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Deuteron binding energies and form factors from light-front Hamiltonian field theory
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~Received 17 December 2001; published 27 September 2002!

This paper investigates how the breaking of manifest rotational invariance in light-front dynamics affects the
binding energy and the form factors of the deuteron. To do this, we derive new light-front nucleon-nucleon
one- and two-meson-exchange potentials, and use the potentials to solve for the deuteron wave function and
binding energy. We find that including two-meson-exchange~TME! potentials partially repairs the broken
rotational invariance of the one-meson-exchange~OME! potential. This is shown by a decrease in the binding
energy difference of differentm states of the deuteron. We calculate the matrix elements of the electromagnetic
current using the deuteron wave functions obtained from the OME and OME1TME potentials. Rotational
invariance requires that the matrix elements satisfy an angular condition, but in light-front dynamics that
condition is only partially satisfied. The current matrix elements from the OME calculation satisfy the angular
condition better than the ones from the OME1TME calculation. The matrix elements of the axial current
satisfy the angular condition to the same extent regardless of which wave functions are used for the calculation.
Finally, we find that at momentum transfers greater than about 2 GeV2, the breaking of rotational invariance
causes less uncertainty in the computed deuteron form factors than do the uncertainties in the nucleon form
factors.
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I. INTRODUCTION

Recent experiments at Thomas Jefferson National Ac
erator Facility have measured theA(Q2) structure function
of the deuteron for momentum transfers up to 6 (GeV/c)2

@1#, and measurements forB(Q2) are planned. Eventually
even higher momentum transfers will be achieved. At su
large momentum transfers, a relativistic description of
deuteron is required. Even at lower momentum transfer
relativistic description is important to understand the det
of the form factors. In addition, incorporating relativity
important for the deuteron wave function to transform c
rectly under boosts to large momentum, which is import
for calculating form factors.

One approach that gives a relativistic description of
deuteron is light-front dynamics. This work investigates t
consequences of combining light-front dynamics with va
ous nuclear models to calculate bound state wave functi
and uses them to calculate the deuteron form factors.

The utility of the light-front dynamics was first discusse
by Dirac @2#. Light-front dynamics makes use of the ligh
front coordinate system, where a four-vectorxm is expressed
as xm5(x1,x2,x1,x2), with x65x06x3. Although the
light-front coordinate system is simply related to the conv
tional coordinate system by a change of variables, the r
tion between light-front dynamics and conventional dyna
ics is very complex. This is because the light-fro
Hamiltonian@3–5# is obtained by defining the commutatio
relations and quantization procedure at equal light-front ti
(x15tLF) instead of at equal time (x05t). We use the light-
front Hamiltonian in a light-front Schro¨dinger equation to
solve for bound states. There are many desirable feature
light-front dynamics and the use of light-front coordinates

First of all, high-energy experiments are naturally d
scribed using light-front coordinates. The wave front of
beam of high-energy particles traveling in the~negative!
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three-direction is defined by a surface wherex1 is ~approxi-
mately! constant. Such a beam probes the structure of a
get described in terms of light-front variables@3,6,7#: the
Bjorkenx variable used to describe high-energy experime
is simply the ratio of the plus momentum of the struck co
stituent particle to the total plus momentum (p1) of the
bound state.

Second, the vacuum for a theory with massive partic
can be very simple on the light front. This is because
massive particles and antiparticles have positive plus m
mentum, and the total plus momentum is a conserved qu
tity. Thus, the naive vacuum~with p150) is empty, and
diagrams that couple to this vacuum vanish. This grea
reduces the number of nontrivial light-front time-order
diagrams.

Third, the generators of boosts in the one, two, and p
directions are independent of the interaction, or kinema
Thus, even when the Hamiltonian is truncated, the wa
functions will transform correctly under boosts, a use
feature when calculating form factors at high momentu
transfers.

Finally, it is easy to perform relativistic calculations usin
light-front dynamics. This is partly due to the simplicity o
the vacuum, and partly due the the fact that the light-fro
center-of-momentum variable~defined asP15p1

11p2
1) can

be cleanly separated from the relative momentum varia
for two particles. This allows us to write relativistic equ
tions which have the simple form of a nonrelativistic Schr¨-
dinger equation.

One serious drawback of light-front dynamics is that r
tational invariance is not manifest in a light front Ham
tonian where the light-front has a fixed orientation@8#. An
untruncated light-front Hamiltonian will commute with th
total relative angular momentum operator, since the total m
mentum commutes with the relative momentum. Th
eigenstates of the full Hamiltonian will also be eigenstates
©2002 The American Physical Society02-1
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the angular momentum. However, as mentioned earlie
Fock-space truncation of the light-front Hamiltonian typ
cally results in the momentum operator four-vector los
covariance under rotations.~A notable exception to this is th
light-front Bakamjian-Thomas construction, which is e
plained nicely in Ref.@9#.! HenceJ2 does not commute with
the truncated Hamiltonian, and this implies that the eig
states of the truncated Hamiltonian will not be eigenstate
the angular momentum. This is particularly important for t
deuteron, since its spin is due to the total angular momen
of the state; it does not arise solely from nucleons’ spins. T
goal of this work is to investigate how this breaking of rot
tional invariance affects observables, such as the binding
ergy and form factors of the deuteron.

How will this violation of rotational invariance affec
physical observables? One way to observe this violation i
note that on the light front, rotational invariance about thz
axis is maintained. This allows us to classify states as eig
states ofJ3 with eigenvaluesm. We compare the binding
energy of deuteron states~which havej 51) with differentm
values. If the Hamiltonian were rotationally invariant, th
energies should be the same; the breaking of rotationa
variance causes the energies to be different@10#.

Another symptom of the breaking of rotational invarian
is that the angular condition~a relation between the matri
elements of the current required by Poincare´ symmetry, de-
fined in Sec. III! for the deuteron current is not exactly sa
isfied @11–15#. This means that different prescriptions f
calculating the deuteron form factors from the deuteron c
rent will in principle give different results when light-fron
dynamics is used. This dependence on the prescription
has caused concern about the validity of applying light-fr
dynamics to calculate form factors.

One notable feature of this calculation is that it is do
entirely with light-front dynamics; no part relies on equa
time dynamics. The covariant Lagrangian generates lig
front potentials, which generate light-front wave function
which are used in a light-front calculation of the deuter
current and form factors. This is different from oth
approaches which use deuteron wave functions calcul
from equal-time dynamics as a starting point@11–18#.

This calculation is also distinguished from calculatio
done with explicitly covariant light-front dynamic
~ECLFD!, where the orientation of the light-front plane
not fixed, but variable. ECLFD makes rotational invarian
explicit by introducing additional degrees of freedom in
the equations. This paper examines the degree to which
tational invariance is broken by various truncations of
potentials when the plane orientation is fixed.

Following this introduction, we introduce a model La
grangian for nuclear physics which includes chiral symme
@6# in Sec. II. The methods introduced in Refs.@19,20# are
generalized for use with this nuclear model. The Hamilton
is derived and used to calculate new light-front nucleo
nucleon one-meson-exchange~OME! and two-meson-
exchange~TME! potentials. The notation and conventio
defined in the appendix are used extensively in this sect
We have some freedom in how to choose the TME pot
tials, and we consider several different choices.
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In Sec. III we calculate the electromagnetic and ax
form factors of the deuteron. Although rotational invarian
demands that there be only three independent componen
the deuteron current, the light-front calculation of the de
teron current results in four independent components. Th
a result of the lack of manifest rotational invariance on t
light front. There are several prescriptions for choosi
which deuteron current component should be eliminated,
in principle this choice will affect the form factors. We a
tempt to find currents that transform well enough under
tations so that the choice of ‘‘bad’’ component does not m
ter too much.

We discuss the results of the calculation the deute
wave functions and binding energies in Sec. IV. We find t
by including the TME potentials for the calculation of th
deuteron, the binding energy degeneracy is broken b
smaller amount. The results of our search for currents w
good transformation properties are also discussed. We
that for most of the currents, the angular condition does
depend strongly on which potential is used to calculate
wave function. The only exception to this is that part of t
electromagnetic current which is multiplied by the isosca
F1 nucleon form factor satisfies the angular condition mu
better when using the wave function calculated with t
OME potential than with wave function with other pote
tials. We also find that the major uncertainty in the calcula
deuteron form factors at momentum transfers greater t
2 GeV2 is due not to the prescription used to determine
form factors from the current, but instead is from the unc
tainties in the nucleon form factors.

Note that a solution for the deuteron that transforms pr
erly under rotations must have degenerate binding ener
and must satisfy the angular condition; however, the c
verse is not necessarily true. For example, a decrease in
difference of the binding energies indicates, but does
prove, that the rotational properties of the state ha
improved.

II. REALISTIC NUCLEAR MODEL

We derive a new light-front nucleon-nucleon potent
~LFNN! from an effective nuclear Lagrangian. This model
an extension of the light-front model used by Miller an
Machleidt@21#. A new feature of this model is that light-fron
energy dependent denominators are used in the poten
the denominators used in Ref.@21# are energy independen
The material in this chapter extends on previous work do
with the Wick-Cutkosky model@19,20#.

