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Path-integral hadronization for the nucleon and its interactions
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Nucleon structure and the origin and nature of the nuclear force are investigated in the context of a quantum
chromodynamics motivated effective Lagrangian for quark and diquark fields and the path-integral method of
hadronization. We start from a microscopic model of quarks and diquarks where the gluons have been inte-
grated out. In particular, we use the chiral Nambu–Jona-Lasinio model to describe quark dynamics and assume
that the nucleon can be conceived as a quark-diquark relativistic bound state. The hadronization method is then
used to rewrite the problem in terms of the physical meson and nucleon degrees of freedom. Next, by
employing a loop expansion of the resulting quark/diquark determinants, we arrive at an effective chiral
meson-nucleon Lagrangian. Nucleon properties such as mass, coupling constants, electromagnetic radii,
anomalous magnetic moments, and form factors are derived using a theory of at most two free parameters.
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I. INTRODUCTION

Understanding the origin and nature of the nuclear fo
remains the central problem in nuclear physics. In spite
the belief that we have attained the fundamental theory
the strong interactions-quantum chromodynamics~QCD!,
this theory still eludes a satisfactory and complete desc
tion. The basic problem of QCD is that its natural and fu
damental degrees of freedom, quarks and gluons, are no
observable baryon and meson states of the strong interac
Thus bridging the gap between the fundamental and obs
able degrees of freedom stands as one of the stark challe
of nuclear/elementary particle physics today. Although we
have anab initio approach to solve this problem, that i
lattice QCD, this endeavor is still miles away from achievi
such a goal. This naturally motivates us to resort to nonp
turbative QCD-motivated approaches of which this study
one.

In the present paper, we address this lingering miss
link by deriving a chiral meson-nucleon Lagrangian from
microscopic model of quarks and diquarks using pa
integral methods. Chiral symmetry and its spontane
breaking have consistently proven to be key concepts in
derstanding meson and baryon structure and many fea
of the nuclear force@1–4#. The gist of this paper is as fol
lowing. We start from a QCD-motivated effective Lagran
ian to describe quark dynamics where the gluons have b
integrated out. This is the SU(2)L3SU(2)R Nambu–Jona-
Lasinio ~NJL! model that accommodates most of QCD sy
metries@5,6#. Guided by general principles, we then assu
that the nucleon can be described as quark-diquark cor
tions and introduce diquarks@7,8# as elementary fields in th
problem. This assumption hinges upon the dynamical
that two quarks can combine to form a color antitriplet lea
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ing with the third quark to the formation of a color-singl
bound state, a baryon. Moreover, this assertion is vindica
by a mounting experimental evidence that diquarks pla
dynamical role in hadrons@9–17#.

We verify that only two kinds of diquarks are relevant f
nucleons: the scalar isoscalar and the axial-vector isove
By introducing composite meson and nucleon fields throu
the method of path-integral hadronization and then usin
loop expansion of the resulting quark/diquark determinan
we arrive at an effective chiral meson-nucleon Lagrangi
The path-integral hadronization used here consists of
steps: bosonization to produce mesons as quark-antiq
correlations and what we label as ‘‘fermionization’’ whic
generates baryons as quark-diquark correlations. In
model, mass, coupling constants, electromagnetic ra
anomalous magnetic moments, and form factors of the c
posite nucleon are calculated in terms of at most two f
parameters.

In this fashion, our treatment parallels, in the sense
calculating nucleon physical observables, the approach o
ing the Faddeev equation@18# for three quark states@19–22#,
or the approach of using static quark exchange@23#, the Sal-
peter equation@24–26#, or the fully relativistic Bethe-
Salpeter equation@27–29# for a quark-diquark system. None
theless, our formalism yields, in addition to nucleo
observables, a Lagrangian of the quantum hadrodynam
~QHD! type @30,31# that describes the rich meson-nucle
interactions in a fully covariant and chirally symmetric fo
malism.

While this program is applied to the case of deriving
effective Lagrangian for nucleons and mesons, it is certa
of general nature and can possibly be applied alternativel
yield prolifically other baryons and their interactions such
the D particle. Moreover, the idea of using path-integr
techniques to transform a Lagrangian from its fundamen
to its composite degrees of freedom is a powerful concep
physics of immense impact and utility. As a matter of fa
the authors of Ref.@32# have recently invoked such path
integral techniques in their study of high-temperature sup
conductivity. They succeeded in doing so by converting
©2002 The American Physical Society06-1
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model of strongly correlated electrons into an effective U~1!
gauge field Lagrangian in terms of composite fields.

The use of path-integral hadronization to derive a mes
baryon Lagrangian has been introduced in Refs.@33–35# and
applied to baryons with heavy quarks@36,37#. Based on
these ideas, the authors of Ref.@38# attempted to construc
such an effective Lagrangian for the nucleon using only s
lar diquarks. They derived correctly the structure of t
meson-nucleon Lagrangian, proved the Goldberger-Treim
relation, and attempted to evaluate the axial-vector coup
constantgA as an application of their formalism. Their anal
sis and numerics forgA contain, however, few problems a
well as an uncertainty due to the lack of a proper gau
invariant regularization scheme. In the present paper, we
tend their work by deriving the structure of the correspon
ing Lagrangian using both axial-vector and scalar diqua
employ a gauge-invariant regularization scheme through
our analysis, and verify the Ward-Takahashi identity and
Goldberger-Treiman relation. Furthermore, we present a
numerical study of various nucleon observables for the c
of scalar diquarks drawing special attention to the role of
intrinsic diquark form factor. We concentrate our analy
first on the scalar-diquark case for simplicity and due to
predicted dominance of this type of diquark in the nucle
@34,39–41#. Thus after more than ten years since the int
duction of the idea of path-integral hadronization, this f
malism is finally used to calculate nucleon structure and
observables.

