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Path-integral hadronization for the nucleon and its interactions
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Nucleon structure and the origin and nature of the nuclear force are investigated in the context of a quantum
chromodynamics motivated effective Lagrangian for quark and diquark fields and the path-integral method of
hadronization. We start from a microscopic model of quarks and diquarks where the gluons have been inte-
grated out. In particular, we use the chiral Nambu—Jona-Lasinio model to describe quark dynamics and assume
that the nucleon can be conceived as a quark-diquark relativistic bound state. The hadronization method is then
used to rewrite the problem in terms of the physical meson and nucleon degrees of freedom. Next, by
employing a loop expansion of the resulting quark/diquark determinants, we arrive at an effective chiral
meson-nucleon Lagrangian. Nucleon properties such as mass, coupling constants, electromagnetic radii,
anomalous magnetic moments, and form factors are derived using a theory of at most two free parameters.
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I. INTRODUCTION ing with the third quark to the formation of a color-singlet
bound state, a baryon. Moreover, this assertion is vindicated

Understanding the origin and nature of the nuclear forcdoy a mounting experimental evidence that diquarks play a
remains the central problem in nuclear physics. In spite oflynamical role in hadrong®-17].
the belief that we have attained the fundamental theory for We verify that only two kinds of diquarks are relevant for
the strong interactions-quantum chromodynam(GCD), nucleons: the scalar isoscalar and the axial-vector isovector.
this theory still eludes a satisfactory and complete descripBy introducing composite meson and nucleon fields through
tion. The basic problem of QCD is that its natural and fun-the method of path-integral hadronization and then using a
damental degrees of freedom, quarks and gluons, are not th@op expansion of the resulting quark/diquark determinants,
observable baryon and meson states of the strong interactiowe arrive at an effective chiral meson-nucleon Lagrangian.
Thus bridging the gap between the fundamental and obserfhe path-integral hadronization used here consists of two
able degrees of freedom stands as one of the stark challengsteps: bosonization to produce mesons as quark-antiquark
of nuclear/elementary particle physics today. Although we daorrelations and what we label as “fermionization” which
have anab initio approach to solve this problem, that is, generates baryons as quark-diquark correlations. In our
lattice QCD, this endeavor is still miles away from achievingmodel, mass, coupling constants, electromagnetic radii,
such a goal. This naturally motivates us to resort to nonperanomalous magnetic moments, and form factors of the com-
turbative QCD-motivated approaches of which this study isposite nucleon are calculated in terms of at most two free
one. parameters.

In the present paper, we address this lingering missing In this fashion, our treatment parallels, in the sense of
link by deriving a chiral meson-nucleon Lagrangian from acalculating nucleon physical observables, the approach of us-
microscopic model of quarks and diquarks using pathding the Faddeev equatid8] for three quark statd49-22,
integral methods. Chiral symmetry and its spontaneousr the approach of using static quark exchaf@, the Sal-
breaking have consistently proven to be key concepts in unpeter equation[24—-2€¢, or the fully relativistic Bethe-
derstanding meson and baryon structure and many featur&alpeter equatiof27—-29 for a quark-diquark system. None-
of the nuclear forcd1—4]. The gist of this paper is as fol- theless, our formalism vyields, in addition to nucleon
lowing. We start from a QCD-motivated effective Lagrang- observables, a Lagrangian of the quantum hadrodynamics
ian to describe quark dynamics where the gluons have beg®HD) type [30,31] that describes the rich meson-nucleon
integrated out. This is the SU(2X SU(2)s Nambu—Jona- interactions in a fully covariant and chirally symmetric for-
Lasinio (NJL) model that accommodates most of QCD sym-malism.
metries[5,6]. Guided by general principles, we then assume While this program is applied to the case of deriving an
that the nucleon can be described as quark-diquark correl@ffective Lagrangian for nucleons and mesons, it is certainly
tions and introduce diquark3,8] as elementary fields in the of general nature and can possibly be applied alternatively to
problem. This assumption hinges upon the dynamical facyield prolifically other baryons and their interactions such as
that two quarks can combine to form a color antitriplet lead-the A particle. Moreover, the idea of using path-integral

techniques to transform a Lagrangian from its fundamental
to its composite degrees of freedom is a powerful concept in

*Electronic address: laith@rcnp.osaka-u.ac.jp physics of immense impact and utility. As a matter of fact,
TElectronic address: hosaka@rcnp.osaka-u.ac.jp the authors of Ref[32] have recently invoked such path-

*Electronic address: debert@physik.hu-berlin.de integral techniques in their study of high-temperature super-
SElectronic address: toki@rcnp.osaka-u.ac.jp conductivity. They succeeded in doing so by converting a
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model of strongly correlated electrons into an effectivd)U [9,50]. The main problem of the NJL model continues to be
gauge field Lagrangian in terms of composite fields. the absence of confinement. Therefore, the success of the

The use of path-integral hadronization to derive a mesonmodel rests on observables that are insensitive to the details
baryon Lagrangian has been introduced in Reg¥8-35 and  of confinement. It is noteworthy here that various attempts
applied to baryons with heavy quark86,37. Based on have been made to include the effects of confinement within
these ideas, the authors of RE38] attempted to construct the NJL mode[42,51].
such an effective Lagrangian for the nucleon using only sca- We start from an NJL Lagrangian satisfying SU(2)
lar diquarks. They derived correctly the structure of thex SU(2)g chiral symmetry and SU(3 global color symme-
meson-nucleon Lagrangian, proved the Goldberger-Treimatry,
relation, and attempted to evaluate the axial-vector coupling
constangy, as an application of their formalism. Their analy-
sis and numerics fog, contain, however, few problems as
well as an uncertainty due to the lack of a proper gauge-
invariant regularization scheme. In the present paper, we eXdere q is the current quark fieldr are the isospir(flavor)
tend their work by deriving the structure of the correspond-Pauli matricesG is the NJL coupling constant, ama, is the
ing Lagrangian using both axial-vector and scalar diquarksgurrent quark mass which explicitly breaks chiral symmetry.
employ a gauge-invariant regularization scheme throughourhe color and flavor indices are suppressed in this expression
our analysis, and verify the Ward-Takahashi identity and theand assumed to be so for the rest of the paper unless explic-
Goldberger-Treiman relation. Furthermore, we present a fulitly shown. Starting from this Lagrangian, we construct the
numerical study of various nucleon observables for the caseorresponding vacuum partition function as
of scalar diquarks drawing special attention to the role of an
intrinsic diquark form factor. We concentrate our analysis —
first on theqscalar-diquark case for simplicity and due toythe Z:le DaPq exp|f A Ly, &
predicted dominance of this type of diquark in the nucleon
[34,39—41. Thus after more than ten years since the intro-WhereV; is a normalization constant.
duction of the idea of path-integral hadronization, this for-
malism is finally used to calculate nucleon structure and its B. Introduction of meson fields
observables. ) — -