A. Model and formalism

Our starting point is an effective nuclear Lagrangian@6#
which incorporates a nonlinear chiral model for the pion
The Lagrangian is based on the linear representations
chiral symmetry used by Gursey@22#. It is invariant ~in
the limit wheremp→0) under chiral transformations. A re
alistic nuclear Lagrangian must contain some sort of ch
symmetry, since the underlying QCD Lagrangian is chira
symmetric.
2-2
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The model prescribes the use of nucleonsc and six me-
sons: thep, d @also known as thea0(980)], s @also known
as thef 0(40021200)],h, r, andv mesons. The coupling o
each meson to the nucleon is governed by the combinatio
the meson’s spin and isospin. Thep and h are pseudosca
lars, ther and v are vectors, and thed and s are scalars.
Under isospin transformations, thep, r, andd are isovector
particles while theh, v, ands are isoscalar particles.

The use of scalar mesons is meant as a simple repre
tation of part of the two-pion-exchange potential whi
causes much of the medium range attraction between nu
ons@23,24#. It can also be interpreted as the effect of fund
mental scalar mesons@25–27#.

The LagrangianL is based on the one used in Re
@6,21,28#. It is given by

L52
1

4
rmn

•rmn1
mr

2

2
rm

•rm2
1

4
vmnvmn1

mv
2

2
vmvm

1
1

4
f 2Tr~]mU]mU†!1

1

4
mp

2 f 2Tr~U1U†22!

1
1

2
~]ms]ms2ms

2s2!1
1

2
~]md•]md2md

2d2!

1
1

2
~]mh]mh2mh

2h2!1c̄8@gm~ i ]m2grrm•t2gvvm!

2U~M1gss1gdd•t1 ighg5h!#c8, ~1!

where the bare masses of the nucleon and the meson
given by M and ma wherea5p,h,s,d,r,v. We have de-
finedVmn[]m Vn2]n Vm for V5r,v. The notationc8 indi-
cates a dynamic nucleon field which differs from the fr
nucleon field, as discussed in Sec. II C 2. The unitary ma
U can be chosen to have one of the three formsUi :

U1[eig5t•p/ f , U2[
11 ig5t•p/2f

12 ig5t•p/2f
,

U3[A12p2/ f 21 ig5t•p/ f , ~2!

which correspond to different definitions of the fields. Ea
of these definitions can be expanded to give

U511 ig5

t•p

f
2

p2

2 f 2
1OS p3

f 3 D . ~3!

In this work, we consider at most two-meson-exchange
tentials, so we considerU to be defined by Eq.~3!.

In the limit wheremp→0, this Lagrangian, is invarian
under the chiral transformation

c8→eig5t•ac8, U→e2 ig5t•aUe2 ig5t•a. ~4!

In this model the other mesons are not affected by the tra
formation because they are not chiral partners of the p
This is in contrast to the Lagrangian given in Refs.@6,28#,
where the mass and scalar interaction terms of the nuc
were written asMU1gsf instead ofU(M1gsf).
03400
of

en-

le-
-

.

are

ix

-

s-
n.

on

B. Noninteracting nucleon-nucleon theory

The light-front Hamiltonian is derived from this Lagrang
ian using the same approach used in Refs.@6,19,20,29–32#.
The basic idea is to write the light-front Hamiltonian (P2)
as the sum of a free, noninteracting part and a term cont
ing the interactions. We consider the free part first.

1. Free field expansions

The solutions for the free fields are similar to those o
tained by using equal-time dynamics. In fact, the solutio
are formally related by a change of variable, and so the m
obvious difference between the two is due to the Jacob
The field equations have the general form~when Lorentz,
spinor, and isospin indices are suppressed! of

a~x!5E d2k'dk1u~k1!

~2p!3/2A2k1
@aa~k!e2 ikmxm1aa

†~k!e1 ikmxm#,

~5!

wherea5p,h,s,d,r,v,c. Note that in the exponentials

kmxm5
1

2
~k1x21k2x1!2k'•x' . ~6!

The solutions for all the mesons and the nucleon field
given in Ref. @33#. The most general of the commutatio
relations is

@aa,i~k,s!,ab, j
† ~k8,s8!#5da,bd i , jds,s8d

(2,1)~k2k8!, ~7!

wherea, i, ands denote the meson type, isospin, and sp
The anticommutation relations for the nucleon operators

$b~k,l!,b†~k8,l8!%5$d~k,l!,d†~k8,l8!%

5dl,l8d
(2,1)~k2k8!. ~8!

All other ~anticommutation relations vanish. The spinors a
normalized so thatū(p,l8)u(p,l)5dl8l . For more infor-
mation on the definition of the spinors, see the Appendix

2. Noninteracting Hamiltonians

The general form of the noninteracting Hamiltonian f
each meson is

P0
2~a!5E d2k'dk1u~k1!aa

†~k!aa~k!
k'

2 1ma
2

k1
. ~9!

For the vector mesons (r and v), there is an implicit sum
over the meson spins. Explicitly, this means that for vec
mesonsaV

†(k)aV(k)→(s51,3aV
†(k,s)aV(k,s). Likewise, the

sum over the isospin of the isovector mesons (p, d, andr)
is implicit. The sum over isospin can be made explicit
writing aI

†(k)aI(k)→( i 51,3aI ,i
† (k)aI ,i(k). The noninteract-

ing Hamiltonian for the nucleons has a similar form as we
2-3
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P0
2~c!5E d2k'dk1u~k1!F (

l51,2
b†~k,l!b~k,l!

1d†~k,l!d~k,l!Gk'
2 1M2

k1
. ~10!

These equations are what one expects, since a free pa
with momentak' and k1 has light-front energyk25(k'

2

1m2)/k1.

C. Interacting nucleon-nucleon theory

The interaction Hamiltonians are derived from the L
grangian in Eq.~1! using standard techniques@19,20#. How-
ever, there are some additional complications due to
structure of the interactions.

One complication is that the chiral coupling of the pio
field to the nucleons through theU matrix generates vertice
with any number of pions. We simply expand theU matrix in
powers of 1/f and consider the interaction Hamiltonians o
der by order.

Another complication is due to the fact that both the ve
tor mesons and the fermions have components which dep
on other components of the field@6,34–37#. Vector meson
fields have four components, but only three degrees of f
dom. Likewise, fermion fields have four spinor componen
but only two degrees of freedom. When the dependent c
ponents are expressed explicitly in terms of the independ
components, we obtain new~effective! interaction Hamilto-
nians for instantaneous vector mesons and fermions. A c
plete derivation is given by Miller in Ref.@6# and earlier
workers cited therein. We illustrate only the main points
the derivation here.

1. Expanding the pion interaction

We start by expandingU in a Taylor series in powers o
1/f , after which the derivation of the one-meson-interact
Hamiltonian P8I ,1

2 is straightforward.~The prime indicates
that it is in terms ofc8, notc. We derive the expressions fo
PI ,1

2 in Sec. II C 2.! The result is

PI ,1
2 5 (

a5p,h,s,d,r,v
E d2x'dx2c̄8~x!gaGaTaFa~x!c8~x!,

~11!

where we have defined a dimensionless coupling cons
gp[M / f , denoted the meson fields byFa , and defined

Ga5H ig5 if a is a pseudoscalar meson~p,h!,

1 if a is a scalar meson~d,s!,

gm if a is a vector meson~r,v!,
~12!

Ta5H t i if a is an isovector meson~p,d,r!,

1 if a is an isoscalar meson~h,s,v!.
~13!

In Eq. ~11!, the appropriate sums over the meson indices
implicit.
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The two-meson-interaction HamiltonianP8I ,2c
2 , which

arises from chiral symmetry, has the form

P8I ,2c
2 5 (

a5p,h,s,d

gpga

M
saE d2x'dx2c̄8~x!@GpTpFp~x!#

3@GaTaFa~x!#c8~x!, ~14!

wheresa is a symmetry factor, equal to 1/2 whena5p, and
1 otherwise. When the contact interaction is used to calcu
diagrams, an additional factor is picked up for thepp con-
tact term~due to indistinguishability! which cancels the sym
metry factorsp . Note that this contact interaction involve
only scalar and pseudoscalar mesons.

2. Elimination of dependent fermion components

We are now ready to express the dependent compon
of c8 in terms of the independent components, and add
the problem of instantaneous nucleons. The generation
instantaneous interactions is a general feature of theo
with interacting fermions in light-front dynamics where th
front has a fixed orientation. Because this is general, we
a simplified model to demonstrate how instantaneous nu
ons arise. In particular, we want to postpone the discuss
of the complication that the vector mesons introduce until
next section. To this end, we choose to remove all mes
except thes from the Lagrangian given in Eq.~1!. ~Thes is
chosen since it has the simplest coupling to the nucleon.! The
equation of motion for the nucleons is then

i ]”c85~M1gss!c8. ~15!

We split Eq.~15! into two equations by applying the projec
tion operatorsL6 , which are defined in the Appendix.

i ]2c18 5@a'•p'1b~M1gss!#c28 , ~16!

i ]1c28 5@a'•p'1b~M1gss!#c18 , ~17!

wherec68 5L6c8. This split is useful because in Eq.~15!
all four components of the nucleon field are interrelate
while in Eqs.~16! and ~17! the two components ofc18 are
related to the two components ofc28 , and vice versa.

We must choose which components,c18 or c28 , are the
independent ones. First, notice that Eq.~16! involves ]2, a
dynamic operator in light-front dynamics. Equations that
volve dynamic operators should be avoided, because a
thing that involves the interaction is complicated. We choo
Eq. ~17! to avoid that complication and relate the comp
nents ofc. Second, to keep the relation as simple as p
sible, we do not attempt to invert the spinor matrix on t
right side of Eq.~17!. Requiring that the equation for th
dependent components be both a kinematic equation
simple equation forces us to choosec18 as the independen
components. The dependent components,c28 , are defined by

c28 5
1

p1
@a'•p'1b~M1gss!#c18 . ~18!
2-4
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The dependent components consist of a noninteracting
and an interacting part while the independent compone
are noninteracting by definition. Thus we find

c85c1j, ~19!

where interacting part is

j5
g1

2p1
gssc. ~20!