The paper has been organized as follows. In Sec.
microscopic model for quarks, diquarks, and their inter
tions is developed and meson and nucleon fields are in
duced as auxiliary fields in the problem. The hadronizat
method is then invoked in Sec. III to rewrite the microscop
Lagrangian in terms of composite meson and nucleon fie
Next, a loop expansion is employed to calculate seve
terms in the Lagrangian including the nucleon self-ene
and electromagnetic vertex. The issue of regularization
also examined and the Ward-Takahashi identity and
Goldberger-Treiman relation are verified. In Sec. IV a f
numerical study for the nucleon is presented. Finally a su
mary and conclusions are provided in Sec. V, as well a
discussion of some of the challenges and opportunities
remain.

II. A MICROSCOPIC MODEL OF QUARKS, DIQUARKS
AND THEIR INTERACTIONS

A. Nambu-Jona-Lasinio model

In our model we treat the quarks using the NJL mo
where quarks interact through a four-point local fermio
fermion coupling. The highlights of the model are its inco
poration of all global symmetries of QCD as well as its p
diction of many features of QCD such as dynamical ch
symmetry breaking and its restoration@6,9,42,43#. Moreover,
this model has been motivated, if also not derived, us
lattice QCD@44#, continuum QCD@42,43,45–48#, and Yang-
Mills theories@49#. The locality assumption of the model ha
been justified for low-energy QCD@49#, and inspired by
strong-coupling lattice quantum electrodynamics~QED!
02520
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@9,50#. The main problem of the NJL model continues to
the absence of confinement. Therefore, the success of
model rests on observables that are insensitive to the de
of confinement. It is noteworthy here that various attem
have been made to include the effects of confinement wi
the NJL model@42,51#.

We start from an NJL Lagrangian satisfying SU(2L
3SU(2)R chiral symmetry and SU(3c) global color symme-
try,

LNJL5q̄~ i ]”2m0!q1
G

2
@~ q̄q!21~ q̄ig5tWq!2#. ~1!

Here q is the current quark field,tW are the isospin~flavor!
Pauli matrices,G is the NJL coupling constant, andm0 is the
current quark mass which explicitly breaks chiral symmet
The color and flavor indices are suppressed in this expres
and assumed to be so for the rest of the paper unless ex
itly shown. Starting from this Lagrangian, we construct t
corresponding vacuum partition function as

Z5N1E DqDq̄ expi E d4x@LNJL#, ~2!

whereN1 is a normalization constant.

B. Introduction of meson fields

Composite scalar (s;q̄q) and pseudoscalar (pW

;q̄ig5tWq) meson fields are introduced as auxiliary fields
the problem. This is done by multiplying the NJL partitio
function of Eq.~2! by the term~with N2 being another nor-
malization constant!

N2E DsDpW expi E d4xF2
1

2G
~s21pW 2!G . ~3!

At this stage, no modifications have been made to the un
lying dynamics of the Lagrangian as this multiplicative fa
tor is merely an overall constant in the partition function. W
impose the following transformation:

s→s1Gq̄q,

p i→p i1Gq̄ig5t iq, ~4!

in order to eliminate the quadratic terms@;(q̄q)2# of the
NJL Lagrangian. Using translational invariance of the in
gration measureDsDpW , this results in the expression

N3E DsDpW DqDq̄ expi E d4x

3F q̄~ i ]”2m02s2 ig5tW•pW !q2
1

2G
~s21pW 2!G .

~5!

The prescribed change in field variables is nothing but
Hubbard-Stratonovich transformation@52,53#. We label the
6-2
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resulting Lagrangian as the ‘‘semibosonized’’ one since
have already introduced the boson~meson! fields but have
not yet integrated over the quark ones. The current qu
massm0 is then absorbed into the definition of the fields
and the meson fields are further transformed according to
nonlinear parametrization@s,p#→@s8,F#,

s1 ig5tW•pW 5~mq1s8!expS 2
i

Fp
g5tW•FW D , ~6!

where Fp593 MeV is the pion decay constant andmq
[^s&0 is the constituent quark mass which is fixed throu
a gap equation in the meson sector@6,42,43#. Accordingly,
the NJL Lagrangian is converted to

LNJL5dLsb2
1

2G
~s81mq!2

1q̄F i ]”2~mq1s8!expS 2
i

Fp
g5tW•FW D Gq. ~7!

Here, thedLsb5O(m0) is the symmetry-breaking mass ter
given by

dLsb5
mq1s8

16
m0trFexpS 2

i

Fp
g5tW•FW D1H.c.G , ~8!

where the trace is taken over flavor and Dirac indices.

C. Diquarks

In studying the Lorentz and flavor structure of theqq

correlations, we find five possible types: the scalarq̃q, pseu-
doscalarq̃ig5q, vectorq̃gmq, axial vectorq̃gmg5q, and ten-
sor q̃smnq diquarks. Hereq̃[qTC21g5i t2 whereT stands
for transpose andC215 ig2g0 is the inverse charge
conjugation matrix. Moreover, we identify two isospin stru
tures for each of these five Lorentzqq formations. Explicitly,
we have an isoscalar and an isovector diquark by insertin1
and tW betweenq̃ and q. It has to be noted here that theq̃
spinor has the same transformation properties asq̄ in the
Lorentz and isospin groups.

A question arises concerning how many of these ten
quarks are needed to form the nucleon. Using permuta
symmetry and Fierz transformation, we have verified an e
lier assertion@54# that only two diquark formations are inde
pendent for the nucleon if the nucleon field is to be written
a local operator of three quarks. This result is consistent w
the fact that in constituent quark models@55#, the nucleon
wave function is constructed using only scalar and ax
vector diquarks. Hence, we introduce two diquarks as
ementary complex fields:DW m as an axial-vector isovecto
field with electric charge5 $4/3, 1/3, -2/3% andD as a scalar
isoscalar field with a charge5 $1/3%.

