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Hadron-quark phase transition in dense matter and neutron stars
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We study the hadron-quark phase transition in the interior of neutron(digfs). We calculate the equation
of state(EOS of hadronic matter using the Brueckner-Bethe-Goldstone formalism with realistic two-body and
three-body forces, as well as a relativistic mean field model. For quark matter we employ the MIT bag model
constraining the bag constant by using the indications coming from the recent experimental results obtained at
the CERN SPS on the formation of a quark-gluon plasma. We find it necessary to introduce a density-
dependent bag parameter and the corresponding consistent thermodynamical formalism. We calculate the
structure of NS interiors with the EOS comprising both phases, and we find that the NS maximum masses fall
in a relatively narrow interval, 1.Ml o <M ,,=1.7M . The precise value of the maximum mass turns out to
be only weakly correlated with the value of the energy density at the assumed transition point in nearly
symmetric nuclear matter.
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[. INTRODUCTION parameter of the bag model, was constrained to be compat-
ible with the recent experimental results obtained at CERN
The properties of nuclear matter at high density play aon the formation of a quark-gluon plasria), recently con-
crucial role for building models of neutron stars N§XY.  firmed by RHIC preliminary resultgs].
The observed NS masses are in the range=61—-2)M o However, it is not obvious if the information on the
(whereM, is the mass of the suM ,=1.99x10* g), and  nuclear EOS from high-energy heavy-ion collisions can be
the radii are of the order of 10 km. The characteristics of theelated to the physics of neutron star interiors. The possible
core of the NS’s influence most strongly the value of thequark-gluon plasma produced in heavy-ion collisions is ex-
maximum mass. The matter inside this core possesses denpected to be characterized by small baryon density and high
ties ranging from a few timep, (=0.17 fm 3, the normal  temperature, while the possible quark phase in neutron stars
nuclear matter densityto one order of magnitude higher. appears at high baryon density and low temperature. If one
Moreover, the equation of statEOS at such high densities adopts for the hadronic phase a noninteracting gas model of
is the main ingredient for determining the structure paramfucleons, antinucleons, and pions, the original MIT bag
eters of NS’s, such as mass and radius. Therefore, a detailedodel predicts that the deconfined phase occurs at an almost
knowledge of the EOS is required for densities po, where  constant value of the quark-gluon energy density, irrespec-
a description of matter only in terms of nucleons and leptongive of the thermodynamical conditions of the systé@q.
may be inadequate. In fact, at densities p, several species For this reason, it is popular to draw the transition line be-
of other particles, such as hyperons ahdsobars, may ap- tween the hadronic and the quark phase at a constant value of
pear, and meson condensations may take place; also, ultihe energy density, which was estimated to fall in the interval
mately, at very high densities, nuclear matter is expected tbetween 0.5 and 2 GeV fii [10]. This is consistent with
undergo a phase transition to a quark-gluon plag2faThe the value of about 1 GeV fi? reported by CERN experi-
specific goal of the theory is to study the nature of thisments. The close relation between the physics of neutron
plasma and understand the phase transitions between diffestars and of heavy-ion collisions is also emphasized by a
ent states. However, the exact value of the transition densitsecent conjecture that there could be three phases in heavy-
to quark matter is unknown and still a matter of recent debat@n collisions at SPS and RHIC energies, equivalent to the
not only in astrophysics, but also within the theory of high-pure quark phase, mixed phase, and pure hadron phase ap-
energy heavy-ion collisions. pearing in neutron stars. These three phases correspdéad to
In this paper, we propose a method to determine a rangan explosive hard quark-gluon pha#s), a mixed soft phase
of values of the maximum mass of NS’s taking into account(a sort of plateay and (c) a hadronic phase. Considering
the phase transition from hadronic matter to quark mattethese three phases in a heavy-ion collision model, the first
inside the neutron star. The transition point is constrained@vailable RHIC data could be well describd].
from recent heavy-ion collision data. Therefore to perform The value of 1 GeV fm® must be considered only an
such calculations, we describe the hadron phase of matter bydicative estimate of the transition energy density at zero or
using two different equations of state, i.e., a microscopimearly zero temperature, as needed in neutron star studies,
nonrelativistic EOS obtained in the Brueckner-Bethe-and it appears mandatory to explore the sensitivity of the
Goldstone(BBG) theory[3], and a more phenomenological results on the precise value of the assumed transition energy
relativistic mean field modgK]. The deconfined quark mat- density. In this work we present systematic calculations of
ter phase is treated by adopting the popular MIT bag modeheutron star structure, where the hadronic EOS, which can be
[5]. In a previous papdi6] the bag “constant,B, whichisa  considered well established, is implemented with the pos-
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sible transition to the deconfined phase described by different
parametrizations of the MIT bag model. The transition en-
ergy density in nearly symmetric nuclear matter at zero tem-
perature is allowed to vary within a range of values which
can be considered still compatible with the CERN and RHIC
data. The calculations will indicate the sensitivity of the re-
sults on the assumed transition point and the possible corre-§
lation between neutron star properties and the transition en-2
ergy density value. In particular, we will see that the
maximum neutron star mass is only weakly correlated with
the transition energy density value. -50
This paper is organized as follows. In Sec. Il we discuss
the EOS for the hadronic phase of a neutron star, i.e., the
BBG and the relativistic mean field modells. In Sec. llwe  fG. 1 The BHFRMF] equation of state is displayed in panel
apply the MIT bag model to the description of the quark ) [panel(b)] for symmetric mattexsolid line) and pure neutron
phase of the neutron star. In Sec. IV we present our resultgatter(dashed ling
and finally in Sec. V we draw some conclusions.
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sense the BBG approach can be considered as a microscopic
Il. HADRONIC PHASE one. The nuclear EOS can be calculated with good accuracy
in the Brueckner two-hole-line approximation with the con-
tinuous choice for the single-particle potential, since the re-
The BBG theory is based on a linked cluster expansion ofylts in this scheme are quite close to the calculations, which
the energy per nucleon of nuclear mattgee Ref[3], Chap. include also the three-hole-line contributift?]. In the cal-
1 and references therginThe basic ingredient in this many- culations reported here, we have used the Paris pot¢h&hl
body approach is the Brueckner reaction ma@ixwhich is g5 the two-nucleon interaction.
the solution of the Bethe-Goldstone equation However, it is commonly known that nonrelativistic cal-
Kk Kk culations, based on purely two-body interactions, fail to re-
G[n;w]=v+ E UMG[ 0], (D produce the correct saturation point of symmetric nuclear
Kk, @—e(ky)—e(kp) matter, and three-body forcé$BF’s) among nucleons are
) ] . . needed to correct this deficiency. In this work the so-called
wherev is the bare nucleon-nucleom{) interaction,nis  yrpana model will be used, which consists of an attractive
the nucleon number density, amdthe starting energy. The term due to the two-pion exchange with excitation of an
single-particle energye(k) (assuming%=1 here and intermediater resonance, and a repulsive phenomenological

