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Correlating the giant-monopole resonance to the nuclear-matter incompressibility
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Differences in the density dependence of the symmetry energy predicted by nonrelativistic and relativistic
models are suggested, at least in part, as the culprit for the discrepancy in the values of the compression
modulus of symmetric nuclear matter extracted from the energy of the giant monopole resona?f&d.in
“Best-fit” relativistic models, with stiffer symmetry energies than Skyrme interactions, consistently predict
higher compression moduli than nonrelativistic approaches. Relativistic models with compression moduli in
the physically acceptable range kf200-300 MeV are used to compute the distribution of isoscalar mono-
pole strength irfPb. When the symmetry energy is artificially softened in one of these models, in an attempt
to simulate the symmetry energy of Skyrme interactions, a lower value for the compression modulus is indeed
obtained. It is concluded that the proposed measurement of the neutron $¥Rtin aimed at constraining the
density dependence of the symmetry energy and recently correlated to the structure of neutron stars, will also
become instrumental in the determination of the compression modulus of nuclear matter.
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The compression modulus of symmetric nuclear matter isieutron radius of heavy nuclei to the structure of neutron
a fundamental property of the equation of state. While somestars[10]. It should be noted that while knowledge of the
of the existent claims in the literature may be overstated—symmetry energy is at present incomplete, the proposed mea-
indeed, there is little evidence in support of a correlationsurement of the neutron radius éP%Pb at the Jefferson
between the compression modulus and the physics of ned-aboratory[11] should provide stringent constraints on this
tron stars[1]—the compression modulus impacts on a di-fundamental component of the equation of state.
verse set of phenomena ranging from nuclear structure to In this paper we follow closely the philosophy of Blaizot
supernova explosions. In particular, the compression modwand co-workers who advocate a purely microscopic approach
lus controls the energetics around the nuclear-matter saturéer the extraction of the compression modulus of nuclear
tion point. This is because the first derivative of the energymatter from the energy of the giant-monopole resonance
per nucleon with respect to the densiiye., the pressuje [7,12]. While the merit of macroscopitsemiempirical for-
vanishes at saturation, so the dynamics of small density fluonulas for obtaining qualitative information on the compres-
tuations around the equilibrium position becomes solely desion modulus is unquestionaljl&3,14], the field has attained
termined by the compression modulus. a level of maturity that demands stricter standards: it is now

To date, most efforts devoted to the study of the compresexpected that microscopic models predict simultaneously the
sion modulus have relied on the excitation of the isoscalacompression modulus of nuclear matter as well as the distri-
giant-monopole resonanc€GMR). While the first set of bution of isoscalar monopole strength. Moreover, theoretical
measurements of the GMR date back to the late 1970s argiudies based solely on macroscopic approaches have been
early 19809 2,3, a recently improvedy-scattering experi- proven inadequatgl5,16].
ment finds the position of the giant monopole resonance in The starting point for the calculations is an interacting
208ph atEgyr=14.17+0.28 MeV[4]. While the experimen- Lagrangian density of the following form:
tal story on the GMR ir*%Pb seems to be coming to an end,

the theoretical picture remains unclear. On the one hand, 9, €

nonrelativistic calculations that reproduce the distribution of ﬁi”t:ﬁgsd’_ ( QVut 5T bﬂ+§(1+ T3)Aﬂ) vE
isoscalar-monopole strength using Hartree-Fock plus

random-phase approximatidiRPA) approaches with state- K 3 A 4 1
of-the-art Skyrmd5,6] and Gogny[ 7] interactions, predict a 5(95‘1’) H(gs(ﬁ) ' @

nuclear compression modulus in the rangeKof210-220

MeV. On the other hand, relativistic models that succeed irfThis Lagrangian includes an isodoublet nucleon fighlin-

reproducing a large body of observables, including the exciteracting via the exchange of scalay and vector {*, b*,

tation energy of the GMR, predict a larger value for theand A#) fields. It also incorporates scalar-meson self-

nuclear incompressibility =275 MeV) [8,9]. It is the aim  interactions(x and \) that are instrumental in reducing the

of this paper to elucidate the origin of this apparent discrepunreasonably large value of the compression modulus pre-

ancy. It is proposed that this discrepancy, at least in part, idicted in the original(linean Walecka mode[17,1§. Al-

due to the density dependence of the symmetry energy; #hough this effective Lagrangian includes only a subset of

poorly known quantity that affects physics ranging from the“local meson terms”(i.e., scalar cubic and quarticoower
counting[19,20 suggests that other terms, such as vector
quartic and isoscalar-isovector terms, may be equally impor-