The paper has been organized as follows. In Sec. Il a _CO”lpOS'te scalar f~qq) and pseudoscalar
microscopic model for quarks, diquarks, and their interac-~diys7d) meson fields are introduced as auxiliary fields in
tions is developed and meson and nucleon fields are intrghe problem. This is done by multiplying the NJL partition
duced as auxiliary fields in the problem. The hadronizatiorfunction of Eq.(2) by the term(with \; being another nor-
method is then invoked in Sec. Il to rewrite the microscopicmalization constant
Lagrangian in terms of composite meson and nucleon fields.

Next, a loop expansi_on is em_ployed to calculate several N, f DaD expi f dx
terms in the Lagrangian including the nucleon self-energy

and electromagnetic vertex. The issue of regularization is ) o
also examined and the Ward-Takahashi identity and th&\t this stage, no modifications have been made to the under-

Goldberger-Treiman relation are verified. In Sec. IV a full IYing dynamics of the Lagrangian as this multiplicative fac-
numerical study for the nucleon is presented. Finally a sumtor is merely an 0\_/erall constant in the partition function. We
mary and conclusions are provided in Sec. V, as well as 4MPose the following transformation:

discussion of some of the challenges and opportunities that —
remain. o—o+Gqq,

—. G — o = -
Ly =9(id—mg)g+ 5[(QQ) +(diys7q)°]. 1

. 3

1 -
—%(0'2"1‘772)

i i P
Il. AMICROSCOPIC MODEL OF QUARKS, DIQUARKS mom+Gaiy T, )

AND THEIR INTERACTIONS . - . —
in order to eliminate the quadratic terris-(qq)?] of the

A. Nambu-Jona-Lasinio model NJL Lagrangian. Using translational invariance of the inte-

In our model we treat the quarks using the NJL modelgration measur@®o¢ D, this results in the expression
where quarks interact through a four-point local fermion-
fermipn coupling. The highlights of the model are its' incor- st DO'D;quDanpif d*x
poration of all global symmetries of QCD as well as its pre-
diction of many features of QCD such as dynamical chiral
symmetry breaking and its restorati$9,42,43. Moreover, %
this model has been motivated, if also not derived, using
lattice QCD[44], continuum QCO42,43,45—-48 and Yang- (5)
Mills theories[49]. The locality assumption of the model has
been justified for low-energy QCID49], and inspired by The prescribed change in field variables is nothing but the
strong-coupling lattice quantum electrodynami¢®ED) Hubbard-Stratonovich transformatid62,53. We label the

i Loz 1o -
q(lé’—mo—a'—ly57-7r)q—%(0' + 7).
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resulting Lagrangian as the “semibosonized” one since weajuarks. We consider such an interaction in a local form. This
have already introduced the bos@meson fields but have is essentially the static approximation of solving the three-
not yet integrated over the quark ones. The current quarkody equations for baryons within the NJL mo{i21,41]. It
massm, is then absorbed into the definition of the field is more convenient here, in terms of forming a chirally in-
and the meson fields are further transformed according to theariant quark-diquark couplings, to work with the chirally

nonlinear parametrizatiopo, 7] —[o’,®], rotated “constituent” quark fieldy defined by[74]
L L B
0'+|'y57'-71'=(mq+0")ex;(—F—'y57'-<l> , (6) Xzex%—lz_)ﬁi.cp)q. 9)

where F ;=93 MeV is the pion decay constant amd,
=(0)q is the constituent quark mass which is fixed through
a gap equation in the meson secf6r42,43. Accordingly,
the NJL Lagrangian is converted to

The range of possible symmetry preserving interaction
terms is limited[75]. This provides a highly welcomed dy-
namical constraint in our treatment. Discarding for a moment
interaction terms describing a possible scalar axial-vector
mixing [see Eq.(13) below], we may choose the following

L= 0L (o' + mq)Z term for the quark scalar-diquark interaction:

sb™ %

i Lgo~G(xD)(Dy), (10
+a[iﬂ—(mq+a")ex;{——757'-@”q. ) ap AT X
" while we may select
Here, thed L= O(my) is the symmetry-breaking mass term

given by £q5ﬂ~é(;y“y5;~l5l)(l5y~ 7'¥°x), (11

i .
exp{ — F—W)/57'~<D

where the trace is taken over flavor and Dirac indices.

!

My +o
§‘Csb: I

+H.c.
16 H.c

(8) for the quark axial-vector diquark coupling. Our choice for
the full interaction term is dictated by the need to produce
the nucleon as a linear combination of axial-vector and scalar
diquarks according to

Motr

C. Diquarks B~G(singD,,- 7y*y°x +coséD). (12

In studying the Lorentz and flavor structure of the

correlations, we find five possible types: the scalay pseu- In the above expressior@ is the quark-diquark coupling

doscalami ysq, vectorqy,q, axial vectorqy, ysq, and ten-  constant with mass dimensi¢®]=m"1, while 6 is a mix-
sorqo,,q diquarks. Hereq=q'C~'ysi 7, whereT stands  ing angle for the two diquark contributions. These are, as we
for transpose andC '=iy,y, is the inverse charge- shall discuss belowsee Sec. IV A the only free parameters
conjugation matrix. Moreover, we identify two isospin struc- in our model.
tures for each of these five Lorergz formations. Explicitly,

we have an isoscalar and an isovector diquark by insetting

N ~ . E. Microscopic Lagrangian
and 7 betweeng andg. It has to be noted here that tle

