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Deuteron binding energies and form factors from light-front Hamiltonian field theory
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This paper investigates how the breaking of manifest rotational invariance in light-front dynamics affects the
binding energy and the form factors of the deuteron. To do this, we derive new light-front nucleon-nucleon
one- and two-meson-exchange potentials, and use the potentials to solve for the deuteron wave function and
binding energy. We find that including two-meson-excha(g®IE) potentials partially repairs the broken
rotational invariance of the one-meson-exchaf@®IE) potential. This is shown by a decrease in the binding
energy difference of differerh states of the deuteron. We calculate the matrix elements of the electromagnetic
current using the deuteron wave functions obtained from the OME and -OMEE potentials. Rotational
invariance requires that the matrix elements satisfy an angular condition, but in light-front dynamics that
condition is only partially satisfied. The current matrix elements from the OME calculation satisfy the angular
condition better than the ones from the OMEME calculation. The matrix elements of the axial current
satisfy the angular condition to the same extent regardless of which wave functions are used for the calculation.
Finally, we find that at momentum transfers greater than about 2°Gib¥ breaking of rotational invariance
causes less uncertainty in the computed deuteron form factors than do the uncertainties in the nucleon form
factors.
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I. INTRODUCTION three-direction is defined by a surface whefeis (approxi-
mately constant. Such a beam probes the structure of a tar-
Recent experiments at Thomas Jefferson National Accelget described in terms of light-front variablg3,6,7: the
erator Facility have measured t€Q?) structure function Bjorkenx variable used to describe high-energy experiments
of the deuteron for momentum transfers up to 6 (G&Y%/ is simply the ratio of the plus momentum of the struck con-
[1], and measurements f@(Q?) are planned. Eventually, stituent particle to the total plus momenturp™() of the
even higher momentum transfers will be achieved. At suctbound state.
large momentum transfers, a relativistic description of the Second, the vacuum for a theory with massive particles
deuteron is required. Even at lower momentum transfers, aan be very simple on the light front. This is because all
relativistic description is important to understand the detailsnassive particles and antiparticles have positive plus mo-
of the form factors. In addition, incorporating relativity is mentum, and the total plus momentum is a conserved quan-
important for the deuteron wave function to transform cor-tity. Thus, the naive vacuunwith p*=0) is empty, and
rectly under boosts to large momentum, which is importandiagrams that couple to this vacuum vanish. This greatly
for calculating form factors. reduces the number of nontrivial light-front time-ordered
One approach that gives a relativistic description of thediagrams.
deuteron is light-front dynamics. This work investigates the Third, the generators of boosts in the one, two, and plus
consequences of combining light-front dynamics with vari-directions are independent of the interaction, or kinematic.
ous nuclear models to calculate bound state wave functionghus, even when the Hamiltonian is truncated, the wave
and uses them to calculate the deuteron form factors. functions will transform correctly under boosts, a useful
The utility of the light-front dynamics was first discussed feature when calculating form factors at high momentum
by Dirac[2]. Light-front dynamics makes use of the light- transfers.
front coordinate system, where a four-vectéris expressed Finally, it is easy to perform relativistic calculations using
as x“=(x",x",x5x?), with x*=x°+x3. Although the light-front dynamics. This is partly due to the simplicity of
light-front coordinate system is simply related to the conventhe vacuum, and partly due the the fact that the light-front
tional coordinate system by a change of variables, the relazenter-of-momentum variabldefined a®® ™ =p; +p,) can
tion between light-front dynamics and conventional dynam-be cleanly separated from the relative momentum variable
ics is very complex. This is because the light-frontfor two particles. This allows us to write relativistic equa-
Hamiltonian[3-5] is obtained by defining the commutation tions which have the simple form of a nonrelativistic Schro
relations and quantization procedure at equal light-front timedinger equation.
(x* =t,p) instead of at equal timexP=t). We use the light- One serious drawback of light-front dynamics is that ro-
front Hamiltonian in a light-front Schitinger equation to tational invariance is not manifest in a light front Hamil-
solve for bound states. There are many desirable features tdnian where the light-front has a fixed orientati@]. An
light-front dynamics and the use of light-front coordinates. untruncated light-front Hamiltonian will commute with the
First of all, high-energy experiments are naturally de-total relative angular momentum operator, since the total mo-
scribed using light-front coordinates. The wave front of amentum commutes with the relative momentum. Thus,
beam of high-energy particles traveling in tlieegative  eigenstates of the full Hamiltonian will also be eigenstates of
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the angular momentum. However, as mentioned earlier, a In Sec. Ill we calculate the electromagnetic and axial
Fock-space truncation of the light-front Hamiltonian typi- form factors of the deuteron. Although rotational invariance
cally results in the momentum operator four-vector losingdemands that there be only three independent components of
covariance under rotationd notable exception to this is the the deuteron current, the light-front calculation of the deu-
light-front Bakamijian-Thomas construction, which is ex- teron current results in four independent components. This is
plained nicely in Ref[9].) HenceJ? does not commute with @ result of the lack of manifest rotational invariance on the
the truncated Hamiltonian, and this implies that the eigenlight front. There are several prescriptions for choosing
states of the truncated Hamiltonian will not be eigenstates ofhich deuteron current component should be eliminated, and
the angular momentum. This is particularly important for thell Principle this choice will affect the form factors. We at-
deuteron, since its spin is due to the total angular momenturffMPpt to find currents that transform well enough under ro-
of the state; it does not arise solely from nucleons’ spins. Th&ations so that the choice of “bad” component does not mat-
goal of this work is to investigate how this breaking of rota- té to0 much. ,

tional invariance affects observables, such as the binding en- e discuss the results of the calculation the deuteron
ergy and form factors of the deuteron. wave fung:tlons and binding energies in Sec. IV. We find that

How will this violation of rotational invariance affect PY including the TME potentials for the calculation of the
physical observables? One way to observe this violation is tg€uteron, the binding energy degeneracy is broken by a
note that on the light front, rotational invariance about zhe Smaller amount. The results of our search for currents with
axis is maintained. This allows us to classify states as eigerfl00d transformation properties are also discussed. We find
states ofJ; with eigenvaluesm. We compare the binding that for most of the currents, the _angular condition does not
energy of deuteron statéshich havej = 1) with differentm depend strpngly on which potentlal is qsgd to calculate the
values. If the Hamiltonian were rotationally invariant, the Wave function. The only exception to this is that part of the
energies should be the same: the breaking of rotational irglectromagnetic current whlc_h is multiplied by thg .|soscalar
variance causes the energies to be diffefaft. F, nucleon form_ factor satisfies the_angular condltlon much

Another symptom of the breaking of rotational invariance PEtter when using the wave function calculated with the
is that the angular conditiofa relation between the matrix OME potential than with wave function with other poten-
elements of the current required by Poircayenmetry, de- tials. We also find that the major uncertainty in the calculated
fined in Sec. II) for the deuteron current is not exactly sat- deuteron form factors at momentum transfers greater than
isfied [11—15. This means that different prescriptions for 2 GeV# is due not to the prescription used to determine the
calculating the deuteron form factors from the deuteron curfOrm factors from the current, but instead is from the uncer-
rent will in principle give different results when light-front &inties in the nucleon form factors.
dynamics is used. This dependence on the prescription used NOte that a solution for the deuteron that transforms prop-
has caused concern about the validity of applying light-fron€"y under rotations must have degenerate binding energies
dynamics to calculate form factors. and must satisfy the_angular condition; however, the con-

One notable feature of this calculation is that it is doneVE€rse is not necessarily true. For example, a decrease in the
entirely with light-front dynamics; no part relies on equal- difference of the blnd!ng energies _|nd|cates, but does not
time dynamics. The covariant Lagrangian generates lightProve, that the rotational properties of the state have
front potentials, which generate light-front wave functions, MProved.
which are used in a light-front calculation of the deuteron
current and form factors. This is different from other
approaches which use deuteron wave functions calculated
from equal-time dynamics as a starting pdibi—1§. We derive a new light-front nucleon-nucleon potential

This calculation is also distinguished from calculations(LFNN) from an effective nuclear Lagrangian. This model is
done with explicitly covariant light-front dynamics an extension of the light-front model used by Miller and
(ECLFD), where the orientation of the light-front plane is Machleidt[21]. A new feature of this model is that light-front
not fixed, but variable. ECLFD makes rotational invarianceenergy dependent denominators are used in the potentials;
explicit by introducing additional degrees of freedom intothe denominators used in R¢21] are energy independent.
the equations. This paper examines the degree to which rdhe material in this chapter extends on previous work done
tational invariance is broken by various truncations of thewith the Wick-Cutkosky model19,2Q.
potentials when the plane orientation is fixed.

Following this introduction, we introduce a model La-
grangian for nuclear physics which includes chiral symmetry
[6] in Sec. Il. The methods introduced in Ref49,2Q are Our starting point is an effective nuclear Lagrangjémh
generalized for use with this nuclear model. The Hamiltoniarwhich incorporates a nonlinear chiral model for the pions.
is derived and used to calculate new light-front nucleon-The Lagrangian is based on the linear representations of
nucleon one-meson-exchangéOME) and two-meson- chiral symmetry used by Gursd®?2)]. It is invariant (in
exchange(TME) potentials. The notation and conventions the limit wherem_—0) under chiral transformations. A re-
defined in the appendix are used extensively in this sectioralistic nuclear Lagrangian must contain some sort of chiral
We have some freedom in how to choose the TME potensymmetry, since the underlying QCD Lagrangian is chirally
tials, and we consider several different choices. symmetric.