This allows us to write

c85c1
g1

2p1
~gss!c. ~21!

Plugging Eq.~21! into Eq. ~11! and removing all meson
except thes meson, we obtain

P8I ,1
2 5PI ,1

2 1PI ,2
2 , ~22!

PI ,1
2 5E d2x'dx2c̄~x!gss~x!c~x!, ~23!

PI ,2
2 52E d2x'dx2c̄~x!Fgss~x!

g1

2p1
gss~x!Gc~x!.

~24!

We interpret theg1/2p1 factor as a type of nucleon
propagator that joins any two meson interactions. Beca
this propagator does not allow for an energy denominator~as
it is already between two potentials!, g1/2p1 is called an
instantaneouspropagator. Thus, when constructing the d
grams for the light-front potentials, we must also inclu
instantaneous propagators for the nucleons in addition to
usual propagators.

3. Elimination of dependent vector meson components

Like the nucleons, the vector mesons have a depen
component that contains interactions and must be elimina
This process is complicated somewhat by the fact that
dependent nucleon components must be eliminated at
same time. The salient points of the combined elimination
the dependent nucleon and vector meson components
discussed in detail by Miller@6#.

The result is that the vector meson field must be redefi
and an instantaneous vector meson propagator is gene
in addition to an instantaneous nucleon propagator. Howe
when the nucleon-nucleon potential is calculated, the red
nition of the vector meson field exactly cancels the contri
tion of the instantaneous vector meson. The result is that
potentials can formally be calculated using the original v
tor meson field.

In this work, we use that result to simplify our derivation
of nucleon-nucleon potentials by formally using the na
form of the vector meson field. Thus, we find an interact
Hamiltonian similar to the one shown in Eq.~24!,
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P8I ,1
2 5PI ,1

2 1PI ,2
2 , ~25!

PI ,1
2 5 (

a5p,h,s,d,r,v
E d2x'dx2c̄~x!gaGaTaFa~x!c~x!,

~26!

PI ,2
2 5 (

a1 ,a25p,h,s,d,r,v
E d2x'dx2c̄~x!

3@ga1
Ga1

Ta1
Fa1

~x!#
g1

2p1

3@ga2
Ga2

Ta2
Fa2

~x!#c~x!. ~27!

We may continue to interpretg1/2p1 as an instantaneou
nucleon propagator, since the derivation in Ref.@6# makes it
clear that the potential vanishes when there are two adja
instantaneous propagators. In Refs.@6,21#, the coupling of
the vector mesons in the equations equivalent to Eq.~27! has
the wrong sign; the sign of coupling of the mesons in E
~27! must be the same as in Eq.~26!.

In principle the same prescription must be applied to
contact interaction, although to the order of two mesons,
simply removes the primes. We find that

PI ,2c
2 5 (

a5p,h,s,d

sa

ME d2x'dx2c̄~x!@gpGpTpFp~x!#

3@gaGaTaFa~x!#c~x!. ~28!

The forms ofPI ,2c
2 andPI ,2

2 are very similar. In fact, we can
obtainPI ,2c

2 from PI ,2
2 by making the following changes:

~1! Replaceg1/2p1 with sa /M .
~2! Replacea1 with p.
~3! Restrict the sum ona2 to p,h,s,d.

4. Interaction Hamiltonians in momentum space

To derive interaction Hamiltonians in momentum spa
we examine the matrix element of the interaction Hamil
niansPI

2 between single nucleon initial and final states. W
find that the one-meson interaction Hamiltonian can be w
ten as

PI ,1
2 ~ f ,i !5 (

a5p,h,s,d,r,v
ga2M

ū~kf ,l f !Gau~ki ,l i !

A2~2p!3Akf
1ki

1q1

3xt f

† Taxt i
@aa~q!u~kf

12ki
1!

1aa
†~q!u~ki

12kf
1!#Fa~q!. ~29!

where q5$(ukf
12ki

1u,sgn(kf
12ki

1)(kf'2ki')%. The
meson-nucleon form factorFa phenomenologically account
for the fact that the mesons and nucleons are composite
jects. The exact form we use forFa is given in a later sec-
tion.

Next we consider the two-meson interactions. Plugg
the field definitions into the definition of the interaction wi
the instantaneous propagator, given by Eq.~27!, yields
2-5
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PI ,2
2 ~ f ,i !5 (

a1 ,a25p,h,s,d,r,v
ga1

ga2

32M
ū~kf ,l f !Ga2

g1Ga1
u~ki ,l i !

2~2p!3Akf
1ki

1

3@xt f

† Ta2
Ta1

xt i
#E d2km'dkm

1u~km
1!

2km
1Aq1

1q2
1

3@aa2
~kf2km!u~kf

12km
1!

1aa2

† ~km2kf !u~km
12kf

1!#Fa2
~q2!

3@aa1
~km2ki !u~km

12ki
1!

1aa1

† ~ki2km!u~ki
12km

1!#Fa1
~q1!. ~30!

Note that the momentaq1 and q2 are implicitly functions
of the momentakf , km , and ki . The contact interaction
given by Eq. ~28! in momentum space can be obtain
from Eq. ~30! by replacingu(p1)g1/2p1 with sa /M and
restricting the allowed values of thea ’s to be consistent with
Eq. ~28!.

D. Feynman rules for nucleon-nucleon potentials

Now that we have the one-meson-exchange and t
meson-exchanges expressed in momentum space, we
now ready to write out the Feynman rules for diagrams
our model. We denote a ‘‘normal’’ nucleon propagator by
solid line with an arrow, an instantaneous nucleon propag
by a solid line with a stroke across it, mesons of all types
a dashed line, and energy denominator terms by a vert
light, dotted line. For simplicity, we consider the only di
grams where a meson emitted by one nucleon is absorbe
the other nucleon. We follow the approach outlined in R
@20# to derive the rules:

~1! Overall factor of

4M2d',1~Pf2Pi !

2~2p!3Ak1 f
1 k2 f

1 k1i
1k2i

1
.

~2! Conservep' andp1 momentum.
~3! Factor ofu(qi)/qi for each internal line, including any

instantaneous nucleon lines.
~4! Factor of 1/(P22( iqi

2) for each energy denominato
~5! Each meson connects the two nucleons, and each

of a meson line has a factor ofgaGaTaFa(q). The indices of
the isospin factors on each end of the meson are contra
together. The Lorentz indices of the gamma matrices are c
tracted with2gmn for the vector mesons.

~6! For each contact vertex, multiply by a factor of 1/M .
If the vertex is ap2p vertex, replace theTpTp5t it j
with d i , j .

~7! Factor of (k”1M )/2M5(lu(k,l)ū(k,l) for each
propagating nucleon andg1/2 for an instantaneous nucleo
03400
o-
are
n

or
y
al,

by
.

nd

ed
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~8! Integrate with

4M2E d2k'dk1

2~2p!3

over any internal momentum loops.
~9! Put the spinor factors for nucleon 1 and 2 betwe

ūu’s and the isospin factors between the initial and final st
isospin.

E. Nucleon-nucleon potentials

The meson exchange potentials have the same basic
as in Refs.@19,20#; however, we must include the conta
interaction and instantaneous nucleon propagators for
nuclear model used here. First, we discuss how to include
contact diagrams from the standpoint of the Bethe-Salp
equation, then we begin to calculate the light-front pote
tials.

1. The Bethe-Salpeter equation and chiral symmetry

The kernel of the Bethe-Salpeter equation@38–42# for
this nuclear model is richer than the one presented in R
@20# for the Wick-Cutkosky model. This is due mainly to th
presence of the contact interactions which are generate
the chirally invariant coupling of the pion to the nucleo
Several of the lowest-order pieces of the full kernelK are
shown in Fig. 1.~Note that for Feynman diagrams, it is us
ful to combine the ‘‘normal’’ nucleon propagator with th
instantaneous nucleon propagator@43–45#, and denote the
combination with a solid line.! Each of these Feynman dia
grams is covariant. This means that we may choose an
the diagrams fromK to construct a new kernelK8, and the
infinite series of potential diagrams ‘‘physically equivalen
to K8 will also be covariant@19,20#. The equivalence permits
us to apply arguments about the symmetries of the Be
Salpeter equation to light-front dynamics@43–45#. In prac-
tice, this covariance means that when deciding which tw
meson-exchange potentials to include for calculating
deuteron wave function, we may neglect the crossed
grams. Although including only the box and contact tw
meson-exchange diagrams may affect the exact binding
ergy calculated, we should find a partial restoration
rotational invariance. We reiterate that the focus of this wo
is on understanding the effects of the breaking of rotatio
invariance and how to restore it; our goal is not prec
agreement with experimental results.

We also want to keep the potentials chirally symmetric
well. Whereas Lorentz symmetry is maintained by using
kernel with any Feynman diagrams~with potentially arbi-
trary coefficients!, chiral symmetry relates the strength of th
pp contact interaction to the strength of the pion-nucle
coupling.

