , and derive an exact equation

B. Projection operator formalism and equations of motion of motion for the one-body overlap ¢/:r;1(r)

An alternative method for deriving decoupled equations=(¥ala(r)|¥a,,). We proceed by partitioning theA(
of motion for the one-body overlap functions makes use oft+ 1)-body ~ wave function  |¥R,,)=Ph¥}y, 1)

the projection operator formalism, which was used by Fesh+QP|W¥}, ;), and formally eliminatingd?| W4, ;). The pro-
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cedure follows Feshbach’s derivation of the generalized opgy,m, F||‘I’m+1>:5m|‘1’21+1> with &, as defined in Sec. Il A
tical potential very closely and yields [see the text following Eq11)], A= fdra’(r)a(r) denoting

the particle-number operator, aft=(H—E5)(A—A). We
A+1 A+1 _ ’ "
Em' " dnm (r)—f dr'dr"(Wjfa(r) now introduce the particle-hole projection operator
P NP
. H+HQ”EQ“—Q,EHQ,EQ“H Pﬁ“=fdrdr’[a(r)+aT(r)]I‘1’R>N’Sh(n,r,n,r’)
xal(r) [ WHNA,r’,n, ") Lo t(r) X(P[a(r)+al(r], (20)
(15
where Nﬁh(n,r,n’,r’)z<\lf2|[a(r)+aT(r)][a(r’)
=f dr/HP(r,r  EAT Y phr1(r), +a'(r’)]]w"’). Note that this projection operator does not

(16) preserve the particle number. For time-reversal invariant
A-body states,|¥}), /\/’ﬁh (n,r,n,r’) reduces to a delta
where the Hamiltoniaf B(r,r';EA"?) is defined by the last  function Np,(n,r,n,r')—8(r—r’). For the rest of this dis-
equality. A similar equation for the particle Green’s function cussion we will restrict ourselves to suskbody states. With
is given by Eq.(C5). this projection operator we can carry out the usual Feshbach
In analogy with the above treatment, one can derive equaprojection procedure to obtain the following equation of mo-

tions of motion for overlap functions which correspond totion for the one-body overlap function
hole states. This case was considered previously by Boffi
et al. [21]. Here we start with the Schdinger equation for
an (A—1)-body state|W,_,), H|¥T Y=EA }wT ) 5m¢ﬁn+11(r):f dr’(¥l[a(r)+a'(r)]
and introduce the hole projection operator

PR SRS
PEzJ’ drdr’a(r)|¥)p”(n,r,n,r") "X Wwalal(r’), X(H+HQn < —QthQthn H
m n n
(17) ! ! ’
x[a(r)+al(r)][VR) ¢pm (1)
where pA(n,r,m,r")=(¥hla’(ra(r’)|¥}) denotes a den-
sity matrix element. The equation of motion for the one-body = f dr' Ho(r,r", Em) dhti(r’). (21
overlaps corresponding to hole states takes the following
form:

The fact thatH (r,r’;&y,), as defined here, is indeed the
Eﬁfld’ﬁm(f)*:f dr'dr"(¥h|a(r) particle-hole Hamiltonian is demonstrated explicitly in Ap-
pendix C by calculating the Green’s functions. The above

equation is written for particle overlaps, but it applies
X ( H+ HQEmQEH equally well to holistates. In the latter ca&’é,\,;l(r) needs
En "—QnHQy to be replaced byp/ (r)*.

TN A r 1 A ok The particle-only ¢£P), hole-only (+"), and particle-
xal(r)[¥RpA(n.r.n,r") ™ gm(r) hole (H,,) Hamiltonians above can be related to each other
(18 by applying the projection operator formalism to the associ-
ated Green'’s functions. This is done in Appendix C. We find
:J' dr (e EA ) A (1) that the particle-only Hamiltonian, which occurs in the de-
et e Em mn ' nominator of the particle Green’s function, is the optical-
(19 model Hamiltonian used by Feshbach. The analogous Hamil-
) ] } ) ] tonian for the hole case appears in the denominator of the
This equation differs very clearly from E@L6); in particu-  single-hole propagator. Since the particle-hole Green’s func-
lar, since we have restricted ourselves to the space of holgy is simply the sum of the particle and hole contributions,

states, it applies to overlaps corresponding to hole stategq is related to the particle-hole Hamiltoniafy, by the
only. Also note that the inverse of the density matrix eIemeanuaﬁon

pA(n,r’',n,r") occurs in the above expression, instead of

NA(n,r',n,r")~1 A caveat similar to that relevant fox™

applies top” with respect to inverting the possibly singular . 1

operator. G(E)= 7 (22)
The Feshbach projection operator formalism can also be

used to derive the particle-hole Hamiltonian. We combine the

Schralinger equations for the particle and hole states into théhe three Hamiltonians are connected to each other through
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1 1 . anda(r) in Eq. (24) or betweera(r") anda'(r) in Eq. (25),
~— = 5 e A i.e., if one limits the intermediate states to one possibility,
E-Hu E-[Ha(E)=Eqltie namely, W, . But even in this approximation the projection
1 operator PP(r”,r’) or P"(r",r') remains present. In the
+ _ —pA. (23 limit of a pure one-body problem these projection operators
E+[H)(E)—Ep]—ie suffice to eliminate the holéparticle states, the inverse of
5 N or p” is not required. In the opposite limit, in the pres-
Here O denotes the integral operator which acts as followsence of strong two-body forces, the projection operators,
@f(r):fdr'(f)(r,r')f(r')_ We observe that in the limit of Which only remove orbitals with occupancy 0 or 1, become
completely empty(full) single-particle orbitals, the particle- largely ineffective. In this situation, they eliminate only
hole Hamiltonian Hy(r,r’;E) reduces toHP(r,r’;E) states very far from the Fermi surface and the removal of the
remaining hole(particle contributions requires the more

h ’. . . . e .
[Hm(r.r LE)]' quﬁmon(ZB) can be |_nverted to g_IVéi{"‘ n complicated potential term and the higher order terms, which
terms of Hf and H;, but the resulting expression is very nave been neglected here.