Il. REALISTIC NUCLEAR MODEL

A. Model and formalism
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The model prescribes the use of nucleghand six me- B. Noninteracting nucleon-nucleon theory

sons: thewr, & [also known as theo(980)], o [also known The light-front Hamiltonian is derived from this Lagrang-
as thefy(400-1200)], 7, p, gndw mesons. The couplllng .of ian using the same approach used in RESs19,20,29—3p
each meson to the nucleon is governed by the combination 6fe pasic idea is to write the light-front Hamiltoniaf ()

the meson’s spin and isospin. Theand 7 are pseudosca- a5 the sum of a free, noninteracting part and a term contain-

lars, thep and w are vectors, and thé and o are scalars. ing the interactions. We consider the free part first.
Under isospin transformations, the p, andé are isovector

particles while then, w, ando are isoscalar particles. 1. Free field expansions
The use of scalar mesons is meant as a simple represen-
tation of part of the two-pion-exchange potential which
causes much of the medium range attraction between nucl
ons[23,24. It can also be interpreted as the effect of funda-
mental scalar mesorf&5-27.
The Lagrangianl is based on the one used in Refs.
[6,21,29. It is given by
1 m’ 1 m2 ., d?k, dk* 6(k ™)
L=—— 'p,uv+ TPILPM Zw wMV+—w w a(X —fw—zzm[

The solutions for the free fields are similar to those ob-
é@ined by using equal-time dynamics. In fact, the solutions
are formally related by a change of variable, and so the most
obvious difference between the two is due to the Jacobian.
The field equations have the general fofwhen Lorentz,
spinor, and isospin indices are suppregsed

aa(k)efik”x”_,’_ al(k)e“kﬂxu],

©)

4 2 #

1 1,
+ 7 12Tr(9, 00T + ZmZf2Tr(U+UT-2)
wherea=m,7,0,8,p,w,. Note that in the exponentials

1 2 2 1 2
+5(9,00"c—my0?) + (3,8 9" 6—m58°) 1
2 2 ke, =5 (KX kX ) =k, (6)

1 _
+ (3, p*p—m2p?)+ ' [y*(id,— N . .
2( w70 W) T LY 0, = 9P 7= 900,) The solutions for all the mesons and the nucleon field are

. , iven in Ref.[33]. The most general of the commutation
_U(M+gao-+gﬁ5 T+|g77757])]'7[/ ’ (1) rge|ations is g

where the bare masses of the nucleon and the mesons are £ 2+) ,
given byM andm, wherea=7,7,0,8,p,w. We have de- [aa,i(k;S),ag(K',S")]= 8, 30 ;655 0“7/ (K=K"), (7)
finedV#'=g*V"— g"V* for V=p,w. The notationy’ indi-
cates a dynamic nucleon field which differs from the freewheree, i, ands denote the meson type, isospin, and spin.
nucleon field, as discussed in Sec. Il C 2. The unitary matrixl he anticommutation relations for the nucleon operators are
U can be chosen to have one of the three folins

{b(k,\),bT(k" A"} ={d(k,\),d"(k" \")}

Uiz %5775 U 1+iyg7 wl2f at)
1=e , 2= 1 T yer w2l =8\ 02 (k—K"). (8)
Us=V1— 7% f2+iysr @lf, (2)  All other (anticommutation relations vanish. The spinors are

_ _ - _ normalized so thaﬁ(p,)\’)u(p,)\)=5m. For more infor-
which correspond to different definitions of the fields. Eachmation on the definition of the spinors, see the Appendix.

of these definitions can be expanded to give
2. Noninteracting Hamiltonians

T 7 7T2 3 . i i .
U=1+iys—————+0| —|. (3) The general form of the noninteracting Hamiltonian for
foof? f3 each meson is

In this work, we consider at most two-meson-exchange po-

2 2
tentials, so we considéd to be defined by Eq3). - :f 2 ot KL +mg,
In the limit wherem_—0, this Lagrangian, is invariant Po (@) dk, dk™0(kT)ag(kaq(k) Kkt ©
under the chiral transformation
W —elrsTay U e ivsmayeivera (4) For the vector mesons(and w), there is an implicit sum

over the meson spins. Explicitly, this means that for vector

In this model the other mesons are not affected by the trangnesonsa:r,(k)a_v(k)ﬁzsz1,3a;r,(k,s)av(k,s). Likewise, the
formation because they are not chiral partners of the pionsum over the isospin of the isovector mesons ¢, andp)

This is in contrast to the Lagrangian given in Rg#,28], is implicit. The sum over isospin can be made explicit by
where the mass and scalar interaction terms of the nucleonriting a,T(k)a,(k)—>2i=1,3afryi(k)a,,i(k). The noninteract-
were written adM U +gs¢ instead ofU (M +gg¢). ing Hamiltonian for the nucleons has a similar form as well,
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_ ) N + The two-meson-interaction HamiltoniaR’ ,., which
Po(lﬁ):f d%k, dk™ 6(k™) A:Zr_ b (k,\)b(k,)) arises from chiral symmetry, has the form
k2+M2 - 9794 2 -
+df (k) (k) Lk+ _ a0 P .,zrazg,]w s | 03, XY T TP ()]

, . , X[T T ®o(x) ]9 (X), (14
These equations are what one expects, since a free particle
with momentak, andk* has light-front energk™=(k?  \wheres, is a symmetry factor, equal to 1/2 wher= , and
+m?)/k*. 1 otherwise. When the contact interaction is used to calculate
diagrams, an additional factor is picked up for the con-
C. Interacting nucleon-nucleon theory tact term(due to indistinguishabilitywhich cancels the sym-
metry factors,.. Note that this contact interaction involves

The interaction Hamiltonians are derived from the La-
only scalar and pseudoscalar mesons.

grangian in Eq(1) using standard techniqué%9,20. How-
ever, there are some additional complications due to the
structure of the interactions.

One complication is that the chiral coupling of the pion We are now ready to express the dependent components
field to the nucleons through thé matrix generates vertices of ¢’ in terms of the independent components, and address
with any number of pions. We simply expand tdenatrix in  the problem of instantaneous nucleons. The generation of
powers of 1f and consider the interaction Hamiltonians or- instantaneous interactions is a general feature of theories
der by order. with interacting fermions in light-front dynamics where the

Another complication is due to the fact that both the vec-front has a fixed orientation. Because this is general, we use
tor mesons and the fermions have components which deperadsimplified model to demonstrate how instantaneous nucle-
on other components of the fie[®,34—37. Vector meson ons arise. In particular, we want to postpone the discussion
fields have four components, but only three degrees of freesf the complication that the vector mesons introduce until the
dom. Likewise, fermion fields have four spinor componentsnext section. To this end, we choose to remove all mesons
but only two degrees of freedom. When the dependent conmexcept ther from the Lagrangian given in E@l). (Theo is
ponents are expressed explicitly in terms of the independerthosen since it has the simplest coupling to the nuc)éldre
components, we obtain nefeffective interaction Hamilto- equation of motion for the nucleons is then
nians for instantaneous vector mesons and fermions. A com-

2. Elimination of dependent fermion components

plete derivation is given by Miller in Refl6] and earlier iy’ =(M+g,0)¢’. (15
workers cited therein. We illustrate only the main points of ) . ) ] .
the derivation here. We split Eqg.(15) into two equations by applying the projec-

tion operatorsA .., which are defined in the Appendix.

1. Expanding the pion interaction

We start by expanding) in a Taylor series in powers of 10 i =la -pt BM+g,0) ]y, (16

1/f, after which the derivation of the one-meson-interaction
Hamiltonian P’ is straightforward.(The prime indicates
that it is in terms of)’, not . We derive the expressions for
P, 1in Sec. Il C 2) The result is

10"y =[a -p +BM+g,0)]4, 17

where ¢, = A . '. This split is useful because in E¢L5)
all four components of the nucleon field are interrelated,
. while in Egs.(16) and (17) the two components ofs’. are
Pi= > d?x, dX” ¢ ()9, TP ()¢ (X),  related to the two components ¢f , and vice versa.
AT We must ch hich / th
(1) . We must choose whic cpmponent{zﬁ,r or ¢, are the
independent ones. First, notice that E4p) involvesd™, a
where we have defined a dimensionless coupling constastynamic operator in light-front dynamics. Equations that in-

g,=M/f, denoted the meson fields dy,, and defined volve dynamic operators should be avoided, because any-
thing that involves the interaction is complicated. We choose
iy® if « isapseudoscalar mesdnr,7), Eqg. (17) to avoid that complication and relate the compo-
r ={1 if « isa scalar mesor(s,a), nents ofy. Second, to keep the relation as simple as pos-
“ ] ) sible, we do not attempt to invert the spinor matrix on the
y* if « isavector mesor(p,w), right side of Eq.(17). Requiring that the equation for the

(12 dependent components be both a kinematic equation and
. if a isanisovector mesofim, 8,p), simple equation forces us to choogé as the independent

T = ) ) ) (13 components. The dependent components, are defined by
“ |1 if a isanisoscalar mesony,o,w).

In Eq. (11), the appropriate sums over the meson indices are e :i[a& pL+B(M+g,0)]4, . (18)
implicit. *
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The dependent components consist of a noninteracting part P’ ;=P +P,, (25)
and an interacting part while the independent components ’ ’ ’

are noninteracting by definition. Thus we find - ) _
Pli= X A2, AX () Gal o T o (X) (%),
l/ll — l/l+ g, (19) a=1,1,0,6,p,0 (26)

where interacting part is

P = > f d2x, dx~ (x)

,y+ ay,ap=1m,1,0,6,p,0
e (20 .
Y
X[galralTalq)al(X)]z +
This allows us to write P
" X[ G, o, Ty @ () T(X). 27
=gt 2p* (95)¢- (21) We may continue to interprey*/2p* as an instantaneous

nucleon propagator, since the derivation in Réf.makes it
Plugging Eq.(21) into Eq.(11) and removing all mesons clear that the potential vanishes when there are two adjacent

except theo meson, we obtain instantaneous propagators. In Rdf8,21], the coupling of
the vector mesons in the equations equivalent to(Ef). has
P/ =P +P,, (22)  the wrong sign; the sign of coupling of the mesons in Eq.

