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One-body overlap functions, equations of motion, and phenomenological potentials

Jutta Escher* and Byron K. Jennings†
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One-body overlap functions play an important role for the description of nuclear structure and nuclear
reactions. Equations of motion for the one-body overlaps, based on particle-only, hole-only, and particle-hole
approaches, are studied. A given overlap function is shown to satisfy four different Schro¨dinger-like equations,
all of which can be derived in the framework of the Feshbach projection operator formalism. Approximating
the relevant potential by a local potential is only valid in the particle-hole approach. Previously proposed
one-body functions, which can be derived from the overlap functions, are also considered. It is argued that the
latter do not satisfy a Schro¨dinger-like equation with an approximately local potential.
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I. INTRODUCTION

Overlap functions play an important role in the descr
tion of quantum-mechanical many-body systems. They
obtained by integrating a state of a many-particle sys
multiplied by a state of a subsystem with fewer particles o
the coordinates of the latter. In the context of nuclear ph
ics, where extensive experimental data shows that sin
particle states correspond to physical reality, one-body o
lap functions have been widely used and thoroughly stud
@1#. One-body overlaps associated with bound many-b
states are also called spectroscopic amplitudes and
norms are known as spectroscopic factors. The one-b
overlap of a scattering state with a bound ground state
smaller system can be identified with the Feshbach gene
ized optical-model wave function@2#.

In their 1991 review@3#, Mahaux and Sartor argue that
is the one-body overlap functions, rather than alterna
functions such as the natural orbitals or the maximu
overlap orbitals, which provide a theoretical foundation
empirical single-particle states. Since analysis of direct o
nucleon transfer reactions indicate that the one-body ove
functions of low-lying single-particle excitations can be ge
erated from a single-particle model, it becomes plausible
identify the corresponding potential with the nuclear me
field. Mahaux and Sartor investigate this point in some de
using the particle-hole formalism.

Other authors prefer to use alternative one-body functi
which can, however, be derived from the one-body overl
advocated by Mahaux and Sartor. In the context of the c
ter model@4# and cluster radioactivity,derivedfunctions are
introduced which are nearly complete in the space of part
~or hole! states. One-body overlap functions, in contrast,
quire the full particle-plus-hole space for completeness@5#.
This and normalization differences@4,6# suggest that it is the
derived functions that satisfy Schro¨dinger-like equations
with a ~nearly! local potential rather than the one-body ove
lap functions themselves. Indeed, the equations for the o
body overlaps will take a very nonlocal form in particle-on
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models such as the cluster model or the Feshbach gen
ized optical model@2,7#. However, the situation is subtle a
we show through a study of the properties of the vario
functions in the limit of a simple two-component mod
comprised of anA-body cluster plus a single nucleon. Irre
spective of the question of whether the potentials involved
the equations are local or not, the alternative functions
hibit interesting properties. For example, they can be use
investigate the goodness of shell closures in even-even
clei @8#.

The dichotomy between the particle-hole and partic
only approaches to describing single-particle features
nuclear structure has motivated the work presented here
sharpen the question under consideration we show in Fig
comparison of a spectroscopic amplitude obtained from
cluster-model calculation@9# with a single-particle wave
function calculated in the framework of a simple potent
model. The spectroscopic amplitude shown describes
overlap of the7Be1p configuration with the ground state o

FIG. 1. Comparison of a one-body overlap functionf(r ) cal-
culated in a cluster model@9# with single-particle wave functions
cb(r ) andc t(r ) obtained from simple potential-model approach
which employ Woods-Saxon potentials. The functioncb was calcu-
lated with the parametrization used by Barker@10# andc t refers to
the parameter set of Tombrello@11#. All three calculations are nor-
malized to the spectroscopic factor obtained in the cluster-mo
approach.
©2002 The American Physical Society13-1
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8B ~for channel spinI 52). The cluster model calculation i
fully microscopic and uses a two-body potential. T
potential-model calculation is macroscopic; a Woods-Sa
potential is used with parameters taken from Refs.@10# and
@11#, respectively. The normalization of the single-partic
wave function was adjusted to agree with the norm of
spectroscopic amplitude, the spectroscopic factor. Note
the proper norm for the single-particle wave function can
be calculated in the simple potential model and has to
taken from a microscopic approach@5#, here provided by the
cluster model. We find very good agreement between the
calculations. For the case shown here we can conclude
the spectroscopic amplitude does indeed satisfy a Sc¨-
dinger equation with a local potential. This is surprisi
since a local potential does not arise naturally in the clu
model.

It is the purpose of the present paper to elucidate
formalisms underlying these two approaches and their r
tionship to each other. In particular, we will address the qu
tion of why the nuclear structure features encapsulated in
functions shown in Fig. 1 agree so well with each oth
despite some quite dramatic differences in the actual ca
lations. Is this agreement coincidental or can we iden
some underlying physical mechanism for this similarity? W
approach these issues by considering several sets of e
tions which the one-body overlap functions must satisfy.
specifically show that, in addition to a set of nonlocal equ
tions originating from a particle-only or hole-only approac
one can derive equations which contain potentials that
approximately local. The latter set of equations require
particle-hole approach. The various possible equations
motion for the one-body overlaps are discussed in Sec. I
Sec. III we then explore properties of several auxiliary fun
tions associated with one-body overlaps. We discuss real
nuclear spectra in order to identify low-lying weak stat
which cannot be easily explained in a simple poten
model. We argue that thederived functions associated with
these states cannot satisfy a simple set of equations
local potentials. To illustrate the formalism we employ, w
consider two simple models in Sec. IV: We discuss nonin
acting particles in a potential well and the spatially unifo
system. Our conclusions are presented in Sec. V. In App
dix A we show how the one-body overlap functions ar
naturally when calculating expectation values of one-bo
operators and in Appendix B we explore the properties of
natural orbitals which play an important but hidden ro
throughout the paper. The Hamiltonians associated with
particle-only, hole-only, and particle-hole approaches stud
here are related to each other in Appendix C.

II. ONE-BODY OVERLAP FUNCTIONS AND EQUATIONS
OF MOTION

The simplest type of overlap function is a one-body ov
lap, which can be written as follows@1#:

fnm
A ~r !5AA21E )

i 51

A21

dr iCA21
n* ~r1 , . . . ,rA21!

3CA
m~r1 , . . . ,rA21 ,r !, ~1!
03431
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whereCA21
n andCA

m denote wave functions of nuclei with
A21 and A nucleons, respectively. In Dirac notation, th
one-body overlap takes the following form:

fnm
A ~r !5^CA21

n ua~r !uCA
m&. ~2!

Here a(r ) @a†(r )# is an annihilation~creation! operator
which destroys~creates! a nucleon at positionr and obeys
the usual anticommutation relations. Often the refere
stateCA

m is understood and the superscriptA and subscriptm
are dropped from the notation, i.e.fnm

A (r )→fn(r ). The spa-
tial dependence offnm

A (r ) is related to the properties of th
single-particle orbital of theAth nucleon in the larger sys
tem. For a givenA-body state, there are many one-bo
overlap functions, namely, one for each excited state of
(A21)-body nucleus. Given the structural information o
the (A21)-body system that enters the wave functio
CA21

n , the one-body overlap functions completely determ
the wave functionCA

m . The one-body overlaps can also b
used to evaluate matrix elements of one-body operators
tween different many-body wave functions~see Ref.@1# and
Appendix A!. When CA21

n and CA
m refer to bound states

then the overlapfnm
A (r ) is also called a spectroscopic amp

tude, and the associated integralSnm5*dr ufnm(r )u2 is the
well-known and frequently used spectroscopic factor@12#.
The quantitySnm provides a measure of the structural sim
larity of the nth excited (A21)-body state and an
(A21)-body subcluster of the fullA-nucleon system.

The one-body overlap functionsfn(r ) associated with the
different excited states of the (A21)-body system are no
independent of each other. They are related by a mo
independent sum rule@13# and, moreover, they satisfy a s
of complicated coupled differential-integral equatio
@1,5,14–16#. For obtaining equations of motion which ar
decoupled, one has essentially two different methods av
able. One can employ the full particle-plus-hole space a
study the combined particle-hole propagator. The result
equations of motion contain a self-energy operator which
a complicated form and requires energy averaging befo
relation to the nuclear mean field can be established. T
approach will be outlined in the next subsection. Altern
tively, it is possible to separate particle and hole states
projecting on either the particle or hole subspace. This yie
separate sets of equations, one for each subspace. The
approach was used in Feshbach’s derivation of a genera
optical potential in the context of his theory for nuclear r
actions @2,7#. It also plays an essential role in the clust
model@4#. We will discuss the projection-operator method
Sec. II B. By considering both approaches it is possible to
up four different, formally exact, equations for each on
body overlap. The question to be addressed is not ‘‘which
of equations is correct?’’—they all are. The question to
addressed is rather ‘‘which formalism is most useful in
given context and which result corresponds most closely
particular approximation scheme, for example, the nucl
mean field or the cluster model?’’
3-2
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A. Mass operator and equations of motion

The formally simplest approach to obtaining a decoup
equation of motion for the one-body overlap functions ma
use of the propagator method. It involves the full partic
hole propagator and the self-energy or mass operator.
start with the time-ordered particle-hole Green’s functio
Fourier-transformed over the time component@3,17#

G~r ,r 8;E!5Gp~r ,r 8;E!1Gh~r ,r 8;E!, ~3!

