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Fusion from an excited state

Sachie Kimura* and Noboru Takigawa†

Department of Physics, Tohoku University, Sendai 980-8578, Japan
~Received 22 February 2002; published 2 August 2002!

We discuss the effects of intrinsic degrees of freedom on the barrier transmission probability of a macro-
scopic variable especially in the case when the intrinsic motion is initially in an excited state based on
coupled-channels calculations. We analyze in detail the dependence of channel-coupling effects on the degree
of adiabaticity, the properties of the intrinsic motion such as the number of coupled intrinsic states and the
nature of either vibrational or rotational couplings, and the location of the coupling form factor. We show that
significant transitions from excited states to the ground state take place in the low-energy region even in the
cases where one would expect almost no nonadiabatic transitions because of the large excitation energy of the
intrinsic motion. This suggests the fusion barrier to be renormalized by a tunneling-assisted intrinsic transition.
We also analytically show that the potential renormalization by a fast environment crucially depends on
whether it is initially in the ground or in the excited states and on the number of coupled intrinsic states.
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I. INTRODUCTION

It is now well established that the coupling of the relati
motion between the colliding nuclei to nuclear intrinsic d
grees of freedom significantly enhances the cross sectio
heavy-ion fusion reactions at energies below the Coulo
barrier @1,2#. On the other hand, one of the current topics
nuclear physics is to clarify the screening effects by bou
electrons in the target nucleus in low-energy nuclear re
tions in laboratories@3#.

A question that has not yet been fully explored is whet
some peculiar effects arise if the intrinsic degrees of freed
are initially in an excited state. This corresponds, e.g., to
effects of transfer reactions with a positiveQ value on
heavy-ion fusion reactions and to the screening effects in
case, where the electronic state is initially an excited stat
the sense of the united system. The distribution of the int
sic states after tunneling, i.e., the transition probabi
among the intrinsic states in the tunneling process, has
not been analyzed in detail, because so far almost all stu
dealt with only the inclusive transmission probability. Th
transition properties, however, play an important role in
termining the effective potential for the tunneling proce
such as the potential renormalization due to the scree
effects.

The aim of this paper is to shed light on these questi
based on the direct numerical solution of schematic coup
channels equations. A simple schematic model is adva
geous to analyze in detail the dependence of the effect
intrinsic degrees of freedom on various conditions such
the degree of adiabaticity, the properties of the intrinsic m
tion, and the location of the coupling form factor. The
analyses will provide useful informations on realistic scre
ing problems, and also on the fusion reactions induced
unstable nuclei@4–8#.

The paper is organized as follows. In Sec. II, we brie
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review the coupled-channels formalism. In Sec. III we d
cuss the numerical results of the effects of intrinsic degr
of freedom on the barrier transmission probability und
various circumstances. In Sec. IV we discuss the transi
properties of the intrinsic motion during the barrier transm
sion process. We show that the intrinsic motion make
strong transition to the ground state to facilitate the quant
tunneling. We summarize the paper in Sec. V. We add
appendix to elucidate the properties of the potential ren
malization by a fast environment, i.e., in the slow or ad
batic tunneling. To that end we use the influence functio
method of the path integral formalism. This will help one
understand the numerical results in Sec. III that a fast en
ronment hinders the barrier transmission probability for w
range of energies including the tunneling region if it sta
initially from the excited state in the two-channels mod
while it enhances in the three level problem irrespective
whether it starts initially from the ground state or the fir
excited state.

II. COUPLED-CHANNELS FORMALISM

We consider a system consisting of a macroscopic v
ablex, which undergoes a quantum tunneling, and the ot
degrees of freedomj, which we call the intrinsic degrees o
freedom. We assume that the total Hamiltonian is given

H5
p̂2

2m
1U~x!1Hin~j!1Vc~x,j!, ~1!

where p̂ and m are the conjugate momentum tox and the
mass, respectively, andU(x) the bare potential barrier. Th
Hin(j) is the Hamiltonian of the intrinsic degrees of fre
dom, andVc(x,j) the coupling Hamiltonian betweenx and
j. Thex corresponds to the coordinate of the relative mot
between the target and projectile nuclei in both heavy-
collisions and screening problem, whilej nuclear intrinsic
degrees of freedom in heavy-ion collisions and the coo
nates of electrons in the screening problem.
©2002 The American Physical Society03-1
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We assume that the eigenfunctions and the correspon
eigenvalues ofHin are known,

Hinufm&5emufm&, ~2!

and expand the total wave function on the basis of th
eigenfunctions,

c~x,j!5(
m

xm~x!fm~j!. ~3!