(27) must be the same as in E@6).
. In principle the same prescription must be applied to the
P,fﬁj d2x, dX™ (X) g, (X) (X)), (23)  contact interaction, although to the order of two mesons, this
simply removes the primes. We find that

Pra=2 [ dxax pix gw(x)z%g(,o(x)}wx). P.}sﬁ%gﬁ [ @ ax porg.r T 0, 00)
24 K[GuL T (0 TH(X). 29

We interpret they*/2p™* factor as a type of nucleon _ _ .
propagator that joins any two meson interactions. Becausth® forms ofP, 5. andP, , are very similar. In fact, we can
this propagator does not allow for an energy denomin@sr ©PtainP; 5 from+P|’2+by making the following changes:
it is already between two potentiglsy™/2p™ is called an (1) Replacey™/2p™ with s, /M.
instantaneouspropagator. Thus, when constructing the dia- (2 Replacea; with .
grams for the light-front potentials, we must also include (3) Restrict the sum om, to ,7,0,6.
instantaneous propagators for the nucleons in addition to the _ L
usual propagators. 4. Interaction Hamiltonians in momentum space
To derive interaction Hamiltonians in momentum space,
3. Elimination of dependent vector meson components we examine the matrix element of the interaction Hamilto-

Like the nucleons. the vector mesons have a dependeﬁfanspl_ between single nucleon initial and final states. We
component that contains interactions and must be eliminatednd that the one-meson interaction Hamiltonian can be writ-
This process is complicated somewhat by the fact that thEn as

dependent nucleon components must be eliminated at the —
u(ke M) u(ki, \j)

same time. The salient points of the combined elimination of P (f.i)= D
the dependent nucleon and vector meson components are ~ "' = s Yo V22m)3Jkik g
discussed in detail by Millef6].
The result is that the vector meson field must be redefined XX“;fTaXTi[aa(q) o(k{ —k;")
and an instantaneous vector meson propagator is generated
in addition to an instantaneous nucleon propagator. However, +al(g ok —k{)IF .(9). (29

when the nucleon-nucleon potential is calculated, the redefi-
nition of the vector meson field exactly cancels the contribuwhere — g={(|k{ —k"|,sgnk{ —k{")(k;, —ki.)}.  The
tion of the instantaneous vector meson. The result is that theeson-nucleon form factdt, phenomenologically accounts
potentials can formally be calculated using the original vecfor the fact that the mesons and nucleons are composite ob-
tor meson field. jects. The exact form we use fér, is given in a later sec-

In this work, we use that result to simplify our derivations tion.
of nucleon-nucleon potentials by formally using the naive Next we consider the two-meson interactions. Plugging
form of the vector meson field. Thus, we find an interactionthe field definitions into the definition of the interaction with
Hamiltonian similar to the one shown in E®4), the instantaneous propagator, given by &), yields
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T N 7 I\ hY T /'\
PI,Z(f!I): 2 galga2 K= : + \x/ + / \\ + \\ II + ll i P
aq,a,=1m,1,0,6,p,® | PN / \ " \ J
i » d ya
U(ke AT o,y T u(ki N _
X2 2 1 FIG. 1. The first several terms of the full kernel for the Bethe-
2(27m)3k{ k- Salpeter equation of the nuclear model with chiral symmetry.
: t T ]f dzkmdkga(k;) (8) Integrate with
XX Xr _—
T2t 2k ol as 4M2J d2k, dk*
2(2m)3

X [@,,(Ke—km) O(K{ —K3)
over any internal momentum loops.
(9) Put the spinor factors for nucleon 1 and 2 between

X[ @, (k= ki) Bk — ki) _Uu’s and the isospin factors between the initial and final state
isospin.

+al, (kn—Kp) 0k —k{ ) IF 4, ()

t + +

+aa1(k' km) 0k km)]Fal(ql)' (20 E. Nucleon-nucleon potentials

Note that the momentg; and g, are implicitly functions The meson exchange potentials have the same basic form
of the momentak;, k,,, andk;. The contact interaction as in Refs[19,20; however, we must include the contact
given by Egq.(28) in momentum space can be obtainedinteraction and instantaneous nucleon propagators for the
from Eq. (30) by replacingd(p*)y*/2p* with s,/M and  nuclear model used here. First, we discuss how to include the
restricting the allowed values of thes to be consistent with  contact diagrams from the standpoint of the Bethe-Salpeter
Eq. (28). equation, then we begin to calculate the light-front poten-

tials.

D. Feynman rules for nucleon-nucleon potentials
1. The Bethe-Salpeter equation and chiral symmetry
Now that we have the one-meson-exchange and two-

meson-exchanges expressed in momentum space, we are'he kernel of the Bethe-Salpeter equati@8-42 for

now ready to write out the Feynman rules for diagrams inthis nuclear model is richer than the one presented in Refs.
our mode|_ We denote a “norma"’ nucleon propagator by 3[20] for the WiCk-CutkOSky mode.l. This |S due mainly to the
solid line with an arrow, an instantaneous nucleon propagatd?resence of the contact interactions which are generated by
by a solid line with a stroke across it, mesons of all types bythe chirally invariant coupling of the pion to the nucleon.

a dashed line, and energy denominator terms by a verticapeveral of the lowest-order pieces of the full kerkebre
light, dotted line. For simplicity, we consider the only dia- Shown in Fig. 1(Note that for Feynman diagrams, it is use-
grams where a meson emitted by one nucleon is absorbed Byl to combine the “normal” nucleon propagator with the

the other nucleon. We follow the approach outlined in Refinstantaneous nucleon propagafd8-45, and denote the
[20] to derive the rules: combination with a solid ling.Each of these Feynman dia-

(1) Overall factor of grams is covariant. This means that we may choose any of
the diagrams fronK to construct a new kernéd’, and the
infinite series of potential diagrams “physically equivalent”

AM25-H(Pi—P)) to K’ will also be covarianf19,20. The equivalence permits
EN e us to apply arguments about the symmetries of the Bethe-
2(2m)*Vk{ikiki ks, Salpeter equation to light-front dynamif43—45. In prac-

tice, this covariance means that when deciding which two-
meson-exchange potentials to include for calculating the
deuteron wave function, we may neglect the crossed dia-
: : grams. Although including only the box and contact two-
Instantaneous nuclgon Ilngs. . meson-exchange diagrams may affect the exact binding en-
(4) Factor of 1/f~ —2;q; ) for each energy denominator. o4 calculated, we should find a partial restoration of
(5) Each meson connects the two nucleons, and each endaiional invariance. We reiterate that the focus of this work
of a meson line has a factor gfI', T.F,(q). The indices of s on ynderstanding the effects of the breaking of rotational
the isospin factors on each end of the meson are contractgg\ ariance and how to restore it: our goal is not precise
together. The Lorentz indices of the gamma matrices are COMygreement with experimental results.
tracted with—g*" for the vector mesons. We also want to keep the potentials chirally symmetric as
(6) For each contact vertex, multiply by a factor oML/ \ye||. Whereas Lorentz symmetry is maintained by using a
If the vertex is am—m vertex, replace thel.T,=77;  kemel with any Feynman diagranfaith potentially arbi-
with &; ;. _ trary coefficienty chiral symmetry relates the strength of the
(7) Factor of k+M)/2M=Z=,u(k,\)u(k,\) for each z# contact interaction to the strength of the pion-nucleon
propagating nucleon ang*/2 for an instantaneous nucleon. coupling.

(2) Conservep, andp* momentum.
(3) Factor off(q;)/q; for each internal line, including any
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In Ref.[46], we showed that chiral symmetry can have a
significant effect on calculations. The contact potentials can- \ /
cel strongly with both the iterated box potentials and theVome =| g=ky—ky . + e =ki—ky
crossed potentials, reducing the strength of the total two- ey \ . ko , .
pion-exchange potential and leading to more stable results. )
We also found that approximate chiral symmetry can be in-  FiG. 2. The two diagrams which contribute to the OME poten-
corporated for two-meson-exchange box graphs by addinga| for each meson.
the contact graphs weighted with a factorMf2(M +m_).

This factor is not needed for one meson exchange graphs. TME potentials can be classified into three groups. The
Feynman rules derived in the previous section are used to
2. OME and TME potentials derive the potential for these diagrams. We factor out an

The potentials we consider connect an initial state Withoverall factor of

two nucleons to a final state with two nucleons, and the 2
intermediate-state mesons are each emitted and absorbed by AMZS(Kst + Kar—kai —kai)

different nucleons. These restrictions, together with the fact 2 kqkqiks ks,

that in light-front dynamics massive particles cannot be cre-

ated from the vacuum, means there are two nontrivial OMEthat is common to all the two-nucleon potentials and sup-
as shown in Fig. 2. As discussed in the previous section, thpress it from now on. Then we get

ki, kif—— -k,

giTa,l' Ta,2—

VoME,«= U(Kyr A1) T Qu(Kei A1) U(Kas A o) T qu(Kai A o) F2(0)
(2m)3
" O(kii—kg) . (ks — ki
(K= ki) (P~ =k —kgp) —ma—(kyi | —Kyg )2 (K=K (P~ —kyp—kg) —ma—(ky; | —kyg )2

(31)

In the scattering regimeR” =k +ky; =k, +K5), EQ. (31) agrees with Eq(4.7) in Ref. [6], after taking into account the
difference in spinor normalizatiofwe useuu=1).