A. Brueckner-Hartree-Fock theory

throughout the papgr central term[14]. We introduced the same Urbana three-
2 nucleon model within the BHF approadfor more details
e(k)=e(k:n)= = +U(k;n) ) see Ref.[15]). In our approach the TBF is reduced to a
L 2m 1

density-dependent two-body force by averaging over the po-
sition of the third particle, assuming that the probability of
having two particles at a given distance is reduced according
to the two-body correlation function. The corresponding
nuclear matter EOS fulfills several requirements, naniély,
it reproduces the correct nuclear matter saturation pg@int,
the incompressibility is compatible with the values extracted
U(k;n)=Re Z (kK'|G[n;e(k)+e(k")]|kk )5, (3) from phenomenologyii) the symmetry energy is compat-
k' <kg ible with nuclear phenomenology, afig) the causality con-
dition is always fulfilled. The equation of state is displayed
where the SUbSCfipa indicates antisymmetrization of the in F|g 1(a)’ for Symmetric matte(so”d |ine) and pure neu-
matrix element. Due to the occurrence Wtk) in Eq. (2), tron matter(dashed ling
they constitute a coupled system that has to be solved in @ Recently, we have included the hyperon degrees of free-
self-consistent manner for several Fermi momenta of the pagom within the same approximation to calculate the nuclear
ticles involved. In the BHF approximation the energy pereQS needed to describe the NS interji@6]. We have in-

and the Pauli operatd determine the propagation of inter-
mediate baryon pairs. The Brueckner-Hartree-FOBKF)
approximation for the single-particle potentla(k;n) using
the continuous choicés

nucleon is cluded theS~ and A hyperons. To this purpose, one needs
5 also nucleon-hyperonNY) and hyperon-hyperonY(Y) in-
E_3 Kr (kK'|G[n:e(k)+e(k’)]|kk') teractiond 16,17. However, because of a lack of experimen-
; a

tal data, the hyperon-hyperon interaction has been neglected
(4)  in the first approximation in this work, whereas for tNef
interaction the Nijmegen soft-core modgl8] has been
In this scheme, the only input quantity we need is the baradopted.
NN interactionv in the Bethe-Goldstone equati¢b). In this Once hyperons and leptons are introduced, the total EOS

____+_
A~ 52m 2n,

<kg
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can be calculated for a given composition of the baryon com- B. Relativistic mean field model

ponents. This allows the determination of the chemical po- | the present work, we have also considered a hadronic
tentials of all species which are the fundamental input for thgegs pased on the framework of a relativistic approach,

equations of chemical equilibrium: where one usually starts from a local, renormalizable field
theory with baryons and explicit meson degrees of freedom.
Hn= HpT Me, ®  The theory is chosen to be renormalizable in order to fix the
coupling constants and the mass parameters by empirical
Me= My (6) properties of nuclear matter at saturation. As a starting point,
one chooses the mean field approximation, which should be
2un=ppt s, (7) reasonably good at very high densitigsfew times nuclear
matter density.
=LA - (8) In 1974, Walecka first proposed the mean field model

[4,19], where the coupling constants were chosen in such a
Since we are looking at neutron stars after neutrinos havevay that it fitted nuclear matter binding energy and satura-
escaped, we set the neutrino chemical potentials equal tion density. However, in this model the value of the nuclear
zero. The above equations must be supplemented with twmatter incompressibility at saturation is quite high. In order
other conditions, i.e., charge neutrality and baryon numbeto reproduce the correct value, an extension of the Walecka

conservation. These are model was done later, called the nonlinear Walecka model
[20-23. This model has been proven quite successful in
Pp=PetPuTPs, (9)  describing the properties of nuclet] over a wide range of
the periodic table. Thus it is reasonable to use such a model
p=pntpptpstps. (20 to describe the hadronic phase in a region where the nuclear

densities are not too large in comparison with the nuclear
The last two conditions allow the unique solution of a closedmatter density.
system of equations, yielding the equilibrium fractions of the  The equation of state for hadrons is calculated in the
baryon and lepton species for each fixed baryon density. Theamework of mean field theory using the nonlinear Walecka
latter determine the actual detailed composition of the denseagrangian20,21,23
matter and therefore the EOS to be used in the interior of
neutron stars. Finally, from the knowledge of the equilibrium£(X)
composition one determines the equation of state, i.e., the
rglation between prgssuFéand energy density as a func- :2 (i YHD, = M+ 00+ i 0, Y~ G,ip S Y Ta)
tion of baryon density. It can be easily obtained from the [
thermodynamical relation

1 Hv 1 2 ”
dE " —Zw w,,+ zmww#w
v’ 1 2 2 1 a _uv 1 2 a_u
_ _ +5(0,00" o= Me0%) = 2P+ 5 M LPa
with E the total energy an¥ the total volume. Equatiofi1)
can be explicitly worked out in terms of the baryonic and 1 1
leptonic energy densities; and e, , - §me(gUNa)3— Zc(gg,\,a)“
dE _
P=—gv=PetPL. (12) +2 iy a,—m)d. (15)
,d(es/p) ,d(e/p) This Lagrangian includes nucleons,and>~ hyperonsgde-
Pe=p “ap o PP e, (13)  noted by a subscripl, leptons(denoted by, ande, w, and

p mesons. The meson fields interact with baryons through

The total baryonic energy density is obtained by adding linear couplings and the coupling constants are different for
the energy densities of each species which in turn are honstrange and strange baryons. Theand p masses are
calculated by taking into account the interaction of the spe€nosen to be their physical masses. The equation of state is

ciesi with the surrounding mediurfsee Ref[16] and refer- obtained through the mean field ansatz. In this case one can
ences therein define effective masses¥) and chemical potentialsu() for