FIG. 1. The first several terms of the full kernel for the Beth
Salpeter equation of the nuclear model with chiral symmetry.
2-6
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In Ref. @46#, we showed that chiral symmetry can have
significant effect on calculations. The contact potentials c
cel strongly with both the iterated box potentials and
crossed potentials, reducing the strength of the total t
pion-exchange potential and leading to more stable res
We also found that approximate chiral symmetry can be
corporated for two-meson-exchange box graphs by add
the contact graphs weighted with a factor ofM /2(M1mp).
This factor is not needed for one meson exchange graph

2. OME and TME potentials

The potentials we consider connect an initial state w
two nucleons to a final state with two nucleons, and
intermediate-state mesons are each emitted and absorb
different nucleons. These restrictions, together with the
that in light-front dynamics massive particles cannot be c
ated from the vacuum, means there are two nontrivial OM
as shown in Fig. 2. As discussed in the previous section,
y

a
l
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TME potentials can be classified into three groups. T
Feynman rules derived in the previous section are use
derive the potential for these diagrams. We factor out
overall factor of

4M2d~k1 f1k2 f2k1i2k2i !

2Ak1 f
1 k1i

1k2 f
1 k2i

1

that is common to all the two-nucleon potentials and s
press it from now on. Then we get

FIG. 2. The two diagrams which contribute to the OME pote
tial for each meson.
cattering
rm

sider the
rence
VOME,a5
ga

2Ta,1•Ta,2

~2p!3
ū~k1 f ,l1 f !Gau~k1i ,l1i !ū~k2 f ,l2 f !Gau~k2i ,l2i !Fa

2~q!

3F u~k1 f
1 2k1i

1!

~k1 f
1 2k1i

1!~P22k1i
22k2 f

2 !2ma
22~k1i ,'2k1 f ,'!2

1
u~k1i

12k1 f
1 !

~k1i
12k1 f

1 !~P22k1 f
2 2k2i

2!2ma
22~k1i ,'2k1 f ,'!2G .

~31!

In the scattering regime (P25k1 f
2 1k2 f

2 5k1i
21k2i

2), Eq. ~31! agrees with Eq.~4.7! in Ref. @6#, after taking into account the

difference in spinor normalization~we useūu51).
Now we consider the precise form to use for the meson-nucleon form factor. We assume that it has an-pole form@23#, so

that the denominator of the meson-nucleon form factor has the same form as the denominator of the potential in the s
regime. In particular,La plays the role ofma for the form factor. For simplicity, we declare that the denominator of the fo
factor always has the same form of the denominator of the potential. Thus,

Fa~q!5S La
22ma

2

a2Lp
2 1b cos~f f2f i !

D na

. ~32!

The TME potentials considered here are the box diagrams, Fig. 3, and the contact diagrams, Fig. 4. We do not con
crossed diagrams because they are not needed to restore rotational invariance, as discussed in Sec. II E 1. Refe@33#
shows that each of the potentials in Figs. 3 and 4 can be written schematically in the following general form:

VTME5
g44M2T4

~2p!3 E d2k2m'dk2m
1

2~2p!3
f ~k1m

1 ,k2m
1 ,qf

1 ,qi
1!ū~k1 f ,l1 f !Ga f

M1Ga i
u~k1i ,l1i !ū~k2 f ,l2 f !Ga f

M2Ga i
u~k2i ,l2i !

3@af2ma f

2 1bfcos~f f2fm!#2nfFa f
~qf !

2@am1bm fcos~f f2fm!1bmicos~fm2f i !#
2nm

3@ai2ma i

2 1bicos~fm2f i !#
2niFa i

~qi !
2. ~33!
nd

of
c-
d

3. Further development of the light-front Schro¨dinger equation

The potentials derived here possess a high degree of s
metry. To solve the light-front Schro¨dinger equation effi-
ciently, these symmetries should be explicitly exploited,
was done in Refs.@19,20#. In addition, there are additiona
m-

s

symmetries due to the conservation of nucleon helicity a
invariance under time reversal@23#.

We follow Machleidt’s approach for taking advantage
the symmetry of rotationally invariant potentials with heli
ity @24#. However, since the light-front potentials derive
2-7
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FIG. 3. The TME potentials
for ~a! VTME:M ~the Mesa poten-
tial!, ~b! VTME:SB ~the stretched
box potential!, ~c! VTME:SBI ~the
stretched instantaneous potentia!,
and ~d! VTME:SBII ~the stretched
double instantaneous potential!.
Note that the graphs on the righ
side are obtained from the graph
on the left side by 1↔2.
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here do not have full rotational invariance, the approa
must be modified. The symmetry properties of helicity m
trix elements are rederived in Ref.@33# without assuming full
rotational invariance. These results allow a modified vers
of Machleidt’s approach to be combined with the exploi
tion of parity ~using the transformation from light-front co
ordinates to equal-time coordinates! discussed in Refs
@19,20#. In particular, the potentials are initially calculated
the upET ,u,M ,l1 ,l2& basis, although the relations in Re
@33# are used to transform to theupET ,J,M ,L,S& basis to
solve for the wave functions. In general, the potentials c
nect states with different values ofJ. Once the symmetries
have been explicitly expressed, we can discretize the Sc¨-
dinger equation as done in Ref.@20,33#. We can choose
which truncation of the light-front nucleon-nucleon~LFNN!
potential to use in the Schro¨dinger equation, however, differ
ent truncations of the potential give rise to different wa
functions.

Note that the transformations applied to the potentia
order to simplify the solution of the wave functions. On
the wave functions are obtained, we may apply the invers
03400
h
-

n
-

-

o

n

of

the transformations to the wave functions to express them
the helicity basis (up' ,p1,l1 ,l2&) or in the light-front spin
basis (up' ,p1,m1 ,m2&) @33#.

III. FORM FACTORS OF THE DEUTERON

In the previous section, we discussed how to derive s
eral deuteron wave functions for different truncations of t
LFNN potential. In this section, we use those wave functio
to solve for the matrix elements of the deuteron current
erator, which is used to calculate the deuteron electrom
netic and axial form factors.

We outline the covariant theory of the electromagne
form factors for spin-1 objects, such as the deuteron. T
we recall the features of light-front calculations~including
the breaking of rotational invariance! of the form factors.
After that, we review the covariant and light-front tools fo
calculating axial form factors. The formalism is then appli
to calculate the electromagnetic and axial currents and f
factors for the light-front deuteron wave functions.
2-8



n

n-

-

y

DEUTERON BINDING ENERGIES AND FORM FACTORS . . . PHYSICAL REVIEW C 66, 034002 ~2002!
FIG. 4. The TME potentials
that include the contact interactio
for ~a! VTME:C ~the contact poten-
tial!, ~b! VTME:SBC ~the stretched
contact potential!, ~c! VTME:SBIC

~the stretched instantaneous co
tact potential!, and ~d! VTME:SBCC

~the stretched double contact po
tential!. Note that the graphs on
the right side are obtained from
the graphs on the left side b
1↔2.
ig

le
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ge
A. Electromagnetic form factors

1. Covariant theory

In the one-photon-exchange approximation, shown in F
5, the amplitude of the scattering processed→ed is just the
contraction of the electron and deuteron current matrix e
ments, multiplied by the photon propagator,

^p8,l8u j m
e up,l&

1

q2
^k8,m8uJd

muk,m&, ~34!

where j m
e is the electron current operator. From Lorentz c
03400
.

-

-
FIG. 5. The Feynman diagram for one-photon-exchan

electron-deuteron scattering.
2-9
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variance, parity invariance, time-reversal invariance, a
current conservation@47–51#, we infer that the deuteron
form factor can be written as

^k8,m8uJd
muk,m&52

e

2Md
~e* !r~k8,m8!Jrs

m es~k,m!,

~35!

where the spin-1 polarization vectors satisfy the usual r
tions and the operatorJrs

m is given by

Jrs
m 5~km8 1km!FgrsF1~q2!2

qrqs

2Md
2

F2~q2!G2I rs
mnqnG1~q2!,

~36!

where I rs
mn5gr

m gs
n 2gr

n gs
m is the generator of infinitesima

Lorentz transformations,q5k82k, andF1 , F2, andG1 are
functions ofq2, the invariant mass of the photon.

The F1 , F2, andG1 form factors are related to the deu
teron charge, magnetic, and quadrapole form factors, den
by FC , FM , andFQ respectively, by@47,49,52#

FC5F11
2

3
h@F11~11h!F22G1#, ~37!

FM5G1 , ~38!
fo

-

, s
tia
al
e

is
an
ph
te

t
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FQ5F11~11h!F22G1 , ~39!

where

h5
2q2

4Md
2

. ~40!

Note that since both the initial and final electron and de
teron are on-shell,2q2.0. We defineQ252q2. The nu-
merical values of the form factors are determined by us
experimentally measured values@50,53,54#.

To experimentally determine the deuteron form facto
electron-deuteron cross sections are measured. Unpola
cross section measurements yield the structure functionA
andB, which can be expressed as@50,55#

A5FC
2 1

8

9
h2FQ

2 1
2

3
hFM

2 , ~41!

B5
4

3
h~11h!FM

2 . ~42!

Polarized cross section measurements yield tensor pola
tion observables, such asT20 @50,51#
T2052

8

3
hFCFQ1

8

9
h2FQ

2 1
1

3
hFM

2 @112~11h!tan2~ue/2!#

A2@A1B tan2~ue/2!#
, ~43!
the
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whereue is the angle by which the electron scatters. Data
T20 are usually presented forue570°.

2. Light-front calculation

Light-front dynamics is particularly well suited to calcu
lating form factors. One reason is that the generators
boosts in the one, two, and plus directions are kinematic
that wave functions calculated with a truncated poten
transform correctly under boosts. This feature is especi
important for form factors at high momentum transfer, b
cause the wave functions must undergo a large boost.