. has th ¢ ; i fied4n th Electromagnetic interactions are introduced in our model
spinor has the same transformation propertiesjas the through the canonical method of covariant derivatives in the

Lorentz and isospin groups. quark and diquark Lagrangians. We proceed to form the mi-

A question arises concerning how many (_)f these ten q'broscopic Lagrangian by batching the diquark contributions,
quarks are needed to form the nucleon. Using permutatio

. . L the quark-diquark interaction terms including mixing, and
s_ymmetry.and Flerz transformapon, we have_ verified an €afhe semibosonized NJL Lagrangian of K@) after the field
lier assertior{54] that only two diquark formations are inde-

; o ) transformations of Eq(9), to obtain the following Lagrang-
pendent for the nucleon if the nucleon field is to be written a q9) g Lagrang

Jan as our input model:
a local operator of three quarks. This result is consistent with P

the fact that in constituent quark mod¢E5], the nucleon — 1 ) L IO
wave function is constructed using only scalar and axial-£=xS" "X~ 55 (0 +Mg)*+ oLyt D'A™'D+D™A, ;D"
vector diquarks. Hence, we introduce two diquarks as el-

ementary complex fieldsD* as an axial-vector isovector +G(sindyy*y°r-D] +cosgxD")

field with electric charge= {4/3, 1/3, -2/3 andD as a scalar L

isoscalar field with a charge {1/3}. X(singD,- 7y"y°x +coséDy), (13
D. Quark-diquark interaction terms where

Quark-diquark interaction terms are introduced to form R
the nucleon as a relativistic bound state of quarks and di- S =5"1tM, (149
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tor as the kinetic and mass term, and the electromagnetic
CAgto'+ y’“QqAEM . interaction vertex. Explicitly, the free inverse propagator for
the scalar diquark is
(14b) q

M=—| y* .]_}Z+yﬂy5

z
2

NS

~1_ _ 2. \2
HereS™ ! is the modified inverse propagator that includes the Ap == ("+My), (18

free inverse prop_agat(ﬁgl_:(iﬂ—mq) for the quark field  yphile the one for the axial-vector diquark is

and the interaction matrixM. Note that Q,=diag(2/3,

—1/3) is the quark charge. Thet matrix contains all inter- 3;3:1®[gw(,92+ M3)— 9,3,], (19
action vertices of the quark with meson and electromagnetic

fields. The quark interacts with the pion through Vecfgr wherel is the unit matrix in the three-dimensional iSOSpace.
and axial-vectord?, functions of the pion field. These arise er;ﬁ Qs= 1|/3 anddQA=_d||ag(Atl/3,1J_3,— Z/i) are the tt_:halrgews_»h
from the derivative termé following the transformation of ot the scalar and axial-veclor diquarks, respectively. The

Eqg. (9). Precisely, these functions are defined through thém’dmed axial-vector diquark propagator encompasses

R Shown) weak interaction terms.
Cartan decompositionéEd/F ),

i i F. Introduction of nucleon fields
— 251 — 257 & . . - . . .
ex;{ 27T g)‘9#6)([{2 vT §) There is still one missing component in our microscopic

) ) model: collective nucleon fields. Therefore, a nucleon field
i i o - 8 o
_l 52 gm ey is introduced as an auxiliary one by multiplying the partition
v T AM(§)+27 V(8- (19 function of the Lagrangian of Eq13) by the term
The M matrix also encompass pion-photon and weak gauge — A
boson vertices which are not shown for brevity. NQJ DBDB exp|f d*x
In the above Lagrangian, we use the modified scalar di-
guark inverse propagator

l§B (20)
é ]

where, is a normalization constant. In a similar fashion to
Egs. (3), (4), and (5), we transform the field configuration

—1_A-1,: EM, Zu__ 5
ATT=Ro FIQAA,T( =), (16) according to

and the modified axial-vector diquark inverse propagator ~, 2 - &

B—B+G(sindD,- 7y"y>x+coséDy),
8.=Ko,, +iQAl (ARG, —ATMd,) — g, ATM(5°— %], L -
: a a S (17) B—B+G(sindyy*y®r D], +cosgxD"). (21)

where we have omitted)(Qé) and(’)(Qi) terms for brevity.  As a result, the quark-diquark interaction term in ELp) is
Each of these expressions includes the free inverse propagawritten as

expi f d*xG(sinOxy*y°7-D},+cosdxD")(sin gD - 75"y x + cosfDx)

=J\/'4f DBDgexp{if d*x

_l_ _ N N _ N _
gBB—B(SiHBD,;Ty"ys)(-l-COSGD)()—(Sinﬂ)(‘y“'yST~DL+COSB)(DT)B ] (22)

This procedure completes the introduction of composite meguence of eliminating the interaction terms. Thus, we rear-

son and nucleon fields into the problem and wraps up theange the expressions involving the quark fields into the form

construction of the microscopic model. XS x— 7x— x 7, and use the fermion path-integral identity
(Det stands for determinant

I1l. DERIVATION OF A MESON-NUCLEON LAGRANGIAN

A. Hadronization of the microscopic model J DxDyx expi f (xS *x—nx—xm)

At this point we have a Lagrangian that involves only
quarks and diqyarks as dynamical fields with kinetic and =Det(Sl)ex;<—ij;Sn), (23
mass terms while the meson and nucleon fields are merely
auxiliary ones. Additionally, the quark and diquark fields ap-
pear in bilinear forms appropriate for integration as a conseto integrate over the quark fields. In doing so, we would have

025206-4



PATH-INTEGRAL HADRONIZATION FOR THE NUCLEON.. .. PHYSICAL REVIEW 56, 025206 (2002

accomplished the path-integral bosonization that delivers to k

mesons their full dynamical charac{&;,43]. We still need to B(p) B(p)
integrate over the axial-vector and scalar diquark fields in

order to achieve a meson-nucleon Lagrangian. Thus, we cast

the terms that involve the diquark fields into the foehCe

wherep=(D#,D)T, and use the boson path-integral identity, p-k

FIG. 1. The Feynman diagram for the nucleon self-energy which
f DQDTD@ expi f (<P/C<PT) =[Det(IC)]’l. (24) generates the nucleon kinetic and mass terms and produces the mass
equation that determines the nucleon mass.