the baryons as
=eytestey. 14 — —
EBT ENT €3 T €p ( ) m,=m;—g,io,
As far as the leptons are concerned, at those high densities = i~ Jui @0~ T30,ip5, (16)
electrons are a free ultrarelativistic gas, whereas muons are
relativistic. Therefore their energy densitigsand pressures where wg, o, and?”O are the nonzero vacuum expectation
P, are well known from textbooks; see, e.g., Réfl. values of the meson field3.; is the value of the compo-
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nent of the isospin of baryoin whereasy; is the bare chemi- referred to Refd.25,26 and references therein. The resulting
cal potential. In neutron star matter the chemical potentialequation of state is displayed in Fig(b], for symmetric
must fulfill the conditions of equilibrium under weak inter- matter(solid line) and pure neutron mattédashed ling
action, i.e.,
ﬁn:ﬁp+ﬂea fo= i, 17) I1l. QUARK PHASE
We now turn to the description of the bulk properties of
2un=MpT U3, Mn= iy - (18 uniform quark matter, deconfined from tjestable hadronic

matter mentioned in the preceding section, by using the MIT
Moreover, the condition of charge neutral{ must be sat- bag model[5]. We begin with the thermodynamic potential
isfied as well as the baryon number conservatib®. By  of q quarks, wheregg=u,d,s denote up, down, and strange
minimizing the energy at fixed baryon density, one gets theyuarks, expressed as a sum of the kinetic term and the one-
mean field values ok, o, andpg. Then the expressions of gluon-exchange terif2,27],
the energy density and pressure are readily obtained as

3m

MgX
1 , ., 1 , .1 1 Qq=- { —(2x2=3) +In(xq+ 7g) |+

3m3a5
e=§mww0+§mp(po)2+ §m§52+§me(gaNE)3 9 g2

478

4
1 _ _ 2_ " 4
+ZC(90NF)4+2 EFG(mi'Mi)+z| €M, ), X 2L 719X~ IN(XqF 79)] 3Xq+2ln(77q)

ox
(19 +4In( 'e”)[nqxq—ln(qur nq)]], (21)
Mg 7q
P=_-m2ws+ 1m (_:'S)Z—EmZE2 lbm (gono)3
2 o 5P 2 37N 9on wherem, and u are theq current quark mass and chemical
1 potential, respectively, ane,= \/,u2 zlmq, 7q= \/14—x2
_ZC(90N5)4+Z PFG(mi,ﬁiHEl Pea(My 1)), =pq/my. ag denotes the QCD fine structure constant,

whereasr g, is the renormalization poingr,e,=313 MeV. In
this work we will consider masslessandd quarks, in which

(20 case the above expression reduces to

whereerg andP g represent the noninteracting fermion con- .
tributions to the energy density and the pressure. The nonlin- HMq 2ag
ear Walecka model has eight parameters out of which five Ch 4772(1_ T) (q=u.d). (22)
are determined by the properties of nuclear matter. These are
the nucleon couplings to scalag{/m,), isovector §,/m,),
and vector mesongy(,/m,) and the two coefficientb and
c. These are obtained by fitting saturation values of nuclear
. I Q)

matter, i.e., binding energy per nucleqa-—16 MeV), pg=— —a (23)
baryon density £ 0.15 fm %), and Landau mass (0.8],). Itrq
The symmetry energy coefficient and the compressibility are
taken equal to, respectively, 30 and 260 MeV, the same as iand the total energy density and pressure for the quark sys-
BHF calculations and close to estimated values from monotem are given by
pole oscillations in nucl€i24].

The other three coupling constant parameters of the hy-
peron couplinggratio of hyperon-meson and nucleon-meson €Q~ Eq (Qq+ pgpg) +B, (24)
couplings are not well known. Since hyperons are not
present in nuclear matter, these cannot be determined from
the nuclear matter properties. Moreover, from the analysis of Po=— > Q,—B, (25)
experimental data on hypernuclei, one cannot fix these pa- q
rameters in a unique way. Therefore, we fix these parameters
by assuming the potentials experiencedXy hyperons to  whereB is the energy density difference between the pertur-
be the same as that of, e.g., —30 MeV in the present bative vacuum and the true vacuum, i.e., the bag constant. In
calculations. First, we choose the value of hyperon couplingthe original MIT bag model the bag constant has the value
for scalar mesons as 2(8imilar to the quark counting value B~55 MeV fm™ 2, which is quite small when compared with
for A andX ). Next, using the above assumption for thethe ones £210 MeV fm ) estimated from lattice calcula-
hyperon potentials, the values of the hyperon couplings fotions[28]. In this sensé can be considered as a free param-
vector mesons are calculated and the hyperon couplings fater. The composition g8-stable quark matter is determined
isovector mesons are set equal to those for vector mesoity imposing the condition of equilibrium under weak inter-
assuming vector dominance. For further details, the reader &ctions for the following processes:

The number density, of g quarks is related té), via
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ute —d+uv,, (26) term in turn modifies the relationship between chemical po-
tential and density in an obvious way. These additional terms

u+e —s+ g, (270  are essential for the consistency of the different thermody-
namical relationships. In particular, the usual expressions for

d—u+e +vg, (28)  the pressure

s—u+e +vg, 29 de

¢ @9 PQ:pd_p?_EQ:% MaPq~ €Q (39
s+u—d+u. (30

hold true provided the additional term involving the deriva-

. i i tive of the bag parameter is included, which is absent in Eq.
imply for the chemical potentials (25), where the free Fermi gas expressionfy is assumed.

In our calculations both chemical potentials and pressure
have been calculated including the additional terms, thus ful-
_ filling the correct thermodynamical relationships. We found

K= Rt e B2 ihat this additional term, coming from the density depen-

As in baryonic matter, the relations for chemical equilibrium dence of the bag parameter, gives a substantial contribution.
must be supplemented with the charge neutrality conditiod Particular, it reduces strongly the value of the pressure

In neutrino-free matter;(Ve= Mo, = 0), the above equations

Md= Mhs= M, 31

and the total baryon number conservation: especially in the mixed phase region, as described in the next
section.
2 1 1
3PuT gPd™ §ps_pe:0' (33 IV. RESULTS AND DISCUSSION

1 We try to determine a range of possible values Boby
p==(py+pa+ps (34) exploiting the experimental data obtained at the CERN SPS,

3 PuT Pd Ps)- . . .

where several experiments using high-energy beams of Pb

nuclei reported théindirect evidence for the formation of a
guark-gluon plasm@7]. The resulting picture is the follow-
ing: during the early stages of the heavy-ion collision, a very
hot and dense statéireball) is formed, whose energy mate-

It can easily be demonstrated that, in the case of masgless
d, ands quarks, the equilibrium solution reads