Another, more subtle, reason for using the light front
that many of the graphs which contribute to the current v
ish identically. For example, the three lowest-order gra
for the current are shown in Fig. 6. The double line deno

FIG. 6. The lowest-order time-ordered graphs that contribute
the deuteron current matrix element.
r

of
o
l

ly
-

-
s
s

the deuteron, and the vertex of the deuteron lines and
nucleon lines represents the deuteron wave function.
graph labeled~a! does not vanish and is calculated in Se
III A 5. Figure 6~b! vanishes in light-front dynamics. To se
why, we first note three facts: the plus component of ea
particle in light-front dynamics is nonnegative~for massive
particles it must be positive!, the plus component of the mo
mentum is conserved, and the plus momentum of
vacuum is zero. Combining these facts, we find that a
vertex which has particles on one side and vacuum on
other must vanish. In other words, the vacuum is trivia
empty, and no graphs couple to it.

For Fig. 6~c!, the coupling of the photon to the nucleo
varies asūLFgm vLF , where the light-front spinors are de
fined in the Appendix. Form51, this matrix element is
suppressed maximally, and thusJ1 is the ‘‘good’’ component
of the current@11,13,56#. We calculate onlyJ1, since it is
the most stable.

We do not consider the contribution of higher-ord
graphs to the deuteron current, such as graphs where
photon couples to a meson or a nucleon while a meso
present. The omission of the meson-exchange currents is
tified only if the current of a composite particle factorizes

o

2-10
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the impulse approximation. We start by writing the total c
rent JT

m(q) as

JT
m~q!5(

i
Fi~q!Ji

m~q!, ~44!

where the sum runs over all constituent particles,Fi(q) is a
form factor of particlei, andJi is independent of form fac
tors. If the electromagnetic form factors of the meson and
nucleon are independent, then eachJi must have the sam
symmetry properties asJT . Thus, omitting the meson ex
change currents does not affect the rotational propertie
the current although it does affect the overall values of
deuteron form factors. This is acceptable since we are o
concerned with the rotational properties in this work, not
the detailed results.

The neglect of the graphs where the photon couples
nucleon while a meson is present is a sign that the calc
tion is not complete. Indeed, the deuteron current shown
Fig. 6~a! is not formally conserved@55#. But current conser-
vation is a necessary consequence of a complete calcul
in this model. To construct the conserved current opera
associated with a given wave function, the current must
clude diagrams that are related to the potential used to
culate the wave function. We expect that these diagrams
small since they contain meson propagators.

3. Symmetries of the electromagnetic current

Symmetries relate the components
^k8,m8uJ1(q)uk,m&. In particular, the generators of boos
in the plane perpendicular to thez axis, boosts in the plus
direction, and rotations about thez axis are kinematic. In
addition, we will find how the states and the current opera
transforms under kinematic parity and time reversal.

The kinematic generators allow us to choose which fra
to evaluate the current in. We choose the frame@11# where
q15q25q'

y 50 andq'
x 5Q. We also choose the plus mo

mentum of the deuteron to beMd , sinceMd is the value of
the plus momentum in deuteron’s rest frame. To simplify
notation, we define the light-front spinor matrix elements
J1 as

I m8,m
1

~Q!5 K q'

2
,m8UJ1~Q!U2 q'

2
,mL . ~45!

This quantity is represented byI m8m , not Jm8m , because
Jm8m is used to represent the matrix elements ofJ using the
instant-form spin basis. The two matrices are related by
Melosh transformation@13,57#.

The symmetries dictate that of the nine possible ma
elements ofJ1, there are only four independent componen
We choose those components to beI 11

1 , I 10
1 , I 121

1 , andI 00
1 .

It is helpful to express the matrix elements in a matrix to s
the symmetry properties explicitly:
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I m8,m
1

5S I 11
1 I 10

1 I 121
1

2I 10
1 I 00

1 I 10
1

I 121
1 2I 10

1 I 11
1 D . ~46!

4. Rotational invariance and the angular condition

This is as far as we can go with light-front dynamics, b
there should be an additional redundancy in our matrix e
ments. We have derived four independent compone
whereas in a fully covariant framework there are only thr
form factors. The resolution of this conflict is that full rota
tional invariance imposes anangular conditionon the light-
front matrix elements.

The deviation from the angular condition, which we d
note withD, is given by@14#

D52I 00
1 1~112h!I 11

1 1I 121
1 22A2hI 10

1 , ~47!

whereh is defined by Eq.~40!. SinceD vanishes when the
deuteron current transforms correctly under rotations, we
terpret D as a measure of the extent to which the curr
transforms incorrectly.

The form factors are over determined by the current m
trix elements, which means many different relations possi
When D is zero, all the relations are equivalent, while
nonzeroD means that the form factors depend also on wh
relation is chosen.

SinceD is nonzero in general, it is important to choo
the best relation to obtain the form factor. To do this, w
classify the current matrix elements as either ‘‘good’’
‘‘bad.’’ This classification is similar to the one made fo
choosing which component of the current to use.

In this work we are interested in the overall rotation
invariance properties; the choice of how to relate the fo
factors is simply useful for comparing with other approach
In that spirit, we consider four different choices@14#.

~1! Grach and Kondratyuk~GK! considerI 00
1 as the bad

element@58#.
~2! Brodsky and Hiller~BH! use a prescription whereI 11

1

is bad@59#.
~3! Frankfurt, Frederico, and Strikman~FFS! use the Car-

tesian componentJzz
1 as the bad current@11#.

~4! Chung, Polyzou, Coester, and Keister~CCKP! choose
the canonical expressions for the form factors in terms of
equal-time current, then use rotations and the Melosh tra
formation to express the equal-time current matrix eleme
in terms of the light-front current matrix elements@18,52#.

5. Impulse approximation on the light front

We now are ready to relate the deuteron wave function
the current. Inserting a complete set of light-front spin
states into Eq.~45! gives
2-11
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I m8,m
1

~q!5E d2p'dp1 (
m18 ,m1 ,m2

32ūLF~p1,p'1q'/2,m18!

3J(S)
1 ~q'!uLF~p1,p'2q'/2,m1!

3^q'/2,m8up1,p'1q'/2,m18 ,m2&2

3^p1,p'2q'/2,m1 ,m2u2q'/2,m&, ~48!

where the light-front spins of particles 1 and 2 are labeledm1
and m2, respectively. Because the deuteron is an isosc
combination of nucleons, the isovector component of
nucleon current does not contribute and the isoscalar nuc
current is the same for both nucleons. This allows us to s
ply double the isoscalar current of particle 1 instead of us
the isoscalar currents of both particle 1 and 2.

To relate this current to the wave functions we calcula
we must boost the deuteron wave functions to the rest fra
The boost that accomplishes this transforms a general li
front vector from $k1,k'% to $k1,k'1xq'/2%, where x
5p1/Md is the Bjorkenx variable. Applying this to the deu
teron wave function gives

^q'/2,mup1,p'1q'/2,m1 ,m2&

5^mup1,p'1~12x!q'/2,m1 ,m2&. ~49!

The deuteron wave functions solved in Sec. II can be use
the right-hand side of Eq.~49!. Note that the light-front spin
labels are unaffected by the boosts.

6. The nucleon form factors

From Lorentz covariance, parity invariance, and tim
reversal invariance@48,49#, the isoscalar part of the nucleo
current can be expressed as

J(S)
m ~q!5 (

i 51,2
Fi

(S)~q!J( iS)
m ~q!, ~50!

where

J(1S)
m ~q!5gm, ~51!

J(2S)
m ~q!5 i

smnqn

2M
, ~52!

and F1
(S) and F2

(S) are the isoscalar Dirac and Pauli for
factors, respectively. They are normalized toF1

(S)(0)51/2
andF2

(S)(0)5(kp1kn21)/2.
When Eq.~50! is inserted into Eq.~48!, we get

I m8,m
1

~q!5 (
i 51,2

Fi
(S)~q!I ( i )m8,m

1
~q!, ~53!

where
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I ( i )m8,m
1

~q!5E d2p'dp1 (
m18 ,m1 ,m2

32ūLF~p1,p'1q'/2,m18!

3J( iS)
1 ~q'!uLF~p1,p'2q'/2,m1!

3^m8up1,p'1~12x!q'/2,m18 ,m2&

3^p1,p'2~12x!q'/2,m1 ,m2um&, ~54!

for i 51,2. Note that bothJ(1)m8,m
1 (q) andJ(2)m8,m

1 (q) must
satisfy the same equations asJm8,m

1 (q) does. In particular,
this means that the angular condition applies toJ(1)m8,m

1 (q)
andJ(2)m8,m

1 (q) independently, so we consider the deviati
from the angular condition for each.

There are many parametrizations of the isoscalar nucl
form factorsF1

(S)(q) andF2
(S)(q). Since the measurement o

the electron-nucleon cross section is difficult, the data h
large errors and are consistent with several different mod
of the nucleon form factors. Some of the models represe
tive of those proposed in the literature are: the dipole mod
fit 8.2 of Hohler et al. @60#, Gari and Krümpelmann, 1985
@61#, model 3 of Gari and Kru¨mpelmann, 1992@62,63#, best
fit for the multiplicative parametrization of Mergell and oth
ers @64#, and model DR-GK~1! @dispersion relation for Gar
Krümpelmann~1!# of Lomon @65#. TheF1

(S)(q) andF2
(S)(q)

form factors for each of these models are shown in Fig.
We can relate the isovector form factors toGEp , GMp ,

GEn , andGMn , the proton electric, proton magnetic, neutro
electric, and neutron magnetic form factors, respective
with @66#

F1
(S)5

GEp1GEn1t~GMp1GMn!