Gp~r ,r 8;E!5^cA
0 ua~r !

1

E2~Ĥ2E0
A!1 i e

a†~r 8!ucA
0&,

~4!

Gh~r ,r 8;E!5^cA
0 ua†~r 8!

1

E1~Ĥ2E0
A!2 i e

a~r !ucA
0&.

~5!

Here ucA
0& is the ~normalized! Heisenberg ground state fo

the A-particle system andE0
A the corresponding eigenvalue

a(r ) @a†(r )# is a nucleon annihilation~creation! operator,
andĤ denotes the nuclear many-body Hamiltonian. The f
Green’s functionG(r ,r 8;E) represents both particle and ho
propagation in the many-body system. Inserting a comp
set of (A11) @(A21)#-body eigenfunctions of the Hamil
tonianĤ into Eq. ~4! @Eq. ~5!#, we obtain the Lehmann rep
resentation of the particle-hole propagator

Gp~r ,r 8;E!5(
m

f0m
A11~r !

1

E2~Em
A112E0

A!1 i e
f0m

A11~r 8!* ,

~6!

Gh~r ,r 8;E!5(
m

fm0
A ~r 8!*

1

E2~E0
A2Em

A21!2 i e
fm0

A ~r !.

~7!

The f(r ) are unambiguously identified by the requireme
that the complete set inserted in Eq.~4! @Eq. ~5!# be com-
prised of eigenfunctions ofĤ—they are the one-body over
lap functions introduced in the preceding section.

The equation of motion for the particle-hole propaga
can be written as

S E1
\2

2m
¹ r

2DG~r ,r 8;E!2E dr 9S~r ,r 9;E!G~r 9,r 8;E!

5d~r2r 8!, ~8!

where S(r ,r 9;E) denotes the mass operator~or ‘‘self-
energy’’!, which describes the interaction of the propagat
particle or hole with all the other particles or holes in t
medium. It is also related to the Green’s function by Dyso
equation@3,17#.

Inserting the Lehmann representation into Eq.~8!, one
obtains an equation of motion for the one-body overlap fu
tions @3,18#. For the particle states it takes the form
03431
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S ~Em
A112E0

A!1
\2

2m
¹ r

2Df0m
A11~r !

2E dr 8S~r ,r 8;Em!f0m
A11~r 8!50, ~9!

and the corresponding equation for the hole states is obta
with the replacements (Em

A112E0
A)⇒(E0

A2Em
A21) and

f0m
A11(r )⇒fm0

A (r )* . The squared norm of a discrete partic
or hole statef0m(r ), the spectroscopic factorS0m , can also
be expressed in terms of the self-energyS(r ,r 8;Em) ~see
Refs. @3,18#!. With the normalized one-body overlap func
tion f̂nm(r )[fnm(r )/ASnm one obtains

S0m5E dr uf0m
A11~r !u2

5F12
d

dEE drdr 8f̂0m
A11~r !*

3S~r ,r 8;E!f̂0m
A11~r 8!G

E5Em

21

~10!

for the particle states and analogously for the hole sta
@For the hole states it is necessary to replace (Em

A112E0
A) by

(E0
A2Em

A21) andf0m
A11(r ) by fm0

A (r )* .#
Introducing the modified mass operatorM(r ,r 8;E)

5S(r ,r 8;E1 i e) ~valid for real energyE) allows one to
work with a quantity that can be analytically continued fro
the real axis into the upper plane of the complex ene
plane. With this operator, the equation for the overlap fu
tions becomes

S Em1
\2

2m
¹ r

2Dfm~r !2E dr 9M~r ,r 8;Em!fm~r 8!50,

~11!

whereEm5(Em
A112E0

A), fm(r )5f0m
A11(r ) holds for particle

states andEm5(E0
A2Em

A21), fm(r )5fm0
A (r )* holds for

hole states. The above equation of motion defines a Ha
tonian

HM~r ,r 8!52
\2

2m
¹ r

2d~r2r 8!1M~r ,r 8;E!. ~12!

Thus, the modified mass operator plays a role similar to t
of a potential in a single-particle problem. Equation~11! is
an elegant, formally exact, one-body equation for the o
body overlap functions—the complexities of the many-bo
system are contained inM(r ,r 8;E): The influence of the
nuclear medium leads to a nonlocal, energy-dependent, c
plex form for this operator. Usually, the mass operator
generated perturbatively, which yields—to lowest order—
Hartree-Fock approximation.

The above development treats the particle and the h
states which are built on a givenA-body reference stateuCA&
on equal footing and yields bound as well as elastic scat
ing overlap functions. This is also what is required of t
nuclear mean field—that it be able to simultaneously
3-3
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scribe particle and hole states, bound and scattering st
Equations~11! and~12! above seem to imply that the mod
fied mass operatorM(r ,r 8;E) can be identified with the
nuclear mean field. Such conclusion, however, is proble
atic, since the solutions of Eq.~11!, which contains
M(r ,r 8;E), include states that cannot be easily described
a mean-field approach. This applies in particular to cert
low-lying states in the spectra of (A61)-nucleon systems
adjacent to nuclei for which the independent-particle mo
predicts a closed-shell structure. These states have
‘‘wrong’’ quantum numbers, i.e., quantum numbers that
not compatible with a description of the state as a hole
particle with respect to the neighboring closed-shellA-body
configuration. The associated spectroscopic factors for o
nucleon transfer to/from theA-body ground state are smal
For example, the 5/21 state at 5.270 MeV and the 1/21 state
at 5.299 MeV in15N and the 1/22 state at 3.104 MeV in17F
have associated overlaps that can be obtained from the
operator approach but not from an independent part
model. In the independent particle model, the ground stat
16O is a closed-shell configuration with the 0s1/2, 0p3/2, and
0p1/2 orbitals completely filled. In this picture, the17F 5/21

ground state, the 1/21 state at 0.495 MeV, and the 3/21 state
at 5.000 MeV can be easily understood as an additional
ton placed in the 0d5/2, 1s1/2, or 0d3/2 orbitals, respectively.
Similarly, the 15N 1/22 ground state and the 3/22 state at
6.324 MeV can be explained as proton holes in the 0p1/2 and
0p3/2 orbitals of the 16O ground state, respectively. Singl
particle wave functions corresponding to these states ca
easily generated in a potential model with a harmonic os
lator or Woods-Saxon shape plus a spin-orbit term. The 51

and 1/21 states in15N and the 1/22 state in17F, however, do
not have such a simple structure. While these states do
exist in the independent particle model in this energy ran
they can be understood as hole or particle states with res
to the 16O ground state provided the latter contains corre
tions beyond the simple mean field. Such many-body co
lations result in partial occupancies of the single-particle
bitals, e.g., in16O one obtains weakly occupied 0d5/2 and
1s1/2 orbitals and a 0p1/2 orbit that is not quite full. Conse
quently, it is possible to remove~add! a nucleon from~to! a
small component of the16O many-body wave function. The
associated spectroscopic factors are small, but nonzero.
measured values areS5/2150.019,S1/2150.018 for the15N
system@19#; the exact value ofS1/22 for the 17F case has no
yet been determined experimentally, but is known to be sm
@20#. It then follows from Eq.~10! that in the vicinity of
these levelsM(r ,r 8;E) is rapidly varying with energy. This
suggests that the nuclear mean field should be identified
an energy-averaged version of the mass operator rather
with the modified mass operator itself. This conclusion is
agreement with the definition of the mean field given
Mahaux and Sartor@3#.