=pd=ps, Pe=0, 35 R ) -
Pu=Pd=Ps: Pe 39 rializes in the form of quarks and gluons strongly interacting
and consequently the equation of state is with each other, exhibiting features consistent with expecta-
1 XP=0.4 Xp=0.5
PQ:§(EQ—4B). (36) 400 e AAaasaas~ e 3
7, < e 3
300 F o=0 57 i F o=0 P E
Here one should notice that the above expressions hold inth . 200 -~ —ewr { 4 — ruF ]
case of constarB. I the bag constant is density dependent, g 100 |-~ ol T e
all thermodynamical relations must be reformulaa€]. 2 0 - -
In this case it is convenient to consider the firsttwo terms £, | 0201 /// 1 b woon ///
on the right-hand side of Eq24) as a function of density. ; T2 E 2
The density of each flavor componeatis related to the ~ § 00F 2 1f =2
Fermi momentunp'® in the usual way, g 1007 i B2 3
> 0 fHHHHHH 3
g § sw0f am2 3
—_2 rp(@i3 3 c F 0=0. P E 3
Pq 6’7T2[pF ] ’ ( 7) ] 200 B /// E 3
o
. . 100 |77 3 3
whereg=6 is the spin and color degeneracy factor. If we ~ EZ L L

denote byp the total baryon density, the chemical potential 00 01 02 03 04 05 6 01 02 03 04 6.5
uq for each flavor componerf can be written S
Baryon density p (fm ™)

o= Ef:“)—k d_B (39 FIG. 2. The energy density is displayed vs the baryon density

dpq’ for almost symmetric matter. Panels on the left-hand side show

@ L . BHF calculations X,= 0.4, solid ling, whereas panels on the right-
whereEr" is the kinetic Fermi energy for thecomponent,  hand side show the ones obtained with the relativistic mean field
eventually including the perturbative corrections. The seconghodel (,=0.5, solid ling. The dotteddashedilines represent cal-
term on the right-hand side of E¢38) modifies the usual culations foru, d quark matter within the MIT bag model, per-
relationship between chemical potential and Fermi energyormed with B=55 MeV fm™ 3 (B=90 MeV fm™%) and several
and is absent for a density-independent paramBtefhis  values of the QCD coupling constaat .
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TABLE I. The values ofB.. (in MeVfm~3) are displayed vs scribed earlier We perform the same calculation in the
those of the energy densitjn GeV fm™®) in u, d quark matter at  relatistic mean fieldRMF) approach using,=0.5. Then we
the transition point fos=0, 0.1. The corresponding values of the -gjculate the EOS fou andd quark matter using Eq24).
baryonic densitiep (in fm~3) at transition are deduced from the First we use a constant, density-independBnfThe results
BHF and RMF hadronic equations of state. are shown in Fig. 2. The solid lines represent the Bl

EOS o o gas—0 gas=01 pane_) and the RMF(right p_ane) calculation of the energy
* i density. The dotteddashedllines represent the quark matter

BHF 0.8 0.76 36.4 19.6 equation of state calculated foB=55 MeVfm 3 (B

11 0.97 51.1 27.9 =90 MeV fm 3), and several values of the QCD coupling

15 1.22 77.4 45.8 constantag. We find that at very low baryon density the
RMF 0.8 0.76 37.9 21.0 quark matter energy density is always higher than that of

11 0.98 37.8 14.3 nuclear matter, independently of the valueBfTherefore

1.5 1.23 55.4 23.4 nuclear matter is the favorite state. However, fBr

=55 MeV fm 3, the two energy densities become equal at a
certain value of nuclear density. Unfortunately this crossing
tions from a plasma of deconfined quarks and glu@®. takes place at normal nuclear matter density, both in the BHF
Subsequently, the “plasma” cools down and becomes morand the RMF approach. Therefore we try a larger valuB.of
dilute up to the point where, at an energy density of abouSince the expression of the quark matter energy density is
1 GeVfm 2 and temperatur@~170 MeV, the quarks and linear inB [see Eq(24)], an increase oB means an overall
gluons hadronize. The expansion is fast enough so that nghift towards larger energy densities. The two curves can
mixed hadron-quark equilibrium phase is expected to occugross now at a slightly larger baryon density, but still
and no weak process can play a role. According to the analynuch smaller than the desired point, i.e5/V~7¢,
sis of those experiments, the quark-hadron transition takes 1.1 GeVfm 3. No crossing at all is present above some
place at about seven times normal nuclear matter energy delimiting value of B. In Fig. 2 we show for completeness
sity (eg~156 MeV fm 3). also the limiting case ofB=90 MeV fm 3, where the

In the MIT bag model, the structure of the QCD phasenuclear matter energy density is always smaller than that
diagram in the chemical potential and temperature plane isf quark matter. These results are not very sensitive to the
determined by only one parametd, although the phase value ofas.
diagram for the transition from nuclear matter to quark mat- Therefore, we assume a density dependie(an eventual
ter is schematic and not yet completely understood, particudependence oB on the asymmetr, is not considered at
larly in light of recent investigations on a color supercon-this stage In the literature there are attempts to understand
ducting phase of quark mattdB1]. In our analysis we the density dependence Bf[32,33; however, currently the
assume that the transition to a quark-gluon plasma is deteresults are highly model dependent and no definite picture
mined by the value of the energy density aldfer a given  has come out yet. Therefore, we attempt to provide effective
asymmetry. With this assumption and taking the hadron to parametrizations for this density dependence, trying to cover
quark matter transition energy density from the CERN ex-a wide range by considering some extreme choices. Our pa-
periments, we estimate in the following the valueBadind its ~ rametrizations are constructed in such a way that at

possible density dependence. asymptotic densitieB has some finite valuB,, . In order to
fix B,, we proceed in the following way. The energy density
A. Phase transition in symmetric nuclear matter for u, d quark matter reads
First, we calculate the EOS for cold asymmetric nuclear e 13
matter characterized by a proton fractiqy= 0.4 (the one for €q(p,Xp) =B(p) + 4| (1-2adlm
Pb nuclei accelerated at CERN-SPS enejgiesthe BHF S
formalism with two-body and three-body forcdas de- X[(L+xp) B+ (2=x,)*]p*3. (40)
£,=0.8 GeV fm~ £5=1.1 GeV fm™ £,=1.5 GeV fm™
600 . T e S R
s 233 :__Bﬂ'i =0 1 :__BEF_\ =0 1 :_\_BEF____‘O‘FO ] FIG. 3. The bag constarB is displayed vs
£ 300 _\\ \ ] '_\\ \ JF \ ] the baryon density. Two parametrizations are
2 200F \\ 1F . \\ 1¢F ‘\\ \\ ] adopted, i.e., a Gaussian ofshort dashed lings
£ 100 |\\\L|———r——-' T L e and a Woods-Saxon—like orfileng dashed lings
o 508 o ' ARE N A ' A A ' R The left, central, and right panels correspond to
S 200 -——-~ =0.13 L L I S 017 different transition energy densitieg=0.8, 1.1,
% 300 f 1EF~ \ 1F \ . and 1.5 GeVfm?3. Calculations are performed
8 200 \\ 1F - \\ 1F ™~ \\ ] for the BHF nucleonic equation of state, and for
o 103 F I S N N SR e N two values ofag=0, 0.1.
@ 0 04 08 12 160 04 08 12 160 04 08 12 16