D. Quark-diquark interaction terms

Quark-diquark interaction terms are introduced to fo
the nucleon as a relativistic bound state of quarks and
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quarks. We consider such an interaction in a local form. T
is essentially the static approximation of solving the thre
body equations for baryons within the NJL model@21,41#. It
is more convenient here, in terms of forming a chirally i
variant quark-diquark couplings, to work with the chiral
rotated ‘‘constituent’’ quark fieldx defined by@74#

x[expS 2
i

Fp
g5

tW

2
•FW D q. ~9!

The range of possible symmetry preserving interact
terms is limited@75#. This provides a highly welcomed dy
namical constraint in our treatment. Discarding for a mom
interaction terms describing a possible scalar axial-vec
mixing @see Eq.~13! below#, we may choose the following
term for the quark scalar-diquark interaction:

LqD;G̃~ x̄D†!~Dx!, ~10!

while we may select

LqDW m;G̃~ x̄gmg5tW•DW m
† !~DW n•tWgng5x!, ~11!

for the quark axial-vector diquark coupling. Our choice f
the full interaction term is dictated by the need to produ
the nucleon as a linear combination of axial-vector and sc
diquarks according to

B;G̃~sinuDW m•tWgmg5x1cosuDx!. ~12!

In the above expressionsG̃ is the quark-diquark coupling
constant with mass dimension@G̃#5m21, while u is a mix-
ing angle for the two diquark contributions. These are, as
shall discuss below~see Sec. IV A!, the only free parameter
in our model.

E. Microscopic Lagrangian

Electromagnetic interactions are introduced in our mo
through the canonical method of covariant derivatives in
quark and diquark Lagrangians. We proceed to form the
croscopic Lagrangian by batching the diquark contributio
the quark-diquark interaction terms including mixing, a
the semibosonized NJL Lagrangian of Eq.~7! after the field
transformations of Eq.~9!, to obtain the following Lagrang-
ian as our input model:

L5x̄S21x2
1

2G
~s81mq!21dLsb1D†D21D1DW †mD̃mn

21DW n

1G̃~sinux̄gmg5tW•DW m
† 1cosux̄D†!

3~sinuDW n•tWgng5x1cosuDx!, ~13!

where

S215S0
211M, ~14a!
6-3
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M52Fgm
tW

2
•VW m

p1gmg5
tW

2
•AW m

p1s81gmQqAm
EMG .

~14b!

HereS21 is the modified inverse propagator that includes
free inverse propagatorS0

215( i ]”2mq) for the quark field
and the interaction matrixM. Note that Qq5diag(2/3,
21/3) is the quark charge. TheM matrix contains all inter-
action vertices of the quark with meson and electromagn
fields. The quark interacts with the pion through vectorVW m

p

and axial-vectorAW m
p functions of the pion field. These aris

from the derivative termi ]” following the transformation of
Eq. ~9!. Precisely, these functions are defined through
Cartan decomposition (jW[FW /Fp),

expS 2
i

2
g5tW•jW D ]mexpS i

2
g5tW•jW D

5
i

2
g5tW•AW m

p~j!1
i

2
tW•VW m

p~j!. ~15!

TheM matrix also encompass pion-photon and weak ga
boson vertices which are not shown for brevity.

In the above Lagrangian, we use the modified scalar
quark inverse propagator

D215D0
211 iQSAm

EM~]Wm2]Qm!, ~16!

and the modified axial-vector diquark inverse propagator

D̃mn
215D̃0mn

211 iQA@~Am
EM]Q n2An

EM]Wm!2gmnAa
EM~]Qa2]Wa!#,

~17!

where we have omittedO(QS
2) andO(QA

2) terms for brevity.
Each of these expressions includes the free inverse prop
e
th

ly
n
re
p
se
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tor as the kinetic and mass term, and the electromagn
interaction vertex. Explicitly, the free inverse propagator
the scalar diquark is

D0
2152~]21MS

2!, ~18!

while the one for the axial-vector diquark is

D̃mn
2151^ @gmn~]21MA

2 !2]m]n#, ~19!

where1 is the unit matrix in the three-dimensional isospac
Here QS51/3 andQA5diag(4/3,1/3,22/3) are the charges
of the scalar and axial-vector diquarks, respectively. T
modified axial-vector diquark propagator encompasses~not
shown! weak interaction terms.

F. Introduction of nucleon fields

There is still one missing component in our microscop
model: collective nucleon fields. Therefore, a nucleon fieldB
is introduced as an auxiliary one by multiplying the partitio
function of the Lagrangian of Eq.~13! by the term

N4E DBDB̄ expi E d4xF2
1

G̃
B̄BG , ~20!

whereN4 is a normalization constant. In a similar fashion
Eqs. ~3!, ~4!, and ~5!, we transform the field configuration
according to

B→B1G̃~sinuDW n•tWgng5x1cosuDx!,

B̄→B̄1G̃~sinux̄gmg5tW•DW m
† 1cosux̄D†!. ~21!

As a result, the quark-diquark interaction term in Eq.~13! is
rewritten as
expi E d4xG̃~sinux̄gmg5tW•DW m
† 1cosux̄D†!~sinuDW n•tWgng5x1cosuDx!

5N4E DBDB̄expH i E d4xF21

G̃
B̄B2B̄~sinuDW n•tWgng5x1cosuDx!2~sinux̄gmg5tW•DW m

† 1cosux̄D†!BG J . ~22!
ar-
rm
ty

ve
This procedure completes the introduction of composite m
son and nucleon fields into the problem and wraps up
construction of the microscopic model.

III. DERIVATION OF A MESON-NUCLEON LAGRANGIAN

A. Hadronization of the microscopic model

At this point we have a Lagrangian that involves on
quarks and diquarks as dynamical fields with kinetic a
mass terms while the meson and nucleon fields are me
auxiliary ones. Additionally, the quark and diquark fields a
pear in bilinear forms appropriate for integration as a con
-
e

d
ly

-
-

quence of eliminating the interaction terms. Thus, we re
range the expressions involving the quark fields into the fo
x̄S21x2h̄x2x̄h, and use the fermion path-integral identi
~Det stands for determinant!,

E DxDx̄ expi E ~ x̄S21x2h̄x2x̄h!