B. Projection operator formalism and equations of motion

An alternative method for deriving decoupled equatio
of motion for the one-body overlap functions makes use
the projection operator formalism, which was used by Fe
03431
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bach in his work on the generalized optical potential@2#. In
this approach, the total many-body wave function is pa
tioned into an ‘‘open-channel’’ segment, i.e., a part that is
interest for studying a particular phenomenon, and
‘‘closed-channel’’ segment, the remaining part of the wa
function. By eliminating the closed channels, a Schro¨dinger
equation is obtained for the open channels, and an effec
Hamiltonian can be derived, which in turn can be used
analyze various aspects of the nuclear many-body probl
The formalism is quite general. The resulting equations
pend only on the existence of an appropriate projection
erator, not on an explicit realization thereof. We make use
the flexibility of this technique and construct three differe
projection operators which allow us to derive three differe
formally exact, equations of motion for one-body overl
functions—one describing particle states, one for hole sta
and one which applies to both. The expressions we ob
clarify the relationships between the particle-only, hole-on
and particle-hole approaches, and they highlight the lim
tions of the former two. The fact that all three sets of equ
tions can be derived in the projection operator formali
demonstrates that these limitations are defined by the ch
model space, not by the formalism employed.

We first derive equations of motion for one-body overla
which correspond to particle states. We start with the Sch¨-
dinger equation for the (A11)-body system

HuCA11
m &5Em

A11uCA11
m &, ~13!

and introduce the following projection operator:

Pn
p5E drdr 8a†~r !uCA

n&N A~n,r ,n,r 8!21^CA
n ua~r 8!.

~14!

Here N(n,r ,m,r 8)5^CA
n ua(r )a†(r 8)uCA

m& plays an impor-
tant role for the projection into the space of particle stat
The operator*dra†(r )uCA

n&^CA
n ua(r ), without theN 21, is

not a projection operator, although it has a simple comple
ness relation associated with it;A21(n*dra†(r )uCA

n&
^CA

n ua(r )ucA11&5ucA11& holds for any completely anti-
symmetric (A11)-body stateucA11&. ~See also Appendix A
of Ref. @5#.! SinceN A(n,r ,m,r 8) might be singular, caution
is required when inverting this operator. For the present p
poses we can simply exclude the space spanned by the e
functions corresponding to zero eigenvalues.@For more in-
formation on the operatorN(n,r ,m,r 8), see Appendix A and
Refs.@2,4#.# The statePn

puCA11
m &, which is obtained by pro-

jection from an eigenstateuCA11
m & of the (A11)-body

Hamiltonian, has the same one-body overlap funct
fnm

A11(r )5^CA
n ua(r )Pn

puCA11
m &5^CA

n ua(r )uCA11
m &, associ-

ated with it as the original~unprojected! state.
We can now define a projection operator that is comp

mentary toPm
p , Qm

p 512Pm
p , and derive an exact equatio

of motion for the one-body overlap fnm
A11(r )

5^CA
n ua(r )uCA11

m &. We proceed by partitioning the (A
11)-body wave function uCA11

m &5Pn
puCA11

m &
1Qn

puCA11
m &, and formally eliminatingQn

puCA11
m &. The pro-
3-4
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cedure follows Feshbach’s derivation of the generalized
tical potential very closely and yields

Em
A11fnm

A11~r !5E dr 8dr 9^CA
n ua~r !

3S H1HQn
p 1

Em
A112Qn

pHQn
p

Qn
pH D

3a†~r 8!uCA
n&N A~n,r 8,n,r 9!21fnm

A11~r 9!

~15!

5E dr 8H n
p~r ,r 8;Em

A11!fnm
A11~r 8!,

~16!

where the HamiltonianH n
p(r ,r 8;Em

A11) is defined by the las
equality. A similar equation for the particle Green’s functio
is given by Eq.~C5!.

In analogy with the above treatment, one can derive eq
tions of motion for overlap functions which correspond
hole states. This case was considered previously by B
et al. @21#. Here we start with the Schro¨dinger equation for
an (A21)-body stateuCA21&, HuCA21

m &5Em
A21uCA21

m &,
and introduce the hole projection operator

Pn
h5E drdr 8a~r !uCA

n&rA~n,r ,n,r 8!21^CA
n ua†~r 8!,

~17!

whererA(n,r ,m,r 8)5^CA
n ua†(r )a(r 8)uCA

m& denotes a den
sity matrix element. The equation of motion for the one-bo
overlaps corresponding to hole states takes the follow
form:

Em
A21fmn

A ~r !* 5E dr 8dr 9^CA
n ua~r !

3S H1HQn
h 1

Em
A212Qn

hHQn
h

Qn
hH D

3a†~r 8!uCA
n&rA~n,r 8,n,r 9!21fmn

A ~r 9!*

~18!

5E dr 8H n
h~r ,r 8;Em

A21!fmn
A ~r 8!* .

~19!

This equation differs very clearly from Eq.~16!; in particu-
lar, since we have restricted ourselves to the space of
states, it applies to overlaps corresponding to hole st
only. Also note that the inverse of the density matrix elem
rA(n,r 8,n,r 9) occurs in the above expression, instead
N A(n,r 8,n,r 9)21. A caveat similar to that relevant forN A

applies torA with respect to inverting the possibly singul
operator.

The Feshbach projection operator formalism can also
used to derive the particle-hole Hamiltonian. We combine
Schrödinger equations for the particle and hole states into
03431
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form H̃uCA61
m &5E muCA61

m &, with Em as defined in Sec. II A

@see the text following Eq.~11!#, Â5*dra†(r )a(r ) denoting
the particle-number operator, andH̃[(H2E0

A)(Â2A). We
now introduce the particle-hole projection operator

Pn
ph5E drdr 8@a~r !1a†~r !#uCA

n&N ph
A ~n,r ,n,r 8!

3^CA
n u@a~r 8!1a†~r 8!#, ~20!

where N ph
A (n,r ,n8,r 8)[^CA

n u@a(r )1a†(r )#@a(r 8)

1a†(r 8)#uCA
n8&. Note that this projection operator does n

preserve the particle number. For time-reversal invari
A-body states,uCA

n&, N ph
A (n,r ,n,r 8) reduces to a delta

function N ph
A (n,r ,n,r 8)→d(r2r 8). For the rest of this dis-

cussion we will restrict ourselves to suchA-body states. With
this projection operator we can carry out the usual Feshb
projection procedure to obtain the following equation of m
tion for the one-body overlap function

E mfnm
A11~r !5E dr 8^CA

n u@a~r !1a†~r !#

3S H̃1H̃Qn
ph 1

Em2Qn
phH̃Qn

ph
Qn

phH̃ D
3@a~r 8!1a†~r 8!#uCA

n&fnm
A11~r 8!

5E dr 8HM~r ,r 8,Em!fnm
A11~r 8!. ~21!

The fact thatHM(r ,r 8;Em), as defined here, is indeed th
particle-hole Hamiltonian is demonstrated explicitly in A
pendix C by calculating the Green’s functions. The abo
equation is written for particle overlaps, but it applie
equally well to hole states. In the latter case,fnm

A11(r ) needs
to be replaced byfmn

A (r )* .
The particle-only (H p), hole-only (H h), and particle-

hole (HM) Hamiltonians above can be related to each ot
by applying the projection operator formalism to the asso
ated Green’s functions. This is done in Appendix C. We fi
that the particle-only Hamiltonian, which occurs in the d
nominator of the particle Green’s function, is the optica
model Hamiltonian used by Feshbach. The analogous Ha
tonian for the hole case appears in the denominator of
single-hole propagator. Since the particle-hole Green’s fu
tion is simply the sum of the particle and hole contribution
and is related to the particle-hole HamiltonianHM by the
equation

Ǧ~E!5
1

E2ȞM
, ~22!

the three Hamiltonians are connected to each other thro
3-5
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1

E2ȞM
5

1

E2@Ȟn
p~E!2En

A#1 i e
Ň A

1
1

E1@Ȟn
h~E!2En

A#2 i e
řA. ~23!

Here Ǒ denotes the integral operator which acts as follow
Ǒf (r )5*dr 8O(r ,r 8) f (r 8). We observe that in the limit o
completely empty~full ! single-particle orbitals, the particle
hole Hamiltonian HM(r ,r 8;E) reduces to H m

p (r ,r 8;E)

@H m
h (r ,r 8;E)#. Equation~23! can be inverted to giveȞM in

terms of Ȟn
p and Ȟn

h , but the resulting expression is ver
complicated~see Appendix C!.

To illustrate the differences between the Hamiltonia
H p, H h, andHM , we consider Eqs.~16!, ~19!, and ~21!.
We take into account only the leading terms in the paran
ses of each equation~i.e. we ignore contributions from thos
terms that containQp, Qh, or Qph) and take the Hamiltonian
to be of the form H5*drdr 8H1(r ,r 8)a†(r )a(r 8)
1 1

2 *dr1dr2V(r12r2)a†(r1)a†(r2)a(r1)a(r2), where
H1(r ,r 8) denotes a one-body Hamiltonian, which in the si
plest case reduces to a kinetic energy term, andV refers to a
two-body potential. A straightforward calculation then yiel

H n
p2En

A'E H1~r ,r 9!P p~r 9,r 8!dr 9

1E dr-^CA
n u E dr 9V~r2r 9!