Baryon density p (fm™)
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£,=0.8 GeV fm g,=1.1 GeV fm” £,=1.5 GeV fm”
600 T T T [ T T T i T T T
—~ 500 - RMF a=0 1 [ RMF a=0 1 [ RMF =0 1
e 400 |R——~ 1 R——~ 1 k- .
< 300 | . \ 1F AN \ 1r \\\ \\ ]
% 200 | \\ \\ . = \\\ \ - - \\ \ a
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B.. can be readily calculated at the transition energy densityphase. In our previous pap¢6] we have used botiB,
(known from experimenjs which corresponds to a value of =200 MeV fm 3 and B,=400 MeV fm 3, and found that
the baryonic number densiy given by the hadronic equa- the results did not sensitively depend on it. Therefore in
tion of state, i.e., this work we limit ourselves to use the valuB,
=400 MeV fm 3.

We also use another extreme, Woods-Saxon-like, param-

etrization,
_=\1-1
1+exp( u” @3
Therefore we can determine a range of valuesBgr, that pd

are shown in Table I. . _ whereB, andB.. have the same meaning as described before

We limit ourselves to consider only two possible values offqy Eq. (42 andp has been fixed in the same way gor
as, i.e., as=0 andas=0.1, here and throughout this paper. the Gaussian parametrization. However, we have chosen sets
Although the values oB.. span a wide range, we have veri- of values forp andpg in such a way thaB remains practi-
fied that our results do not change appreciably by varyinga|ly constant at a valuB, up to a certain density and then
this value, since at large densities the quark matter EOS iérops toB.. almost like a step function. It is an extreme
dominated by the kinetic term on the right-hand Si&S)  parametrization in the sense that it will delay the onset of the
of Eq. (40). With those values oB.. we then construct tWo  quark phase in neutron star matter as much as possible. The
parametrizations oB as a function of the baryon density. parametrizations oB [Eqs.(42) and(43)] are shown in Fig.
First, we use a Gaussian parametrization given as 3 for BHF and Fig. 4 for RMF equations of state.

The complete results for the energy densities are shown in
Fig. 5 for the BHF and Fig. 6 for the RMF nucleonic equa-
tion of state(solid lineg. By assuming that the hadron-quark
transition takes place within a range of energy density val-
ues, we have considered three possible values of the transi-
tion energy density, i.e;=0.8, 1.1, and 1.5 GeV firt. We

_ 3
B.= EQ(p!Xp)_ Z

77_2 1/3
J

(1-2aglm

X[(1+X) 3+ (2—x,) *3]p™2. (41)

B(p)=B.+(Bo—B.)

(42

p\2
B(p)=Bm+(BO—Bw)ex;{ —,8(%) .

The parametep is fixed numerically by imposing that the
quark matter energy density from E40) matches the
nucleonic one at the desired transition dengitfherefore8  find that at very low baryon density the quark matter energy
depends only on the free parameBy=B(p=0). However, density is higher than that of nuclear matter, while with in-
the exact value 0B, is not very relevant for our purpose, creasing baryon density the two energy densities become
since at low density the matter is in any case in the nucleoniequal at a certain poir{tndicated by the full dgt and after
£,=0.8 GeV fm”

g,=1.1 GeV fm” £,=1.5 GeV fm”

2000 [ . . > . . o . . —— FIG. 5. The energy density is displayed vs
7 1600 E BHF #” 1 £ BHF 7”1 E BHF P g the baryon density for almost symmetric matter
E 1200 F i1t 1t e E (x,=0.4, solid ling in the BHF approach. The
> 3 3 ey 3 o E ; ;
® 800F _- it -2 1F -~ E left, central, and right panels correspond to differ-
% 400 <= a=0 { ==~ o=0 { = =0 3 ent transition energy densitieg,=0.8, 1.1, and
> 0 t t Hy } t H E } } } 3 1.5 GeV fmi 3. Those values are represented by
S 1600 F 1 ik P 3 the full dots. The shortiong) dashed lines repre-
3 1200 3 i¢E -~ i¢E /// ] sent calculations fou, d quark matter obtained
5 800F - 1t 7 1F 77 ] within the MIT bag model, withB parametrized
& 400 -7 0=0.19 p==* 0=014 == ,=0.17 as a GaussiafWoods-Saxopfunction. Two val-

w o » 1 1 1 » 1 1 1 » 1 1 1 3 1 . i
0 04 08 12 160 04 08 12 160 04 08 12 16 ues (.)f the QCD coupling constant=0, 0.1 are
. - considered.
Baryon density p (fm™)
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£,=0.8 GeV fm™~ €,=1.1 GeV fm” €,=1.5GeV fm~
2000 A Raaa

1600 F RMF 3
1200 |
800F
400 =0 3

FIG. 6. Same as Fig. 5, but for the RMF had-

1600 F ronic equation of state witk,=0.5.

1200 F
800 £ :
400 pr=” 0,=0.1

Energy density € (MeV fm™)
o

a=01d == #,=0.1

0 1 L 1 E 1 1 1 3 E 1 1 1
0 04 08 12 160 04 08 12 160 04 08 1.2 1.6

Baryon density p (fm™)

that the nuclear matter energy density remains always highestage, cannot be derived from the behavior of the energy
We identify this crossing point with the transition density density alone. In spite of that, some qualitative consider-

from nuclear matter to quark matter. ations can be done. In fact, we notice that the mixed phase
starts at values of the baryon density which increase with
B. Phase transition in B-stable neutron star matter increasingeqg, and that those values turn out to be weakly