2~11t!
, ~55!

F2
(S)5

2GEp2GEn1GMp1GMn

2~11t!
, ~56!

FIG. 7. TheF1 and2F2 isoscalar nucleon form factors for si
different models: the dipole model, Hohler, Gari: 1985, Gari: 19
Mergell, and Lomon.
2-12
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where t[Q2/4M . The value oft is approximately 1 at a
momentum transfer of about 5 GeV2, the upper range o
momentum transfers that we consider. Since the overall m
nitudes of the form factors are similar at this momentu
transfer, it is important to measure each of the form fact
with the same accuracy and cover the same range of mom
tum transfers. Currently, the most poorly known form fac
is GEn , both in terms of the magnitude of the error and in t
number of data points@65#.

In Sec. IV B, we will find that for momentum transfer
greater than about 2 GeV2, the spread in the values of th
deuteron form factors due to the breaking of rotational
variance on the light front is smaller than the spread in v
ues due to using the various nucleon form factors. It is
certainty of the nucleon form factors, not the use of the lig
front, that limits the accuracy of the deuteron form factors
large momentum transfers. Only more accurate meas
ments of the nucleon form factors, especiallyGEn , will al-
low for more accurate deuteron form factor calculations.

B. Axial form factors

The formalism used for the axial current and form fac
is very similar to that used for the electromagnetic curr
and form factor. Thus, most of the discussion from the p
vious section carries over here with only slight modific
tions. We highlight only the differences.

The derivation of the symmetries of the axial current m
trix elements is almost the same as in Sec. III A 2, with
exception that under parity@67# the axial current picks up a
negative sign. This means that of the nine possible ma
elements ofJ5

1 , there are only two independent componen
We choose those components to beI (5)11

1 , and I (5)10
1 . It is

helpful to express the matrix elements in a matrix to see
symmetry properties explicitly.

I (5)m8,m
1

5S I (5)11
1 I (5)10

1 0

2I (5)10
1 0 2I (5)10

1

0 I (5)10
1 2I (5)11

1 D . ~57!

We have derived two independent components, but
analysis of the covariant theory shows that only one deute
form factor (FA) contributes for the plus component of th
axial current@12#. This implies that the requirement of fu
rotational invariance imposes an angular condition on
light-front axial current matrix elements. The deviation fro
the angular condition, denoted byD, is given by@12#

D5
A2h

2
I (5)11

1 2I (5)10
1 . ~58!

Since the deuteron axial form factor is overdetermined
the current matrix elements, we need to classify the cur
matrix elements as either ‘‘good’’ or ‘‘bad’’ to eliminate am
biguity. We consider two such choices.

~1! Frankfurt, Frederico, and Strikman~FFS! find that the
J(5)zz

1 is the bad matrix element@11#.
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~2! Frederico, Henley, and Miller~FHM! use the behavior
of the matrix elements in the nonrelativistic limit to dete
mine that the bad element isI (5)10

1 @12#.
The current matrix elements are calculated using

nucleon axial current. Since we choose to usem51 and
work in the frame whereq150, the general form of nucleon
axial current reduces to

J(5)n
1 5g1g5FA

n . ~59!

Since the deuteron axial current has such a simple functio
dependence on the nucleon axial form factor, we choos
use the dipole model with the value of the axial mass de
mined by Liesenfeldet al. @68#.

IV. RESULTS

A. Deuteron binding energies

The next step towards numerically calculating the bou
states for these potentials is to choose the parameters~meson
masses, coupling constants, etc.! for the potentials. We con-
sider the full nuclear model where the nucleon-nucleon
teraction is mediated by thep, h, r, v, d, ands mesons.
For numerical work, use the parameters for the light-fro
nucleon-nucleon~LFNN! potential from the work of Miller
and Machleidt@21#. Those parameters were fit for a potent
that used a retarded propagator for the energy in the po
tials. Since the potentials used in this paper have ene
dependent denominators~arising from the elimination of the
Fock space components containing mesons or more than
nucleons! the parameters must be modified somewhat.
choose thes meson coupling constant to bef s times the
coupling constant given in Ref.@21#, and we varyf s .

As with all the other deuteron models presented in t
paper, the light-front OME potential breaks rotational inva
ance and causes a mass splitting of the deuteron states
different magnetic quantum numbers. We expect that
splitting will be removed somewhat by including highe
order potentials.

The first step is to determine which two-meson-exchan
potentials to use. One choice is to use only the two-pi
exchange potentials, TPE and ncTPE, as defined in the
vious section. However, we expect to get better results us
the two-meson-exchange diagrams generated by all the a
able mesons, including the contact diagrams for the pio
which we denote as the two-meson-exchange~TME! poten-
tial. In addition, we can also investigate the effect of leavi
out the contact potentials for the pions, resulting in the n
chiral two-meson-exchange~ncTME! potential.

We do not include diagrams with a contact interacti
between the nucleon, a pion, and another meson. Thi
because, as mentioned in Sec. II E 1, the infinite series of
box diagrams is rotationally invariant and the contact d
grams are not needed to achieve rotational invariance.
thermore, they are not required to control the convergenc
the series, since there is no strong cancellation between
contact diagram and the instantaneous diagrams.

The first step in analyzing the bound states is to determ
what range off s gives reasonable results. We iterative
2-13
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solve for the binding energy of the deuteron, varyingf s until
the binding energy matches the physical value of the bind
energy, for each of the potentials. The results are show
Table I. We find that a value off s in the range 1.2 to 1.3 will
give reasonable results for the binding energy. Note t
D-state probability~about 3%) is lower in this model tha
for the energy-independent light front used in Ref.@21#,
where a value of 4.5% is found. This is expected since thef s

is greater than 1 in this model, meaning that the scalar in
action is strengthened relative to the tensor interaction, le
ing to a decrease in amount of theD state present.

We choose two values off s , one from the low end of the
range ~1.22! and one from the high end~1.2815! for our
investigations. Using two values helps ensure that our res
are robust.

First, we examine the bound states forf s51.22. The re-
sults for several different choices of the TME potentials
shown in Table II and the binding energies are plotted in F
8. In addition to the two-meson-exchange potentials m
tioned above, we also consider thep-s plus p-v mesa po-
tential. The reason for considering this potential is that C

TABLE I. The values off s required to give the physical valu
of the deuteron mass for a given potential and state withJz5m.
The percent of the wave function in theD-state and in theJ51
state are also shown.

Potential f s % D state %J51
m50 m51 Diff m50 m51 m50 m51

OME 1.2407 1.2125 0.0282 2.87 3.55 99.99 99.
OME
1TPE 1.2829 1.2819 0.0010 2.96 3.23 99.99 99
OME
1TME 1.2968 1.307920.0111 2.95 3.28 99.99 99.9
OME
1ncTPE 1.3064 1.312120.0057 2.99 3.16 99.98 99.9
OME
1ncTME 1.3198 1.339720.0199 2.98 3.21 99.98 99.9
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bonell, Desplanques, Karmanov, and Mathiot@69# have
shown that it helps restore rotational invariance of the d
teron.

In particular, they have used manifestly covariant ligh
front dynamics to analyze the deuteron. They start with
deuteron wave function calculated in equal-time dynam
then use a light-front one-pion-exchange potential~expanded
to lowest order in powers of 1/M ) to calculate the perturba
tive corrections to the wave function. They find that the
sulting wave function has an unphysical dependence on
orientation of the light-front plane, which would manife
itself as a breaking of rotational invariance in our formalis
They also use thep-s andp-v mesa potentials~expanded
to lowest order in powers of 1/M ) to calculate the correction
to the wave function. When the wave function correctio
are combined, they find that the directional dependence
the longest range part of the deuteron wave function can
exactly.

FIG. 8. The values of the binding energy for them50 andm
51 states for different nucleon-nucleon light-front potentials. T
s coupling constant factor isf s51.22.
e

TABLE II. The values of the binding energy, percentage of the wave function in theD state, and the

percentage of the wave function in theJ51 state for them50 andm51 states for different potentials. Th
s coupling constant factor isf s51.22.

Potential Binding Energy~MeV! D state~%! J51 ~%!

m50 m51 Diff m50 m51 m50 m51

OME only 21.7653 22.4200 0.6547 2.73 3.61 99.99 99.96
OME
1p-(s-v) mesa 21.9236 21.7021 20.2215 2.80 3.38 99.99 99.96
OME
1ncTME 20.4948 20.2646 20.2302 1.97 1.76 99.99 99.98
OME
1ncTPE 20.6620 20.4825 20.1795 2.16 2.09 99.99 99.98
OME
1TME 20.7861 20.6060 20.1801 2.25 2.31 99.99 99.97
OME
1TPE 20.9981 20.9155 20.0826 2.42 2.57 99.99 99.98
2-14
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TABLE III. The values of the binding energy, percentage of the wave function in theD state, and the
percentage of the wave function in theJ51 state for them50 andm51 states for different potentials. Th
s coupling constant factor isf s51.2815, distinguishes this table from Table II.

Potential Binding Energy~MeV! D state~%! J51 ~%!

m50 m51 Diff m50 m51 m50 m51

OME only 23.3500 24.4546 1.1046 3.09 3.97 99.99 99.96
OME
1p-(s-v) Mesa 23.6331 23.2408 20.3923 3.10 3.85 99.99 99.95
OME
1ncTME 21.3766 20.9901 20.3865 2.67 2.64 99.99 99.97
OME
1ncTPE 21.6532 21.4693 20.1839 2.81 2.88 99.99 99.97
OME
1TME 21.8617 21.6032 20.2585 2.85 3.05 99.99 99.96
OME
1TPE 22.1915 22.2137 0.0222 2.95 3.23 99.99 99.97
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This implies that for our model, using thep-s plus p-v
mesa potential@which we denote byp-(s-v)] should par-
tially restore the rotational invariance of the deuteron,
suming that the breaking of rotational invariance is due p
marily to the one-pion-exchange potential. Note that sin
we solve for the deuteron wave function self-consisten
and to all orders for our potentials, we do not expect to fi
exactly the same result as Ref.@69#.