3a†~r 9!a~r 9!a~r !a†~r-!uCA
n&

3N A~n,r-,n,r 8!21, ~24!

En
A2H n

h'E H1~r ,r 9!P h~r 9,r 8!dr 9

1E dr-^CA
n u E dr 9V~r2r 9!

3a†~r 9!a~r 9!a†~r !a~r-!uCA
n&

3rA~n,r-,n,r 8!21, ~25!

H M'H1~r ,r 8!1^CA
n ud~r2r 8!E V~r2r 9!a†~r 9!a~r 9!dr 9

2V~r2r 8!a†~r !a~r 8!uCA
n&. ~26!

Here P p(r 9,r 8) and P h(r 9,r 8) are projection operator
which eliminate the totally empty and completely filled o
bitals, respectively. We find that the particle-hole Ham
tonian reduces to a familiar form—it contains a one-bo
contribution and two-body Hartree-plus-Fock terms. Its fo
is much simpler than that for the other Hamiltonians, sin
using the particle-only~hole-only! Hamiltonian requires tha
the hole~particle! states be eliminated from consideration.
is possible to recover the Hartree term in the particle-only
hole-only approaches if one insertsuCA

n&^CA
n u betweena(r 9)
03431
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anda(r ) in Eq. ~24! or betweena(r 9) anda†(r ) in Eq. ~25!,
i.e., if one limits the intermediate states to one possibil
namely,CA

n . But even in this approximation the projectio
operatorP p(r 9,r 8) or P h(r 9,r 8) remains present. In the
limit of a pure one-body problem these projection operat
suffice to eliminate the hole~particle! states, the inverse o
N A or rA is not required. In the opposite limit, in the pre
ence of strong two-body forces, the projection operato
which only remove orbitals with occupancy 0 or 1, becom
largely ineffective. In this situation, they eliminate on
states very far from the Fermi surface and the removal of
remaining hole~particle! contributions requires the mor
complicated potential term and the higher order terms, wh
have been neglected here.

The one-body overlap function̂CA21
n ua(r )uCA

m& can be
considered as a particle state with respect to
(A21)-body stateCA21

n or as a hole state with respect
the A-body stateCA

m . In the former case, the overlap func
tion satisfies both Eq.~16! and Eq.~21!; in the latter case it
satisfies Eq.~19! and Eq.~21!. Thus, a given one-body over
lap function is the solution of the four different, formall
exact, equations, Eq.~16!, Eq. ~19!, and two versions of Eq
~21!.

Despite this formal equivalence, the particle-hole a
particle-only approaches lead to different physical interp
tations, as the following example illustrates. If we consid
an s-wave proton scattering from the7Be ground state, we
find that the relative-motion wave function has a node. Th
are two different possibilities for explaining the origin of th
this node. In the particle-hole picture the potential has
s-wave bound state and the scattering state must have a
in order to be orthogonal to the bound state. In the partic
only picture there is an occupieds-wave orbital to which the
scattering state must be orthogonal in order to respect
Pauli exclusion principle. Both of these explanations,
though basically correct, have shortcomings. In the partic
hole picture, the potential is energy dependent so the sin
particle states are not strictly orthogonal to each oth
Similarly, in the particle-only picture, the scattering sta
does not need to be completely orthogonal to the bo
s-wave orbital, since the latter might not be fully occupie
These two shortcomings are related to each other since
energy dependence of the mean-field~mass operator! is re-
lated to the occupancy of the orbitals, as is made explici
Eq. ~10!.

The nuclear mean field is the energy average of the m
operator that arises in the particle-hole formalism. In co
trast, the cluster model is based on a particle-only appro
Thus it would be difficult to derive the nuclear mean field
the particle-only formalism or the cluster model in th
particle-hole formalism. However, both approaches—if c
rectly implemented—yield the same one-body overlap fu
tions. This is the lesson of Fig. 1.

III. THE ROLE OF AUXILIARY FUNCTIONS

Equation~15! has previously been considered in the co
text of cluster-model calculations. Since the cluster mode
based on a particle-only approach, Eq.~15! emerges natu-
3-6
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rally as the relevant differential equation for the one-bo
overlap functions. However, due to the presence of (N A)21,
this equation is quite ‘‘asymmetric;’’H p is non-Hermitean
and cannot be easily related to a phenomenological Ha
tonian with a local potential. In the preceeding section,
have shown that this problem appears since the hole s
have been explicitly excluded from the model space. In or
to recover a more symmetric equation of motion one ha
employ the particle-hole formalism, which also enables o
to make a connection to a phenomenological Hamilton
with a local potential, namely, by using the energy-avera
mass operator.

Cluster models describe the dynamics of simple confi
rations, such as the single nucleon-plus-core system con
ered here, as well as more complicated processes invol
two ~or more! composite nuclear fragments. In general
becomes quite problematic to incorporate the relevant h
space and thus other possibilities for arriving at a pract
and esthetically more satisfying equation of motion need
be explored. Alternative one-body functions, which lead
Schrödinger equations with more symmetric Hamiltonian
have been derived from the one-body overlaps used in
preceeding sections. For example, the auxiliary functi
f̃nm

A11(r ) and f̄nm
A (r ), defined by

fnm
A11~r !5E dr 8N A~n,r ,n,r 8!f̃nm

A11~r 8! ~27!

and

f̄nm
A ~r !5E dr 8N~n,r ,n,r 8!21/2fnm

A ~r 8!, ~28!

respectively, have been studied in Refs.@4,22#. The power
~-1/2!, to which N A is raised in the latter equation, is to b
understood in an operator sense inr space. In practice, pow
ers ofN A can be easily calculated by using the eigenfu
tions of N A, the so-called natural orbitals@3,23,24#. Note
that the functionf̃nm

A11(r ) is not uniquely defined by Eq
~27!, sinceN A can be singular. This is, however, not ve
relevant, since those components off̃nm

A11(r ) which are
nonunique, are projected out byN A(n,r ,n,r 8) and
a†(r 8)uCA

n& in the associated equation of motion

Em
A11E dr 8N A~n,r ,n,r 8!f̃nm

A11~r 8!

5E dr 8^CA
n ua~r !S H1HQn

p 1

Em
A112Qn

pHQn
p

Qn
pH D

3a†~r 8!uCA
n&f̃nm

A11~r 8! ~29!

5E dr 8H̃n
p~r ,r 8;Em

A11!f̃nm
A11~r 8!* . ~30!

While the above equation contains a Hamiltonian (H̃p)
which is more symmetric thanH p @see Eq.~15!#, the opera-
tor N A is still present on the left-hand side of Eq.~30! @27#.
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The presence of this projection operator makes it difficult
establish a connection to a Schro¨dinger equation with a phe
nomenological potential.

Using the functionf̄nm
A (r ), defined by Eq.~28!, allows

one to absorb the projection operatorN A into the definition
of the associated HamiltonianH̄n

p(r ,r 8;Em
A11):

Em
A11f̄nm

A11~r !5E dr 8dr 9dr 9N A~n,r ,n,r 8!21/2^CA
n ua~r 8!

3S H1HQn
p 1

Em
A112Qn

pHQn
p

Qn
pH D

3a†~r 9!uCA
n&N A~n,r 9,n,r-!21/2f̄nm

A11~r-!

~31!

5E dr 8H̄n
p~r ,r 8;Em

A11!f̄nm
A11~r 8!* .

~32!

The function f̄nm
A (r ) and the HamiltonianH̄n

p(r ,r 8;Em
A11)

play a prominent role in the nuclear cluster model. Arg
ments in support of employing the barred quantities a
among others, the claims thatH̄p can be well approximated
by a local Hamiltonian and that the Perey effect is minim
for this Hamiltonian@4#. The Perey effect is the differenc
between the wave functions generated by nonlocal and l
equivalent Hamiltonians@16#. The latter argument, howeve
is misleading, as Fig. 1 clearly demonstrates. The funct
f(r ) shown here has been calculated in a cluster-model
proach@9#, i.e., it satisfies a nonlocal equation of the for
given in Eq. ~15!. We observe thatf(r ) agrees well with
c t(r ) andcb(r ), two single-particle functions generated in
phenomenological approach with a local potential. Nevert
less, the HamiltonianH p can, in general, not be approx
mated by a local function. The reason for the excellent agr
ment seen in Fig. 1 is the fact thatf(r ) also satisfies an
equation of the form given in Eq.~21!, and the Hamiltonian
HM , which occurs in the latter equation, can be appro
mated by a local function, namely, the energy-averaged m
operator.