complicated(see Appendix € The one-body overlap functiof'_,|a(r)|¥X) can be

To illustrate the differences between the Ham'lton'ansconsidered as a particle state with respect to the

HP, HP, andH,, we consider Eqs(16), (19), and (21). 1. n .
We take into account only the leading terms in the paranthe(-A 1)-body stateW,_, or as a hole state with respect to

o : . the A-body state?},' . In the former case, the overlap func-
ses of each equatidine. we ignore contributions from those tion satisfies both Eq16) and Eq.(21): in the latter case it
terms that contai®P, Q", or QP") and take the Hamiltonian : g-(e,

i P P , satisfies Eq(19) and Eq.(21). Thus, a given one-body over-
tJ(r)%IZidrzf\/(rT—erz)ngr?:l)ZT(rfzgj;?rrl)g(gir )a (r)v%rér)e lap function is the solution of the four different, formally

H(r,r") denotes a one-body Hamiltonian, which in the sim-?ZXSCt’ equations, Eq16), Eq. (19), and two versions of Eq.

plest case reduces to a kinetic energy term, mdfers to a
two-body potential. A straightforward calculation then yields

Despite this formal equivalence, the particle-hole and
particle-only approaches lead to different physical interpre-
tations, as the following example illustrates. If we consider

Hﬁ—Eﬁ~f HY(r,r")PP(r",r")dr” an s\wave proton scattering from thée ground state, we
find that the relative-motion wave function has a node. There

—— , , are two different possibilities for explaining the origin of the
+f dr (‘I’A|f dr’"V(r—r") this node. In the particle-hole picture the potential has an
s-wave bound state and the scattering state must have a node
xal(rma(rma(rya’(r”)|wh) in order to be orthogonal to the bound state. In the particle-
only picture there is an occupiesvave orbital to which the
XNAM," nr’) 7L (24 y P b

scattering state must be orthogonal in order to respect the
Pauli exclusion principle. Both of these explanations, al-
EQ—HEQJ Hi(r,r")yPh(r",r')dr” though basically correct, have shortcomings. In the par.ticle—
hole picture, the potential is energy dependent so the single-
particle states are not strictly orthogonal to each other.

+f dr"'<qu|J' dr’V(r—r") Similarly, in the particle-only picture, the scattering state
does not need to be completely orthogonal to the bound

xal(rma(rmal(rya(r)|w?) swave orbital, since the latter might not be fully occupied.
These two shortcomings are related to each other since the

X pA(n,r” n,r')" L (250  energy dependence of the mean-fieldass operatgris re-
lated to the occupancy of the orbitals, as is made explicit in
1 ' n ’ matoen ” " Eq (10)

H~HN () +(Wals(r—r") [ V(r—r"al(r)a(r”)dr The nuclear mean field is the energy average of the mass
operator that arises in the particle-hole formalism. In con-
—V(r—rha'(nar)|w). (26)  trast, the cluster model is based on a particle-only approach.

A heon s L Thus it would be difficult to derive the nuclear mean field in
He_re P _(r_,r ) and P"(r",r') are projection operators  the particle-only formalism or the cluster model in the
which eliminate the totally empty and completely filled or- particle-hole formalism. However, both approaches—if cor-

bitals, respectively. We find that the particle-hole Hamil-yecty implemented—yield the same one-body overlap func-
tonian reduces to a familiar form—it contains a one-bodyiions, This is the lesson of Fig. 1.

contribution and two-body Hartree-plus-Fock terms. Its form
is much simpler than that for the other Hamiltonians, since
using the particle-onlyhole-only Hamiltonian requires that
the hole(particle) states be eliminated from consideration. It  Equation(15) has previously been considered in the con-
is possible to recover the Hartree term in the particle-only otext of cluster-model calculations. Since the cluster model is
hole-only approaches if one inseftg)( W ,| betweera(r”)  based on a particle-only approach, Efj5) emerges natu-

Ill. THE ROLE OF AUXILIARY FUNCTIONS
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rally as the relevant differential equation for the one-bodyThe presence of this projection operator makes it difficult to
overlap functions. However, due to the presence\sf 1, establish a connection to a ScHinger equation with a phe-
this equation is quite “asymmetric;HP is non-Hermitean nomenological potential.

and cannot be easily related to a phenomenological Hamil- yUsing the functiongﬁm(r), defined by Eq(28), allows

tonian with a local potential. In the preceeding section, Wepne to absorb the projection operaf? into the definition
have shown that this problem appears since the hole stat@s 1o associated Hamiltoniaﬁp(r rEATY):
n\'»t »t=m .

have been explicitly excluded from the model space. In order
to recover a more symmetric equation of motion one has to
employ the particle-hole formalism, which also enables one-a+17Aa+1, .\ _ P A d e AA 1\ = 1/2/7pp0 /
to make a connection to a phenomenological Hamiltonian™™ "™ (r)—f drdrrdrtAR(n,rn,r) R adr)
with a local potential, namely, by using the energy-averaged
mass operator. x( H+HQP
Cluster models describe the dynamics of simple configu- n
rations, such as the single nucleon-plus-core system consid- o
ered here, as well as more complicated processes involving xal(r") [ THNAN, ", n, ) ~Y2ga gy
two (or more composite nuclear fragments. In general it
becomes quite problematic to incorporate the relevant hole (32)
space and thus other possibilities for arriving at a practical
and esthetically more satisfying equation of motion need to B I TR T VR Iy VDR
be explored. Alternative one-body functions, which lead to _f dr'Hn(r,r En™ ) dhm (r)*.
Schralinger equations with more symmetric Hamiltonians, (32
have been derived from the one-body overlaps used in the