5Det~S21!expS 2 i E h̄Sh D , ~23!

to integrate over the quark fields. In doing so, we would ha
6-4
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accomplished the path-integral bosonization that deliver
mesons their full dynamical character@6,43#. We still need to
integrate over the axial-vector and scalar diquark fields
order to achieve a meson-nucleon Lagrangian. Thus, we
the terms that involve the diquark fields into the formw†Kw

wherew5(DW m,D)T, and use the boson path-integral identi

E Dw†Dw expi E ~wKw†!5@Det~K!#21. ~24!

This final integration procedure is what we label as fermio
ization as it produces fermions from boson-fermion corre
tions. The quark-diquark dynamics has been absorbed by
composite meson and nucleon fields. We have at last f
‘‘hadronized’’ the quark and diquark Lagrangian. The micr
scopic model of quarks and diquarks has been converted
a ‘‘macroscopic’’ model of mesons and nucleons posses
the same~approximate! chiral symmetry as the original mi
croscopic fields. Notice that the quarks and diquarks do n
appear only as virtual particles in loops and are described
corresponding propagators and interaction vertices.

Next, we use the relation Det(M )5exp tr ln(M), to re-
write the determinants as Lagrangian terms of meson
nucleon fields. Thereupon, we arrive at a compact ch
meson-nucleon Lagrangian given by

Leff5dLsb2
1

2G
~s81mq!22 i tr ln S21

2
1

G̃
B̄B1 i tr ln~12h !1 i tr ln~12D0EM Int!

1 i tr ln~12D̃0EM Int!. ~25!

Here the trace is over color, flavor, and Lorentz indices wh
the ‘‘EM Int’’ label stands for the electromagnetic interactio
terms of each of the diquarks as given in Eq.~16! and Eq.
~17!. Furthermore,

h5S A F2

F1 S D , ~26a!

where

A m i ,n j5sin2u B̄grg5tkD̃
rk,m iSt jgng5B, ~26b!

S5cos2u B̄DSB, ~26c!

~F1!n j5sinucosu B̄DSt jgng5B, ~26d!

~F2!m i5sinucosu B̄D̃rk,m igrg5tkSB. ~26e!

The configuration and color indices have been omitted
simplicity. The effective hadron Lagrangian of Eq.~25! con-
tains plenty of rich physics. It encompasses, through the l
expansion in the tr ln terms, kinetic and mass terms
nucleons and mesons together with a multitude of poss
interaction terms of mesons, nucleons, and electrow
gauge bosons. It comprises terms describing the various e
02520
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troweak interactions of mesons and nucleons such as m
photoproduction~the Kroll-Ruderman terms@56#!, and in ad-
dition, it includes terms for meson-meson and nucleo
nucleon scattering. Nonetheless, the most desired part o
Lagrangian is the prized meson-nucleon interaction a
nucleon-nucleon vertices which delineate the nuclear for

B. Self-energy diagram and kinetic terms

The physics in the Lagrangian becomes manifest in te
of loop expansions of the resulting quark-diquark determ
nants. We concentrate here on the nucleon sector whic
contained in the termsi tr ln(12h)2(1/G̃)B̄B. Nicely, the
expansion

tr ln~12h !52trS h1
h2

2
1

h3

3
1••• D , ~27!

is an expansion in the number of nucleon fields. It is imp
tant to stress here that this expansion is at the level of
Lagrangian and is not the usual perturbative expansion
ployed inS-matrix calculations. There is yet another expa
sion at the level of the Lagrangian. Since

S5~11S0M!21S05S02S0MS01S0MS0MS01•••,
~28!

each term in the logarithmic series leads to an expansio
terms of the number of interaction vertices: 0,1,2,3, . . . .

We take the first term in the two expansions@Eqs. ~27!
and ~28!# which is the only term in these expansions th
contributes to the self-energy of the composite baryon at
Lagrangian level. The other terms in the expansions are
quired to describe nucleon-antinucleon and pion-nucleon
teractions with effective coupling constants being small
the limit of large number of colors (Nc). Thus, the self-
energy contribution, up to integrations, is~see Fig. 1!

2B̄~x!FS~x,y!1
1

G̃
d~x2y!GB~y!, ~29!

whereS(x,y) is the nucleon self-energy,

S~x,y!52Ncig
mg5t i i D̃0mn

i j ~x,y!iS0~x,y!t jg
ng5sin2u

2NciD0~x,y!iS0~x,y!cos2u. ~30!

FIG. 1. The Feynman diagram for the nucleon self-energy wh
generates the nucleon kinetic and mass terms and produces the
equation that determines the nucleon mass.
6-5
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FIG. 2. The Feynman dia-
grams for the electromagneti
coupling which generate the
nucleon electromagnetic vertex.
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HereNc53 ~resulting from the trace over color!, and sum-
mation over repeated indices is to be understood. The Fou
transformS(p) of the self-energy is decomposed accordi
to

S~p!5Ss~p2!1p”Sv~p2!. ~31!

The nucleon massMB is then given by the vanishing of th
inverse nucleon propagator,

1

G̃
1Ss~MB

2 !1MBSv~MB
2 !50. ~32!

This condition generates dynamically the nucleon mass~one
of the predictions of the model! in terms of the theory pa
rameters, and it is similar in structure to the mass equat
that determine the masses in the meson sector@6,43#. Near
the mass shell, the inverse nucleon propagator takes the
form

FS~p!1
1

G̃
G;~p”2MB!Z21. ~33!

Evidently, the nucleon has now acquired the desired statu
a dynamical degree of freedom in the problem. HereZ is the
wave-function renormalization constant~see Sec. I! which
prompts us to renormalize the nucleon field according toB
5AZBren.