*Electronic address: jorgep@csit.fsu.edu tant. While predictions for ground-state observables with
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TABLE I. Empirical bulk observables used in the determination of the coupling constants and the scalar
mass. The symmetry enerdihas been fixed &= 1.15 fm , but the quantities in parentheses represent its
value at saturation density. The slope of the symmetry energy at saturation deissty actual prediction
of the model. Values for two “best-fit” nonrelativistic Skyrme models, previously used in calculations of the
GMR in 2%%b[5,6], are included for comparison.

Family k2 (fm~1) €0 (MeV) M*/M K (MeV) J (MeV) L (MeV)
A 1.30 ~16.0 0.6 200-300 26(38) 120
B 1.30 ~16.0 0.7 200-300 26(37) 108
C 1.30 ~16.0 0.7 200-300 20(28) 82
SGilI 1.33 ~15.6 — 215 (27) 38
SKM* 1.33 ~15.8 — 217 (30) 46

these additional terms are now availapl®], RPA calcula- proaches because the only “free” parameter in &y.is the
tions of the linear response of the ground sta@wgh these  NNp coupling constant. As the effective nucleon mass
termsg have yet to be done. Thus, in the interest of consishas been fixed in symmetric nuclear mattend spin-orbit
tency, all calculations reported here—both for the grounchhenomenology demands a value in the rangeVidf/M
state and for the excited states—are limited to the set 0o£0.6—0.7) reproducing the empirical value of the symmetry
interactions displayed in E@l). Yet incorporating additional energy at saturation)&37 MeV) constrains th&Np cou-
local meson terms in the consistent linear response of thgling constant to a relatively small range. Note that relativ-
mean-field ground is an important area for future investigaistically the density dependence of the symmetry energy can
tions. Moreover, data on excited nuclear states may providgiso be modified through the inclusion of isoscalar-isovector
new constraints that may determine features of the equatiogouplings termg10], density-dependent coupling constants
of state that at present are poorly known, such as the densif6], and isovector-scalar mesof7]. However, as a con-
dependence of the symmetry energy. sistent RPA formalism that incorporates these additional
As it stands, the Lagrangian density of Efj) depends on  terms has yet to be developed, none of these contributions
five unknown coupling constants that may be determinegyill be considered henceforth. Yet work on extending the
from a fit to ground-state observables. Four of these CONRPA approach to include these terms is in progress. In real-
stants @s, 9y, «, and\) are sensitive to isoscalar observ- ity the symmetry energy at saturation is not well constrained
ables so they are determined from a fit to symmetric nucleagxperimentally. Rather, it is an average of the symmetry en-
matter. The four nuclear bulk properties selected for the fiergy near saturation density and the surface symmetry energy
are as follows{i) the saturation densityji) the binding en-  that is constrained by the binding energy of nuclei. Thus a
ergy per nucleon at saturatiofiji) the nucleon effective prescription first outlined in Ref.10] is adopted here: the
mass at saturation, an@) the compression modulusee value of the NNp coupling constant is adjusted, unless

Table ). It is noteworthy, yet little known, that the above gtherwise noted, so that the symmetry energy kat
four coupling constants can be determined algebraically and- 1 15 fm? (i.e., p=0.10 fm 3) be equal to 26 Me\(see

uniquely from these four empirical quantitig®81-23. It is  Taple ).