preceeding sections. For example, the auxiliary functionsl_he functiong’* (r) and the Hamiltoniarﬂ?p(r (1 EATY)
nm n 1 1—m

am- (1) and ¢{(r), defined by play a prominent role in the nuclear cluster model. Argu-
ments in support of employing the barred quantities are,
ml(r):f dr' VA(n,r,n,r Y ghtt(r’) (27)  among others, the claims that® can be well approximated
by a local Hamiltonian and that the Perey effect is minimal
for this Hamiltonian[4]. The Perey effect is the difference
between the wave functions generated by nonlocal and local
. equivalent Hamiltonianfl6]. The latter argument, however,
¢ﬁm(r)=f dr’/\/(n,r,n,r’)‘l’ngﬁm(r’), (28) is misleading, as Fig. 1 clearly demonstrates. The function
¢(r) shown here has been calculated in a cluster-model ap-
proach[9], i.e., it satisfies a nonlocal equation of the form

(-1/2), to which ™ is raised in the latter equation, is to be 9iven in Eq.(15). We observe that(r) agrees well with
understood in an operator sense ispace. In practice, pow- #t(r) @nd#y(r), two single-particle functions generated in a
ers of VA can be easily calculated by using the eigemcunc_phenomenologlcal approach with a local potential. Neverthe-

o A% b el R 9S4 e 2. Heronril e gl o e o
that the functiong%(r) is not uniquely defined by Eq. y ' g

. A ) S ment seen in Fig. 1 is the fact thai(r) also satisfies an
(27), since ™ can be singular. This is, however, not very equation of the form given in Eq21), and the Hamiltonian

H ' 1 H . . . .
relevant, since those components ¢ﬁ§ (r) which are 7y which occurs in the latter equation, can be approxi-
nonunique, are projected out byW"(n,r,n,r') and  mated by a local function, namely, the energy-averaged mass

—QpH
ENTT—QRHQR ™"

and

respectively, have been studied in Rd#,22]. The power

a'(r")|Wwh) in the associated equation of motion operator.
Furthermore, if one studies the functiod_ﬁn(r), which
EA+1f dr' NA(n,r,n,r ) PR (r) can be generated in a microscopic model, such as the nuclear
" h shell model, one has to conclude that these functions cannot
1 be the solutions of a one-body Schinger equation with a
= | dr'(w"a(r)| H+HOP P simple local potential. To see this, we compare the squared
f < Al ( ) Qn E$+1_QEHQEQH norm
xa'(r)[ W) dom (1) (29
A _ —A 2
Snm_j dr|¢nm(r)| ’ (33)
=f dr HR(r, T En ) (1) (30

of the functiong?(r), with the squared norrsh,, of the

While the above equation contains a HamiltonighP?Y  overlap ¢>,ﬁ\m(r), from which Zﬁm(r) has been derived, for
which is more symmetric that P [see Eq(15)], the opera- the low-lying states of thé°N and *’F systems, see Fig. 2.
tor N is still present on the left-hand side of E80) [27]. All calculations were carried out using thexBAsH shell
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M2 S/ 12r 32 S/2F 3t 12 3¢ enological form with a local potential. In the particle-only
I N case the potential model would have to generate a single-
0.8 I5N(160) particle spectrum in which, e.g., the I/and 3/2 orbitals
g 0.6 occured at energies higher than the'54hd 1/2° orbitals. In
_g ) other words, the spectrum would have to contain the usual
2 04 sd-shell orbitals,fp-shell orbitals, etc., and, superposed on
U%; that, states which lie below the Fermi surface in more com-
0.2 monly employed Woods-Saxon type potential models. These
[ ] additional orbitals would have to occur at positive energies
0 0000 6496 6208 5780 8142 7340 9308 1009 and would appear to have been “reflected at the Fermi sur-
Energy [MeV] face,” from negative to positive energy values. Analogously,
the hole-only case exhibits a spectrum which contains also
| S22t /27 527 3727 3/2¢ 327 7/2° 1/r “reflected states” superposed onto the usual set of orbitals.
@ The structure displayed in Fig. 2 is not special to t©
0.8 region. Similar features occur near many other nuclei for
§ 0.6 which the standard independent particle model predicts a
s closed shell or subshell structure, e.&fC, 28si, %S, s,
0.4 “8Ca, etc.
=2 The three functions discussed here have rather different
0.2 physical interpretations: The one-body overlaﬁ}nﬁl(r)
2N B ‘ 2N e =(Wila(r)|¥Y,,) gives the probability amplitude for find-
0.000 05010 4080 5458 5651 5.599 645l 6205 7.389 ing the (A+1)-body system in the state when a nucleon is
Energy [MeV] added to theA-body system(in staten) at pointr. Pauli

. . blocking limits the possibilities for adding particles to the
FIG. 2. Comparison of the spectroscopic fact8réshown as  gystem and reduces the associated spectroscopic factor ac-
dotted bars and the normalizations of the bgrred an117pl|tuc8>s cordingly. The effect of Pauli blocking is formally eliminated
(shown as striped barsfor low-lying states in*>N and ~'F. All - L TAHL CA+1
values are those calculated witkxsasH with the WBP interaction for the aEXIIIary functiondy, (r). The normS,, - of the

; A+1 : ; +1
in a 2he space[25]. The states marked with an asterisk are notfunction ¢,.,,(r) gives the ratio of the oSy, * of the
present in a simple one-particle model. overlapd)ﬁr;l(r) to the maximum norm allowed by the Pauli

principle. In other wordsS),* measures the similarity of the
(A+1)-body system and the configuration that is obtained
theby adding a nucleon to the Pauli-allowed component of the

) +1 TA+L
TheS},.,, shown as dotted bars in Fig. 2, display a patternA body state. Thus, the values 8fr," and Si.* that are

that one would expect near a closed-shell nucleus such shown in the bottom po_rtion of Fig. 2.can be qnderstood as
160 Th | 1) for th at hich b FBllows: The p4/» orbital is mostly Pauli blockedi.e., occu-