Since we have hinted at the role ofNc , it is appropriate
here to comment briefly about the applicability of the 1/Nc
expansion in the quark-diquark approach used here. N
that the loop expansion with external baryon fields cons
ered here forNc53 contains propagators of elementa
‘‘two-quark’’ D ~diquark! fields and quark ones. For gener
Nc , the fieldsD describe correlations ofNc21 quarks and
transform as an antiquark (Nc* ). Thus the color trace in loop
diagrams with external baryon legs gives the same color
tor Nc as in quark loop diagrams with external meson le
@57#. Taking further into account that the correct normaliz
tion of the quadratic part of the baryon self-energy diagr
requires a field renormalization, one can define an indu
B-q-D couplinggBqD5AZ5O„(ANc)

21
… in analogy to the

induced meson-quark couplinggMqq̄5O„(ANc)
21

… @58#.
Thus, a quark-diquark-loop diagram withn>3 external had-
ron legs contributes a factor (gH)n, H stands for hadron, and
leads to an effective interaction vertex with coupling stren
gn5O„Nc /(ANc)

n
…. Evidently, for largeNc this interaction

term in the effective hadron Lagrangian is small with resp
to the ‘‘free’’ Lagrangian of orderO(1) arising from loop
diagrams withn52. The loop expansion thus leads to
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modified perturbation theory in hadron fields where the
duced coupling constants of hadron interactions are smal
largeNc .

C. Regularization of divergent integrals and Ward identity

Now we are in a place to discuss regularization. The s
energy and the various Feynman diagrams in the prob
involve the evaluation of divergent integrals. Consequen
we are confronted with the question of how to regular
these integrals. This issue emerged as a decisive one in
analysis as we have attempted several regulariza
schemes. We started by adopting the method of fo
momentum sharp cutoff, but found it unsatisfactory as
yielded a violation of the Ward-Takahashi identity. Guid
by ‘‘experience,’’ one can remove by fiat the terms that v
late gauge invariance, and thus conforms to this identity@38#.
However, a more rigorous and solid method is certainly
sirable. Accordingly, we sought to regularize the integr
using both the three-momentum sharp cutoff and the Pa
Villars methods. The former is motivated by dispersi
theory@42# and leads, as we verified, to compliance with t
Ward identity. Yet, we found that the most suitable regul
ization scheme, in terms of rigor and convenience, is
Pauli-Villars technique which we have established in t
work as the standard method for regularizing all diverg
integrals. This method consists of introducing a fictitio
propagator with some massM to cancel the divergent contri
bution in the integral at large momentum values~see the
Appendix A!. As a matter of principle, the Pauli-Villars mas
which appears in the nucleon sector can be different from
NJL cutoff L arising in the meson sector. Nonetheless,
minimize the number of free parameters, we elected
equate them,M5L. It is noteworthy here that all observ
ables~see Sec. IV! were found to be insensitive to the valu
of the Pauli-Villars mass upholding the futility of using it a
a free parameter.

In the process of testing gauge invariance~the Ward-
Takahashi identity!, we have to determine the electroma
netic vertex of the nucleon. This implies evaluating tw
kinds of diagrams depicted in Fig. 2 where the nucleon c
couple to the electromagnetic field through either the qu
or the diquark propagators. For the Ward-Takahashi iden
to be satisfied, the wave-function renormalizationZ must be
equal toZ1 whereZ1 is the electromagnetic vertex renorma
ization constant atq250. Here,q5p82p ~incoming pho-
ton! is the momentum transfer. This condition is indeed s
isfied for both the Pauli-Villars and the three-momentu
cutoff methods. By calculating these diagrams at an arbitr
value of momentum transfer, we derive the nucleon fo
factors from which we can extract the electromagnetic ra
and anomalous magnetic moments.
6-6
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D. Nucleon axial-vector vertex and the Goldberger-
Treiman relation

We are in a position to calculate the weak-interact
axial-vector vertex~Fig. 3! to determine the axial-vecto
form factors from which we can extract the axial-vector co
pling constantgA . ThegA is defined as the coefficient of th
gmg5 term of the axial-vector vertex at vanishing momentu
transfer. This vertex leads naturally to the Goldberg
Treiman relation as can be seen by noticing that

AW m
p~F!5

1

Fp
]mFW 1O~F3!. ~34!

Thus we obtain the following term for the pion-nucleo
coupling:

gAB̄gmg5
tW

2
•AW m

pB→ gA

Fp
B̄gmg5

tW

2
•]mFW B. ~35!

But this term has to be identified with the pseudovec
form of the Yukawa pion-nucleon coupling@31#:
(gFNN/2MB)B̄gmg5tW•]mFW B, which prompts us to conclud
that

gFNN5
MB

Fp
gA . ~36!

This is nothing but the Goldberger-Treiman relation at
composite hadron level. Note that this relation appears in
with no effort in our treatment as opposed to large violatio
of up to 30% in the Bethe-Salpeter equation approach@28#.

Finally, one must mention that in addition to the we
gauge-boson coupling through the quark line~Fig. 3!, there
is, only for the case of the axial-vector diquark, a weak c
pling through the diquark line. The quantitative contributi
of this diquark to the Goldberger-Treiman relation remains
be investigated in a future work.

IV. NUMERICAL STUDY

Having thus far derived the structure of the problem,
proceed to generate numerical results for our model using
simpler case of only scalar diquarks, thereby admitting
possibility of an intrinsic diquark form factor. Including onl
scalar diquarks is not out of place. Indeed, recent stu
using scalar diquarks have reported good results for mos
the nucleon observables@23,25,28#. Moreover, there are in

FIG. 3. The Feynman diagram for the axial-vector coupli
which generates the quark contribution to the nucleon we
interaction vertex.
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dications of scalar diquark dominance in the nucle
@34,39,40#. As a matter of fact, a very recent calculation u
ing the Faddeev equation for three quark states has
cluded that axial-vector correlations, while still important f
magnetic properties, contribute at most no more than 10%
the structure of the nucleon@41#.