Now we consider the precise form to use for the meson-nucleon form factor. We assume thatritgele form[23], so
that the denominator of the meson-nucleon form factor has the same form as the denominator of the potential in the scattering
regime. In particularA , plays the role ofn, for the form factor. For simplicity, we declare that the denominator of the form
factor always has the same form of the denominator of the potential. Thus,

2 2 Ny
AO( m&’

a—A2+bcog ¢i— ¢y)

Fu (@)= (32

The TME potentials considered here are the box diagrams, Fig. 3, and the contact diagrams, Fig. 4. We do not consider the
crossed diagrams because they are not needed to restore rotational invariance, as discussed in Sec. Il E 1.[Bference
shows that each of the potentials in Figs. 3 and 4 can be written schematically in the following general form:

F(Kim Kom, df 0 )UKy A1) Lo Ml g u(ky; A1) U(Kef Ao Mo o U(Kai A1)

g*4M2T* [ d%Kym Ak,
TME™ J

(2m)3 2(2m)3
X[ag—m: +b;cos ¢ — dm) ]~ "F o (0 *[am+ D COS B — ) + byniCOK iy )]~

X [a;—m;, +bicod ¢m—B)]~"F 4, (q)%. (33

3. Further development of the light-front Schidinger equation symmetries due to the conservation of nucleon helicity and
The potentials derived here possess a high degree of syrifivariance under time r,eversEﬂS]. _

metry. To solve the light-front Schdinger equation effi- ~ We follow Machleidt's approach for taking advantage of

ciently, these symmetries should be explicitly exploited, aghe symmetry of rotationally invariant potentials with helic-

was done in Refs[19,20. In addition, there are additional ity [24]. However, since the light-front potentials derived
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klm klm
ky—e——pt+o——k; kit ———pk;
PR \ \ /
(@) Vivem =|9 = Kim — Ky gi=kin—ky; + G=lom—ky qi = ko — ki
/ \ \ /
ky— < - ky; kyr— : -« ky,
kZm k2m
kim , . Ky
klf“'\';“"\—_?*kli ki P Ly
®) Vivess = qf=k1f_klim\ N N (): =k —ky; + qr= k2f_k2%} 4 y 7q; = kym—ky;
sz—<——3-—«§-—<—k2, oy —asle’ <k,
kom kam FIG. 3. The TME potentials
for (@ Viyem (the Mesa poten-
tial), (b) Vyyesg (the stretched
b k},,, - & k}m box potential, (¢) Viyve.sg (the
¥ ‘\'\ ) < ky; I 7 /';‘7' < ky stretched instantaneous potential
> and (d) Vyyesen (the stretched
=ky—k N NG =k —k. kb, 7/ Cd =k, —ky :
9 =ky—kin J & kin—ky  + g=ky kz'} ¥ q, kom = ke double instantaneous potential
ke AN ky; ko —ee /7 L Ky Note that the graphs on the right
ks, ks, : side are obtained from the graphs
(© Vimessr = ki Ky on the left side by %-2.
klf—*ﬁ(—v—<—kh klf—<—'_7—|7-<—k1,
\ \ 4 7/
+ gr=ky—kip™ 1N g =kip—ky + Gr=kop—kyy 7 | /i =kpm—ky
NN v v
' k2m kZm
klm klm
ky—eatot—k); ky—e«—— -k,
\ / /
(d) Vimessen = qr = klf_ kN N N {1:’ =k, —ky + qr = sz_ kzr} 7 g =k —ky
by e ek, YIS ATNA —"
k2m kZm

here do not have full rotational invariance, the approacthe transformations to the wave functions to express them in

must be modified. The symmetry properties of helicity ma-the helicity basis |, ,p™,\1,\,)) or in the light-front spin

trix elements are rederived in R¢83] without assuming full  basis (p, ,p™,m;,m,)) [33].

rotational invariance. These results allow a modified version

of Machleidt's approach to be combined with the exploita-

tion_ of parity (using the transforr_nation_ from Iight_—front co- IIl. FORM FACTORS OF THE DEUTERON

ordinates to equal-time coordinatesliscussed in Refs.

[19,20. In particular, the potentials are initially calculated in  In the previous section, we discussed how to derive sev-

the |per,6,M,\1,\,) basis, although the relations in Ref. eral deuteron wave functions for different truncations of the

[33] are used to transform to tH@gr,J,M,L,S) basis to LFNN potential. In this section, we use those wave functions

solve for the wave functions. In general, the potentials conto solve for the matrix elements of the deuteron current op-

nect states with different values df Once the symmetries erator, which is used to calculate the deuteron electromag-

have been explicitly expressed, we can discretize the "Schrametic and axial form factors.

dinger equation as done in Rdf20,33. We can choose We outline the covariant theory of the electromagnetic

which truncation of the light-front nucleon-nucle@oFNN)  form factors for spin-1 objects, such as the deuteron. Then

potential to use in the Schdinger equation, however, differ- we recall the features of light-front calculatiofiscluding

ent truncations of the potential give rise to different wavethe breaking of rotational invarianc®f the form factors.

functions. After that, we review the covariant and light-front tools for
Note that the transformations applied to the potential incalculating axial form factors. The formalism is then applied

order to simplify the solution of the wave functions. Onceto calculate the electromagnetic and axial currents and form

the wave functions are obtained, we may apply the inverse dfctors for the light-front deuteron wave functions.
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klm
ki — ~ - ky; ke —— -k,
/ A\
@ Vivee =| 4=k ko \gi=ki—ky, 9=k 7=k —kim
\ 7
kyf ettty kop— ¥ -y
kZm
s klm
klf*_\_—;_*kli klf_<——)";“7"<—k1i
N 4
qf=k2m_k2f\\ {Ii§=k2i—k2m + ‘If=k1m—k1f/, /Qi§=k1i—k1m
L 4
kop—t——— gk, kyp—t—t————a— &y,
ko ’
(&) Vimessc = klm _
klf“'ﬁ‘;"‘\_—*kli klf_eé_ﬁ_*kli
h R ,
+ qr = klf_ k§1m\ NG = ki — ky; + qr= ka— kzzm, 7 g = ko — ko F!G' 4. The TME F_)Otem'a_ls
QA j that include the contact interaction
ky—————>—ky, ky v det——— &y, for (a) Vywe.c (the contact poten-
' Kom tial), (b) Vimesec (the stretched
contact potentia) (¢) Vrimessic
(the stretched instantaneous con-
ki tact potentigl, and (d) V1yve:sece
klf—<-\—|—-\——<—k1,~ klf—<——,—<—k1,- (the stretched double contact po-
N O ) 7% tentia). Note that the graphs on
gr=ky— ki (N ‘\Ii =hn—ky  t g=ky—ly N g =k ky the right side are obtained from
N 7 the graphs on the left side b
by €«—1 Nk byt 4k, 1(_)29 p i y
2m
(OVrmessic = ki
by ky; kyf—t——— e k;
\\ 7/
+ qf=k2m_k2f\ gi =ky—ky + Qf=k1m—k1f/, g =kyi— ki
N Y
kyf—a—— > ky, byt ky,
kZm
klf—<—‘—\ ——a—ky; klf—<—ﬁ_<_/ ky;
v b A
(DVivEssec = dr \ \\‘Ii + s/ //‘Ii
N /
kye——"—"4 i, sz—<—-&/—<— ky;
A. Electromagnetic form factors e(p’\) e(p,\)
1. Covariant theory
In the one-photon-exchange approximation, shown in Fig.
5, the amplitude of the scattering process—ed is just the
contraction of the electron and deuteron current matrix ele-
ments, multiplied by the photon propagator,
(P NliglpN) (K m' | 3K k,m), (34 d(k’;m’)# d(k,m)
q

FIG. 5. The Feynman diagram for one-photon-exchange
Wherej‘; is the electron current operator. From Lorentz co-electron-deuteron scattering.
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variance, parity invariance, time-reversal invariance, and Fo=F1+(1+7)F,—Gy, (39
current conservation47-51], we infer that the deuteron
form factor can be written as where
(k’,m’|J4k,m)y=— i(e*)”(k’ m’)J* e’(k,m) -q?
Nl 2My L Teem = (40)
(395 4Mjg

where the spin-1 polarization vectors satisfy the usual relaote that since both the initial and final electron and deu-
tions and the operataly, is given by teron are on-shell-g?>0. We defineQ?=—q?. The nu-
merical values of the form factors are determined by using
experimentally measured valugs0,53,54.

To experimentally determine the deuteron form factors,

(36)  electron-deuteron cross sections are measured. Unpolarized
cross section measurements yield the structure funcions

where | 77=0/'9,—0,0, is the generator of infinitesimal andB, which can be expressed E&0,55
Lorentz transformationg=k’ —k, andF,, F,, andG; are
functions ofg?, the invariant mass of the photon. , 8 , ., 2

TheF,, F,, andG, form factors are related to the deu- A=FctgnFotznFu, (41)
teron charge, magnetic, and quadrapole form factors, denoted
by Fc, Fu, andFq respectively, by47,49,53

: q,0e .
Jﬁr:(k,{"kﬂ) ngFl(qz)_ WFZ(qz) _Iﬁ(rQVG]_(qz)y
d

4
5 B=3n(1+n)Fy. (42)
Fc:F1+§77[F1+(1+ nF,—Gq], (37
Polarized cross section measurements yield tensor polariza-
Fu=Gq, (38)  tion observables, such %, [50,5]

§77FCFQ+ 97 FQ+§ nFEul1+2(1+ p)tart(6/2)]
T20=—

V2[A+Btar’(64/2)] * (43

whered, is the angle by which the electron scatters. Data fothe deuteron, and the vertex of the deuteron lines and the

T, are usually presented f@h,=70°. nucleon lines represents the deuteron wave function. The
graph labeleda) does not vanish and is calculated in Sec.
2. Light-front calculation Il A5. Figure &b) vanishes in light-front dynamics. To see

why, we first note three facts: the plus component of each
article in light-front dynamics is nonnegativor massive
articles it must be positiyethe plus component of the mo-

Light-front dynamics is particularly well suited to calcu-
lating form factors. One reason is that the generators o
boosts in the one, two, and plus directions are kinematic, Stantum is conserved, and the plus momentum of the
that wave functions calculated with a truncated potential,c,um is zero. Combining these facts, we find that any
transform correctly under boosts. This feature is especially,qrtax which has particles on one side and vacuum on the
important for form factors at high momentum transfer, be-qiner myst vanish. In other words, the vacuum is trivially
cause the wave functions must undergo a large boost. empty, and no graphs couple to it.