- 'hey are large t1) for ose states which can be pied in the %0 ground state; hence the spectroscopic factor
described as a proton-hole conﬂgLEl’ratlQel.g_., the 112 ssociated with the 172state inX/F (at 4.080 MeV is small.
ground state and 372excited state of°N) or single-proton A1 . : L
configurationge.g., the 5/2, 1/2*, and 3/2 states of'’F) The value ofS;,,~ for this state, in contrast, is sizable, thus

with respect to the %0 reference state; they are smad ( indicating that the 1/2 state is structurally similar to the
few percent for those N and 7 states which have a more configuration that is obtained by addingpg, proton to the
small component of thé®0 wave function which has an

; L unoccupied, single-proton orbital. Thé®N spectrum can
(shown as striped bars in Fig),2n the other hand, agree be understood analogously: Thg,, orbital has a small oc-

with the S.”m only for those states which have a closec_j Shell'cupancy in®0, so the spectroscopic factor associated with
plus-particle or hole-in-a-closed shell structure. Unlike thethe 5/2" state in™N (at 6.496 MeV is small. Nevertheless
spectroscopic factorsﬁm, they arenot small for the states the relevantS™* value is large, which indicates that th,e
with the more complicated structure—those low-lying state 1" state i “[[“ turally si 'Ig ’t th fi tion that i
that have the wrong quantum numbers and cannot be easi S E:jeb's structura ;’ simi atr Of € Ct(r)1n |gura”|on atis
generated by a mean-field approach, as has been discusse B}ame yleremovmg 5/2 Proton from the smail compo-
nent of the *°O wave function which has an occupield,,
the end of Sec. Il A. For example, t@m value for the 1/2 proton orbital
state at 4.080 MeV inF is 23.7%, and for the 3/2state at h iliary function tains inf i
5651 MeV it is 34.9%. e auxiliary functiong,,"(r) contains information on

To generate a spectrum and strength distributions such 48¢ ~ Projected  A+1)-body  state PRIWR: 1)
those displayed by th&", shown in the bottonttop) part of =/ dra’(nN[¥R)éns(r), with Pf given by Eq.(14). Note
Fig. 2 is nontrivial in a particle-onlyhole-only approach. It that n,,*(r) occurs behind an antisymmetrization operator
is very unlikely that the relevant particle-onljole-only  which eliminates those components @f(r) that do not

Hamiltonian??ﬁ (7?‘“) could be approximated by a phenom- lead to a completely antisymmetrié\ ¢- 1)-body state. Thus

model code with the WBIP25] interaction in a 2w model
space. The %0 ground state was chosen as
(A=16)-body reference state.

complicated (B-1p or 1h-2p) structure. Thegﬁm values

A+1
nm
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$271(r) is not unique and its norm is not well defined. How- lar, for the ground state th& lowest orbitals are filled. The
nm particle and hole contributions to the full Green’s function

ever, the components &ﬁ;l(r) that remain after antisym- are aiven b

metrization is enforced define the projected state completely. g y
Although all three one-body functions discussed here con- * 1

tain valuable information on the structure of the many-body Gy(r,r';E)= 2 Ym(N=—=-——0m(r)*, (35

system, only the one-body overlgp, . *(r) can be identified m=A+1 E-Entie

with the phenomenological single-particle wave function. A

The agreement between the microscopically calculated func- e .

tion ¢4%(r) and the Woods-Saxon eigenfunction shown in Gp(r.r vE)—mE:1 Pm(T) —E—Em—iewm(r)' (36)

Fig. 1 confirms this. Given the complicated form of E(5)

and (18), which contain the equations of motion for wherey,,(r) denotes a single-particle orbital afg, is the
dam(r), this is—at first glance—a surprising result. Equa- corresponding single-particle energy. The modified mass op-
tion (21) is the key to understanding this point: The one-bodyerator reduces to the one-body potentian(r,r’;E)
overlap function does not only satisfy the complicated equa=u(r)s(r—r’). The operator P? of Eq. (14), which

tion of motion that was derived in a particle-onlgr hole-  projects into the space of particle states, reduces to a very
only) approach and has a nonlocal potential, it also obeys EGimple expression—a step function. Since fbody wave
(21). The latter equation is based on a particle-hole approacfunction considered here is a Slater determinant, i.e., the oc-
and contains the nuclear mean field as the relevant potentiadypancies of the single-particle orbitals are restricted to the
It is this field that can be approximated by a local potential.yajyes one and zero only, the role Bf is simply to elimi-

The complications in Eqg15) and(18) arise because part of pate the filled orbitals from active consideration. Thus, the
the spacéhole states or particle stajesave been eliminated eqyation of motion takes the following form in the particle-
from consideration. Introducing alternative Hamiltonians, oy space:

such asH andH discussed here, does not remedy the prob-

lem. These Hamiltonians are too complex to allow for an Emdom (ri)=H;0(H,—E¢) o 2(ry), (37)
approximation by local functions. For example, the kinetic

energy term takes on a more complicated form inwhereE; denotes the Fermi enerdgompare also Eq15)]