A. Free parameters and basic quantities

Table I provides the basic quantities in our model. As
free parameters, we have first the NJL coupling constanG
and the NJL cutoffL which are fixed to yield the constituen
quark mass~quark condensate! through the NJL gap equatio
in the meson sector@6,42,43#. In this fashion, theG constant
decouples completely from the nucleon sector, the secto
our interest. The two diquark masses are also determine
a consistent manner, using the NJL model and the Be
Salpeter equation in the diquark channels@9,39#. In this con-
text, the diquark masses are simply poles, just as mesons
in the quark-quarkT matrix. This leaves us with only one
new free parameter in our model: the quark-diquark coupl
constantG̃. As can be discerned, this model is well co
strained and yields a powerful predictive strength. It has
be remarked here that in principle there is another free
rameter in the model:u as the mixing angle for the two
diquark contributions. But this angle has no effect in t
present analysis as we consider only scalar diquarksu
50). Moreover, one must mention that while the quark a
diquark masses and the cutoffL are in principle fixed
through the NJL model, small variations in their values a
permissible as they still lead to consistent results within
NJL model. This adds a margin of freedom to these mas

B. Nucleon static properties

Table II displays our predictions for some of the sta

-

TABLE I. Basic quantities in our model. The basic quantities
the microscopic model are the constituent quark mass (mq), the
scalar diquark mass (MS), the cutoff L, and the quark-diquark

coupling constantG̃.

mq MS L G̃
0.390 GeV 0.600 GeV 0.630 GeV 271.0 GeV21

TABLE II. Model predictions. Some of the nucleon static pro
erties as predicted in the present calculation using the intrinsic
quark form factor~IDFF! or without it. Experimental values are
taken from Refs.@59,60#.

mp mn gA ^r 2&E
p ^r 2&E

n ^r 2&M
p ^r 2&M

n

(fm2) (fm2) (fm2) (fm2)

Theory
with IDFF

1.57 20.75 0.87 0.77 20.11 0.82 0.84

Theory
without IDFF

1.57 20.75 0.87 0.68 20.19 0.82 0.85

Experiment 2.7921.91 1.26 0.74 20.12 0.74 0.77
6-7
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properties of the nucleon. Experimental values are ta
from Refs.@59,60#. A mass of 0.94 GeV is obtained for th
nucleon through the mass equation Eq.~32!. By fixing the

nucleon mass at this value, we would have eliminated thG̃
coupling constant from the problem and reached a the
with no more free parameters. As for the binding energy
the nucleon, it is estimated (mq50.390 GeV and MS

50.600 GeV) asDEbin[mq1MS2MB550 MeV, suggest-
ing that the nucleon is a loosely bound state of a quark an
diquark. This prediction is consistent with other approac
of the NJL model@23# or using the Faddeev equation@21#.

In the same table, we show the magnetic moments of
proton and the neutron. Our treatment predicts a number
is two-third of the experimental value for the proton a
about one-half of that for the neutron. This is not a surpris
result considering that we have not included the axial-vec
diquark in the present calculation. Constituent quark mod
and other more sophisticated approaches predict prec
that the axial-vector diquark inclusion should add the mi
ing one-third strength to the proton and the missing one-
one to the neutron@23,25#. So in this context, this result i
exactly what one should have expected from our curr
analysis. For the same reason, the predicted value for
axial-vector couplinggA of 0.87 is significantly less than th
experimental one of 1.26. While the scalar diquark can
couple to the weak interaction, the axial-vector one inde
does couple to the weak gauge bosons adding strength t
interaction. The magnetic moments and the axial-vector c
pling constant display a rather small sensitivity to the co
pling constantG̃. In fact, the calculated values for the ma
netic moments are not that different from the predictio
based on simple additive models@23# suggesting a rathe
independence from the details of the dynamics or
nucleon size.

Speaking of the nucleon size, it is nicely well produced
our model: the electric and magnetic radii for the proton a
the neutron are close to the experimental measurements
negative charge radius of the neutron has been suggest
an indication of a scalar diquark clustering in the nucle
@61#, and our treatment manifests this conjecture in a
namical model. These numbers point to a physical picture
a ‘‘heavy’’ diquark at the center with a quark rotating arou
it. By comparing the radii as calculated with and without t
intrinsic diquark form factor, we find that the extended s
of the diquark contributes a positive value of about 0.10 f2

for each of the proton and neutron electric radii. Note that
scalar diquark has a positive, charge and thus the contr
tion is positive, adding about 0.10 fm2 to the proton radius
and reducing the absolute value of the neutron one by
same amount. We conclude here that the size of the diq
contributes about 10% of the proton radius and 40% of
neutron one. This confirms an earlier calculation using
static quark-exchange approximation@23#. As anticipated,
the intrinsic form factor has virtually no effect on the ma
netic radii as the scalar diquark, as we shall see below, ha
negligible contribution to the magnetic form factors. Mor
over, we have found the electromagnetic radii to be v
sensitive to the binding energy as well as, although implic
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through the mass equation@Eq. ~32!#, the coupling constan

G̃. This indicates, as easily expected, the importance of
details of the dynamics for the nucleon size. We should
mark here that the quantities calculated here do not con
the pion contribution which becomes significant for som
physical quantities. It is estimated that formp5138 MeV,
typical values for the pion corrections are of order of 30
@76#.

C. Nucleon electric and magnetic form factors

Next we calculate the nucleon form factors. Figure 4 d
plays the proton electric form factor in comparison with e
perimental data taken from Ref.@62#. The figure shows the
quark contribution, the diquark contribution in addition
the full form factor~the sum of the two contributions!, with
no intrinsic diquark form factor.

It is evident that our treatment reproduces beautifully
form factor at low values of momentum transfer (Q2[2q2

where q is the momentum transfer!. The discrepancy a
higher values ofQ2 begs for an understanding. The figu
suggests an explanation: the diquark contribution is alm
constant, implying a rather localized diquark inside the p
ton. Although treated as an elementary field in our theory,
diquark is a composite object and does have a finite size.
treatment needs to be adjusted to reflect the true nature o
diquark by incorporating an intrinsic diquark form facto
Fortunately, diquark form factors have been calculated
cently and in fact in the framework of the NJL model@63#.
Thus we readily add the intrinsic diquark form factor to o
treatment and produce the proton form factor shown in F
5. Impressively, the calculations matches very well with t
experimental data.