With these parametrizations of the density dependence dfePendent 0[‘3 the values ofi; and as. However, if eq
B we now consider the hadron-quark phase transition in neu=1-> G&€Vfm *, no phase transition at all is present when
tron stars. In both the BHF and the RMF approach, we calthe Woods-Saxon-like parametrization Bfis adopted and
culate the EOS of a conventional neutron star as composébe BHF EOS is considered. In this case, neutron star matter
of a chemically equilibrated and charge neutral mixture ofalways remains in the hadronic phase. This does not hold for
nucleons, hyperons, and leptons. The result is shown by tHé&e RMF EOS(see Fig. 8 where a well-defined phase tran-
solid lines in Figs. 7 and 8, respectively. sition is present with each parametrization chosenBfoin

The dotted(dashed lines represent the EOS ¢fstable  this case the crossing points are shifted to values of baryonic
and charge neutrali(d,s) quark matter obtained within the densities slightly smaller than in the BHF case. Therefore, in
MIT bag model, withB parametrized as a Gaussian-like the RMF case, the onset of the mixed phase should start
(Woods-Saxon-like function. In particular, the left-hand earlier.
panels display calculations with a transition energy density Now we are ready to perform the Glendenning construc-
€=0.8 GeV fmi 3, whereas the central panels show the re-tion [34], which determines the range of baryon density
sults for eg=1.1 GeVfm 3 and the right-hand panels for where both phases coexist. The essential point of this proce-
€o=1.5 GeV fm 3. Two sets of values of the-quark mass dure is that both the hadron and the quark phase are allowed
and the QCD coupling constamnt are considered, namely, to be separately charged, still preserving the total charge neu-
ms=150 MeV,a;=0 (upper panelsand m¢=200 MeV,as trality. This implies that neutron star matter can be treated as
=0.1 (lower panels The full squaregdiamonds$ represent a two-component system, and therefore can be parametrized
the crossing points between the hadron and the quark phadey two chemical potentials. Usually one chooses the pair
They lie inside the mixed phase region, whose range, at thiu.,u,), i.€., electron and baryon chemical potentials. The

€,=0.8 GeV fm ™ g,=1.1 GeV fm” €,=1.5GeV fm~
7~ 2000 T

1600 | m,=150, 0,=0

-3,

F m=150, o =0 i F ms=150, =0 3
F - F

1200 | E i F 7 3
800 F 3 - ;
400 F - BHF
L L L L 3

T T T A

1600 - m,=200, 0,=0.1. 3

1200 F
800 F
400 =

Energy density ¢ (MeV fm
o

o » 1 1 1 3 1 1 3 1 1 1 3
0 04 08 12 160 04 08 12 160 04 08 12 16

Baryon density p (fm™)

FIG. 7. The energy density is displayed vs the baryon densitp{stable matter in the BHF approacplid line). The dotteddashed
lines represent calculations far d, s quark matter obtained within the MIT bag model, wBhparametrized as a Gaussian-lig&'oods-
Saxon-likg function. The left, central, and right panels correspond to different transition energy deagii€s8, 1.1, and 1.5 GeV fire.
The full squaregdiamond$ are the crossings between the hadron and the quark phase. Two sets of values-@fidhe mass and QCD
coupling constant are considerad;=150 MeV,as=0 (upper panelsandms=200 MeV,as=0.1 (lower panels See text for details.
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3 1200 F iF it 3

= 800 | it it -~ 3

© 400 -7 RMF] <> RMF] RMF 3
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pressure is the same in the two phases to ensure mechanigarametrized with a Gaussian-likéWoods-Saxon—like
stability, while the chemical potentials of the different spe-function. This result holds for both the BHF and RMF de-
cies are related to each other satisfying chemical @refla-  scription of the hadronic phase. Therefore, when the quark-
bility. The Gibbs condition for mechanical and chemical hadron transition takes place &4=0.8 GeVfm 3 in sym-
equilibrium at zero temperature between both phases readsnetric matter, the corresponding neutron stars are
characterized in some cases by the absence of a crust, with a
Prp( e, in) =Porl e s in) = Pup- (44 mantle made of a mixed phase plus a pure quark phase in the
.core. In other cases, neutrons stars will have a crust and a

From this equation we can calculate the equilibrium Chem"very thin, purely hadronic layer, followed by a large mixed

cal potentials of the mixed phase corresponding to the inter-hase and a heavy quark core

section of the two surfaces representing the hadron and the When the transition in symﬁetric matter takes place at
guark phase. At densities below the mixed phase, the system
is in the charge neutral hadronic phase, and above the pres-
sure of the charge neutral quark phase is higher than the on BHF RMF

in the mixed phase. Therefore the system is in the quark 30 b U T T U T
phase. The intersection of the two surfaces allows one t¢ ./ [ m 150, a0 11
calculate the charge densitip§"” and p2 and therefore the | '
volume fractiony occupied by quark matter in the mixed 10
phase, i.e., I

MP

QP _ HP_ |
xpc t(1=x)pc =0. (45) o0 b m=200, 0,=0.1
. . . E I
From this, the energy densityj,» and the baryon density ">' 10
pmp Of the mixed phase can be calculated as 2 I
€ , ,
emp=x€qpt (1= x)€np, (46) % L (ws) {1 ws)
5 20 | M=150, 0,=0 4 L m=150, 0,20 ]
pmp=XPaopt (1= X)pHp- (47) a QP
@ 10 MP
o

The resulting EOS’s for neutron star matter, according to
the different bag parametrizations and hadronic EOS’s, are
reported in Figs. 9, 10, and 11 fo¢,=0.8, 1.1, and
1.5 GeV fm 3, respectively. In those figures, we display the
pressure versus the baryon density for the chosen parametr 10
zations ofB. The lef(right)-hand panels represent the calcu-

lations performed with the BHFRMF) EOS. The shaded 95
area represents the mixed phase. A pure quark phase |
present at densities above the shaded area and a pure ha.

ronic phase is present below it. . . FIG. 9. The total EOS including both hadronic and quark

We note73that, for a low transition densityq  components is displayed for a transition energy density
=0.8 GeVfm~ (see Fig. 9, the pure hadron phase can be g Gev fnr 2. Different prescriptions for the quark phase are
completely absent in some cagese panels a,b,9,avhereas  considered, whereas the hadronic phase is described within the BHF
in the other casefpanels d.f,g,ha small hadronic compo- (left-hand panelsand the RMF(right-hand panelsapproaches. In
nent is always present. The mixed phase starts at low baryaf)l cases the shaded region, bordered by two dots, indicates the
densities, well below the threshold for hyperon formation,mixed phase MP, while HP and QP label the portions of the EOS
and extends up to 0.6®.77) fm~3 when the bag constant is where pure hadron or pure quark phases are present.