HP(rr;EATY),  namely, AN"Y2TAY2  than in and# is the Heaviside step function. The effective Hamil-
Hﬁ(r,r’;Eﬁ“), where it is given byTPP, see Eq.(24). tobTa}n |sH|i|0(H_i|t— Ef), I.?].., ﬁv_en forI thlsI sm&plitzygftent]l one
Moreover, as we have demonstrated here, the strength distffPtains a "f‘rrﬁ' o?flan Wf '(;] IS nonlocal an i\ n efs y I
butions that are obtained with these alternative HamiltoniangYMMetric. The effect of the projection operator is formally
resent, albeit in the form of a simple step function, which

are neither in agreement with the predictions of a potentiap S ; .
model nor with experimental observations. can be easily implemented in the formalism. The operafor

reduces to this simple form and commutes with the Hamil-

tonian if and only if the relevand-body wave function is a

IV. LIMITING CASES Slater determinant. Rewriting EQq.37) as E;0(H;

_ At+leo Ny pAT1 : H T

In order to illustrate the formalism employed in this work, Er) dom (1) H|¢_’0m (r), with j[he step function in .
cluded on the left side of the equation, allows for a compari-

we discuss applications to two simple limiting cases of . ) . .
(nucleay manyE)I:E)ody systems. We eprI)ore both goninteract-son with Eq.(29). Introducing correlations beyond antisym-

ing fermions in a one-body potential and spatially uniform ?aeﬁgisege;rfe:r?g t(r)]]?fr?e Igtceludficri]cltri]or:hgngergtz;iespﬁtigjs-
systems. We focus in particular on clarifying the role of the 9 P

projection operator which eliminates the hole or particleSary to include the full norm operator. Arguments analo-
states from consideration. gously to those presented here apply to the hole-only space.

Naturally, a step function which projects out theoccupied

states has to be introduced and all other quantities have to be
A. Non-interacting particles in a one-body potential modified accordingly.

We consider a set ok noninteracting fermions in a one- The simple example discussed here illustrates an impor-

body potentialu(r). The relevantA-body Hamiltonian can tant point: t.he fact that the mean field can in gengral not be
be written as recovered in an approach that is based on an incomplete

(particle-only or hole-only space. If we view the one-body
A potentialU(r) as an approximation to the nuclear mean field,
HA:E H;, (34)  we find that the step function prevents us from determining
=1 the functionU(r) from either the particle-only or the hole-
only equations of motion—both sets of equations are re-
whereH; = —V?/(Zm)+ U(r;). (Note that we employ a lo- quired. Moreover, only in simple cases, such as the one pre-
cal potential for convenience only; a nonlocal version doesented here, is the mean field Hamilton#dn, given by the
not significantly alter our findingsThe A-body wave func- sum of the particle-only and hole-only Hamiltonians; more
tions that describe this system are Slater determinants cogenerally, the Hamiltonians are related by E23), which
structed fromA occupied single-particle orbitals. In particu- poses a much greater challenge.
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B. Spatially uniform Fermi systems since in that case *(k)= 8(k—Kp).

The investigation of spatially uniform Fermi systems is ~Furthermore, in this limiting case of spatially uniform
instructive and allows for important simplifications. For Systems there exist simple relationships between the auxil-
nuclear matter, a hypothetical uniform medium with an equajary functions introduced in Sec. Ill and the one-body over-
number of protons and neutrons, and with the Coulomb inlap functions. We find
teraction turned off, we have the following situation: All rel- A1 o
evant physical quantities are smooth functions of energy, and nm (K)=[1=7,(k)]¢fm~(K) (41)
averages need not be taken. This holds in particular for the
mass operator and the single-particle energies. Translationgnd
invariance implies that the spatial nonlocality of the modified _
mass operator is simpleb(r,r’;E)=M(|r—r’|;E), and bom(K)=[1= 70(K) ]~ 2K (42
the one-body overlap functions are represented by plane
waves. Similarly, theN® operator and the density matrix The hole-only case can be treated analogously.
depend on the differencdr—r’| only, NA(n,r,n,r’)
=Na([r=r']), pA(n,r,n,r")=pa(Ir=r’']). Consequently, V. CONCLUSIONS
the one-body overlaps are eigenfunctionﬁﬁlr— r'), i.e.,
overlap functions and natural orbitals coincide for nuclea
matter(see also Appendix B The Fourier transform of the
NA  operator has the simple form NA(k,k')
=(2m)%PNA(k) 8(k—k')=[1— (k) ]8(k—k’) and the
spectroscopic  factors reduce to occupancies,(k)

r One-body overlap functions play an important role for the
description of nuclear structure and nuclear reactions. They
contain both single-particle and many-nucleon aspects of the
nuclear many-body problem and can, in principle, be ob-
tained from a fully microscopic model or as the solution of a
LAt L n + ; : set of coupled-channels equations. Since for most cases it is
=(Vala'(k)a(k)|[¥p)=1—(W¥zla(k)a’(k)|¥a), which possible to obtain exact solutions, one has to resort to
give the average number of nucleons with momentum  gp5roximations and/or employ truncated model spaces. Vari-
the statgW). The projection operatdP takes the form  ous one-body approximations, e.g., were discussed in Ref.
[5] and their relationships to phenomenological potential
pﬁ:j dka’(k) [ [1- 7,(k) ]~ ¥ha(k), (38) models was demonstrated. In the present work, we have fo-
cused on the effects of restricting the model space to particle-
only or hole-only states. Using the Feshbach projection op-
erator formalism, we have derived equations of motion for
the one-body overlaps in the particle-only, hole-only, and
ESTE ml(k):j dk’(¥hla(k) particle-hole spaces. When treated properly, all three ap-
proaches will give the same result. We have shown for a
simple example that this is indeed the case—we compared
QPH the overlap obtained from a cluster-mogiearticle-only cal-
Eﬁ”— PHQP culation with a single-particle wave function calculated in a
L (agen P11 JALL potential model, which serves as an approximation to the full
xal (k)| W 1= 7n(k") ] nm (K", particle-hole approach, and we found excellent agreement
(39 between the two functions.