also possible for the various meson masses to enter as unde-The nuclear observables used as input for the determina-
termined parameters. However, here the standard proceduiign of the model parameters are listed in Table . In all cases
of fixing the masses of the andp mesons at their physical the saturation density, binding energy per nucleon, and rms
value is adopted; that isp, =783 MeV andm,=763 MeV.  charge radius in®°®Pb have been fixed at their empirical
As infinite nuclear matter is only sensitive to the ratio yajues. Thus the only discriminating factors among the three
g2/mZ, the mass of ther meson must be determined from “families” are the effective nucleon mass and the symmetry
finite-nuclei properties; the-meson mass has been adjustedenergy. While best-fit relativistic models suggest values for
to reproduce the experimental root-mean-sqams) charge  the symmetry energy and its slope at saturation density sat-
radius of ***Pb (f ;=5.50+0.01 fm). isfying J=35 MeV and L=100 MeV, respectively[13],

The symmetry energy of nuclear matter is a poorly knownfamily C is defined with an artificially small value fdr(and
quantity with an uncontrolled density dependence in nonrelcorrespondingly foiL) in a “poor-man’s” attempt at simu-
ativistic models(for a recent discussion of the symmetry Jating nonrelativistic Skyrme force®5] (see Table )l That
energy in Skyrme models see Ref24,25). In contrast, the  nonrelativistic Skyrme models have a softer symmetry en-
symmetry energy displays a weak model dependence in relargy is revealed by the behavior of one of the most sensitive
tivistic approaches. It is given by the following simple form: probes of the density dependence of symmetry energy: the

, 3 neutron skin of?°%Pb. Indeed, the neutron skin 8f%b is
ke 9 E 2 predicted to be equal t8,— R,=0.16 fm for the recent SkX
6EX 1277 mi’ parametrization and falls below 0.22 fm for all eighteen
Skyrme parameter sets considered in R24]. In contrast,
whereEf = \/k2F+ M*2. The symmetry energy, together with best-fit relativistic models consistently predict larger values.
its density dependence, is constrained in relativistic apFor example, the NL3 model of R€i8], the TM1 model of

2
S(ke) =
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TABLE Il. The compression modulus of symmetric nuclear 1617177 [TTTT T T T T T T T T[T T

matter, the compression modulus for asymmetric=0.212) — -

nuclear matter, the neutron skin 8f%b, and the energy of the - | ® Fam?lyA(EZOO=12.22 MeV) va

GMR in 2%%p for the three families discussed in the text. — | m Family B (E);=12.71 MeV) prd

- |k Family CEymI314MeV) | T o
Family K (MeV) Kyog(MeV) R,—R, (fm) Egur (MeV) BT "B 7B 100262000 .~ -7 ]
— 2 ‘/ l/

A 200 184 0.28 12.27 _F PRI /
225 203 0.28 12.88 > I /./’* 7 N
250 224 0.28 13.58 % B X /.,’ N
275 246 0.28 14.14 =T ﬁ"/ — i
300 268 0.28 14.81 LUE . _

B 200 187 0.25 12.65 :
225 208 0.25 13.35 ]
250 230 0.26 14.03 _
275 252 0.26 14.75 —
300 276 0.26 15.36 —

c 200 190 0.19 13.13 12||||I||||I||||I||||I||||_
225 212 0.19 13.80 200 220 2410< (MeV2)6O 280 300
250 235 0.19 14.45
275 258 0.19 15.09 FIG. 2. Energy of the isoscalar giant-monopole resonance as a
300 282 0.19 15.81 function of the nuclear matter compression modulus for the three

families discussed in the text. The box displays the experimentally

allowed range of gyr=14.17+0.28 MeV[4].
Sugahara and ToKi28], and the NLC model of Serot and

Walecka[19], predictR,—R,=0.28, 0.27, and 0.26 fm, re- )
spectively(also see Table )i Results for the peak energy of the giant-monopole-

o : SO _ £ 20 : :
Within each family defined in Table I, calculations of the 'ésonance if®Pb as a function of the nuclear incompress-