1} ws
L m =200, 0,=0.1

L (ws)
| m_=200, 0,=0.1

MP,

8 10

Baryon density p (fm™)
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FIG. 10. Same as Fig. 9, but fep=1.1 GeV fm 3.

eo=1.1GeV fm 3 (Fig. 10 [6], we observe naturally a shift
of the onset of the mixed phase towards larger baryonic de
sities, although it turns out to be still slightly smaller than the
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used, the mixed phase extends from 0.15-0.21-0.2%
fm~3 up to 0.7(0.9 fm~3, with a slight dependence on the
s-quark mass and the QCD coupling constant In all
cases, from Fig. 10 we notice that the hadronic phase is
always present, although it is limited to a narrow range of
low densities. In this case, neutron stars will always possess
a hadronic layer and a crust.

Finally, when the transition in symmetric matter takes
place ateg=1.5 GeVfm 2 (Fig. 11), a new scenario can
appear. In fact, when the Woods-Saxon—like parametrization
is used forB and the BHF EOS is used for the hadronic
componenipanels c, @ no phase transition to quark matter
is observed, and neutron star matter remains in the hadronic
phase. Pure hyperon stars are then produced. In the RMF
case(panels g, hthe onset of the mixed phase is shifted to
0.4-0.47 fm?3 and extends up to about 1.25 frh This
gives rise to neutron stars with a thick hadronic layer. How-
ever, when the Gaussian-like parametrization is used, the
mixed phase starts at the same low densities as before and
extends up to 0.84.77 fm~3 when the BHRRMF) EOS is
adopted.

Therefore, when the Gaussian-like parametrizatioB
used, the onset of the mixed phase is localized at low densi-
ties and remains almost constant with changing the transition
energy density in symmetric matter. If a Woods-Saxon—like
parametrization is chosen, the mixed phase will start at

rhigher baryon densities, its value changing according to the

value of the transition energy density in symmetric matter. In

density for hyperon formation in pure hadronic matter. ofthis way, we are exploring a_\{vhole set of possible sgenarios
course hyperons are still present in the hadron component &f duark-hadron phase transitions, and a corresponding set of
the mixed phase. In particular, when the Gaussian-likdl€utron star configurations.

(Woods-Saxon-likeparametrization of the bag constdhis

300 7T
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200 F m,=150, 0,=0
150 |
100
50
0 o
250 | (@) b) 4
“;’A 200 | m.=200, 0=0.1
E isf QP  1F
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s sof
- 0
T 250 | ws)
5 200} m=150, 0,=0
2 150 F
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] fHe
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. 11. Same as Fig. 9, but feg=1.5 GeV fi 3.

It has to be stressed that when the Gaussian parametriza-
tion for B is used, the density of the hadron component
reaches only moderate high values. The highest value is ob-
tained at the end of the mixed phase, where pure quark mat-
ter appears. When the transition density is fixed egt
=1.1 GeVfm 3, this maximum hadron density is about 2.5
times the saturation density, with no hyperon component. For
such a range of density the hadron EOS can be considered
well established, with only little uncertainities. Whed,
=1.5 GeVfm 2 is assumed, the maximum hadron density is
about 4 times saturation density, but with a 20% content of
hyperons. For these density values the microscopic theories
can still produce reliable predictions on the hadron EOS.
Similar considerations apply when the Wood-Saxon param-
etrization is considered, except of course when no mixed
phase is present. This parametrization, however, has to be
considered less realistic, since it is devised to shift to artifi-
cially high density the onset of the quark phase.

C. Structure of neutron stars

We assume that a neutron star is a spherically symmetric
distribution of mass in hydrostatic equilibrium. The equilib-
rium configurations are obtained by solving the Tolman-
Oppenheimer-VolkoffTOV) equationg 1] for the pressur®
and the enclosed mass
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FIG. 12. The mass-radiugeft panel$ and mass-central density FIG. 13. Same as Fig. 12, but fep=1.1 GeV fm ~,

(right panel$ relations are displayed foeq=0.8 GeV fm 3 and
several parametrizations of the bag const@ntin particular the including hyperons. We note that the inclusion of hyperons
dot-dasheddotted lines represent the calculations performed with gives a low value of the maximum mass equal to M26in
m=150 MeV, as=0 (m;=200 MeV, a;=0.1) and the Gaussian- the BHF case. This value lies below the best observed pulsar
like parametrization oB, whereas the dashetbng-dashefilines mass, PSR191613, which amounts to 1.44 solar masses
represent the calculations performed with=150 MeV, as=0  [38]. In the case of the RMF model, the corresponding EOS
(mg=200 MeV, a,=0.1) and the Woods-Saxon-like parametriza- produces values of the maximum mass close td/1,7
tion of B. Calculations performed with the BHRMF) EOS for the The possible occurrence of a quark core is usually as-
hadronic component are displayed in the upfewen panels by 5 med to further soften the EOS and lower the maximum
the solid lines. mass. This is indeed the case in the RMF model, as apparent
in Figs. 12, 13, and 14ower panels However, the situation
is reversed in the BHF case, where the EOS becomes, on the
contrary, stiffer. Correspondingly, the inclusion of the quark
component has the effect of increasing the maximum mass in
the BHF case and of decreasing it in the RMF case. This can
be clearly seen in Figs. 12, 13, and 14, which display the
(48) results with a transition energy density in symmetric matter
equal to 0.8, 1.1, and 1.5 GeV frd, respectively. The maxi-
dm(r) ) mum value of the neutron star mass lies in the range
gy 4mre(r), (49 1.4M <M ,=1.7M, independent of the EOS used for
the hadronic component, and no matter which parametriza-
G being the gravitational constant. Starting with a central
mass density(r =0)=¢€., we integrate out until the pres- 2 r r r 1 e
sure on the surface equals that corresponding to the density 1
of iron. This gives the stellar radiuR and the gravitational
mass is then 012 F

=,
[<]

dP(r) B Gm(r)e(r)
dr r?

[1+P(r)/e(r)][1+4ar3P(r)/m(r)]
% 1-26m(n)ir :

R 08 P
MGEm(R):47-rj drr2e(r). (50) 0a b
0

We have used as input the equations of state displayed in
Figs. 9, 10, and 11. For the description of the NS’s crust, if
present, we have joined the hadronic equations of state with e 12
those by Negele and VautheriB5] in the medium-density
regime, and those by Feynman, Metropolis, and TeB&i]
and Baym, Pethick, and Sutherlaff¥] for the outer crust. 04
The results are plotted in Figs. 12, 13, and 14. We display 0
the gravitational masll g (in units of the solar mad¥l ) as 6
a function of the radiusR (left-hand panelsand central
baryon densityp, (right-hand pane)s The solid line repre- FIG. 14. Same as Fig. 12, but fep=1.5 GeV fm 3. Only the
sents the calculation fgB-stable asymmetric nuclear matter Gaussian-like parametrizations Bfare displayed.