Approximating the relevantparticle-only, hole-only, or
wherea(k), a'(k), and¢i (k) =(¥ha(k)|¥h, ) denote particle-hol¢ Hamiltonians by one that contains a simple
the Fourier transforms ai(r), aT(r), and¢ﬁ$l(r), respec-  kinetic energy term and a local potential is only valid in the
tively. As can be seen by comparing these expressions tarticle-hole approach, as we have demonstrated here. Only
Egs.(14) and (15), eliminating the hole states from consid- the full particle-hole space is able to accommodate the mass
eration reduces in the nuclear matter case to simply includingperator(self-energy termand it is the energy average of
the occupancies of the momentum eigenstates, i.e., the effeléitis operator that can be identified with the nuclear mean
of the V* operator is incorporated in a simple multiplicative field and thus be approximated by a phenomenological po-
factor. In particular, whem refers to a translationally invari- tential, such as those used by the optical model and the shell
ant ground state of aA-body system andh refers to a sys- model.

and the equation of motion, E¢L5), becomes

x(H+HQﬁ

tem with momentunk,,,, we find Hamiltonians which are derived in particle-only or hole-
only approaches are valid in their respective frameworks.

Eﬁ]“[l— 70(K)18(k—k,,) Normally, however, they have a very complicated form and
cannot be approximated by a function which includes a
=EAHwla(k)al (ky) | P2) simple local potential. The complications arise since part of

the space, namely all hole states or all particle states, have

—(¥9a(k) H+HQ8M—HQ8H been. eliminated from consideration. Intrgducmg auxiliary
E, —QgHQg functlon_s, such as th_eb(r) and ¢(r) functions c_ilscussed

: 0 here, might lead to simpler and more symmetric forms for

xa'(kp)| W), (400 the Hamiltonians, but does not solve the problem. The
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single-particle strength distributions that result from thesea(r) anda’(r) it follows that the functiong(n,r,n’,r’) and
Hamiltonians do not agree with the predictions of a potential\fn,r,n’,r’) are related to each other via
model, nor do they ressemble the experimental findings.
Nevertheless, the particle-only and hole-only approaches p(n,r,n' r )+ NN’ N r)=58,,8(r,r'). (A4)
provide useful insights into the nuclear many-body problem
as, e.g., the success of the cluster model illustrates. The usglere we will concentrate op(n,r,n’,r’), but a parallel de-
fulness of such an approach relies on the proper interpretaelopment follows forA{(n,r,n’,r’), with (A—1) replaced
tion of the relevant physical quantities. In particular, the auxby (A+1).
iliary functions ¢(r) and ¢(r) discussed here shoufwt be We insert a complete set of orthonormaA-1)-body
identified with standard phenomenological single-particlewave functions in the expression for the density matrix and
functions. The functior(r), e.g., contains nuclear structure obtain
information that is complementary to, but different from, the
information encapsulated in the one-body overlap. It is in- . , :
deed useful for exploring the spectroscopic properties of P(M:I:N".r ):% (gala" ()| W (PR la(r’)|¥a)
low-lying states, such as signatures for nuclear shell closures. (A5)
Work on this aspect is in progref3].

In the present study, we have focused on one-body over-
laps. One can also consider more general overlap functions, =E ¢;*nﬁ(r)¢ﬁm(r’). (AB6)
such as those employed in cluster model approaches, and m
their associated equations of motion. In alpha decay calcula-, o B )
tions, e.g., a four-body analog of the functigifr) studied This equa‘u_on is v%ry general; it only requires that the many-
here is introduced4,6]. In that context, the function is as- P°dY functions| W}y ;) form a complete orthonormal set.

sumed to satisfy a local differential equation. Given the find-CiVen such a set, a second set can be generated through a
ings presented here, we recommend that this assumption b@itary transformation| Wy 1)=2 /Uy |VPa_ 1), where
reexamined. To adequately address the issue, the presqm%m,:@pgﬂﬂxpg[l) denotes a matrix elements of a uni-
study needs to be extended to accommodate configuratiofgry matrix. The corresponding transformation for the func-

involving two composite nuclear fragments. tions ¢:\m(r) is given by
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form an orthonormal set. Note that th#) (r') coincide
APPENDIX A: ONE-BODY OPERATORS with the one-body overlap functions introduced in Sec. I if

and only if the associated many-body functiofs _, are

We consider a one-body operator F . . o7
eigenfunctions of the relevant Hamiltonian.

= [drdr'a’(r)a(r')F(r,r'). The operatorF is Hermitean
when F(r,r’)=F*(r’,r) holds. Matrix elements of such a
Hermitean operator, with respect to many-body states, take APPENDIX B: NATURAL ORBITALS

the form We now consider the density matriyp(r,n,r’,n")

— nji,t ’ n’ H ! H P
N . , + , , =(yhla’(r)a(r’)|y, ) for fixed n=n’. For simplicity we
(il A l/fZ)—J' drdr'F(r,r")(gala’(na(r’)|yy ). suppress the inder in what follows. The natural orbitals

(AL) om(r') are defined as the set of single-particle wave func-

. . . . tions which diagonalize the density matpxXr,r’):
Thus, information on the operator is containedH(r,r’), 'ons whi 'ag 2 Sty wXr.r’)

while the structure of the many-body states is contained in
the density matrix f dr'p(r,r")em(r')=Anem(r). (B1)

nr,n’,r)y=(yhat(rar’)| gt ), A2 . . » .
p( )={walal(narlvn) (A2) Sincep(r,r') is Hermitian, the natural orbitals form a com-
which contains diagonal as well as off-diagonal matrix ele-Plete set and can be taken to be orthonormal. The natural

ments. Closely related to the density matrix is the operatorOrbitals are not uniquely defined if one or more of the eigen-
values\, are degenerate. This situation arises whep=0

Mn,r,n’ r')=(yhla(na’(r)| l/,2’>, (A3)  or1, which occurs when there are completely empty or com-
pletely filled single-particle orbitals in the many-body wave
which, in the framework of cluster models, takes the role offunction|¢},). The density matrix can be expressed in terms
a norm operator. From the anticommutation relations forof natural orbitals
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o - ~, a(r)|a)==mem(r)|NnPA-1). Thus any state orthogonal to
p(r.r )_% Am@r(1) @m(r). (B2) a(r)|¢a), for all r, is also orthogonal to all the functions
INWA_,) generated by Eq.B5). It also follows that