The first thing to notice about the data in Table II is th
the results are essentially the same regardless of if arbit
angular momentum is used or if the potential is restricted
theJ51 sector. The same result is also seen in the pion-o
model@46#. It means that the wave functions are numerica
approximate to angular momentum eigenstates.

Next we notice the splittings between masses andD-state
percentages for them50 andm51 states. This implies tha
the states do not transform correctly under rotations. All
the two-meson-exchange potentials used reduce the split
by similar amounts, by about 60% for the binding energy a
by about 70% for the percentD state. Note also that the mas
splittings for the pion-only model were much larger@46#.

Examining the effects of the individual two-meso
exchange potentials, we see thatp-(s-v) potential does re-
duce the mass splitting, but it does not fully remove it. T
is expected since the OME potential includes more than
the pion potential, and the potential is relativistic.

Next, we compare the ncTME and ncTPE potentials to
TME and TPE potentials. The nonchiral potentials reduce
binding energy more than the chiral potentials, as we
pected from our experience from the pion-only model. Ho
ever, unlike for the pion-only model, we find that the chir
and nonchiral potential have fairly similar effects@46#.

Finally, notice that the mass splitting for the TPE potent
is much smaller than for the other two-meson-exchange
tentials. By itself, this does not imply that the rotation
properties of the deuteron calculated with that potential
significantly better than those from other two-meso
exchange potentials. The individual potentials that make
the TME potential are fairly large in magnitude, but vary
sign. This means that using any subset of those poten
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may result in either a larger or smaller mass splitting. In t
case, it is smaller. To investigate this further, we examine
currents for the TME and TPE deuteron wave function
Sec. III.

To verify that our results are independent of the value
f s , we recalculate the deuteron properties for each of
potentials with f s51.2815. The results are summarized
Table III, and the binding energies are shown in Fig. 9. T
change inf s increases the binding of the states, but the r
of the results are qualitatively the same.

We note that we have not analyzed what effect varying
s-nucleon coupling constants has on computing the sca
ing T50 scattering phase shifts. A poor representation of
data could cause our computed deuteron form factors to
agree with observations@70#.

B. Deuteron form factors

We use the deuteron wave functions obtained for
light-front nucleon-nucleon potential in Sec. II to calcula

FIG. 9. The values of the binding energy for them50 andm
51states for different nucleon-nucleon light-front potentials. Thes
coupling constant factor isf s51.2815.
2-15
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JASON R. COOKE AND GERALD A. MILLER PHYSICAL REVIEW C66, 034002 ~2002!
the deuteron currents and form factors. This gives a solu
where light-front dynamics is used consistently througho
For the potential, we choose the light-front nucleon-nucle
potential with f s51.2815. We have verified that the resu
do not change significantly whenf s51.22 is used.

Figure 10 shows the currents and the associated ang
condition for I (1)

1 , given by Eq.~54!, for several different
deuteron wave functions. Results are shown for the w
function from the OME, OME1TME, and OME1TPE po-
tentials~calculated in Sec. II!, and the parametrization of th
deuteron wave function for the energy independent Bonn
tential @23#. The currents matrix elements~but not D) are
approximately the same regardless of which wave functio
used. This consistency is important, since it verifies that
gross features of all the models are the same.

We find thatD for I (1)
1 is much smaller than the large

matrix elements when using the OME wave function. T
means that theI (1)

1 current transforms very well under rota
tions. This is somewhat surprising, since we found ear
that the binding energies for the OME wave functions hav
large splitting, indicating that OME wave functions tran
forms poorly under rotations.

Comparing the current calculated with the OME wa
function to those calculated with other potentials, we fi
that for momentum transfers of more than 1 GeV2 the OME
I (1)

1 current has the best transformation properties under
tation of all theI (1)

1 currents shown.
For smaller momentum transfers, the transformation pr

erties of the Bonn and OME1TME wave functions are the
best. This is expected, since in the limit of no moment
transfer, the currentI (1)m8m

1 is simply the overlap of deutero
wave functions,̂ m8um&. If the initial and final states have
the same mass, the matrix element is simplydm8m , which
satisfies the angular condition. However, if the states do
have the same mass~which implies thatm8Þm), there will
be a nonzero overlap between the two states, which viol

FIG. 10. The matrix elements ofI (1)m8m
1 , the component of the

electromagnetic current which multiplies the nucleonF1 form fac-
tor, calculated with the wave function from the~a! OME, ~b!
OME1TME, ~c! OME1TPE, and~d! Bonn potentials.
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the angular condition. Since the masses of the deuteron s
are exactly the same for the Bonn wave function, and
proximately the same for the OME1TPE wave function,
they have a smallD at low momentum transfer. However, th
OME wave functions, having the largest mass splitting, ha
the largestD at low momentum transfers.

Figures 11 and 12 show the current matrix elements
the angular condition forI (2)

1 andI (5)
1 , respectively. The gen

eral features of these figures are the same as in Fig. 10,
one important exception. In both figures, theD for the OME
wave function has about the same magnitude as theD ’s for
the other wave functions. This means that the rotatio
properties ofI (2)

1 and I (5)
1 currents are approximately th

same regardless of which wave function is used. This re
confirms that the rotational properties of the current ma
elements depend as much on how the current is constru
as they do on which wave function is used.

In Fig. 11, we find that the magnitude ofD is almost the
same as the magnitude of the largest matrix element ofI (1)

1 .
This means there is a large deviation from the angular c
dition, and that form factors calculated with this current m
depend strongly on which matrix element is chosen as b
We show below that this is not the case for the electrom
netic form factors.

We find thatD is much smaller than the largest matr
element of the axial currents shown in Fig. 12 for most v
ues of momentum transfer. This means that the deute
axial form factor will be essentially independent of whic
matrix element is chosen as bad, except for within the ra
of 1.5 to 2 GeV2.

Now we combine the two parts of the electromagne
current,I (1)

1 and I (2)
1 , with the nucleon form factorsF1 and

F2 to get the total current. Figure 13 shows the currents
F1I (1)

1 and F2I (2)
1 , as well as the sum,I 1. The Gari:1985

nucleon form factors are used@61#. We find thatF1I (1)
1 gives

the largest contribution to the total current, and becauseD is

FIG. 11. The matrix elements ofI (2)m8m
1 , the component of the

electromagnetic current which multiplies the nucleonF2 form fac-
tor, calculated with the wave function from the~a! OME, ~b!
OME1TME, ~c! OME1TPE, and~d! Bonn potentials.
2-16
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small for I (1)
1 , D is also small for the total current, meanin

that the total current transforms well under rotations. Th
in spite of the fact thatD is approximately the same size a
the current matrix elements forI (2)

1 , the deuteron electro
magnetic form factors should not depend too strongly on
choice of the bad matrix element. This is especially true
the form factors calculated with the OME wave function.

We calculate the form factorsA, B, T20, andFA using the
OME wave function, and show the results in Fig. 14. T
definitions of the bad matrix elements are given in Se
III A 4 and III B. In general, the form factors do not depen
strongly on which matrix element is chosen as bad, in ag
ment what what we predicted in the previous paragraph.
only exception is for theB form factor, and to a lesser exten
the FA form factor, near where they cross zero. This is n

FIG. 13. The matrix elements forF1I (1)m8m
1 , F2I (2)m8m

1 , and
I m8m

1 calculated with the OME wave functions. The Gari:19
nucleon isoscalar form factors are used forF1 andF2.

FIG. 12. The matrix elements ofI (5)m8m
1 , the deuteron axial

current including the nucleon axial form factor, calculated with t
wave function from the~a! OME, ~b! OME1TME, ~c! OME
1TPE, and~d! Bonn potentials.
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too surprising, since a small constant shift in any functi
near a zero crossing has a large effect in a logarithmic p
Also, we note that the FFS and CCKP choices of the b
matrix element give the same value forB.

We also use the OME1TME wave function to calculate
the form factorsA, B, T20, andFA , which we show in Fig.
15. We argued earlier that these electromagnetic form fac
depend more strongly on which matrix element is chosen
bad as those calculated with the OME wave function, a
that dependence is clear in this figure. At low momentu
transfers, the dependence on the change is fairly small, bu

FIG. 15. The form factorsA, B, T20, andFA calculated using
the various choices of the bad matrix element. The definitions of
bad matrix elements are given in Secs. III A 4 and III B. T
OME1TME wave function is used, along with the Lomon nucleo
form factors for the electromagnetic form factors, and the Lies
feld nucleon form factor for the axial form factor.

FIG. 14. The form factorsA, B, T20, andFA calculated using
the various choices of the bad matrix element. The OME wa
function is used, along with the Lomon nucleon form factors for t
electromagnetic form factors, and the Liesenfeld nucleon form f
tor for the axial form factor.
2-17
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the momentum transfer increases, so does the depend
The axial form factor is not affected as strongly, primar
because each wave function generates an axial current w
violates the angular condition by approximately the sa
amount.