Another, more subtle, reason for using the light front is =, Fig. 6c), the coupling of the photon to the nucleon
that many of the graphs which contribute to the current van- _ . — M’ h he liaht-f ) d
ish identically. For example, the three lowest-order graphd2€S aSULey"vie, where the fight-iront spinors are de-

ined in the Appendix. Fow=+, this matrix element is

for the current are shown in Fig. 6. The double line denote . | B A
suppressed maximally, and thdis is the “good” component
of the current11,13,58. We calculate onlyd™, since it is

the most stable.
We do not consider the contribution of higher-order
graphs to the deuteron current, such as graphs where the

(@) (b) () . .

' photon couples to a meson or a nucleon while a meson is

FIG. 6. The lowest-order time-ordered graphs that contribute tgoresent. The omission of the meson-exchange currents is jus-
the deuteron current matrix element. tified only if the current of a composite particle factorizes in
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the impulse approximation. We start by writing the total cur- 1 |Ir0 17,
rent‘]#(Q) as - |+ |+
|7 = 10 oo 10 |, (46)
mem + + +
I 1-1 =1 10 I 11
I a)=2 Fi(@)It(a), (44
I
4. Rotational invariance and the angular condition
where the sum runs over all constituent particiegq) is a This is as far as we can go with light-front dynamics, but

form factor of particlei, andJ; is independent of form fac- there should be an additional redundancy in our matrix ele-
tors. If the electromagnetic form factors of the meson and the,ants. We have derived four independent components
nucleon are independent, then eakhmust have the same \\hereas in a fully covariant framework there are only three
symmetry properties a3r. Thus, omitting the meson ex- fFrm factors. The resolution of this conflict is that full rota-

change currents doe_s not affect the rotational properties Qlonal invariance imposes angular conditionon the light-
the current although it does affect the overall values of th%ront matrix elements

deuteron form factors. This is acceptable since we are only L . .
. . U .7 The deviation from the angular condition, which we de-

concerned with the rotational properties in this work, not in . S
the detailed results. note withA, is given by[14]

The neglect of the graphs where the photon couples to a
nucleon while a meson is present is a sign that the calcula- N P N
tion is not complete. Indeed, the deuteron current shown in A=—lgot(1+2nI+Ii—2V2nll,  (47)
Fig. 6(a) is not formally conserve{b5]. But current conser-
vation is a necessary consequence of a complete calculation
in this model. To construct the conserved current operatowhere 7 is defined by Eq(40). SinceA vanishes when the
associated with a given wave function, the current must indeuteron current transforms correctly under rotations, we in-
clude diagrams that are related to the potential used to caterpretA as a measure of the extent to which the current
culate the wave function. We expect that these diagrams ateansforms incorrectly.

small since they contain meson propagators. The form factors are over determined by the current ma-
trix elements, which means many different relations possible.
3. Symmetries of the electromagnetic current When A is zero, all the relations are equivalent, while a

nonzeroA means that the form factors depend also on which

Symmetries relate the components of o
relation is chosen.

(k’,m’|3"(q)|k,m). In particular, the generators of boosts SinceA | . Litis | h
in the plane perpendicular to theaxis, boosts in the plus Ince A Is nonzero In general, it Is Important to choose
direction, and rotations about theaxis are kinematic. In the best relation to obtain the form factor. To do this, we

addition, we will find how the states and the current operatof!assify the current matrix elements as either “good” or

The kinematic generators allow us to choose which framé&hoosing which component of the current to use. .

9" =q =g’ =0 andg*=Q. We also choose the plus mo- invariance properties; the choice of how to relate the form

mentum of the deuteron to Be ,, sinceMy is the value of factors is fsi_mply usefu_l for comparing with ther approaches.
In that spirit, we consider four different choicgk4].

the plus momentum in deuteron’s rest frame. To simplify the i .
notation, we define the light-front spinor matrix elements of (1) Grach and KondratyukGK) considerlq, as the bad
J* as element58].
(2) Brodsky and Hiller(BH) use a prescription wheilg;
is bad[59].
. q, (3) Frankfurt, Frederico, and StrikmdRkFS use the Car-
IN(Q)| =5 m). (45 tesian component;, as the bad currertl1].
(4) Chung, Polyzou, Coester, and Keis(©CKP) choose
the canonical expressions for the form factors in terms of the
This quantity is represented by, ,, not J,., because €dual-time current, then use rotations and the Melosh trans-
Jovm is Used to represent the matrix elementsl afsing the ~ formation to express the equal-time current matrix elements
instant-form spin basis. The two matrices are related by thé terms of the light-front current matrix elemerts8,52.
Melosh transformatiof13,57).
The symmetries dictate that of the nine possible matrix 5. Impulse approximation on the light front
elements ofl ", there are only four independent components.
We choose those components tollg, 1/,, 17_;, andly,. We now are ready to relate the deuteron wave function to
It is helpful to express the matrix elements in a matrix to seehe current. Inserting a complete set of light-front spinor
the symmetry properties explicitly: states into Eq(45) gives

l,;,,m<Q>=<%,m'
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10U T T T T
+
Im,,m(q)=j d’p,dp* X .
m} ,my,m, F —— Dipole
---- Hohler
— N _F ——- Gari:1985
X2ue(p”,p.+0a./2my) 2 —-— Gari1992
_1 o - - Mergell

=——=a Lomon

X J(g(@)UuE(p™,pL—a/2my)
X(q./2m’|p*,p, +q,/2,m;,m,)2

F, and -F,

X(p*,p.—q./2my,myl—q. /2m), (48

where the light-front spins of particles 1 and 2 are labehgd

and m,, respectively. Because the deuteron is an isoscala
combination of nucleons, the isovector component of the
nucleon current does not contribute and the isoscalar nucleo
current is the same for both nucleons. This allows us to sim- 19~
ply double the isoscalar current of particle 1 instead of using

the isoscalar currents of both particle 1 and 2.

To relate this current to the wave functions we calculate, |G, 7. TheF, and —F, isoscalar nucleon form factors for six
we must boost the deuteron wave functions to the rest framejifierent models: the dipole model, Hohler, Gari: 1985, Gari: 1992
The boost that accomplishes this transforms a general lightergell, and Lomon.
front vector from{k* ,k,} to {k* k, +xq,/2}, where x

0

Q [(GeVic)]

=p* /My is the Bjorkenx variable. Applying this to the deu- + _ 2 "
teron wave function gives liym m(@)=| d°p dp E
m; ,my,m,
(q./2mlp™,p.+a,/2my,my) X 2u e(pt,p, +q,/2m))

— + _

=(mp*,p.+(1=x)q /2my,my). (49 X Iy (A ue(p ™,y — 0, /2my)
The deuteron wave functions solved in Sec. Il can be used in x(m'[p*,p, +(1—x)q,/2,m},m,)
the right-hand side of Eq49). Note that the light-front spin o
labels are unaffected by the boosts. X(p",p.—(1=x)q,/2my,mplm), (54)

for i=1,2. Note that both](l)m, (q) andJ(z)m, (q) must
satisfy the same equations a$ m(d) does. In particular,

From Lorentz covariance, parlty invariance, and time- -this means that the angu|ar Condmon app“es‘j?ﬁ m(q)
reversal invariancg48,49, the isoscalar part of the nucleon andJ* - _(q) independently, so we consider the deviation

current can be expressed as from the angular condition for each.
There are Eg)any pararrgse)trizations of the isoscalar nucleon
_ (S form factorsF3;(q) andF3”(q). Since the measurement of

o= E FZ(@) s (@ 59 he electron-nucleon cross section is difficult, the data have
large errors and are consistent with several different models
where of the nucleon form factors. Some of the models representa-
tive of those proposed in the literature are: the dipole model,

fit 8.2 of Hohleret al. [60], Gari and Krumpelmann, 1985

6. The nucleon form factors

Jag(d) =7, (51) : ¢
[61], model 3 of Gari and Knnpelmann, 199262,63, best
fit for the multiplicative parametrization of Mergell and oth-
I () =i o"'q, (52 ers[64], and model DR-GK1) [dispersion relation for Gari
(299 2M Krimpelmann(1)] of Lomon [65]. The F{¥(q) andF$Y(q)

form factors for each of these models are shown in Fig. 7.
and F{¥ and F{Y are the isoscalar Dirac and Pauli form  We can relate the isovector form factors @&y, Gy
factors, respectively. They are normalized B§”(0)=1/2  Gen, andGyy,, the proton electric, proton magnetic, neutron

andF$(0)= (xp+ kp—1)/2. electric, and neutron magnetic form factors, respectively,
When Eq.(50) is inserted into Eq(48), we get with [66]
F(S)_GEP+ GEn+ T(GMp+ GMn) (55)
1 - ’
v (@ = 25 FII(@)1 Gy (), (59) 21+ 7)
| —Ggp—GgptGypt+G