This final integration procedure is what we label as fermion- ] _
ization as it produces fermions from boson-fermion correlairoweak interactions of mesons and nucleons such as meson

tions. The quark-diquark dynamics has been absorbed by tHotoproductiorithe Kroll-Ruderman termi56]), and in ad-
composite meson and nucleon fields. We have at last fullfiition, it includes terms for meson-meson and nucleon-
“hadronized” the quark and diquark Lagrangian. The micro- nucleon scattering. Nonetheless, the most desired part of the
scopic model of quarks and diquarks has been converted infe@9rangian is the prized meson-nucleon interaction and
a “macroscopic” model of mesons and nucleons possessin@ucleon-nucleon vertices which delineate the nuclear force.
the sameapproximatg chiral symmetry as the original mi-

croscopic fields. Notice that the quarks and diquarks do now B. Self-energy diagram and kinetic terms

appear only as virtual particles in loops and are described by he bhvsics in th . fest i
corresponding propagators and interaction vertices. The physics in the Lagrangian becomes manifest in terms

Next, we use the relation De¥{)=exp trin(M), to re- of loop expansions of the resulting quark-diquark determi-
write the determinants as Lagrangian terms of meson aneams: We.concentrat.e here on the nEcISon sgctor which is
nucleon fields. Thereupon, we arrive at a compact chirafontained in the termstrin(1—0J) - (1/G)BB. Nicely, the

meson-nucleon Lagrangian given by expansion
1 _ B 0 o3
Leﬂ=5[2513—£(0’+mq)2—|trInS‘1 trin(1-0)=—tr Ut +5 4, (27

is an expansion in the number of nucleon fields. It is impor-

tant to stress here that this expansion is at the level of the

Lagrangian and is not the usual perturbative expansion em-
+i trIn(1—ZOEM Int). (25 ployed in Smatrix calculations. There is yet another expan-

sion at the level of the Lagrangian. Since

Here the trace is over color, flavor, and Lorentz indices while

the “EM Int” label stands for the electromagnetic interaction _ de o _

terms of each of the diquarks as given in Ef6) and Eq. S=(1HSM) 5= S0~ SIMSo+ SMSMSpt .(.2’8)

(17). Furthermore,

1
— EBBH trin(1—0O)+itrin(1—AyEM Int)

A 5 each term in the logarithmic series leads to an expansion in
DI(}_ S ) (268 terms of the number of interaction vertices: 0,1,2,3 .
1 We take the first term in the two expansiofi&gs. (27)

and (28)] which is the only term in these expansions that

contributes to the self-energy of the composite baryon at the

AHivi—girg g,yp,ySTk'A‘pk,,uiSTj v"¥°B, (26b) Lagrangian IeV(_aI. The other te_rms in the expgnsions are re-
quired to describe nucleon-antinucleon and pion-nucleon in-

teractions with effective coupling constants being small in

the limit of large number of colorsN.). Thus, the self-

energy contribution, up to integrations, (see Fig. 1

where

S=cog6 BASB, (260)
(Fy)" =sinfcosd BAST y"y°B, (260)

(F»)¥ =sinfcosd BAP<Hy +5 7 SB. (260

—B(x) B(y), (29

1
(xy)+ gé(x—y)
The configuration and color indices have been omitted for
simplicity. The effective hadron Lagrangian of E5) con- ]
tains plenty of rich physics. It encompasses, through the loop'here(x,y) is the nucleon self-energy,
expansion in the trin terms, kinetic and mass terms for
pucleons and mesons together with a multitude of possible 3 (x,y) = — Nqi 7“757'iiZHW(X,y)iSO(X,y)Tj y"15sir?g
interaction terms of mesons, nucleons, and electroweak
gauge bosons. It comprises terms describing the various elec- —NiAg(X,Y)iSo(X,y)coH. (30)
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Here N.=3 (resulting from the trace over colprand sum-
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FIG. 2. The Feynman dia-
grams for the electromagnetic
coupling which generate the
nucleon electromagnetic vertex.

modified perturbation theory in hadron fields where the in-

mation over repeated indices is to be understood. The Fourieluced coupling constants of hadron interactions are small for
transform (p) of the self-energy is decomposed accordinglarge N, .

to

2(p)=324(p?) + P2, (p?). (31
The nucleon masllg is then given by the vanishing of the
inverse nucleon propagator,

1
E+ES(M§)+MBEU(M§)=O. (32

This condition generates dynamically the nucleon niass
of the predictions of the modeln terms of the theory pa-

rameters, and it is similar in structure to the mass equation

that determine the masses in the meson sd&di3]. Near

the mass shell, the inverse nucleon propagator takes then t

form

~(p—Mg)Z . (33

{2 )+i
(p P

Evidently, the nucleon has now acquired the desired status
a dynamical degree of freedom in the problem. Héis the
wave-function renormalization constafgee Sec. )l which
prompts us to renormalize the nucleon field according to
= VZByen.