Since there are many different models of the nucleon e
tromagnetic form factors, we calculate the deuteron elec
magnetic form factors using each of them to see what ef
the differences have. The results are shown in Fig. 16. At
momentum transfers, all the nucleon form factors give cl
to the same results. However, when the momentum trans
is large, we find a large spread in the values due to nucl
form factors. In fact, this spread is larger than the spread
values obtained from using different bad matrix eleme
with the OME1TME wave functions. In other words, in
order to obtain accurate results for momentum transfers o
2 GeV2, it is more important to determine which nucleo
form factor to use than when bad matrix to use.

Finally, in Fig. 17, we compare theA, B, T20, and FA
form factors for the OME and OME1TME wave functions
to experimental data. The bad component was chosen
cording to FFS, and the nucleon form factors of Lomon w
used forA, B, andT20, while the Liesenfeld axial nucleon
form factor was used forFA . The data forA is from: Bucha-
nanet al. @71#, Eliaset al. @72#, Galsteret al. @73#, Platchkov
et al. @74#, Abbott et al. @75#, and Alexaet al. @1#; the data
for B is from: Buchananet al. @71#, Auffret et al. @76#, and
Bostedet al. @77#; and the data forT20 is from: Schulzeet al.
@78#, Gilman et al. @79#, Boden et al. @80#, Garcon et al.
@81#, Ferro-Luzziet al. @82#, Bouwhuiset al. @83#, and Ab-
bott et al. @84#.

There is a rather large difference between the form fac
calculated with the OME and OME1TME wave functions.
This difference is due primarily to the fact that the OM
wave functions are more deeply bound than the OM

FIG. 16. The electromagnetic form factorsA, B, andT20 calcu-
lated using the various choices of the nucleon isoscalar form
tors. The OME wave function is used, along with the FFS choice
the bad deuteron current matrix. The axial form factor is not sho
since its dependence on different form factors is trivial.
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1TME wave functions, and it can be reduced by choosin
different sigma coupling constantf s for the OME and
OME1TME potentials. However, for our analysis of rota
tional invariance, it is important to keepf s fixed.

The difference between the calculated form factors a
the data is also quite large. This is not unexpected, sinc
our model of the current, meson exchange currents are
included. It is known that these can have a large effect on
form factors at large momentum transfers@55,85,86#. Includ-
ing these effects could bring the form factors into bet
agreement with the data. However, we emphasize again
agreement with the data is not a priority of this work. O
goal is to gain a better understanding of the breaking
rotational invariance by the light front, and how to resto
that invariance. Only after we have that understanding
we pursue accurate calculation of the form factors with lig
front dynamics.

V. CONCLUSIONS

The issue of rotational invariance in light-front dynami
with a fixed-front orientation must be addressed before
attempts to use light-front dynamics for high-precision c
culations. In this paper, we find ways to quantify the level
which rotational invariance is broken. We used light-fro
dynamics to obtain new light-front nucleon-nucleon on
meson-exchange~OME! and two-meson-exchange~TME!
potentials. In addition, we examined the rotational proper
of wave functions for potentials truncated to different orde

In Sec. II, we derive OME and TME potentials for
model Lagrangian for nuclear physics which includes ch
symmetry. The deuteron form factors are derived for
wave functions associated with the potentials in Sec. III. S
tion IV describes our results, starting with the calculation
the binding energies and wave functions for them50 and
m51 states of the deuteron. We find that the splitting b
tween them50 andm51 states was smaller for the OM

c-
f
n

FIG. 17. TheA, B, T20, andFA form factors for the OME and
OME1TME potentials, along with data. See the accompanying t
for an explanation of the data.
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1TME potential as compared to the OME potential.
The wave functions are used to calculate the form fac

of the deuteron using only light-front dynamics througho
In light-front dynamics, there are four independent comp
nents of the deuteron current. However, the requiremen
rotational invariance introduces an angular condition that
four components must satisfy, reducing the number of ph
cally independent components to three. The deviation of
calculated current components from the angular conditio
denoted byD. We find thatD is very small for the deuteron
wave functions calculated with the OME potential. This is
important result, since it means that althoughin principle the
light-front calculation of the deuteron current calculated w
a truncated Hamiltonian and a truncated current oper
does not transform correctly under rotations,in practice it
does quite well. The smallness ofD means that any reason
able prescription for eliminating the dependent componen
the current gives essentially the same results; the uncerta
introduced by the various nucleon form factors is mu
greater.

We also found thatD is significantly larger when the
TME potentials are used. Since the results in Re
@19,20,46# indicate that the rotational properties of the TM
wave function are better than those for the OME wave fu
tion, we interpret the increase inD as an indication that extra
diagrams need to be included in the current calculation
restore rotational invariance. For example, the componen
the current arising from the photon coupling to an interm
diate two-meson-exchange type of diagram should, in p
ciple, be included. The inclusion of higher-order terms in
current can be expected to reduce the breaking of rotati
invariance of the deuteron form factor.
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APPENDIX: NOTATION, CONVENTIONS,
AND USEFUL RELATIONS

For a general four-vector a with components
(a0,a1,a2,a3) in the equal-time basis, we define the ligh
front variables

a65a06a3, ~A1!

a'5~a1,a2!, ~A2!

so the four-vectoram can be denoted in the light-front bas
as

a5~a1,a2,a'!. ~A3!

Using this, we find that the scalar product is

a•b5ambm5 1
2 ~a1b21a2b1!2a'•b' . ~A4!
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This definesgmn , with g125g2151/2, g115g22521,
and all other elements ofg vanish. The elements ofgmn are
obtained from the condition thatgmn is the inverse ofgmn ,
so gabgbl5dl

a . Its elements are the same as those ofgmn ,
except thatg215g1252. Thus,

a652a7 . ~A5!

and the partial derivatives are similarly given by

]652]752
]

]x7
. ~A6!

To find the physical consequences of this coordinate s
tem, consider the commutation relations@pm,xn#5 igmn,
which yield

@p6,x7#52i , ~A7!

@p'
i ,x'

j #52 id i , j , ~A8!

with the other commutators equal to zero. This means thax'
i

is canonically conjugate top'
i , andx6 is conjugate top7.

Sincex1 plays the role of time~the light-front time! in light-
front dynamics, andp2 is canonically conjugate tox1, this
means thatp2 is the light-front energy and that the ligh
front Hamiltonian is given byP2.

In any Hamiltonian theory, particles have an energy d
fined by the on-shell constraintk25m2. This implies that the
light-front energy of a particle is

k25
m21k'

2

k1
. ~A9!

The independent components of the momentum can be w
ten as a light-front three-vectorkLF , denoted by

kLF5~k1,k'!. ~A10!

For dealing with spin, we require the Pauli sigma mat
ces, which are

~s1,s2,s3!5XS 0 1

1 0D ,S 0 2 i

i 0 D ,S 1 0

0 21D C.
~A11!

The Bjorken and Drell convention@87# for the gamma
matrices is used in this work. They specify that

g05b5S 1 0

0 21D , ~A12!

g5ba5S 0 s

2s 0 D , ~A13!

g55 ig0g1g2g35S 0 1

1 0D . ~A14!

The spin matricesSi then are
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Si5
1

2
S i52

1

2
g5g i , ~A15!

S i5S s i 0

0 2s i D . ~A16!

Using S, we can express the helicity operator asH5 p̂•S,
which has eigenvalues61. This is useful since the helicity
is invariant under rotations.

It is useful to define the spinor projection operatorsL6 by

L65
1

4
g7g65

1

2
g0g65

1

2
~ I 6a3!. ~A17!

These satisfy the requirements for projection operators,

L11L251, ~A18!

~L6!25L6 , ~A19!

L6L750. ~A20!

We summarize the effect these projection operators h
on the gamma matrices:

L6g05g0L7 , ~A21!

L6g6505g6L7 , ~A22!

L6g75g75g7L7 , ~A23!

L6g'5g'L6 , ~A24!

and under conjugation,

g0L6
† g05L7 . ~A25!

The light-front spinors are defined to be@6#

uLF~k,m![
1

AMk1
@ML21~k11a'

•k'!L1#xLF,m

~A26!

5
1

AMk1
@L2~M1a'

•k'!1L1k1#xLF,m , ~A27!
a-

03400
ve

xLF,m[S xm

0 D , ~A28!

wherexm is the usual Pauli spinor, and theL6 are the spinor
projection operators defined in Eq.~A17!. We find that

ūLF~k,m!5
1

AMk1
xLF,m

† @L1M1L2~k11a'
•k'!#

~A29!

5
1

AMk1
xLF,m

† @~M2a'
•k'!L11k1L2#. ~A30!

Note that these spinors are normalized to sati
ūLF(k,m8)uLF(k,m)5dm8m .

For helicity spinors, we choose the eigenvectors of
helicity operator (s•p̂) as the x ’s. In particular, (p̂
•S)u(p,l)5hu(p,l), whereh52l. This choice allows us
to write

u~p,l!5A W

2M S 1

f D xl~ p̂!, ~A31!

and

xl~ p̂!55 S c2e2 if/2

s2e1 if/2D if h511

S 2s2e2 if/2

c2e1 if/2 D if h521

, ~A32!

wherec25cos(u/2), s25sin(u/2), f 5hp/W, andh52l.
When there are two fermions in the center-of-moment

frame, we can definef[f1 andu[u1 and for particle two
f25p1f andu25p2u. This means that

u~pi ,l i !5A W

2M S 1

f i
D x i ,l i

~ p̂!, ~A33!

wherei 51,2 and

x1,l1
~ p̂!5xl1

~ p̂!, ~A34!

x2,l2
~ p̂!5 ix2l2

~ p̂!. ~A35!
us
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