(S _ Ep En Mp Mn

where F2 201+ 7) , (56)
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where 7=Q%/4M. The value ofr is approximately 1 at a (2) Frederico, Henley, and MillefFHM) use the behavior
momentum transfer of about 5 G&Vthe upper range of of the matrix elements in the nonrelativistic limit to deter-
momentum transfers that we consider. Since the overall magnine that the bad element iig,;, [12].
nitudes of the form factors are similar at this momentum The current matrix elements are calculated using the
transfer, it is important to measure each of the form factorsiucleon axial current. Since we choose to use + and
with the same accuracy and cover the same range of momework in the frame wherg™ =0, the general form of nucleon
tum transfers. Currently, the most poorly known form factoraxial current reduces to
is Gg,,, both in terms of the magnitude of the error and in the
number of data pointgs5]. Jisp=7"rFa. (59)
In Sec. IV B, we will find that for momentum transfers
greater than about 2 G&YVthe spread in the values of the Since the deuteron axial current has such a simple functional
deuteron form factors due to the breaking of rotational in-dependence on the nucleon axial form factor, we choose to
variance on the light front is smaller than the spread in val-use the dipole model with the value of the axial mass deter-
ues due to using the various nucleon form factors. It is unmined by Liesenfelcbt al. [68].
certainty of the nucleon form factors, not the use of the light
front, that limits the accuracy of the deuteron form factors at IV. RESULTS
large momentum transfers. Only more accurate measure-
ments of the nucleon form factors, especiaBy,,, will al- A. Deuteron binding energies
low for more accurate deuteron form factor calculations. The next Step towards numerica”y Ca|cu|ating the bound
states for these potentials is to choose the param@terson

B. Axial form factors masses, coupling constants, gfor the potentials. We con-
sider the full nuclear model where the nucleon-nucleon in-
teraction is mediated by the, 7, p, w, §, ando mesons.
'For numerical work, use the parameters for the light-front
nucleon-nucleorLFNN) potential from the work of Miller

The formalism used for the axial current and form factor
is very similar to that used for the electromagnetic curren
and form factor. Thus, most of the discussion from the pre

vious section carries over here with only slight mod|f|ca-and Machleidf21]. Those parameters were fit for a potential

o e oine i curent .t USEd 3 retaded propgator for e ey in (e potn
. . y X . tials. Since the potentials used in this paper have energy
trix elements is almost the same as in Sec. Il A 2, with th

e X .. .. .
. . . . dependent denominatofarising from the elimination of the
exceptlon t_hat under parif67] the axial cgrrent p|qks up a .Fogk space components contgining mesons or more than two
negative sign. This means that of the nine possible matri

I s of - th v two ind dent ¢ )ﬁucleon$ the parameters must be modified somewhat. We
elements obls , there aré only two Independent Components..,,5se they meson coupling constant to e times the

+ .
We choose those components tolgg;;, andls)i. Itis  coupling constant given in Ref21], and we varyf, .
helpful to express the matrix elements in a matrix to see the a5 with all the other deuteron models presented in this

symmetry properties explicitly. paper, the light-front OME potential breaks rotational invari-
|+ |+ 0 ance and causes a mass splitting of the deuteron states with
(G)11 - 1(5)10 different magnetic quantum numbers. We expect that the
| _ —|(+5)10 0 —I(ﬁ-,)lo (57) splitting will be removed somewhat by including higher-
(S)m’,m 0 T ' order potentials.
(5)10 (5)11 The first step is to determine which two-meson-exchange

potentials to use. One choice is to use only the two-pion-

We have derived two independent components, but a§*change potentials, TPE and ncTPE, as defined in the pre-
analysis of the covariant theory shows that only one deuteroMious section. However, we expect to get better results using
form factor (F,) contributes for the plus component of the the two-meson-exchange diagrams generated by all the avail-
axial current{12]. This implies that the requirement of full able mesons, including the contact diagrams for the pions,
rotational invariance imposes an angular condition on th&vhich we denote as the two-meson-excha(igéE) poten--
light-front axial current matrix elements. The deviation from tial. In addition, we can also investigate the effect of leaving

the angular condition, denoted Iy, is given by[12] out the contact potentials for the pions, resulting in the non-
chiral two-meson-exchangecTME) potential.
\/—7] We do not include diagrams with a contact interaction

(58)  between the nucleon, a pion, and another meson. This is
because, as mentioned in Sec. Il E 1, the infinite series of the
box diagrams is rotationally invariant and the contact dia-

Since the deuteron axial form factor is overdetermined bygrams are not needed to achieve rotational invariance. Fur-
the current matrix elements, we need to classify the currerthermore, they are not required to control the convergence of
matrix elements as either “good” or “bad” to eliminate am- the series, since there is no strong cancellation between the

A= e s

biguity. We consider two such choices. contact diagram and the instantaneous diagrams.
(1) Frankfurt, Frederico, and StrikmdRFS find that the The first step in analyzing the bound states is to determine
J(ﬁ-))zz is the bad matrix elemeni.1]. what range off, gives reasonable results. We iteratively

034002-13



JASON R. COOKE AND GERALD A. MILLER PHYSICAL REVIEW G566, 034002 (2002

TABLE I. The values off , required to give the physical value 3.0 . . . :
of the deuteron mass for a given potential and state djthm.
The percent of the wave function in thg-state and in thel=1

state are also shown. 251 « :m:? ]
Potential fo % D state %J=1 % o0 L ]

m=0 m=1 Diff m=0 m=1 m=0 m=1 =

5 * x
OME 1.2407 1.2125 0.0282 2.87 3.55 99.99 99.97 E 15[ ]
OME '-';
+TPE 1.2829 1.2819 0.0010 2.96 3.23 99.99 99.97%
OME g 10r ¥ 7
+TME 1.2968 1.3079—-0.0111 2.95 3.28 99.99 99.96 + +
x <

OME 05} + x 1
+ncTPE 1.3064 1.3121-0.0057 2.99 3.16 99.98 99.97 x
OME

+ncTME 1.3198 1.3397—0.0199 2.98 3.21 99.98 99.96 00 —OWE mocoMesa moTME  naTPE TME TPE
Potential Used

ve for the bindi f the deut il FIG. 8. The values of the binding energy for the=0 andm
SOlve for e binding energy ot the deuteron, varyingn 1" —1 states for different nucleon-nucleon light-front potentials. The
the binding energy matches the physical value of the binding, coupling constant factor i, = 1.22.

energy, for each of the potentials. The results are shown in
Table I. We find that a value df, in the range 1.2 to 1.3 will bonell, Desplanques, Karmanov, and Math[@&9] have
give reasonable results for the binding energy. Note thaghown that it helps restore rotational invariance of the deu-
D-state probability(about 3%) is lower in this model than teron.
for the energy-independent light front used in REZ1], In particular, they have used manifestly covariant light-
where a value of 4.5% is found. This is expected sincd the front dynamics to analyze the deuteron. They start with a
is greater than 1 in this model, meaning that the scalar interdeuteron wave function calculated in equal-time dynamics,
action is strengthened relative to the tensor interaction, leadhen use a light-front one-pion-exchange poter(gapanded
ing to a decrease in amount of tBestate present. to lowest order in powers of W) to calculate the perturba-
We choose two values df,, one from the low end of the tive corrections to the wave function. They find that the re-
range (1.22 and one from the high endl.2815 for our  sulting wave function has an unphysical dependence on the
investigations. Using two values helps ensure that our resultsrientation of the light-front plane, which would manifest
are robust. itself as a breaking of rotational invariance in our formalism.
First, we examine the bound states fQr=1.22. The re- They also use ther-o and 7-o mesa potentialéexpanded
sults for several different choices of the TME potentials areto lowest order in powers of i) to calculate the correction
shown in Table Il and the binding energies are plotted in Figto the wave function. When the wave function corrections
8. In addition to the two-meson-exchange potentials menare combined, they find that the directional dependence of
tioned above, we also consider theo plus m-w mesa po- the longest range part of the deuteron wave function cancels
tential. The reason for considering this potential is that Carexactly.

TABLE II. The values of the binding energy, percentage of the wave function irDtlséate, and the
percentage of the wave function in the 1 state for then=0 andm=1 states for different potentials. The
o coupling constant factor is,=1.22.

Potential Binding EnergyMeV) D state(%) J=1 (%)
m=0 m=1 Diff m=0 m=1 m=0 m=1

OME only —1.7653 —2.4200 0.6547 2.73 3.61 99.99 99.96
OME

+m-(0-w) mesa —1.9236 —1.7021 —0.2215 2.80 3.38 99.99 99.96
OME

+ncTME —0.4948 —0.2646 —0.2302 1.97 1.76 99.99 99.98
OME

+ncTPE —0.6620 —0.4825 —0.1795 2.16 2.09 99.99 99.98
OME

+TME —0.7861 —0.6060 —0.1801 2.25 2.31 99.99 99.97
OME

+TPE —0.9981 —0.9155 —0.0826 2.42 2.57 99.99 99.98
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TABLE Ill. The values of the binding energy, percentage of the wave function irDtls¢ate, and the
percentage of the wave function in the 1 state for them=0 andm=1 states for different potentials. The
o coupling constant factor i§,=1.2815, distinguishes this table from Table II.