Since we have hinted at the role Nf,, it is appropriate
here to comment briefly about the applicability of thé&d/
expansion in the quark-diquark approach used here. No

ered here forN,=3 contains propagators of elementary
“two-quark” D (diquark fields and quark ones. For general
N, the fieldsD describe correlations dfi;—1 quarks and
transform as an antiquarlNg). Thus the color trace in loop

C. Regularization of divergent integrals and Ward identity

Now we are in a place to discuss regularization. The self-
energy and the various Feynman diagrams in the problem
involve the evaluation of divergent integrals. Consequently,
we are confronted with the question of how to regularize
these integrals. This issue emerged as a decisive one in our
analysis as we have attempted several regularization
schemes. We started by adopting the method of four-
momentum sharp cutoff, but found it unsatisfactory as it
yielded a violation of the Ward-Takahashi identity. Guided
by “experience,” one can remove by fiat the terms that vio-
fate gauge invariance, and thus conforms to this idefiy.
Elowever, a more rigorous and solid method is certainly de-

ffable. Accordingly, we sought to regularize the integrals
using both the three-momentum sharp cutoff and the Pauli-
Villars methods. The former is motivated by dispersion
theory[42] and leads, as we verified, to compliance with the
Ward identity. Yet, we found that the most suitable regular-
ization scheme, in terms of rigor and convenience, is the
Pauli-Villars technique which we have established in this

ork as the standard method for regularizing all divergent

integrals. This method consists of introducing a fictitious
propagator with some masé to cancel the divergent contri-
bution in the integral at large momentum valugge the
Appendix A). As a matter of principle, the Pauli-Villars mass
which appears in the nucleon sector can be different from the
NJL cutoff A arising in the meson sector. Nonetheless, to

, , i : inimize the number of free parameters, we elected to
that the loop expansion with external baryon fields consid

equate themM = A. It is noteworthy here that all observ-
ables(see Sec. IYwere found to be insensitive to the value
of the Pauli-Villars mass upholding the futility of using it as
a free parameter.

In the process of testing gauge invariandtke Ward-

diagrams with external baryon legs gives the same color facrakahashi identity we have to determine the electromag-
tor N¢ as in quark loop diagrams with external meson legshetic vertex of the nucleon. This implies evaluating two
[57]. Taking further into account that the correct normaliza-kinds of diagrams depicted in Fig. 2 where the nucleon can
tion of the quadratic part of the baryon self-energy diagrameouple to the electromagnetic field through either the quark
requires a field renormalization, one can define an inducegy the diquark propagators. For the Ward-Takahashi identity

B-g-D couplingggqp=vZ=0O((VN¢) %) in analogy to the
induced meson-quark couplingyqq=O(( INO) ™Y [58].
Thus, a quark-diquark-loop diagram witl=3 external had-

to be satisfied, the wave-function renormalizatibmust be
equal toZ, whereZ, is the electromagnetic vertex renormal-
ization constant at>=0. Here,q=p’—p (incoming pho-

ron legs contributes a factog)", H stands for hadron, and ton) is the momentum transfer. This condition is indeed sat-
leads to an effective interaction vertex with coupling strengthisfied for both the Pauli-Villars and the three-momentum
dn=O(N./(VNo)"). Evidently, for largeN, this interaction cutoff methods. By calculating these diagrams at an arbitrary
term in the effective hadron Lagrangian is small with respectvalue of momentum transfer, we derive the nucleon form
to the “free” Lagrangian of ordei®(1) arising from loop factors from which we can extract the electromagnetic radii
diagrams withn=2. The loop expansion thus leads to aand anomalous magnetic moments.
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TABLE I. Basic quantities in our model. The basic quantities in
the microscopic model are the constituent quark masg) ( the
scalar diquark massM), the cutoff A, and the quark-diquark

coupling constan®.

my Mg A G
0.390 GeV 0.600 GeV 0.630 GeV 271.0 GeV

FIG. 3. The Feynman diagram for the axial-vector coupling
which generates the quark contribution to the nucleon Weak'dications of scalar diquark dominance

) : in the nucleon
Interaction vertex.

[34,39,4Q. As a matter of fact, a very recent calculation us-
ing the Faddeev equation for three quark states has con-
cluded that axial-vector correlations, while still important for
magnetic properties, contribute at most no more than 10% to
We are in a position to calculate the weak-interactionthe structure of the nucledei].
axial-vector vertex(Fig. 3) to determine the axial-vector
form factors from which we can extract the axial-vector cou-
pling constang, . Theg, is defined as the coefficient of the
y*+° term of the axial-vector vertex at vanishing momentum  Table | provides the basic quantities in our model. As for
transfer. This vertex leads naturally to the Goldbergerfree parameters, we have first the NJL coupling cons&nt

D. Nucleon axial-vector vertex and the Goldberger-
Treiman relation

A. Free parameters and basic quantities

Treiman relation as can be seen by noticing that and the NJL cutoff\ which are fixed to yield the constituent
1 quark massquark condensatehrough the NJL gap equation
ST S < 3 in the meson sectd6,42,43. In this fashion, thés constant
Au(®) FwaM<I>+O(<I> ): (34) decouples completely from the nucleon sector, the sector of

our interest. The two diquark masses are also determined, in
Thus we obtain the following term for the pion-nucleon a consistent manner, using the NJL model and the Bethe-
coupling: Salpeter equation in the diquark chanrf@s9]. In this con-
_ R text, the diquark masses are simply poles, just as mesons, but
= 5T n 9az , 57 - in the quark-quarkT matrix. This leaves us with only one
9aBy"y 2 AuB— F_WBV Yo 9, PB. (35  newfree parameter in our model: the quark-diquark coupling
constantG. As can be discerned, this model is well con-
But this term has to be identified with the pseudovectorstrained and yields a powerful predictive strength. It has to
form of the Yukawa pion-nucleon coupling[31]: be remarked here that in principle there is another free pa-
(g(pNN/ZMB)ByMyS;.(y#qSB, which prompts us to conclude rameter in the models as the mixing angle for the two

that diquark contributions. But this angle has no effect in the
present analysis as we consider only scalar diquakks (
Mg =0). Moreover, one must mention that while the quark and

gbeN:F_WgA- (36)  diquark masses and the cutaff are in principle fixed

through the NJL model, small variations in their values are

This is nothing but the Goldberger-Treiman relation at thepermissible as they still lead to consistent results within the
composite hadron level. Note that this relation appears intad¥JL model. This adds a margin of freedom to these masses.
with no effort in our treatment as opposed to large violations
of up to 30% in the Bethe-Salpeter equation apprd2&h. B. Nucleon static properties

Finally, one must mention that in addition to the weak
gauge-boson coupling through the quark lilkég. 3), there
is, only for the case of the axial-vector diquark, a weak cou- - :

TABLE Il. Model predictions. Some of the nucleon static prop-

pling through the diquark line. The quantitative contribution erties as predicted in the present calculation using the intrinsic di-

g;tihrf/gslﬁggzzéoir:hae fﬁ g:?ebs\:grekr-ﬂelman relation remains toquark form factor(IDFF) or without it. Experimental values are

taken from Refs[59,60.