=08 |
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10" ] ] tained foreg=1.1 GeV fnr 3. In the left (right)
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1015 00, 0,=0.1 200, ¢,,=0.1 3 describing the hadronic component, and the MIT
10 HP 1Y HP T bag model with a Woods-Saxon parametrization
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1
a 012 7 1 3 (ms=200 MeV, as=0.1).
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tion chosen foiB. It depends only weakly on the transition value, whetheB is density dependent or not, is dominated

energy density in symmetric matter. The configurations oty the quark EOS at densities where the bag constant is

the NS with a quark core are characterized by a smallemuch smaller than the quark kinetic energy. The constraint

radius and a higher value of the central density, compared tooming from heavy-ion reactions, as discussed above, is rel-

the pure hadronic casesolid lineg. In some cases, these evant only to the extent that it restric& at high density

stars have no crust at all, since in the EOS the hadroniwithin a range of values, which are commonly used in the

component is missing. literature. This can be seen also from Fig. 16, where the
In Fig. 15 we plot a typical density profile for a star with (density independentvalue ofB=90 MeV produces again a

canonical mass 1M, obtained when the transition energy maximum value around 1.5 solar masses.

density in symmetric matter is equal to 1.1 GeVf[6]

and B has been parametrized as a Woods-Saxon-like func-

tion, with two different choices ofng and as. On the left- V. CONCLUSIONS

hand panels we plot the result obtained when the BHF EOS \ne studied neutron star properties, in particular NS's

has been used for the hadronic component, whereas on he,,imym masses, using an EOS which combines reliable

right-hand panels the corresponding case obtained with theng's for hadronic matter and a bag model EOS for quark
RMF EOS is shown. We observe that a large part of the core

is composed of pure quark matt@bout 6 km, then a thick 400 0
layer of a couple of kilometers is in the mixed phase, fol- BHF
lowed by a modest hadronic zone and a thin crust. This ge- .. 300 | {1 16}
neric profile turns out to be only slightly dependent on the Tg 200
EOS used for the hadronic component. 3
Some remarks should be made about the behavior of thlE’ 100
mixed phase. As one can see clearly from Figs. 12, 13, anc 0
14, the presence of a mixed phase produces a kind of platea 400
in the mass versus central density relationship, which is @ g4
direct consequence of the smaller slope displayed by alrf;
EOS’s in the mixed phase regigsee Figs. 9, 10, and L1n S 200
this region, however, the pressure is still increasing mono-2 100
tonically, despite the apparent smooth behavior, and no un
stable configuration can actually appear. We found that the . .
appearance of this slow variation of the pressure is due to th 0 04 08 12 16 0 04 08 12 16
density dependence of the bag constant, in particular the oc p (im~) P (im )
currence of the density derivative of the bag constant in the = 16 |1 the left panel is shown the EOS for neutron star

pressure and chemical potentials, as required by thermody;ayer(dashed lines labeled by HRP) for a density independent

namic consistency. To illustrate this point we calculate thg, g e of the bag constai®=90 MeV fm~3, with BHF and RMF

EOS for quark matter with a density-independent value ohagronic equations of state. The shaded areas indicate the mixed

B=90 MeVfm 2 (see Fig. 1§and the corresponding nNeu- phase region. The corresponding masses vs central densities are

tron star masses. The EOS is now quite smooth and the maggown on the right panels. In all cases the thin and thick lines

versus central density shows no indication of a plateau.  correspond to the results obtained for a pure quark and a pure had-
Finally, it has to be pointed out that the maximum masson EQS, respectively.

— HP p

/ ---HP+GQP
,// — aP 3
’I

P (MeV

0
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matter. We found that a density-dependBris necessary to between 1.4 and 1.7 solar masses. This is compatible with
get the transition to the quark-gluon plasma in nearly symthe observational data obtained so far, including the most
metric nuclear matter at an energy density that is well aboveecent one$39].
saturation density and in a range of values that can be con- The value of the maximum mass is mainly determined by
sidered compatible with the CERN-SPS and RHIC findingghe quark component of the neutron star and by the corre-
on the phase transition from hadronic matter to quark mattesponding EOS. In this sense, one can say that the value of
We considered a wide range of values, from 0.8 GeVim the neutron star maximum mass can be a good testing ground
to 1.5 GeVfm 3, in order to establish the sensitivity of the for the quark EOS, rather than the hadron EOS. Indeed, the
results on the assumed value of the transition energy densityalue of the maximum mass of neutron stars obtained ac-
For a given value of the transition density for symmetriccording to our analysis appears robust with respect to the
nuclear matter, the corresponding transition in neutron stauncertainties of the nuclear EOS, and the obtained range of
matter, i.e.,3-stable matter, occurs in general at substantiallyvalues is mainly due to the uncertainties of the quark EOS.
lower energy density. It is essential, in this respect, that in th&imilar conclusions have been found by other authdf}
calculations strange matter is included and allowed to deen the basis of purely phenomenological hadronic equations
velop inside neutron star matter, since the appearence off state. However, the structure and composition of the neu-
strange matter tends in general to soften the EOS. The resulton stars can be quite different.
show that the NS maximum mass is clearly correlated with Other recent calculations of neutron star properties em-
the assumed value of the transition energy density. For ploying various RMF nuclear EOS's together with either ef-
given transition density, the maximum mass falls in a narrowfective mass bag modé41] or Nambu-Jona-Lasinio model
range, nearly independent of the details of the parametrizd42] EOS'’s for quark matter also give maximum masses of
tion of the bag model. As the transition density is made toonly about 1.K, even though not constrained by hints
vary, the value of the maximum mass is shifted. In general itoming from the CERN-SPS and RHIC data. Therefore, ac-
decreases at increasing value of the transition energy densigprding to our results, the experimental observation of a
if the hadron EOS is computed within the microscopic BHFheavy M >1.8M) neutron star, as claimed recently by
scheme. The trend is reversed with the hadron EOS consome group$43] (M ~2.2M ), if confirmed, would suggest
puted within the relativistic mean field method. However,that serious drawbacks are present for the possible descrip-
this correlation appears to be rather weak, and the full ranggon of the high-density phase of quark matter within the bag
of possible values of the maximum mass turns out to benodel.
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