Potential Binding EnergyMeV) D state(%) J=1 (%)
m=0 m=1 Diff m=0 m=1 m=0 m=1

OME only —3.3500 —4.4546 1.1046 3.09 3.97 99.99 99.96
OME

+7-(0-w) Mesa —3.6331 —3.2408 -0.3923 3.10 3.85 99.99 99.95
OME

+ncTME —1.3766 —0.9901 —0.3865 2.67 2.64 99.99 99.97
OME

+ncTPE —1.6532 —1.4693 —0.1839 2.81 2.88 99.99 99.97
OME

+TME —1.8617 —1.6032 —0.2585 2.85 3.05 99.99 99.96
OME

+TPE —2.1915 —2.2137 0.0222 2.95 3.23 99.99 99.97

This implies that for our model, using the-o plus 7-w may result in either a larger or smaller mass splitting. In this
mesa potentialwhich we denote byr-(o-w)] should par- case, it is smaller. To investigate this further, we examine the
tially restore the rotational invariance of the deuteron, ascurrents for the TME and TPE deuteron wave function in
suming that the breaking of rotational invariance is due pri-Sec. Il
marily to the one-pion-exchange potential. Note that since To verify that our results are independent of the value of
we solve for the deuteron wave function self-consistentlyfo. We recalculate the deuteron properties for each of the

and to all orders for our potentials, we do not expect to fingPotentials withf,=1.2815. The results are summarized in
exactly the same result as RE89). Table Ill, and the binding energies are shown in Fig. 9. The

The first thing to notice about the data in Table Il is thatchange inf, increases the binding of the states, but the rest

the results are essentially the same regardless of if arbitrai§f t/f\l/e restultz a;re qﬁalltatw(taly thle saamer.] + effect varving th
angular momentum is used or if the potential is restricted to € note that we have not analyzed what efiect varying the

theJ=1 sector. The same result is also seen in the pion-onl -nucleon coupling constants has on computing the scatter-

. . ng T=0 scattering phase shifts. A poor representation of the

g]popdrigi‘:r%tlet g;e:r?;utlZ?tr::)emvgﬁyuer;ugg;ga?;i'numer'ca”ydata cou]d cause our computed deuteron form factors to dis-

Next we notice the splittings between masses Bratate agree with observatior( 0]
percentages for thex=0 andm=1 states. This implies that B. Deuteron form factors
the states do not transform correctly under rotations. All of
the two-meson-exchange potentials used reduce the splittings
by similar amounts, by about 60% for the binding energy an 9
by about 70% for the perceit state. Note also that the mass 5.0 : : : : : :
splittings for the pion-only model were much largd6].

Examining the effects of the individual two-meson- " ]
exchange potentials, we see tha{ o-w) potential does re- 40 F _1 3
duce the mass splitting, but it does not fully remove it. This ]
is expected since the OME potential includes more than jus’ 35 +
the pion potential, and the potential is relativistic. Z30f

Next, we compare the ncTME and ncTPE potentials to the & ]
TME and TPE potentials. The nonchiral potentials reduce theg 2%

We use the deuteron wave functions obtained for the
ht-front nucleon-nucleon potential in Sec. Il to calculate

45F x 3

binding energy more than the chiral potentials, as we ex-2 54 ¢ E
pected from our experience from the pion-only model. How- E + 1’
ever, unlike for the pion-only model, we find that the chiral @ 15 | + x 3

and nonchiral potential have fairly similar effe¢&6].

Finally, notice that the mass splitting for the TPE potential ]
is much smaller than for the other two-meson-exchange po- 0.5 ]
tentials. By itself, this does not imply that the rotational o , , , . , L]
properties of the deuteron calculated with that potential are OME  n-{o-w)Mesa ncTME = ncTPE TME TPE

Lo Potential Used
significantly better than those from other two-meson-
exchange potentials. The individual potentials that make up FIG. 9. The values of the binding energy for tire=0 andm
the TME potential are fairly large in magnitude, but vary in = 1states for different nucleon-nucleon light-front potentials. Fhe
sign. This means that using any subset of those potentialoupling constant factor if,=1.2815.

1.0 F x E
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(b)OME+TME (b)OME+TME

Q’ [(GeV/e)]

FIG. 10. The matrix elements d)f1 mm» the component of the FIG. 11. The matrix elements d>f2 m'm» the component of the
electromagnetic current which multiplies the nucldonform fac- electromagnetic current which multiplies the nucldonform fac-
tor, calculated with the wave function from th@ OME, (b) tor, calculated with the wave function from th@ OME, (b)
OME+TME, (¢c) OME+ TPE, and(d) Bonn potentials. OME+TME, (c) OME+ TPE, and(d) Bonn potentials.

the deuteron currents and form factors. This gives a solutiothe angular condition. Since the masses of the deuteron states
where light-front dynamics is used consistently throughoutare exactly the same for the Bonn wave function, and ap-
For the potential, we choose the light-front nucleon-nucleorproximately the same for the OMETPE wave function,
potential withf =1.2815. We have verified that the results they have a smalh at low momentum transfer. However, the

do not change significantly whefp,=1.22 is used. OME wave functions, having the largest mass splitting, have
Figure 10 shows the currents and the associated angulgfe largestA at low momentum transfers.
condition forl,, given by Eq.(54), for several different Figures 11 and 12 show the current matrix elements and

deuteron wave functions. Results are shown for the wavehe angular condition fo|r(+2) and|(+5), respectively. The gen-
function from the OME, OME-TME, and OME-TPE po-  eral features of these figures are the same as in Fig. 10, with
tentials(calculated in Sec. )] and the parametrization of the gne important exception. In both figures, thefor the OME
deuteron wave function for the energy independent Bonn powave function has about the same magnitude as\tagor
tential [23]. The currents matrix elementbut notA) are  the other wave functions. This means that the rotational
approximately the same regardless of which wave function i%roperties 0f|(+2) and |(+5) currents are approximately the
used. This consistency is important, since it verifies that theame regardiess of which wave function is used. This result
gross features of all the models are the same. confirms that the rotational properties of the current matrix
We find thatA for 1} is much smaller than the largest elements depend as much on how the current is constructed
matrix elements when using the OME wave function. Thisas they do on which wave function is used.
means that thdaa) current transforms very well under rota- In Fig. 11, we find that the magnitude af is almost the
tions. This is somewhat surprising, since we found earliesame as the magnitude of the largest matrix elemehgflpf
that the binding energies for the OME wave functions have arhis means there is a large deviation from the angular con-
large splitting, indicating that OME wave functions trans- dition, and that form factors calculated with this current may
forms poorly under rotations. depend strongly on which matrix element is chosen as bad.

Comparing the current calculated with the OME wavewe show below that this is not the case for the electromag-
function to those calculated with other potentials, we findnetic form factors.

tflat for momentum transfers of more than 1 éﬂ!“’e OME We find thatA is much smaller than the largest matrix
I 1y current has the best transformation properties under rcelement of the axial currents shown in Fig. 12 for most val-
tation of all thel(*l) currents shown. ues of momentum transfer. This means that the deuteron

For smaller momentum transfers, the transformation propaxial form factor will be essentially independent of which
erties of the Bonn and OMETME wave functions are the matrix element is chosen as bad, except for within the range
best. This is expected, since in the limit of no momentumof 1.5 to 2 Ge\?.
transfer, the curre|1t(+l)m,m is simply the overlap of deuteron ~ Now we combine the two parts of the electromagnetic
wave functions{m’|m). If the initial and final states have current,l ;y andl ), with the nucleon form factorg; and
the same mass, the matrix element is simply,, which F, to get the total current. Figure 13 shows the currents for
satisfies the angular condition. However, if the states do no‘Flla) and F2|(+2), as well as the sum,”. The Gari:1985
have the same masgwhich implies thatm’#m), there will  nucleon form factors are us¢@l]. We find thatF;| {1) gives
be a nonzero overlap between the two states, which violatethe largest contribution to the total current, and because
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FIG. 12. The matrix elements dfy, ..., the deuteron axial
current including the nucleon axial form factor, calculated with the
wave function from the(a) OME, (b) OME+TME, (c) OME

+TPE, and(d) Bonn potentials.

FIG. 14. The form factor®\, B, T,,, andF, calculated using
the various choices of the bad matrix element. The OME wave
function is used, along with the Lomon nucleon form factors for the
electromagnetic form factors, and the Liesenfeld nucleon form fac-

i . ~ tor for the axial form factor.
small forl ), A is also small for the total current, meaning

that the total current transforms well under rotations. Thustoo surprising, since a small constant shift in any function
in spite of the fact thaf\ is approximately the same size as near a zero crossing has a large effect in a logarithmic plot.
the current matrix elements fdr(+2), the deuteron electro- Also, we note that the FFS and CCKP choices of the bad
magnetic form factors should not depend too strongly on thenatrix element give the same value r

choice of the bad matrix element. This is especially true for We also use the OMETME wave function to calculate
the form factors calculated with the OME wave function.  the form factorsA, B, T,, andF 4, which we show in Fig.

We calculate the form factor, B, Ty, andF, using the  15. We argued earlier that these electromagnetic form factors
OME wave function, and show the results in Fig. 14. Thedepend more strongly on which matrix element is chosen as
definitions of the bad matrix elements are given in Secsbad as those calculated with the OME wave function, and
[l A4 and Il B. In general, the form factors do not depend that dependence is clear in this figure. At low momentum
strongly on which matrix element is chosen as bad, in agrearansfers, the dependence on the change is fairly small, but as
ment what what we predicted in the previous paragraph. The

only exception is for thd form factor, and to a lesser extent 10* 107 ; ; ;

the F form factor, near where they cross zero. This is notmf 10‘j
107 107
10° 107 107
0 10 10°
102 10 107
" 10 107
5 1 10 10°
E _10
3 0 107"
107 10°
. 107"
107 1 1 1 1
TSI SN S TS, —— 0% 1
- B)F, Iy, 2 R () I'=F, I" #F, 1", 100 L \ i
(%) \\" L\\“‘ 10_4 L “‘//_-\ i
B o W N
=1 i . = 10™ L | .
° o i ~Z o 1 2 3 4 5
10 r Y\ Q@ [(GeVic)) Q [(GeVie)]
\
107 P FIG. 15. The form factorg\, B, T,,, andF, calculated using
QY(GeVicy] Q* [(GeVic)) the various choices of the bad matrix element. The definitions of the

bad matrix elements are given in Secs. A4 and IlIB. The
FIG. 13. The matrix elements della)m,m, lezrz)m,m, and  OME+TME wave function is used, along with the Lomon nucleon
I, calculated with the OME wave functions. The Gari:1985 form factors for the electromagnetic form factors, and the Liesen-
nucleon isoscalar form factors are used FgrandF,. feld nucleon form factor for the axial form factor.
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FIG. 16. The electromagnetic form factoks B, and T, calcu- FIG. 17. TheA, B, Ty, andF 4 form factors for the OME and

lated using the various choices of the nucleon isoscalar form facOME+ TME potentials, along with data. See the accompanying text
tors. The OME wave function is used, along with the FFS choice offor an explanation of the data.
the bad deuteron current matrix. The axial form factor is not shown

since its dependence on different form factors is trivial. i . )
+ TME wave functions, and it can be reduced by choosing a

different sigma coupling constantt, for the OME and

the momentum transfer increases, so does the dependenggue+ TME potentials. However, for our analysis of rota-
The axial form factor is not affected as strongly, primarily -1 invariance. it is important t;) keef, fixed.