Table Il displays our predictions for some of the static

IV. NUMERICAL STUDY o Ba G (PR (2 (R (P

2 2 2 2
Having thus far derived the structure of the problem, we (fm% (5 (m7 (m%

proceed to generate numerical results for our model using theneory 1.57 —0.75 0.87 0.77 —0.11 0.82 0.84
simpler case of only scalar diquarks, thereby admitting the with IDFF
possibility of an intrinsic diquark form factor. Including only Theory 1.57 —0.75 0.87 0.68 —0.19 0.82 0.85

scalar diquarks is not out of place. Indeed, recent studies without IDFF
using scalar diquarks have reported good results for most xperiment 279-101 126 0.74 —0.12 0.74 0.77
the nucleon observabl¢23,25,2§. Moreover, there are in-
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from Refs.[59,6(. A mass of 0.94 GeV is obtained for the
nucleon through the mass equation E8Q). By fixing the ' —-— Proton form factor
. L. ~ 08 :43.‘ Quark contribution ]

nucleon mass at this value, we would have eliminated@he \ ===~ Diguark contribution
coupling constant from the problem and reached a theory o7 [
with no more free parameters. As for the binding energy of
the nucleon, it is estimatedm;=0.390 GeV andMg
=0.600 GeV) as\Ej,=my+Mgs—Mg=50 MeV, suggest- Gost
ing that the nucleon is a loosely bound state of a quark and ¢
diquark. This prediction is consistent with other approaches
of the NJL mode[23] or using the Faddeev equatif1]. 03|

In the same table, we show the magnetic moments of the
proton and the neutron. Our treatment predicts a number tha
is two-third of the experimental value for the proton and o1}
about one-half of that for the neutron. This is not a surprising
result considering that we have not included the axial-vector %%0 o1 0z 03 04 ) 05 06 07 08 08 1.0
diquark in the present calculation. Constituent quark models Q' (GeV)
and other .more SOph_iSticateq approaCheS predict prec.isely FIG. 4. The proton electric form factor in comparison with ex-
that the axial-vector diquark inclusion should add the missyerimental data. The figure shows the quark contributidotted
ing one-third strength to the proton and the missing one-halfine), the diquark contributiotidashed ling as well as the full form
one to the neutrofi23,25. So in this context, this result is factor (dotted-dashed lijeas the sum of the two contributions.
exactly what one should have expected from our currenintrinsic structure of the scalar diquark is not included here. Experi-
analysis. For the same reason, the predicted value for th@ental data from Ref62] are included.
axial-vector couplingy, of 0.87 is significantly less than the

experimental one of 1.26. While the scalar diquark cannof, o\t the m 6B 21 th lin nstan
couple to the weak interaction, the axial-vector one indee ough the mass equatigig. (32)], the coupling constant

does couple to the weak gauge bosons adding strength to tie This indicates, as easily expected, the importance of the
interaction. The magnetic moments and the axial-vector coydetails of the dynamics for the nucleon size. We should re-
pling constant display a rather small sensitivity to the coumark here that the quantities calculated here do not contain
pling constant. In fact, the calculated values for the mag- the pion contribution which becomes significant for some

netic moments are not that different from the predictionsPhysical quantities. It is estimated that for, =138 MeV,
based on simple additive model&3] suggesting a rather typical values for the pion corrections are of order of 30%
independence from the details of the dynamics or thd 76l
nucleon size.

Speaking of the nucleon size, it is nicely well produced by C. Nucleon electric and magnetic form factors
our model: the electric and magne_tic radii for the proton and  \ oyt we calculate the nucleon form factors. Figure 4 dis-
the neutron are close to the experimental measurements. TIB?ays the proton electric form factor in comparison with ex-

negative charge radius of the neutron has been suggested as: .
an indication of a scalar diquark clustering in the nucleonpenmem"’lI data taken from R4f2]. The figure shows the

[61], and our treatment manifests this conjecture in a dy_quark contribution, the diquark contribution in addition to

namical model. These numbers point to a physical picture oTIhe full form factor(the sum of the two contributiohswith

a “heavy” diquark at the center with a quark rotating around no |n_tr|n5|_c diquark form factor. )

it. By comparing the radii as calculated with and without the It is evident that our treatment reproduces beautlfullzy the
intrinsic diquark form factor, we find that the extended sizeform factor at low values of momentum transf@3= —q

of the diquark contributes a positive value of about 0.18 fm Where g is the momentum transfer The discrepancy at
for each of the proton and neutron electric radii. Note that thdligher values 0fQ® begs for an understanding. The figure
scalar diquark has a positive, charge and thus the contribuggests an explanation: the diquark contribution is almost
tion is positive, adding about 0.10 fnto the proton radius ~constant, implying a rather localized diquark inside the pro-
and reducing the absolute value of the neutron one by thton. Although treated as an elementary field in our theory, the
same amount. We conclude here that the size of the diquaidiquark is a composite object and does have a finite size. Our
contributes about 10% of the proton radius and 40% of théreatment needs to be adjusted to reflect the true nature of the
neutron one. This confirms an earlier calculation using aliquark by incorporating an intrinsic diquark form factor.
static quark-exchange approximati¢@3]. As anticipated, Fortunately, diquark form factors have been calculated re-
the intrinsic form factor has virtually no effect on the mag- cently and in fact in the framework of the NJL modéB].

netic radii as the scalar diquark, as we shall see below, has ahus we readily add the intrinsic diquark form factor to our
negligible contribution to the magnetic form factors. More- treatment and produce the proton form factor shown in Fig.
over, we have found the electromagnetic radii to be venb. Impressively, the calculations matches very well with the
sensitive to the binding energy as well as, although implicitlyexperimental data.

properties of the nucleon. Experimental values are taker 1-0§ - ' ' ' - - ' '
0.9

04

02r
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FIG. 5. The proton electric form factor, with intrinsic diquark
form factor (diquark f.f), in comparison with experimental data.