Furthermore, if one studies the functionsf̄m(r ), which
can be generated in a microscopic model, such as the nu
shell model, one has to conclude that these functions ca
be the solutions of a one-body Schro¨dinger equation with a
simple local potential. To see this, we compare the squa
norm

S̄nm
A 5E dr uf̄nm

A ~r !u2, ~33!

of the functionf̄nm
A (r ), with the squared normSnm

A of the

overlapfnm
A (r ), from which f̄nm

A (r ) has been derived, fo
the low-lying states of the15N and 17F systems, see Fig. 2
All calculations were carried out using theOXBASH shell
3-7
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JUTTA ESCHER AND BYRON K. JENNINGS PHYSICAL REVIEW C66, 034313 ~2002!
model code with the WBP@25# interaction in a 2\v model
space. The 16O ground state was chosen as t
(A516)-body reference state.

TheSnm
A , shown as dotted bars in Fig. 2, display a patte

that one would expect near a closed-shell nucleus suc
16O: They are large ('1) for those states which can b
described as a proton-hole configuration~e.g., the 1/22

ground state and 3/22 excited state of15N) or single-proton
configurations~e.g., the 5/21, 1/21, and 3/21 states of17F)
with respect to the16O reference state; they are small ('
few percent! for those15N and 17F states which have a mor
complicated (2h-1p or 1h-2p) structure. TheS̄nm

A values
~shown as striped bars in Fig. 2!, on the other hand, agre
with theSnm

A only for those states which have a closed sh
plus-particle or hole-in-a-closed shell structure. Unlike t
spectroscopic factorsSnm

A , they arenot small for the states
with the more complicated structure—those low-lying sta
that have the wrong quantum numbers and cannot be e
generated by a mean-field approach, as has been discus
the end of Sec. II A. For example, theS̄nm

A value for the 1/22

state at 4.080 MeV in17F is 23.7%, and for the 3/22 state at
5.651 MeV it is 34.9%.

To generate a spectrum and strength distributions suc
those displayed by theS̄nm

A shown in the bottom~top! part of
Fig. 2 is nontrivial in a particle-only~hole-only! approach. It
is very unlikely that the relevant particle-only~hole-only!
HamiltonianH̄n

p (H̄n
h) could be approximated by a phenom

FIG. 2. Comparison of the spectroscopic factorsS ~shown as

dotted bars! and the normalizations of the barred amplitudesS̄
~shown as striped bars!, for low-lying states in15N and 17F. All
values are those calculated withOXBASH with the WBP interaction
in a 2\v space@25#. The states marked with an asterisk are n
present in a simple one-particle model.
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enological form with a local potential. In the particle-on
case the potential model would have to generate a sin
particle spectrum in which, e.g., the 1/22 and 3/22 orbitals
occured at energies higher than the 5/21 and 1/21 orbitals. In
other words, the spectrum would have to contain the us
sd-shell orbitals,f p-shell orbitals, etc., and, superposed
that, states which lie below the Fermi surface in more co
monly employed Woods-Saxon type potential models. Th
additional orbitals would have to occur at positive energ
and would appear to have been ‘‘reflected at the Fermi s
face,’’ from negative to positive energy values. Analogous
the hole-only case exhibits a spectrum which contains a
‘‘reflected states’’ superposed onto the usual set of orbit
The structure displayed in Fig. 2 is not special to the16O
region. Similar features occur near many other nuclei
which the standard independent particle model predict
closed shell or subshell structure, e.g.,12C, 28Si, 32S, 36S,
48Ca, etc.

The three functions discussed here have rather diffe
physical interpretations: The one-body overlapfnm

A11(r )
5^CA

n ua(r )uCA11
m & gives the probability amplitude for find

ing the (A11)-body system in the statem when a nucleon is
added to theA-body system~in staten) at point r . Pauli
blocking limits the possibilities for adding particles to th
system and reduces the associated spectroscopic facto
cordingly. The effect of Pauli blocking is formally eliminate
for the auxiliary functionf̄nm

A11(r ). The normS̄nm
A11 of the

function f̄nm
A11(r ) gives the ratio of the normSnm

A11 of the
overlapfnm

A11(r ) to the maximum norm allowed by the Pau

principle. In other words,S̄nm
A11 measures the similarity of the

(A11)-body system and the configuration that is obtain
by adding a nucleon to the Pauli-allowed component of
A-body state. Thus, the values ofSnm

A11 and S̄nm
A11 that are

shown in the bottom portion of Fig. 2 can be understood
follows: Thep1/2 orbital is mostly Pauli blocked~i.e., occu-
pied! in the 16O ground state; hence the spectroscopic fac
associated with the 1/22 state in17F ~at 4.080 MeV! is small.
The value ofS̄nm

A11 for this state, in contrast, is sizable, thu
indicating that the 1/22 state is structurally similar to the
configuration that is obtained by adding ap1/2 proton to the
small component of the16O wave function which has an
unoccupiedp1/2 single-proton orbital. The15N spectrum can
be understood analogously: Thed5/2 orbital has a small oc-
cupancy in16O, so the spectroscopic factor associated w
the 5/21 state in15N ~at 6.496 MeV! is small. Nevertheless
the relevantS̄nm

A11 value is large, which indicates that th
5/21 state is structurally similar to the configuration that
obtained by removing ad5/2 proton from the small compo
nent of the 16O wave function which has an occupiedd5/2
proton orbital.

The auxiliary functionf̃nm
A11(r ) contains information on

the projected (A11)-body state Pn
puCA11

m &
5*dra†(r )uCA

n&f̃nm
A11(r ), with Pn

p given by Eq.~14!. Note

that f̃nm
A11(r ) occurs behind an antisymmetrization opera

which eliminates those components off̃nm
A11(r ) that do not

lead to a completely antisymmetric (A11)-body state. Thus

t

3-8
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ONE-BODY OVERLAP FUNCTIONS, EQUATIONS OF . . . PHYSICAL REVIEW C 66, 034313 ~2002!
f̃nm
A11(r ) is not unique and its norm is not well defined. How

ever, the components off̃nm
A11(r ) that remain after antisym

metrization is enforced define the projected state comple
Although all three one-body functions discussed here c

tain valuable information on the structure of the many-bo
system, only the one-body overlapfnm

A11(r ) can be identified
with the phenomenological single-particle wave functio
The agreement between the microscopically calculated fu
tion fnm

A11(r ) and the Woods-Saxon eigenfunction shown
Fig. 1 confirms this. Given the complicated form of Eqs.~15!
and ~18!, which contain the equations of motion fo
fnm

A11(r ), this is—at first glance—a surprising result. Equ
tion ~21! is the key to understanding this point: The one-bo
overlap function does not only satisfy the complicated eq
tion of motion that was derived in a particle-only~or hole-
only! approach and has a nonlocal potential, it also obeys
~21!. The latter equation is based on a particle-hole appro
and contains the nuclear mean field as the relevant poten
It is this field that can be approximated by a local potent
The complications in Eqs.~15! and~18! arise because part o
the space~hole states or particle states! have been eliminated
from consideration. Introducing alternative Hamiltonian
such asH̄ andH̃ discussed here, does not remedy the pr
lem. These Hamiltonians are too complex to allow for
approximation by local functions. For example, the kine
energy term takes on a more complicated form
H̄n

p(r ,r 8;En
A11), namely, N̂21/2T̂N̂ 1/2, than in

H n
p(r ,r 8;En

A11), where it is given byT̂P p, see Eq.~24!.
Moreover, as we have demonstrated here, the strength d
butions that are obtained with these alternative Hamiltoni
are neither in agreement with the predictions of a poten
model nor with experimental observations.

IV. LIMITING CASES

In order to illustrate the formalism employed in this wor
we discuss applications to two simple limiting cases
~nuclear! many-body systems. We explore both nonintera
ing fermions in a one-body potential and spatially unifo
systems. We focus in particular on clarifying the role of t
projection operator which eliminates the hole or parti
states from consideration.

A. Non-interacting particles in a one-body potential

We consider a set ofA noninteracting fermions in a one
body potentialU(r ). The relevantA-body Hamiltonian can
be written as

HA5(
i 51

A

Hi , ~34!

whereHi52¹ i
2/(2m)1U(r i). ~Note that we employ a lo-

cal potential for convenience only; a nonlocal version do
not significantly alter our findings.! The A-body wave func-
tions that describe this system are Slater determinants
structed fromA occupied single-particle orbitals. In particu
03431
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lar, for the ground state theA lowest orbitals are filled. The
particle and hole contributions to the full Green’s functio
are given by

Gp~r ,r 8;E!5 (
m5A11

`

cm~r !
1

E2Em1 i e
cm~r !* , ~35!