isoscalar monopole response have been performed usingitility are listed in Table Il and displayed in Fig. 2. All cal-
compression modulus in the physically acceptable range dfulations were performed using the nonspectral, relativistic
K =200-300 MeV. To illustrate the similarities and differ- RPA approach of Ref.29]. Note that while the distribution
ences between these three families, the equation of state fof isoscalar monopole strength, particularly its spreading
symmetric nuclear matteteft pane) and the symmetry en- width, has been shown to be sensitive to configurations that
ergy (right pane] are displayed in Fig. 1 &K=250 MeV. go beyond the RPA5], these(“second-RPA") configura-
Clearly, the properties of symmetric nuclear matter at satutions will not be considered here any further as the aim of
ration density are identical in all three models. Further, havithis paper is limited to understand the discrepancies between
ing fixed the value of the effective nucleon mass in symmetequivalent relativistic and nonrelativistic mean-field-plus-
ric nuclear matter, the full density dependence of theRPA models. For each family there is a clear correlation
symmetry energy is determined by one sole number: itbetween the compression modulus and the energy of the
value atkg=1.15 fm . GMR. Indeed, all of the results are well representadthis

30

TTT T T T T T T[T T T T T7T] RN RRRRRRRRRRRRR AR AN i R

[
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—— Family B (M*/M=0.7) —— B(I=37MeV) o dso
20 = Family C (M*/M=0.7) -—- C(J=28MeV) ;

—_
(=

FIG. 1. Equation of state for symmetric
nuclear mattefleft pane) and the symmetry en-
ergy (right pane) as a function of the Fermi mo-
mentum for the three families discussed in the
20 text. In all the cases presented here the compres-
sion modulus was fixed & =250 MeV.
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limited range ofK) by a linear relation with a “universal” are relevant to this discussion. Both models attempt to repro-
slope duce the “experimentally” accessible quantity

Eemr= E200t 0.026 K —200), (3 Kaoe= lim K(A,1=0.212 =K+ K 0.2122+ -+, (5)
A— o0

whereEgur, E2qo, @andK are all given in MeV. The inter-
cept is nonuniversal and given WB,,=12.22 MeV, E,o,  defined as the compressibility of infinite nuclear matter at a
=12.71 MeV, andE,o=13.14 MeV, for families A, B, and neutron-proton asymmetry identical to that 81%Pb (see
C, respectively. Table Il). The first model, having a very stiff symmetry en-

A few comments are now in order. First, the value of theergy (that is,Kg,, large and negativereducesK(A,I) from
slope (0.026 is obviously small. This suggests that evenits | =0 value of 250 MeV all the way down to, let us say,
without theoretical uncertainties, it would not be possible to200 MeV atl =0.212. Comparing this prediction to the as-
determine the compression modulus from tH%b measure- sumed experimental value df =225 MeV, it is con-
ment alone to better thahEgyr/0.026 MeV AEgyr is the  cluded that the compression modulus of symmetric nuclear
experimental uncertaintyAt present, the best determination matter must be increased =275 MeV. The second
of the peak position of the GMR isEgyr=14.17 model predicts a very soft symmetry energy. So unrealisti-
+0.28 MeV [4], thereby resulting in an uncertainty in the cally soft, let us assume, that it generates no shift in going
compression modulus of about 20 MeV. Second, and moré&om | =0 to1=0.212(i.e.,Ks,,=0). In this case, the com-
importantly, the journey from the GMR to the compressionpression modulus must then be reduce&te 225 MeV to
modulus is plagued by uncertainties unrelated to the physiceproduce the experimentally determined value. Thus the two
of symmetric nuclear matter. To illustrate this point we models, originally identical as far as symmetric nuclear mat-
invoke—although never use in any of the calculations—ater is concerned, disagree in their final values of the com-
semiempirical formula based on a leptodermous expansiopression modulus due to an incomplete knowledge of the

of the nuclear incompressibility: symmetry energy. While the situation depicted in Fig. 2
might not be as extreme, it does follow the trends suggested
K(AD) =K+ Kyt AP+ K gy 2+ K couZ AR -, by the above discussion. Indeed, family C, with the softest