The figure shows the form factor with no intrinsic diquark form

factor (dotted-dashed lineand with the intrinsic form factofsolid
line). Experimental data from Reff62] are included.
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3.0
27

=== No diquark f.f.
24 r — With diquark f.f.

wesssee Quark contribution
==== Diguark contribution

21

GMp

0.0 F
03 . . . , . . . . ,
00 01 02 03 04 05 06 07 08 09 10
Q@ (GeV)

FIG. 7. The proton magnetic form factor in comparison with
experimental data. The figure shows the proton magnetic form fac-
tor as calculated witksolid line) or without(dotted-dashed linghe
intrinsic diquark form factor. The figure also includes the quark
(dotted ling and the diquarkdashed lingcontributions to this form
factor. Note that the three curvéspart form the diquark contribu-

tion) are very similar. Experimental data from R¢62] are in-

The neutron electric form factor tells a similar story. In y,ded.

the left panel of Fig. 6, just as in Fig. 4, we display the
neutron form factor with its quark and diquark contributions.

Clearly, the quark contribution is negative in valueduark

tron form factor is a potent test of any treatment as it is a

and thus cancels much of the diquark contribution leading t¢lélicate cancellation of two large contributiof25,26. Sa-
a small form factor. There is once more a discrepancy comliently, the cancellation is naturally produced in our study.
pared to experimental data that is largely eliminated once wéhe experimental data are obtained from Rggg.—68.

include the intrinsic form factor as exhibited in the right

In Fig. 7, we present the proton magnetic form factor as

panel of the same figure. It is noteworthy here that the neucalculated with or without the intrinsic diquark form factor.

0.5 0.5
041 {04
S
0.3 F¥a {03
- e U ¢ Jo2
et T
-~
= s |
5 100
-0.1
-0.2
-0.3
=== Neutron form factor No diquark £
ammemme Quark contribution === Nodiquark 1.
=04 T e e- Diquark contribution [ — Withdiquark ££. -0.4
0.5 . . . . . . . . 05
00 02 04 06 08 10 02 04 06 08 10
Q (GeV?) Q (GeV)

FIG. 6. The neutron electric form factor in comparison with
experimental data. The left panel shows the quark contribtioty
ted ling, the diquark contributioridashed ling as well as the full
form factor (dotted-dashed lineas the sum of the two contribu-

The figure also contains the quark and diquark contributions.
Unmistakably, the scalar diquark contribution is virtually
vanishing due to the lack of an intrinsic spin. Nevertheless,
there is a very small contribution due to a small orbital
angular-momentum effect in the bound quark-diquark sys-
tem. Since the diquark contribution is negligible, the inclu-
sion of the intrinsic diquark form factor does not alter our
prediction and the form factor is determined to be almost
purely from a quark origin. This suggests the need for the
axial-vector diquark, which does have an intrinsic spin, to
supplement the quark contribution and to provide the miss-
ing one-third strength compared to the experimental data
[62]. The figure also indicates a convergence of our calcula-
tion, mainly from a quark origin, and the experimental data
at large values ofQ?. Such result suggests that this form
factor is almost purely of a quark origin in this regime. This
is anticipated due to the finite size of the axial-vector diquark
which probably can have a significant contribution but only
for smaller values of)?.

The neutron magnetic form factor describes a similar nar-
rative to that of the proton but here the missing strength
(one-halj is larger as can be seen in Fig. 8. As stated earlier,

tions. The right panel displays the neutron form factor with nothese specific missing strengths are predicted due to the

intrinsic diquark form factofdotted-dashed line and with the in-
trinsic form factor(solid line). Experimental data from Reff64—
68] are included.

absence of the axial-vector diquark in the present analysis.
The experimental data in Fig. 8 are obtained from Refs.
[65,69-73.
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02 This work is part of an ambitious program of using path-
00 integral techniques and QCD-motivated effective
Lagrangians to study baryon structure and to derive a full-
0.2 fledged nuclear force. The final goal of the program is a
o4 - derivation of an effective Lagrangian for the nuclear force,
- - namely, QHD from quark dynamics. As for the future, we
-0 - X plan to attain a numerical study using both the scalar and
C axial-vector diquarks including their intrinsic form factors.
S =3 This is a challenging and rather difficult task due to the axial-
-10 | - vector diquark intricate structure as a particle of one unit spin
K2 , and isospin. Some of the ensuing complications are the axial-
-1.2 | === No diquark f.f. . . . . .
= —— With diquark 1.1 vector diquark direct coupl!ng to the weal_<.|nteract|on and
14b =4 == Quark contribution the electroweak scalar axial-vector transitions. At a later
==== Diguark contribution . .
el = stage, we plan to generalize our approach to chira(3gU
symmetry to study the structure of the baryon octet.
_1'80.0 OI1 Oj2 Of3 0j4 , 0i54 OiG Oj7 Oi8 Oj9 1.0
Q (Gev) ACKNOWLEDGMENTS

FIG. 8. The neutron magnetic form factor in comparison with
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experimental data. The figure shows the neutron magnetic fornhe Promotion of Science and the United States National
factor as calculated wittsolid line) or without (dotted-dashed line  Science Foundation. D.E. and A.H. thank W. Bentz for fruit-

the intrinsic diquark form factor. The figure also includes the qUarkfu| discussions on the role of axial-vector diquarks_ A.H. also
(dotted ling and the diquarkdashed lingcontributions to this form  thanks A. W. Thomas for discussions on chiral corrections

factor. Note that the three curvéapart from the diquark contribu- 5 hospitality during his stay at CSSM Adelaide.
tion) are very similar. Experimental data from R€f85,69—73 are

included.
APPENDIX: ANALYTICAL EXPRESSIONS USING

V. CONCLUSIONS THE PAULI-VILLARS REGULARIZATION METHOD

We include here analytical expressions for some of the

In this paper we tackled the nucleon structure and the . "™ ;
rincipal formulas in our treatment.