Gh~r ,r 8;E!5 (
m51

A

cm~r !*
1

E2Em2 i e
cm~r !, ~36!

wherecm(r ) denotes a single-particle orbital andEm is the
corresponding single-particle energy. The modified mass
erator reduces to the one-body potentialM(r ,r 8;E)
5U(r )d(r2r 8). The operator Pn

p of Eq. ~14!, which
projects into the space of particle states, reduces to a
simple expression—a step function. Since theA-body wave
function considered here is a Slater determinant, i.e., the
cupancies of the single-particle orbitals are restricted to
values one and zero only, the role ofPn

p is simply to elimi-
nate the filled orbitals from active consideration. Thus,
equation of motion takes the following form in the particl
only space:

Emf0m
A11~r i !5Hiu~Hi2Ef !f0m

A11~r i !, ~37!

whereEf denotes the Fermi energy@compare also Eq.~15!#
and u is the Heaviside step function. The effective Ham
tonian isHiu(Hi2Ef), i.e., even for this simple system on
obtains a Hamiltonian which is nonlocal and not~manifestly!
symmetric. The effect of the projection operator is forma
present, albeit in the form of a simple step function, whi
can be easily implemented in the formalism. The operatoN
reduces to this simple form and commutes with the Ham
tonian if and only if the relevantA-body wave function is a
Slater determinant. Rewriting Eq.~37! as Emu(Hi

2Ef)f0m
A11(r i)5Hif0m

A11(r i), with the step function in-
cluded on the left side of the equation, allows for a compa
son with Eq.~29!. Introducing correlations beyond antisym
metry effects and those included in the central poten
causes a smearing of the step function and makes it ne
sary to include the full norm operator. Arguments ana
gously to those presented here apply to the hole-only sp
Naturally, a step function which projects out theunoccupied
states has to be introduced and all other quantities have t
modified accordingly.

The simple example discussed here illustrates an imp
tant point: the fact that the mean field can in general not
recovered in an approach that is based on an incomp
~particle-only or hole-only! space. If we view the one-bod
potentialU(r ) as an approximation to the nuclear mean fie
we find that the step function prevents us from determin
the functionU(r ) from either the particle-only or the hole
only equations of motion—both sets of equations are
quired. Moreover, only in simple cases, such as the one
sented here, is the mean field HamiltonianHM given by the
sum of the particle-only and hole-only Hamiltonians; mo
generally, the Hamiltonians are related by Eq.~23!, which
poses a much greater challenge.
3-9
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B. Spatially uniform Fermi systems

The investigation of spatially uniform Fermi systems
instructive and allows for important simplifications. F
nuclear matter, a hypothetical uniform medium with an eq
number of protons and neutrons, and with the Coulomb
teraction turned off, we have the following situation: All re
evant physical quantities are smooth functions of energy,
averages need not be taken. This holds in particular for
mass operator and the single-particle energies. Translati
invariance implies that the spatial nonlocality of the modifi
mass operator is simple,M(r ,r 8;E)5M(ur2r 8u;E), and
the one-body overlap functions are represented by p
waves. Similarly, theN A operator and the density matri
depend on the differenceur2r 8u only, N A(n,r ,n,r 8)
5N n

A(ur2r 8u), rA(n,r ,n,r 8)5rn
A(ur2r 8u). Consequently,

the one-body overlaps are eigenfunctions ofrn
A(ur2r 8u), i.e.,

overlap functions and natural orbitals coincide for nucle
matter~see also Appendix B!. The Fourier transform of the
N A operator has the simple form N n

A(k,k8)
5(2p)3/2N n

A(k)d(k2k8)5@12hn(k)#d(k2k8) and the
spectroscopic factors reduce to occupancieshn(k)
5^CA

n ua†(k)a(k)uCA
n&512^CA

n ua(k)a†(k)uCA
n&, which

give the average number of nucleons with momentumk in
the stateuCA

n&. The projection operatorPn
p takes the form

Pn
p5E dka†~k!uCA

n&@12hn~k!#21^CA
n ua~k!, ~38!

and the equation of motion, Eq.~15!, becomes

Em
A11fnm

A11~k!5E dk8^CA
n ua~k!

3S H1HQn
p 1

Em
A112Qn

pHQn
p

Qn
pH D

3a†~k8!uCA
n&@12hn~k8!#21fnm

A11~k8!,

~39!

wherea(k), a†(k), andfnm
A11(k)5^CA

n ua(k)uCA11
m & denote

the Fourier transforms ofa(r ), a†(r ), andfnm
A11(r ), respec-

tively. As can be seen by comparing these expression
Eqs. ~14! and ~15!, eliminating the hole states from consid
eration reduces in the nuclear matter case to simply includ
the occupancies of the momentum eigenstates, i.e., the e
of theN A operator is incorporated in a simple multiplicativ
factor. In particular, whenn refers to a translationally invari
ant ground state of anA-body system andm refers to a sys-
tem with momentumkm , we find

Em
A11@12h0~k!#d~k2km!

5Em
A11^CA

0 ua~k!a†~km!uCA
0&

5^CA
0 ua~k!S H1HQ0

p 1

Em
A112Q0

pHQ0
p

Q0
pH D

3a†~km!uCA
0&, ~40!
03431
l
-

d
e
al

e

r

to

g
ect

since in that casefnm
A11(k)}d(k2km).

Furthermore, in this limiting case of spatially uniform
systems there exist simple relationships between the au
iary functions introduced in Sec. III and the one-body ov
lap functions. We find

fnm
A11~k!5@12hn~k!#f̃nm

A11~k! ~41!

and

f̄nm
A ~k!5@12hn~k!#21/2fnm

A ~k!. ~42!

The hole-only case can be treated analogously.

V. CONCLUSIONS

One-body overlap functions play an important role for t
description of nuclear structure and nuclear reactions. T
contain both single-particle and many-nucleon aspects of
nuclear many-body problem and can, in principle, be o
tained from a fully microscopic model or as the solution o
set of coupled-channels equations. Since for most cases
not possible to obtain exact solutions, one has to resor
approximations and/or employ truncated model spaces. V
ous one-body approximations, e.g., were discussed in
@5# and their relationships to phenomenological poten
models was demonstrated. In the present work, we have
cused on the effects of restricting the model space to parti
only or hole-only states. Using the Feshbach projection
erator formalism, we have derived equations of motion
the one-body overlaps in the particle-only, hole-only, a
particle-hole spaces. When treated properly, all three
proaches will give the same result. We have shown fo
simple example that this is indeed the case—we compa
the overlap obtained from a cluster-model~particle-only! cal-
culation with a single-particle wave function calculated in
potential model, which serves as an approximation to the
particle-hole approach, and we found excellent agreem
between the two functions.

Approximating the relevant~particle-only, hole-only, or
particle-hole! Hamiltonians by one that contains a simp
kinetic energy term and a local potential is only valid in t
particle-hole approach, as we have demonstrated here.
the full particle-hole space is able to accommodate the m
operator~self-energy term! and it is the energy average o
this operator that can be identified with the nuclear me
field and thus be approximated by a phenomenological
tential, such as those used by the optical model and the s
model.

Hamiltonians which are derived in particle-only or hol
only approaches are valid in their respective framewor
Normally, however, they have a very complicated form a
cannot be approximated by a function which includes
simple local potential. The complications arise since part
the space, namely all hole states or all particle states, h
been eliminated from consideration. Introducing auxilia
functions, such as thef̄(r ) and f̃(r ) functions discussed
here, might lead to simpler and more symmetric forms
the Hamiltonians, but does not solve the problem. T
3-10
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single-particle strength distributions that result from the
Hamiltonians do not agree with the predictions of a poten
model, nor do they ressemble the experimental findin
Nevertheless, the particle-only and hole-only approac
provide useful insights into the nuclear many-body probl
as, e.g., the success of the cluster model illustrates. The
fulness of such an approach relies on the proper interpr
tion of the relevant physical quantities. In particular, the a
iliary functionsf̄(r ) andf̃(r ) discussed here shouldnot be
identified with standard phenomenological single-parti
functions. The functionf̄(r ), e.g., contains nuclear structu
information that is complementary to, but different from, t
information encapsulated in the one-body overlap. It is
deed useful for exploring the spectroscopic properties
low-lying states, such as signatures for nuclear shell closu
Work on this aspect is in progress@8#.