Note that the natural orbitals, unlike the one-body overlag W} ,)=(1/\.)fdref(r)a(r)|#,) and that the states
functions, are completely defined by the structure of thqﬁqf%ﬁ are  eigenfunctions of the  operator

A-body state. _ _ _ Jdra(r)|ga)wala’(r).
mT)?ft.'ng Eq.(A6) into the eigenvalue equation, E@1), The eigenvalues., are restricted to lie in the interval
we obtain

[0,1]. The upper limit follows from the fact that a spectro-

1 scopic factor cannot be greater than dwéhen center-of-

om(n)=— 2, ¢;,(r)f dr' ¢ (r')em(r’), (B3)  mass effects are neglecte@he lower limit follows from the
Am guadratic form of Eq(A6). When an eigenvalug,, equals

_ wral orbitals with _ | b one, the state|y,) is a pure product state|y,)
l.e., natural orpitals wi nonzero eilgenvalues can be eX':J‘dr(pE(r)aT(r”N\PZL:O with fdr@m(r)a(r”N\I’Kl,J)

panded in terms of the overlap functions from any basis_0 If f m ; ;
o : : . =0. If for any statg ¥ ,_,) the corresponding spectroscopic
|WX_,). The remaining natural orbitals, associated with ystatg W) P g sp b

L X ﬁactor is 1, it then follows from EqA6) that the correspond-
=0, can be chosen arbitrarily, provided they are orthogongy,, mpjitude is a natural amplitude with eigenvalue 1.
to those given by EqB3). The combination of both collec-

) ) . ; The natural orbitals provide the extre = r) of
tions, the natural orbitals with zero eigenvalues plus those P &) = em(r)

with nonzero eigenvalues, forms a complete set. Thus Eq. )
(B3) can be inverted: f drdr’[p(r,r")—x(r)x*(r")] (B7)

r= oF (1 f dr' o (r! r. B4 as can be easily verified by variation with respecty(@).
PnlT) % e (1) e (1) émlr’) B4 Similarly, the overlapfdr|{ala’(r)|xa_1)|? is maximized
. . . (for (xa-1lxa-1)=1) when|xa_1)=[NV3-1).

We can associate natural amplitudgg(r) with the natu- The natural orbitals for'®0 and “°Ca have been calcu-
ral orbitals by definingp,(r) = VAmer(r). (This expression lated by Fabrocini and Co’ in Refi26]. The authors find that
holds for hole states, in the particle case the complex conjuthe shape of the natural orbitals is well reproduced by the
gation is not presentEquation(B3) implies that the ortho- single-particle wave functions from an independent particle

normal set of A—1)-body states given by model approach; deviations are only visible for the lowest
1 orbitals. The occupancy of the lowess brbital is found to
! be about 85% for either nucleus.
P N=— dr’ ¢ (r')er(r’)| vy B5
INWA-2) N & S (M) em(T)[Wa-1) (BY) In general, the statdsl'y_,) and| WY, ;) and the corre-

_ _ _ _ sponding amplitudes are not related since the two sets of
provides the basis for generating the natural amplitudestates belong to different spaces. However, sine@d\ are
em(r) with A\, #0. The sef| Wy ,)} is not complete. The related by Eq(A4), both operators are diagonalized by the
remaining statefW X ;) which are required to make the set same set of natural orbitals,(r) with different eigenvalues,
complete can be generated arbitrarily, provided they are Ofthough,\Y=1—\,,. The completeness relati¢A4) can be
tth%nN to théN‘Ir;/T— 1) ang tomeach other. The resulting set expressed in terms of the natural orbitals
{INWA- D ={INPA-DPU{[NWA- 1)} of (A—1)-body states
is orthonormal and complete by construction. - o - Ak ,

When \,#0, the matrix elements U,y % (1=Am) om(r) @m(r H% Am@m(F) @m(r’)=a(r.r’).
=(¥T,|S¥T ) of the unitary transformation relating the (B8)

two bases are given b ' . . I .
g y The first sum gives the particle contribution while the second

1 sum gives the hole contribution. The effect of Pauli blocking
Umnm =3~ J dr' ¢ (r' ) em(r’). (B6)  on the particle states manifests itself in the factor(d,).
m A Caveat Equation(B4) can be rewritten as
This discussion shows that the natural amplitudes simply
correspond to a particular choice for th&< 1)-body basis ()= Uy VA, (7). (B9)
{IS¥Y_,)}. They have the same properties as the one-body " o
overlap functions discussed in Rg5)], with the exception of ) _ ) _ )
properties associated with the equations of motighe un-  SinceUmm is a unitary matrix one might assume that the
usual placement of the complex conjugation in this discuscollection of functions¢y(r) can bf—' _trlz/aznsformed Into an
sion is due to the use of hole states, which transform as th@rthonormal set by acting witp(r,r’) =< on the original
complex conjugates of particle states. Using the norm operai€t. Formally this would give
tor, M(r,r"), results in equations that look more familjar.
Since the wave functions of the q¢ﬁ\1'2,_l>} correspond bn(1)=> Um,m;;,(r)_ (B10)
to states which are unoccupied £€0), it follows that m’
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Since thec:o:‘n,(r) are orthonormal antll ,,/, is unitary, one

would expect the&bm(r) to be orthonormal. Unfortunately,
this only works wherp(r,r’) has no zero eigenvalues. It is
not sufficient to restrict the sum ovar' to the subspace with X ( H+HQP
nonzero eigenvalues, sintk, , is not necessarily unitary in

this subspace. Similar considerations apply to the set of par- Y o1 o ,
ticle states, in which case the functigigr,r’) 2 needs to XNo(r",r") = Gp(r", 1", E) = No(r.r'), (CYH
be replaced\{r,r’) 2