FIG. 4. The proton electric form factor in comparison with e
perimental data. The figure shows the quark contribution~dotted
line!, the diquark contribution~dashed line!, as well as the full form
factor ~dotted-dashed line! as the sum of the two contributions
Intrinsic structure of the scalar diquark is not included here. Exp
mental data from Ref.@62# are included.
6-8
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The neutron electric form factor tells a similar story.
the left panel of Fig. 6, just as in Fig. 4, we display t
neutron form factor with its quark and diquark contribution
Clearly, the quark contribution is negative in value (d quark!
and thus cancels much of the diquark contribution leading
a small form factor. There is once more a discrepancy co
pared to experimental data that is largely eliminated once
include the intrinsic form factor as exhibited in the rig
panel of the same figure. It is noteworthy here that the n

FIG. 5. The proton electric form factor, with intrinsic diquar
form factor ~diquark f.f.!, in comparison with experimental data
The figure shows the form factor with no intrinsic diquark for
factor ~dotted-dashed line!, and with the intrinsic form factor~solid
line!. Experimental data from Ref.@62# are included.

FIG. 6. The neutron electric form factor in comparison w
experimental data. The left panel shows the quark contribution~dot-
ted line!, the diquark contribution~dashed line!, as well as the full
form factor ~dotted-dashed line! as the sum of the two contribu
tions. The right panel displays the neutron form factor with
intrinsic diquark form factor~dotted-dashed line!, and with the in-
trinsic form factor~solid line!. Experimental data from Refs.@64–
68# are included.
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tron form factor is a potent test of any treatment as it is
delicate cancellation of two large contributions@25,26#. Sa-
liently, the cancellation is naturally produced in our stud
The experimental data are obtained from Refs.@64–68#.

In Fig. 7, we present the proton magnetic form factor
calculated with or without the intrinsic diquark form facto
The figure also contains the quark and diquark contributio
Unmistakably, the scalar diquark contribution is virtual
vanishing due to the lack of an intrinsic spin. Neverthele
there is a very small contribution due to a small orbi
angular-momentum effect in the bound quark-diquark s
tem. Since the diquark contribution is negligible, the inc
sion of the intrinsic diquark form factor does not alter o
prediction and the form factor is determined to be alm
purely from a quark origin. This suggests the need for
axial-vector diquark, which does have an intrinsic spin,
supplement the quark contribution and to provide the m
ing one-third strength compared to the experimental d
@62#. The figure also indicates a convergence of our calcu
tion, mainly from a quark origin, and the experimental da
at large values ofQ2. Such result suggests that this for
factor is almost purely of a quark origin in this regime. Th
is anticipated due to the finite size of the axial-vector diqu
which probably can have a significant contribution but on
for smaller values ofQ2.

The neutron magnetic form factor describes a similar n
rative to that of the proton but here the missing stren
~one-half! is larger as can be seen in Fig. 8. As stated ear
these specific missing strengths are predicted due to
absence of the axial-vector diquark in the present analy
The experimental data in Fig. 8 are obtained from Re
@65,69–73#.

FIG. 7. The proton magnetic form factor in comparison w
experimental data. The figure shows the proton magnetic form
tor as calculated with~solid line! or without~dotted-dashed line! the
intrinsic diquark form factor. The figure also includes the qua
~dotted line! and the diquark~dashed line! contributions to this form
factor. Note that the three curves~apart form the diquark contribu
tion! are very similar. Experimental data from Ref.@62# are in-
cluded.
6-9
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V. CONCLUSIONS

In this paper we tackled the nucleon structure and
challenging problem of understanding the origin and nat
of the nuclear force by deriving a meson-nucleon Lagrang
using the path-integral method of hadronization. We star
from a microscopic model of quarks and diquarks where
gluonic degrees of freedom have been integrated out.
nucleon was conceived as quark-diquark correlations
only two kinds of diquarks were found relevant for its stru
ture. These are the scalar isoscalar and the axial-vecto
ovector diquarks. Composite meson and nucleon fields w
introduced by the methods of path-integral bosonization
fermionization to rewrite the problem in terms of the phy
cal meson and nucleon degrees of freedom. This yielded
effective chiral meson-nucleon Lagrangian after using lo
expansions of the resulting quark/diquark determinants.
divergent loop diagrams were regularized using gau
invariant regularization schemes and the Ward-Takah
identity and the Goldberger-Treiman relation were verifie

An extensive set of nucleon observables were calcula
for the first time on the basis of the path-integral hadroni
tion approach. Indeed, many of the nucleon physical prop
ties such as mass, coupling constants, electromagnetic r
anomalous magnetic moments, and form factors have b
determined from a model of essentially one free parame
By taking into account the intrinsic diquark form factor, w
established a remarkable agreement with the experime
data for the nucleon size and the electric form factors, wh
our calculations show missing strengths for the magn
form factors and the axial-vector coupling constant. The d
crepancy is likely due to the absence of the axial-vector
quark in the present numerical study.