In the present study, we have focused on one-body o
laps. One can also consider more general overlap functi
such as those employed in cluster model approaches,
their associated equations of motion. In alpha decay calc
tions, e.g., a four-body analog of the functionf̄(r ) studied
here is introduced@4,6#. In that context, the function is as
sumed to satisfy a local differential equation. Given the fin
ings presented here, we recommend that this assumptio
reexamined. To adequately address the issue, the pre
study needs to be extended to accommodate configura
involving two composite nuclear fragments.
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APPENDIX A: ONE-BODY OPERATORS

We consider a one-body operator F
5*drdr 8a†(r )a(r 8)F(r ,r 8). The operatorF is Hermitean
when F(r ,r 8)5F* (r 8,r ) holds. Matrix elements of such
Hermitean operator, with respect to many-body states,
the form

^cA
n uFucA

n8&5E dr dr 8F~r ,r 8!^cA
n ua†~r !a~r 8!ucA

n8&.

~A1!

Thus, information on the operator is contained inF(r ,r 8),
while the structure of the many-body states is contained
the density matrix

r~n,r ,n8,r 8!5^cA
n ua†~r !a~r 8!ucA

n8&, ~A2!

which contains diagonal as well as off-diagonal matrix e
ments. Closely related to the density matrix is the opera

N~n,r ,n8,r 8!5^cA
n ua~r !a†~r 8!ucA

n8&, ~A3!

which, in the framework of cluster models, takes the role
a norm operator. From the anticommutation relations
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a(r ) anda†(r ) it follows that the functionsr(n,r ,n8,r 8) and
N(n,r ,n8,r 8) are related to each other via

r~n,r ,n8,r 8!1N~n,r 8,n8,r !5dnn8d~r ,r 8!. ~A4!

Here we will concentrate onr(n,r ,n8,r 8), but a parallel de-
velopment follows forN(n,r ,n8,r 8), with (A21) replaced
by (A11).

We insert a complete set of orthonormal (A21)-body
wave functions in the expression for the density matrix a
obtain

r~n,r ,n8,r 8!5(
m

^cA
n ua†~r !uCA21

m &^CA21
m ua~r 8!ucA

n8&

~A5!

5(
m

fmn* A~r !fmn
A ~r 8!. ~A6!

This equation is very general; it only requires that the ma
body functionsuCA21

m & form a complete orthonormal se
Given such a set, a second set can be generated throu

unitary transformationuC̆A21
m &5(m8Umm8uCA21

m8 &, where

Umm85^CA21
m8 uC̆A21

m & denotes a matrix elements of a un
tary matrix. The corresponding transformation for the fun
tions fmn

A (r ) is given by

f̆mn
A ~r !5(

m8
Umm8fm8n

A
~r 8!. ~A7!

This transformation differs from the usual transformation
wave functions since neither thefm8n

A (r 8) nor the f̆mn
A (r )

form an orthonormal set. Note that thefmn
A (r 8) coincide

with the one-body overlap functions introduced in Sec. II
and only if the associated many-body functionsCA21

m are
eigenfunctions of the relevant Hamiltonian.

APPENDIX B: NATURAL ORBITALS

We now consider the density matrixr(r ,n,r 8,n8)

5^cA
n ua†(r )a(r 8)ucA

n8& for fixed n5n8. For simplicity we
suppress the indexn in what follows. The natural orbitals
ŵm(r 8) are defined as the set of single-particle wave fu
tions which diagonalize the density matrixr(r ,r 8):

E dr 8r~r ,r 8!ŵm~r 8!5lmŵm~r !. ~B1!

Sincer(r ,r 8) is Hermitian, the natural orbitals form a com
plete set and can be taken to be orthonormal. The nat
orbitals are not uniquely defined if one or more of the eige
valuesln are degenerate. This situation arises whenlm50
or 1, which occurs when there are completely empty or co
pletely filled single-particle orbitals in the many-body wa
function ucA

n&. The density matrix can be expressed in ter
of natural orbitals
3-11
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JUTTA ESCHER AND BYRON K. JENNINGS PHYSICAL REVIEW C66, 034313 ~2002!
r~r ,r 8!5(
m

lmŵm~r !ŵm* ~r 8!. ~B2!

Note that the natural orbitals, unlike the one-body over
functions, are completely defined by the structure of
A-body state.

Inserting Eq.~A6! into the eigenvalue equation, Eq.~B1!,
we obtain

ŵm~r !5
1

lm
(
m8

fm8
* ~r !E dr 8fm8~r 8!ŵm~r 8!, ~B3!

i.e., natural orbitals with nonzero eigenvalues can be
panded in terms of the overlap functions from any ba
uCA21

m &. The remaining natural orbitals, associated withlm

50, can be chosen arbitrarily, provided they are orthogo
to those given by Eq.~B3!. The combination of both collec
tions, the natural orbitals with zero eigenvalues plus th
with nonzero eigenvalues, forms a complete set. Thus
~B3! can be inverted:

fm~r !5(
m8

ŵm8
* ~r !E dr 8ŵm8~r 8!fm~r 8!. ~B4!

We can associate natural amplitudeswm(r ) with the natu-
ral orbitals by definingwm(r )5Almŵm* (r ). ~This expression
holds for hole states, in the particle case the complex co
gation is not present.! Equation~B3! implies that the ortho-
normal set of (A21)-body states given by

uNCA21
m &5

1

lm
(
m8

E dr 8fm8~r 8!wm* ~r 8!uCA21
m8 & ~B5!

provides the basis for generating the natural amplitu
wm(r ) with lmÞ0. The set$uNCA21

m &% is not complete. The
remaining statesuN

RCA21
m & which are required to make the s

complete can be generated arbitrarily, provided they are
thogonal to theuNCA21

m & and to each other. The resulting s
$uN

CCA21
m &%5$uNCA21

m &%ø$uN
RCA21

m &% of (A21)-body states
is orthonormal and complete by construction.

When lmÞ0, the matrix elements Umm8
5^CA21

m8 uN
CCA21

m & of the unitary transformation relating th
two bases are given by

Umm85
1

lm
E dr 8fm8~r 8!wm* ~r 8!. ~B6!

This discussion shows that the natural amplitudes sim
correspond to a particular choice for the (A21)-body basis
$uN

CCA21
m &%. They have the same properties as the one-b

overlap functions discussed in Ref.@5#, with the exception of
properties associated with the equations of motion.@The un-
usual placement of the complex conjugation in this disc
sion is due to the use of hole states, which transform as
complex conjugates of particle states. Using the norm op
tor, N(r ,r 8), results in equations that look more familiar.#

Since the wave functions of the set$uN
RCA21

m &% correspond
to states which are unoccupied (l50), it follows that
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a(r )ucA&5(mwm(r )uNCA21
m &. Thus any state orthogonal t

a(r )ucA&, for all r , is also orthogonal to all the function
uNCA21

m & generated by Eq.~B5!. It also follows that
uNCA21

m &5(1/lm)*drwm* (r )a(r )ucA& and that the states
uN
CCA21

m & are eigenfunctions of the operato
*dra(r )ucA&^cAua†(r ).

The eigenvalueslm are restricted to lie in the interva
@0,1#. The upper limit follows from the fact that a spectro
scopic factor cannot be greater than one~when center-of-
mass effects are neglected!. The lower limit follows from the
quadratic form of Eq.~A6!. When an eigenvaluelm equals
one, the state ucA& is a pure product stateucA&
5*drwm* (r )a†(r )uNCA21

m & with *drwm(r )a(r )uNCA21
m &

50. If for any stateuCA21
m & the corresponding spectroscop

factor is 1, it then follows from Eq.~A6! that the correspond
ing amplitude is a natural amplitude with eigenvalue 1.

The natural orbitals provide the extremax(r )5wm(r ) of

E drdr 8ur~r ,r 8!2x~r !x* ~r 8!u2 ~B7!

as can be easily verified by variation with respect tox(r ).
Similarly, the overlap*dr u^cAua†(r )uxA21&u2 is maximized
~for ^xA21uxA21&51) whenuxA21&5uNCA21

m &.
The natural orbitals for16O and 40Ca have been calcu

lated by Fabrocini and Co’ in Ref.@26#. The authors find that
the shape of the natural orbitals is well reproduced by
single-particle wave functions from an independent parti
model approach; deviations are only visible for the low
orbitals. The occupancy of the lowest 1s orbital is found to
be about 85% for either nucleus.

In general, the statesuCA21
m & and uCA11

m & and the corre-
sponding amplitudes are not related since the two sets
states belong to different spaces. However, sincer andN are
related by Eq.~A4!, both operators are diagonalized by th
same set of natural orbitalsŵm(r ) with different eigenvalues,
though,lm

N512lm . The completeness relation~A4! can be
expressed in terms of the natural orbitals

(
m

~12lm!ŵm~r !ŵm* ~r 8!1(
m

lmŵm~r !ŵm* ~r 8!5d~r ,r 8!.