. : tio
because each wave function generates an axial current WhICh The difference between the calculated form factors and
violates the angular condition by approximately the samepne gata is also quite large. This is not unexpected, since in

amount. . our model of the current, meson exchange currents are not
Since there are many different models of the nucleon elecy o, qeq. It is known that these can have a large effect on the
tromagnetic form factors, we calculate the deuteron electrogy i tactors at large momentum transfé68,85,86. Includ-
mhagf?g“c form fr«]a\ctors ‘;}S'ng e"l"Ch of tr;]em to see what eflfeqhg these effects could bring the form factors into better
the differences have. The results are shown in Fig. 16. At low, g eement with the data. However, we emphasize again that
momentum transfers, all the nucleon form factors give Clos%greement with the data is not a priority of this work. Our
to the same results. However, when the momentum transfe%m is to gain a better understanding of the breaking of
is large, we find a large spread in the values due to nucleofaiinnal invariance by the light front, and how to restore

form factors. In fact, this spread is larger than the spread of5¢ jnyariance. Only after we have that understanding can

values obtained from using different bad matrix elementsye b rsue accurate calculation of the form factors with light-
with the OME+TME wave functions. In other words, in qnt dynamics.

order to obtain accurate results for momentum transfers over
2 Ge\?, it is more important to determine which nucleon
form factor to use than when bad matrix to use.

Finally, in Fig. 17, we compare th&, B, Ty, andFp The issue of rotational invariance in light-front dynamics
form factors for the OME and OMETME wave functions  with a fixed-front orientation must be addressed before one
to experimental data. The bad component was chosen aattempts to use light-front dynamics for high-precision cal-
cording to FFS, and the nucleon form factors of Lomon wereculations. In this paper, we find ways to quantify the level to
used forA, B, andT,, while the Liesenfeld axial nucleon which rotational invariance is broken. We used light-front
form factor was used fdf 5. The data folA is from: Bucha-  dynamics to obtain new light-front nucleon-nucleon one-
nanet al.[71], Eliaset al.[72], Galsteret al.[73], Platchkov  meson-exchangéOME) and two-meson-exchang@ ME)
et al. [74], Abbott et al. [75], and Alexaet al. [1]; the data  potentials. In addition, we examined the rotational properties
for B is from: Buchanaret al. [71], Auffret et al. [76], and  of wave functions for potentials truncated to different orders.
Bostedet al.[77]; and the data fof »is from: Schulzeet al. In Sec. Il, we derive OME and TME potentials for a
[78], Gilman et al. [79], Boden et al. [80], Garconetal. = model Lagrangian for nuclear physics which includes chiral
[81], Ferro-Luzziet al. [82], Bouwhuiset al. [83], and Ab- symmetry. The deuteron form factors are derived for the
bott et al. [84]. wave functions associated with the potentials in Sec. Ill. Sec-

There is a rather large difference between the form factorion IV describes our results, starting with the calculation of
calculated with the OME and OMETME wave functions. the binding energies and wave functions for the=0 and
This difference is due primarily to the fact that the OME m=1 states of the deuteron. We find that the splitting be-
wave functions are more deeply bound than the OMBEween them=0 andm=1 states was smaller for the OME

V. CONCLUSIONS
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+TME potential as compared to the OME potential. This definesg,,, with g, _=g_,=1/2, g11=02=—1,
The wave functions are used to calculate the form factora&nd all other elements @f vanish. The elements @f*” are
of the deuteron using only light-front dynamics throughout.obtained from the condition that*” is the inverse ofy,,,
In light-front dynamics, there are four independent compo-so g*#gg, = 5y . Its elements are the same as those of,
nents of the deuteron current. However, the requirement oéxcept thag™"=g* ~=2. Thus,
rotational invariance introduces an angular condition that the
four components must satisfy, reducing the number of physi- “=2a;. (AS)
cally independent components to three. The deviation of the , o . ,
calculated current components from the angular condition i€nd the partial derivatives are similarly given by
denoted byA. We find thatA is very small for the deuteron
wave functions calculated with the OME potential. This is an 05 = Zi. (A6)
important result, since it means that althouglprinciple the T
light-front calculation of the deuteron current calculated with
a truncated Hamiltonian and a truncated current operator T0 find the physical consequences of this coordinate sys-
does not transform correctly under rotatiois,practiceit ~ tem, consider the commutation relatiofp”,x"]=ig"",
does quite well. The smallness Afmeans that any reason- Which yield
able prescription for eliminating the dependent component of
the current gives essentially the same results; the uncertainty
introduced by the various nucleon form factors is much i1
greater. (P, X ]=—id;, (A8)
We also found thatA is significantly larger when the
TME potentials are used. Since the results in Refs
[19,20,44 indicate that the rotational properties of the TME
wave function are better than those for the OME wave func ) = ) : 3o
tion, we interpret the increase i as an indication that extra front dynam|gsz ang s canonically conjugate te™, th_|s
diagrams need to be included in the current calculation td"€ans thap is the light-front energy and that the light-
restore rotational invariance. For example, the component dfont Hamiltonian is given by™.
the current arising from the photon coupling to an interme- !N @ny Hamiltonian theory, partlgles have an energy de-
diate two-meson-exchange type of diagram should, in prinf_'”ed by the on-shell constralhfzm . This implies that the
ciple, be included. The inclusion of higher-order terms in thelight-front energy of a particle is
current can be expected to reduce the breaking of rotational
invariance of the deuteron form factor.

[p=.x7]=2i, (AT)

with the other commutators equal to zero. This meansxthat
is canonically conjugate tp| , andx™ is conjugate top™.
Sincex™ plays the role of timéthe light-front time in light-

2 2
_m +ki
=

(A9)
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For dealing with spin, we require the Pauli sigma matri-

ces, which are
APPENDIX: NOTATION, CONVENTIONS,

AND USEFUL RELATIONS 0 1. /0 —=i\/1 O
: (oh,0%,0%)= A :
For a general four-vectora with components 1 0/\i O 0 -1
(a%al,a?,a% in the equal-time basis, we define the light- (A11)

front variables . .
The Bjorken and Drell conventiof87] for the gamma

== g0+43 (A1) matrices is used in this work. They specify that
1o 1 0

a, =(a,a%), (A2) V=p= o —1/)’ (A12)

so the four-vectoa* can be denoted in the light-front basis 0 o
as y=Ba= ( _ ) : (A13)

o 0

a=(a*,a ,a). (A3)
5_:.0,1.2.3 01
Using this, we find that the scalar product is YEIWYYY YT, o) (Al4)
a-b=a*b,=3(a*b"+a"b")—a b, . (A4) The spin matrice$' then are
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Ll 1o
S=5%==57"7, (A15)
si=|0 (A16)

Using 3, we can express the helicity operatortasp- 3,
which has eigenvalues 1. This is useful since the helicity
is invariant under rotations.

It is useful to define the spinor projection operatars by

(A17)

These satisfy the requirements for projection operators,

A +A_=1, (A18)
(At)ZZAt ) (A19)
ALA-=0. (A20)

We summarize the effect these projection operators have

on the gamma matrices:

Acy®=9A5, (A21)
Ay =0=y"A-, (A22)
Acy™=yT=y"Az, (A23)
Ay =yAs, (A24)

and under conjugation,
YALY =As. (A25)

The light-front spinors are defined to b@]

U e(k,m)= [MA_+(k"+a" kK" )A L IxLEm

(A26)

1
VMK™*

1
:?[A,(M+aL'kl)+A+k+]X|_|:’m, (A27)

T
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Xm

XLF,mE( ol (A28)

wherey, is the usual Pauli spinor, and the. are the spinor
projection operators defined in EGA17). We find that

_ 1
uLe(k,m) = —=xlp [ A M +A_(K" +at k)]

VMK
(A29)
1 T 1 +
:WXLF,m[(M_aL'k JAL+KTA] (A30)
Note that these spinors are normalized to satisfy

(kM) U (kM) = Sy

For helicity spinors, we choose the eigenvectors of the
helicity operator ¢-p) as the y's. In particular,
-3)u(p,\)=hu(p,\), whereh=2\. This choice allows us

to write
w1l -
and
c,e 192 _
(sze“‘m) if h=+1
(p)= g0 192 , (A32)
( C2e+i¢/2) if h=-1

wherec,=cos@/2), s,=sin(0/2), f=hp/W, andh=2A\.

When there are two fermions in the center-of-momentum
frame, we can defineé= ¢, and =0, and for particle two
¢,=m+ ¢ and §,= 7— 0. This means that

u(pi,m>=\/%(fli)xi,xi(ﬁ), (A33)
wherei=1,2 and

X1a,(P)=x2,(P), (A34)

X2a,(P) =X, (D). (A35)
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