(4) symmetry energy, generates the largest intercept and conse-
quently predicts the smallest compression modulus of the

whereKgt, Ksym, andKeo, are empirical surface, symme- three families.
try, and Coulomb coefficients, antl=(N—Z)/A is the In summary, the impact of the poorly known density de-
neutron-proton asymmetry. The sizable contribution from thependence of the symmetry energy on the extraction of the
surface term td&K(A,1) has been discussed recently by Patracompression modulus of nuclear matter from the energy of
Vinas, Centelles, and Del Es{&@0] in the context of a rela- the giant-monopole resonance #%b was addressed. The
tivistic Thomas-Fermi theory so we limit ourselves to only anuclear matter equation of state and the distribution of isos-
few comments. A surface dependence is modeled herealar monopole strength if’Pb were computed using three
through a change in the value of the effective nucleon masdifferent families of relativistic models constrained to repro-
(surface properties are also sensitive to theneson mass duce a variety of ground-state observables. For each family
but this value has been chosen to reproduce the rms chargiee compression modulus was allowed to vary within the
radius of 2°%Pb). As shown in Table I, family A uses an physically acceptable range &f=200—300 MeV. The first
effective nucleon mass d¥1*/M = 0.6 while family B uses family (A) has an effective nucleon mass fixed Mt /M
M*/M=0.7; all other input observables are identical. A=0.6 and is, at least fok =275 MeV, practically indistin-
larger M* generates a slightly compressed single-particleguishable from the successful NL3 model of Rgf]. The
spectrum and a correspondingly smaller spin-orbit splittingsecond family(B) differs from the first in that the effective
Consequences of this changeNt result in a larger inter- nucleon mass is increased k&* /M =0.7, thereby generat-
cept, as displayed in Fig. 2. Thus compression moduli ofng a slightly compressed single-particle spectrum but still a
approximately K=275 MeV (for family A) and K=250 robust phenomenology. Finally, the third familZ) is ob-
MeV (for family B) are required to reproduce the experimen-tained from the second one by artificially softening the sym-
tal energy of the GMR. Further, if one incorporates the ex-metry energy in a “poor-man’s” attempt at simulating non-
perimental error into this analysis, one concludes that “bestrelativistic Skyrme models. When the peak energy of the
fit” relativistic mean-field models are consistent with a GMR is plotted against the compression modulus, a linear
compression modulus in the range= 245—285 MeV. relation with a universal slope is obtained. In contrast, the

We now turn to the central idea behind this work, namely,intercept is family dependent and it is largest for the model
how our incomplete knowledge of the symmetry energy im-with the softest symmetry energy. Demanding agreement
pacts on the the extraction of the compression modulus. Lewith the experimental value for the peak energy fixes the
us then start by considering two identical models, but withcompression modulus akK=275, 255, and 240 MeV, for
vastly different symmetry energies, that predict a compresfamilies A, B, and, C, respectively. Thus we regard these as
sion modulus ofK=250 MeV. Further, for simplicity we our most important conclusions.
assume that these two models have identical surface and (1) The extraction of the compression modulus of sym-
Coulomb properties so only the first and third term in ).  metric nuclear matter from the energy of the giant-monopole
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resonance irf®Pb is sensitive to the density dependence ofExperiment(PREX) at the Jefferson Laboratory should pro-
the symmetry energy. vide a unique constraint on the density dependence of the
(2) Assuming all other things being equal, models with asyrr;gnetry energy through a measurement of the neutron skin
softer symmetry energy require a lower compression moduff %Pb. Such a measurement could have far-reaching im-
lus to reproduce the energy of the giant-monopole resonanddications: from the determination of a fundamental param-
in 29%pp. eter of the equation of stat&) to the structure of neutron
(3) The discrepancy between accurately calibrated relativ—Stars[lo]'
istic and nonrelativistic mean-field-plus-RPA models in the The author is grateful to the ECT* in Trento for their
prediction of the compression modulus of symmetric nucleasupport and hospitality during the initial phase of this re-
matter is attributed in part to our incomplete knowledge ofsearch. It is a pleasure to thank Professor M. Centelles and
the symmetry energy. Professor X. Vims for many enlightening conversations.
At present, resolving the density dependence of the symThis work was supported in part by the U.S. Department of

metry energy is not possible. Yet the proposed Parity RadiuEnergy under Contract No. DE-FG05-92ER40750.
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