~B8!

The first sum gives the particle contribution while the seco
sum gives the hole contribution. The effect of Pauli blocki
on the particle states manifests itself in the factor (12lm).

A Caveat. Equation~B4! can be rewritten as

fm~r !5(
m8

Um8mAlmŵm8
* ~r !. ~B9!

SinceUm8m is a unitary matrix one might assume that t
collection of functionsfm(r ) can be transformed into a
orthonormal set by acting withr(r ,r 8)21/2 on the original
set. Formally this would give

f̂m~r !5(
m8

Um8mŵm8
* ~r !. ~B10!
3-12
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Since theŵm8
* (r ) are orthonormal andUm8m is unitary, one

would expect thef̂m(r ) to be orthonormal. Unfortunately
this only works whenr(r ,r 8) has no zero eigenvalues. It
not sufficient to restrict the sum overm8 to the subspace with
nonzero eigenvalues, sinceUm8m is not necessarily unitary in
this subspace. Similar considerations apply to the set of
ticle states, in which case the functionr(r ,r 8)21/2 needs to
be replacedN(r ,r 8)21/2.

APPENDIX C: THE GREEN’S FUNCTION

Here we relate the particle-only (H p), hole-only (H h),
and particle-hole (HM) Hamiltonians to each other by ap
plying the projection operator formalism to the associa
Green’s functions. We demonstrate explicitly thatHM , as
defined in Eq. ~21!, is indeed the relevant particle-ho
Hamiltonian.

The particle propagator is given by

Gp~r ,r 8;E!5^cA
0 ua~r !

1

E2~H2E0
A!1 i e

a†~r 8!ucA
0&

5^cA
0 ua~r !G~E!a†~r 8!ucA

0&, ~C1!

where

G~E!5
1

E2~H2E0
A!1 i e

. ~C2!

An equation of motion forGp(r ,r 8;E) can be obtained
through the use of projection operators. We introduce op
tors P0

p and Q0
p , such thatP0

pa†(r )ucA
0&5a†(r )ucA

0& and
Q0

pa†(r )ucA
0&50, and rewrite Eq.~C2! as

~E1E0
A2P0

pHP0
p2Q0

pHP0
p2P0

pHQ0
p2Q0

pHQ0
p!~P0

pGP0
p

1Q0
pGP0

p1P0
pGQ0

p1Q0
pGQ0

p!5P0
p1Q0

p . ~C3!

Using the fact that P0
p(P0

p1Q0
p)P0

p5P0
p and Q0

p(P0
p

1Q0
p)P0

p50, we find

S E1E0
A2P0

pHP0
p2P0

pHQ0
p 1

E1E0
A2Q0

pHQ0
p

Q0
pHP0

pD
3P0

pGP0
p5P0

p . ~C4!

We now multiply this equation bŷcA
0 ua(r ) from the left and

a†(r 8)ucA
0& from the right and carry out the relevant integr

tions. The right-hand side of the resulting equation equ
^cA

0 ua(r )a†(r 8)ucA
0&5N0(r ,r 8). To obtain a useful expres

sion for the left-hand side, we use the explicit form ofP0
p ,

given in Eq.~14!. We derive the following result:
03431
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~E1E0
A!Gp~r ,r 8,E!2E dr 9dr-^cA

0 ua~r !

3S H1HQ0
p 1

E1E0
A2Q0

pHQ0
p

Q0
pH D a†~r 9!ucA

0&

3N0~r 9,r-!21Gp~r-,r 8,E!5N0~r ,r 8!, ~C5!

which can also be written as

~E1E0
A!Gp~r ,r 8,E!2E dr-H 0

p~r ,r-!Gp~r-,r 8,E!

5N0~r ,r 8!, ~C6!

where

H 0
p~r ,r-!5E dr 9^cA

0 ua~r !S H1HQ0
p

3
1

E1E0
A2Q0

pHQ0
p

Q0
pH D

3a†~r 9!ucA
0&N0~r 9,r-!21 ~C7!

@compare also Eqs.~15!,~16!#.
Introducing operator notation Ǒf (r )

5*dr 8O(r ,r 8) f (r 8), allows us to write Eq.~C5! in a very
compact form

~E1E0
A2Ȟ0

p!Ǧp~E!5Ň0 , ~C8!

which can be formally solved forǦp(E)

Ǧp~E!5
1

E2~Ȟ0
p2E0

A!1 i e
Ň 0

A ~C9!

5~Ň 0
A!1/2

1

E2~ Ȟ̄0
p2E0

A!1 i e
~Ň 0

A!1/2. ~C10!

We observe that the particle-only Hamiltonian, which occu
in the denominator of the particle propagator, is the optic
model Hamiltonian used by Feshbach.

Expressions analogous to the ones given above can
derived for the hole propagator. Since the full particle-ho
Green’s function, which is connected to the particle-ho
Hamiltonian HM through Ǧ(E)5(E2ȞM)21, is simply
the sum of the particle and hole contributions, we can re
the three HamiltoniansHM , H p andH h to each other:

Ǧ~E!5
1

E2ȞM
5

1

E2~Ȟp2En
A!1 i e

Ň 0
A

1
1

E1~Ȟh2En
A!2 i e

ř0
A . ~C11!
3-13
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Although this equation can be formally solved forȞM in
various different ways, the resulting expressions are nei
elegant nor very instructive, as the following example illu
trates:

ȞM5F 1

12@~Ȟp2E0
A!1~Ȟh2E0

A!#
1

E1~Ȟh2E0
A!

ř0
G

3F ~Ȟp2E0
A!2@~Ȟp2E0

A!1~Ȟh2E0
A!#

3
E

E1~Ȟh2E0
A!

ř0G . ~C12!

~A similar equation, withȞp and Ȟh interchanged andr0
replaced byN0, can be derived as well.!

In order to demonstrate that the particle-hole Hamilton
has the form given in Eq.~21!, we derive an equation o
motion for the full particle-hole propagatorG(r ,r 8;E), in-
troduced in Eqs.~3! –~5!. We begin by writingG(r ,r 8;E) as

G~r ,r 8;E!5^cA
0 u@a~r !1a†~r !#

1

E2~H2E0
A2 i e!~Â2A!

3@a~r 8!1a†~r 8!#ucA
0& ~C13!

and introducing the notationH̃5(H2E0
A)(Â2A), whereÂ

5*dra†(r )a(r ), the particle number operator, commut
with the Hamiltonian. We employ the following particle-ho
projection operator:

Pph5E drdr 8@a~r !1a†~r !#ucA
0&N ph

A ~r ,r 8!^cA
0 u@a~r 8!

1a†~r 8!#, ~C14!

whereN ph
A (r ,r 8)5^cA

0 u@a(r )1a†(r )#@a(r 8)1a†(r 8)#ucA
0&.

For the remainder of this discussion we restrict ourselve
time-reversal invariant states. In this caseN ph

A reduces to
N ph

A (r ,r 8)5d(r2r 8) and we obtain
en

03431
er
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to

FE2^cA
0 u~a1a†!S H̃1H̃Q0

ph 1

E2Q0
phH̃Q0

ph
Q0

phH̃ D
3~a1a†!ucA

0&G Ǧ~E!5@E2ȞM~Em
A11!#Ǧ~E!51.

~C15!

From this expression we identify the particle-hole Ham
tonian as

HM~r ,r 8!5^cA
0 u@a~r !1a†~r !#

3S H̃1H̃Q0
ph 1

E2Q0
phH̃Q0

ph
Q0

phH̃ D
3@a~r 8!1a†~r 8!#ucA

0&. ~C16!

SinceQ0
ph mixes particle and hole states it is not possible

cleanly separate the particle and the hole contributions.
Using the HamiltonianH̃, the particle and the hole

Hamiltonians can now be written as

H n
p~r ,r 8;E!2En

Ad~r2r 8!

5E dr 9^CA
n ua~r !S H̃1H̃Qn

p 1

E2En
A2Qn

pH̃Qn
p

Qn
pH̃ D

3a†~r 9!uCA
n&N A~n,r 9,n,r 8!21 ~C17!

and

En
Ad~r2r 8!2H n

h~r ,r 8;E!

5E dr 9^CA
n ua†~r !S H̃1H̃Qn

h 1

En
A2E2Qn

hH̃Qn
h

Qn
hH̃ D

3a~r 9!uCA
n&rA~n,r 9,n,r 8!21, ~C18!

respectively. The last three expressions highlight both
similarity and the differences between the three Hamil
niansHM , H p, andH h.
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