challenging problem of understanding the origin and naturd®
of the nuclear force by deriving a meson-nucleon Lagrangian
using the path-integral method of hadronization. We started 1. Self-energy and wave-function renormalization

from a microscopic model of quarks and diquarks where the The self-energy is depicted by the Feynman diagram of
gluonic degrees of freedom have been integrated out. Thpig_ 1 and is given by the expression

nucleon was conceived as quark-diquark correlations and
only two kinds of diquarks were found relevant for its struc-
ture. These are the scalar isoscalar and the axial-vector is-
ovector diquarks. Composite meson and nucleon fields were
introduced by the methods of path-integral bosonization and
fermionization to rewrite the problem in terms of the physi-
cal meson and nucleon degrees of freedom. This yielded an
effective chiral meson-nucleon Lagrangian after using loop
expansions of the resulting quark/diquark determinants. The 1
divergent loop diagrams were regularized using gauge- = NC(LLT)Z
invariant regularization schemes and the Ward-Takahashi

d*k i(p—Kk+mg)

(2m)* (p—k)2—m;

E(D)=Nc(—i)J

i i
X —
{kz—Mé k?—A?

J'Oldx[p(l—x)-F mg]

identity and the Goldberger-Treiman relation were verified. A(A,q2=0)
An extensive set of nucleon observables were calculated XIn — (A1)
for the first time on the basis of the path-integral hadroniza- A(Ms,q°=0)

tion approach. Indeed, many of the nucleon physical proper-

ties such as mass, coupling constants, electromagnetic radiierep” is the momentum of the nucleon taken to be on the
anomalous magnetic moments, and form factors have bedhass shellN.=3 is the number of colors, and

determined from a model of essentially one free parameter.

By taking into account the intrinsic diquark form factor, we A(M,q%)=mix+M?(1—x)—p?x(1—x)+a*x?y(y—1).
established a remarkable agreement with the experimental (A2)
data for the nucleon size and the electric form factors, while

our calculations show missing strengths for the magnetidNote that we have used the Pauli Villars method for regular-
form factors and the axial-vector coupling constant. The disizing the divergent integral by incorporating the propagator
crepancy is likely due to the absence of the axial-vector dii/(k?— A?) of a fictitious scalar particle with mass in the
quark in the present numerical study. above expression.
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The wave-function renormalizatiaf is obtained through whereF{(g?) andFJ(g?) are the quark contributions to the
the derivative QE(D)MDM)MHMB, leading to the expression nucleon form factor and are given by

A(A,9*=0)
A(MS!qZZO)

1 1
Z7*=Ng —(4 )fdx[(l x)In

—2X(1=x)Mg[Mg(1—x)+mg]

A(A ,q)}
A(Ms,q)

F‘i‘(qz)=ZNch fdxf dy{(l x)In

_[zx(l_X)MB[MB(l_X)+mq]+q2X2(l_Y)]
1 1
| A(A?=0) AM q2=0)}' (A3) x[ 1 ] (A5)
’ s’ A(A,9) A(Ms,q)f)’

2. Electromagnetic interaction

The photon couples to both the quark and the diquark

1 1
lines leading to two contributions to the nucleon electromagF3(g%) = ZNCQQ—ZL dxfo dy2x*Mg[ Mg(1—X)+mj]

netic vertex. (4)
(@ Quark contribution. This is the contribution repre- 1 1
sented by the left part of Fig. 2 and is given b X - . A6
Y the left part of Fig given by AR A(MS,Q)} (A0
AN f d*k i i ]
_ = —N.Q, _
" (2m)* [ kK*=M§ K*—A? In the above expressions” (p’*) is the momentum of the
Coar Coa incoming(outgoing nucleong*= p"‘— p* is the momentum
X'(lb Ik+mq)2 YM'('ZS k+mql, transfer, andQ = diag(2/3;-1/3) is the quark charge. Note
(p'—k)?*-mg " (p—k)?>—mg that we have included the wave-function renormalization
e constantZ in the above expressions.
—F9(q?) y*+ Fq(qz)"’ A (A4) (b) Scalar diquark contribution. This is the contribution
' 2 2Mg ' represented by the right part of Fig. 2 and is given by
d*k i i (k+mg) i [ i (k+mg) i
S AM = J 4 _ a B DkH
=~ NQs (2w)4[(p—k)2—|v|§ K-m2 (p'=k)?-M3 (p—K2-A% k2-mZ (p'—k)2—A> (p*=p )
”“”q,,
=F (qz)y’“er(qz) : (A7)
where
POl =2N0s—— [ ox [ a ((1 | D (1 X Mg M 1)+ ]][ - . H
X —x)In| ————| —[2x(1—x —X)+m - ,
: S (42 Y A(Ms.Q) sl Ve A AMs,q)
(A8)
FD( 2)=ZN.Q ! fd fld [2 (1-xX)Mg[Mg(1—x)+ ]{ ! ! ] (A9)
= X X(1—x —X)+m - .
SRS g oMo 3N " AMs.a)
|
HereQs=1/3 is the diquark charge. with the correct normalization for the nucleon electric

(c) Form factor and Ward-Takahashi identity. The charge.
full nucleon electromagnetic form factor is the sum of
the quark and diquark contributions. Note thaat0, the
sum of these two pieces conforms to the Ward-Takahashi The axial-vector coupling constagi, (with only scalar
identity as it yields Z(Qy+ Qg)(1/Z2) =diag(1,0)=Qy diquarksg is determined from the axial-vector vertex as rep-

3. Axial-vector coupling constantga
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resented by Fig 3. Note that since the scalar diquark canngf, is defined as the coefficient of thé*y®° term of the axial-

couple to the weak interaction, there is no contributiog o

vector vertex atj?=0. This yields after evaluating this ver-

from a direct coupling to the diquark line. The full axial- tex

vector vertex is given by

" __NJ' d*k i P i
axial™— c (27T)4 kz—Mé k2_A2
|(|b’ Ik+mq) 5i(|zS—k+mq
. (A10
om0

1q _O)
ga= fdxf dy[xln AMo.P=0)
—x[MB(l—x)erq]2
X ! - ! (A11)
A(A,q°=0) A(Ms,q?=0)])
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