(E+ EQ)Gp(r,r',E)—f drdr"(y2|a(r)

pH tron 0
—E+E8—Q8HQ8QO )a (r") | ¢a)

which can also be written as

APPENDIX C: THE GREEN’'S FUNCTION (E+ Eé)Gp(r,r’,E)—f dr’”Hg(r,r”’)Gp(r’”,r’,E)

Here we relate the particle-only(*), hole-only ("),
and particle-hole %) Hamiltonians to each other by ap- =Ny(r,r"), (Co)
plying the projection operator formalism to the associated
Green’s functions. We demonstrate explicitly tidt,, as  where
defined in Eq.(21), is indeed the relevant particle-hole

Hamiltonian. - Lo o
The particle propagator is given by Ho(r.r )ZJ dr'(¢ala(r)| H+HQg
Gy(r,r’;E)=(ylla(r)———————a'(r")| 42 X—QSH)
p( ) <‘/fA| ( )E—(H—Eé)-l—ie ( )|‘/fA> E+E8_ SHQS
=(yfla(nG(E)a’(r)[yR), (CD <@l No(r', e 7t (CD)
[compare also Eq$15),(16)].
where Introducing operator notation Of(r)

=[dr'O(r,r")f(r"), allows us to write Eq(C5) in a very
compact form
GEB)=——— (C2 Lo 5
E-(H-Eg)+ie (E+E—TB)GH(E) =N, (C®
An equation of motion forG,(r,r’;E) can be obtained which can be formally solved fo@p(E)
through the use of projection operators. We introduce opera-

tors P) and Qf, such thatPfa'(r)|42)=a’(r)|¢3) and . 1 .
Qba’(r)|¢3)=0, and rewrite Eq(C2) as Go(E)= E_(ﬂg_E’g)JrieNO ©9
(E+E5—PBHPA— QBHPS— PEHQS~ QBHQB)(PEG P v 1 )
= (M) (M2 (c10

+ QRGPS+ PEGQE+QJGQY =P8+QE.  (C3) E—(FE—ED) +ie

Using the fact that P§(P5+Qf)PE=PH and Qf(P§ We observe that the particle-only Hamiltonian, which occurs
+QB)PE=0, we find in the denomlna}tor of the particle propagator, is the optical-
070 model Hamiltonian used by Feshbach.
Expressions analogous to the ones given above can be
derived for the hole propagator. Since the full particle-hole

E+Ey— PBH PS—PSHQBA—HQSH Ph Green’s function, which is connected to the particle-hole
E+Eo—QoHQo Hamiltonian #,, through G(E)=(E—H,,) "%, is simply
X PBGPR=P}. (c4y  the sum of the_ par;icle and hole contrri]butions, we can relate
the three Hamiltonian(,,, HP and’H" to each other:
We now multiply this equation b§/¢2|a(r) from the left and . 1 1 5
af(r")|¢2) from the right and carry out the relevant integra- GE)=———= AL o
tions. The right-hand side of the resulting equation equals E-Hy E-(HP-Ep)tie
(Pla(r)at(r’)|y2)=Ny(r,r'). To obtain a useful expres- 1
sion for the left-hand side, we use the explicit formRff, + = v py. (C11)
given in Eq.(14). We derive the following result: E+(H"—Ep)—ie
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Although this equation can be formally solved f’é(rM in
various different ways, the resulting expressions are neither
elegant nor very instructive, as the following example illus-

ph
o H

E—<<//2|(a+aT)( ﬁ+ﬁQ8th

trates:
. x (a+a")|yR) |G(E)=[E—Hu(En"IG(E)=1.
7—"{ =
. y A /h A - (€19
1-[(HP=EQ)+(H"-Ep)] A PO
E+(H"—Ep) From this expression we identify the particle-hole Hamil-
tonian as
X | (HP—EQ) —[(HP—Ef)+ (F{"— Ef) :
o) ~L(H*~Ep o] Ha(r.r)=(slla) +a'l(n)]
£ § - - -
= | C12 X| A+AQ———=——QB"H
E+(H—EM"° (€12 * E-QYHQE"
. . ! Trpr 0
(A similar equation, with’" and 7" interchanged ang, X[alr)+alr)Jlga). (C18

replaced by\,, can be derived as well.

. h . . e .
In order to demonstrate that the particle-hole Hamiltonian>N"c€Q6" Mixes particle and hole states it is not possible to
has the form given in Eq(21), we derive an equation of cleanly separate the particle and the hole contributions.

motion for the full particle-hole propagat@(r,r’;E), in- Using the Hamiltonianﬁ,_ the particle and the hole
troduced in Eqs(3) —(5). We begin by writingG(r,r';E) as  Hamiltonians can now be written as

0 . 1 HA(r.rE)—Epa(r—r')
G(r.r ,E)—<¢Al[a(r)+a(r)JE_(H_Eé_ie)(A_A) (~ - _
= | drrwy A+HQl———————QFH
x[a(r’)+a'(r)][v) 13 J ar e R QEQE
and introducing the notatiod = (H— E5)(A—A), whereA xal(r") [ w)NA(n,r )t (C17)

=fdra'(r)a(r), the particle number operator, commutes

with the Hamiltonian. We employ the following particle-hole and

projection operator: EAS(r—t")—H"(r.r":E)
Pph=fdrdr'[a(r)+a*<r>]|w2>N’3h<r,r’><w2|[a<r’> :fdr"<«pn|af(r> HifQ" o H)
v al(r] 1 : "Ep-E-QhHQ) "
' xa(r")|waypA(nr”,nr’)-1 (C18

where Vy(r.r') =(ypl[a(r) +a’(r)[a(r) +a'(r") ]| yp).

For the remainder of this discussion we restrict ourselves teespectively. The last three expressions highlight both the
time-reversal invariant states. In this caMﬁh reduces to similarity and the differences between the three Hamilto-
J\/’;h(r,r’)=5(r—r’) and we obtain nians™ ., HP, andH".
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