FIG. 8. The neutron magnetic form factor in comparison w
experimental data. The figure shows the neutron magnetic f
factor as calculated with~solid line! or without ~dotted-dashed line!
the intrinsic diquark form factor. The figure also includes the qu
~dotted line! and the diquark~dashed line! contributions to this form
factor. Note that the three curves~apart from the diquark contribu
tion! are very similar. Experimental data from Refs.@65,69–73# are
included.
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This work is part of an ambitious program of using pat
integral techniques and QCD-motivated effecti
Lagrangians to study baryon structure and to derive a f
fledged nuclear force. The final goal of the program is
derivation of an effective Lagrangian for the nuclear forc
namely, QHD from quark dynamics. As for the future, w
plan to attain a numerical study using both the scalar
axial-vector diquarks including their intrinsic form factor
This is a challenging and rather difficult task due to the ax
vector diquark intricate structure as a particle of one unit s
and isospin. Some of the ensuing complications are the ax
vector diquark direct coupling to the weak interaction a
the electroweak scalar axial-vector transitions. At a la
stage, we plan to generalize our approach to chiral SU~3!
symmetry to study the structure of the baryon octet.
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APPENDIX: ANALYTICAL EXPRESSIONS USING
THE PAULI-VILLARS REGULARIZATION METHOD

We include here analytical expressions for some of
principal formulas in our treatment.

1. Self-energy and wave-function renormalization

The self-energy is depicted by the Feynman diagram
Fig. 1 and is given by the expression

S~p!5Nc~2 i !E d4k

~2p!4

i ~p”2k”1mq!

~p2k!22mq
2

3F i

k22MS
2

2
i

k22L2G
5Nc

1

~4p!2E0

1

dx@p” ~12x!1mq#

3 lnF D~L,q250!

D~MS ,q250!
G . ~A1!

Herepm is the momentum of the nucleon taken to be on
mass shell,Nc53 is the number of colors, and

D~M ,q2![mq
2x1M2~12x!2p2x~12x!1q2x2y~y21!.

~A2!

Note that we have used the Pauli Villars method for regu
izing the divergent integral by incorporating the propaga
i /(k22L2) of a fictitious scalar particle with massL in the
above expression.

m

k

6-10
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The wave-function renormalizationZ is obtained through
the derivative (]S(p)/]pm)up”→MB

, leading to the expressio

Z215Nc

1

~4p!2E0

1

dxH ~12x!lnF D~L,q250!

D~MS ,q250!
G

22x~12x!MB@MB~12x!1mq#

3F 1

D~L,q250!
2

1

D~MS ,q250!
G J . ~A3!

2. Electromagnetic interaction

The photon couples to both the quark and the diqu
lines leading to two contributions to the nucleon electrom
netic vertex.

~a! Quark contribution. This is the contribution repr
sented by the left part of Fig. 2 and is given by

2Lgq
m 52NcQqE d4k

~2p!4 F i

k22MS
2

2
i

k22L2G
3

i ~p” 82k”1mq!

~p82k!22mq
2
gm

i ~p”2k”1mq!

~p2k!22mq
2

,

5F1
q~q2!gm1F2

q~q2!
ismnqn

2MB
, ~A4!
e
of

s

02520
k
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whereF1
q(q2) andF2

q(q2) are the quark contributions to th
nucleon form factor and are given by

F1
q~q2!5ZNcQq

1

~4p!2E0

1

dxE
0

1

dyH ~12x!lnF D~L,q!

D~MS ,q!G
2@2x~12x!MB@MB~12x!1mq#1q2x2~12y!#

3F 1

D~L,q!
2

1

D~MS ,q!G J , ~A5!

F2
q~q2!5ZNcQq

1

~4p!2E0

1

dxE
0

1

dy2x2MB@MB~12x!1mq#

3F 1

D~L,q!
2

1

D~MS ,q!G . ~A6!

In the above expressions,pm (p8m) is the momentum of the
incoming~outgoing! nucleon,qm5p8m2pm is the momentum
transfer, andQq5diag(2/3,21/3) is the quark charge. Not
that we have included the wave-function renormalizat
constantZ in the above expressions.

~b! Scalar diquark contribution. This is the contributio
represented by the right part of Fig. 2 and is given by
2LgD
m 52NcQSE d4k

~2p!4 H i

~p2k!22MS
2

i ~k”1mq!

k22mq
2

i

~p82k!22MS
2

2
i

~p2k!22L2

i ~k”1mq!

k22mq
2

i

~p82k!22L2J ~pm2p8m22km!

5F1
D~q2!gm1F2

D~q2!
ismnqn

2MB
, ~A7!

where

F1
D~q2!5ZNcQS

1

~4p!2E0

1

dxE
0

1

dyH ~12x!lnF D~L,q!

D~MS ,q!G2@2x~12x!MB@MB~12x!1mq##F 1

D~L,q!
2

1

D~MS ,q!G J ,

~A8!

F2
D~q2!5ZNcQS

1

~4p!2E0

1

dxE
0

1

dyH 2x~12x!MB@MB~12x!1mq#F 1

D~L,q!
2

1

D~MS ,q!G J . ~A9!
ic

p-
HereQS51/3 is the diquark charge.
~c! Form factor and Ward-Takahashi identity. Th

full nucleon electromagnetic form factor is the sum
the quark and diquark contributions. Note that atq250, the
sum of these two pieces conforms to the Ward-Takaha
identity as it yields Z(Qq1QS)(1/Z)5diag(1,0)5QN
hi

with the correct normalization for the nucleon electr
charge.

3. Axial-vector coupling constantgA

The axial-vector coupling constantgA ~with only scalar
diquarks! is determined from the axial-vector vertex as re
6-11
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resented by Fig 3. Note that since the scalar diquark can
couple to the weak interaction, there is no contribution togA
from a direct coupling to the diquark line. The full axia
vector vertex is given by

A axial
m 52NcE d4k

~2p!4
i F i

k22MS
2

2
i

k22L2G
3

i ~p” 82k”1mq!

~p82k!22mq
2
gmg5

i ~p”2k”1mq

~p2k!22mq
2

. ~A10!
.B

.

s.

l.

s.

02520
otgA is defined as the coefficient of thegmg5 term of the axial-
vector vertex atq250. This yields after evaluating this ver
tex

gA52ZNc

1

~4p!2E0

1

dxE
0

1

dyH x lnF D~L,q250!

D~MS ,q250!
G

2x@MB~12x!1mq#2

3F 1

D~L,q250!
2

1

D~MS ,q250!
G J . ~A11!
ys.

J.
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