We consider the case, where the coupling Hamiltonian
given by a product of two factors,

Vc~x,j!5 f ~x!M̂ ~j!, ~4!

where f (x) is called the coupling form factor, andM̂ is an
operator in the space of intrinsic motions. The followin
coupled-channels equations then follow:

F2
\2

2 m

d2

dx2
1U~x!Gxm~x!1emxm~x!

1 f ~x!(
m8

^muM̂ um8&xm8~x!5Exm~x!. ~5!

We assume that bothU(x) and f (x) are nonzero only for
small values ofx, and that we are interested in the barr
transmission probability when thex variable impinges upon
the potential barrier fromx5` towards x52`. The
coupled equations are then solved with the following bou
ary conditions:

c~x,j!→5 (
n

tn

1

Akn

e2 iknxfn~j! ~x!0!

(
m

1

Akm

@ I me2 ikmx1r meikmx#fm~j! ~x@0!,

~7!

~6!

where km5A2m(E2em)/\. The amplitude of the inciden
waveI m is taken to bedmm0

if the intrinsic motion is initially

in the statefm0
. Once the transmission amplitudestn are

determined, the barrier transmission probability is given

P5(
n

utnu2. ~8!

We assume throughout the paper that the bare pote
and the coupling form factor are given by

U~x!5
U0

cosh2~x/a!
, f ~x!5

f 0

cosh@~x2xf !/af #
. ~9!

Furthermore, we fix the values ofU0 , a, af , andm to be 10
MeV, 15 fm, 15 fm, and 2000 MeV/c2, c being the light
velocity, respectively.
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The effects of intrinsic motion can significantly differ i
two opposite situations concerning adiabaticity@9–13#. In
this connection, we denote the curvature of the bare poten
barrier and the energy quanta of the intrinsic excitation,e2
2e1, as \V and \v, respectively, and calll5v/V the
adiabaticity parameter. The larger value ofl corresponds to
slower or more adiabatic tunneling or equivalently to fas
intrinsic motion. Note, however, that the adiabaticity is i
fluenced also by other parameters such as the strengt
coupling @12#.

III. EFFECTS OF INTRINSIC MOTION
ON THE BARRIER TRANSMISSION PROBABILITY

A. Two-level model with channel coupling
in the tunneling region

We first consider a two-level model that is given by t
following coupling matrix

M5S 0 1

1 0D ~10!

The coupling matrix given by Eq.~10! appears to be the
two-channel truncation of the vibrational coupling. Howev
as we show shortly, this model can lead to a very differ
effect from that of the genuine vibrational coupling when t
initial state is the excited state. We further assumexf50 to
represent the channel coupling in the tunneling region.

Figure 1 shows the barrier transmission probabilityP as a
function of the incident kinetic energyEK for four represen-
tative values of adiabaticity. The dashed line is the transm
sion probability in the absence of the channel coupling, i
when f 0 is set to be zero. As it should be, the transmiss
probability is about 0.5 when the incident energy coincid
with the height of the potential barrier, i.e., atEK
510 MeV.

The dot-dashed and solid lines are the barrier transmis
probability when the coupling to the intrinsic motion is s
on. The former and the latter correspond to the cases, w
the intrinsic state is initially the ground state and the exci
state, respectively.

The behavior of the dot-dashed line for the case when
intrinsic motion is initially in the ground state is rather fa
miliar in the study of heavy-ion fusion reactions at energ
near and below the Coulomb barrier in the past decades.
coupling to a fast intrinsic motion enhances the barrier tra
mission probability over the whole energy region as is sho
for the case ofl5v/V52.0. On the other hand, the cou
pling to slow intrinsic motion enhances the barrier transm
sion probability at low energies and hinders it at high en
gies. This trend can be seen for the cases ofl50.25, 0.5,
and 1.0. As is also well known, this can be understood
considering the limit of degenerate spectrum, i.e., whenv
50, where the coupled equations can be decoupled into
one-dimensional problems with lower and higher poten
barriers than the bare potential barrier@9#. This fact shows up
in the barrier transmission probability even for finite valu
of v in the form of the step-function-like increase at tw
energies. Note that the decoupling of the coupled-chan
3-2
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FUSION FROM AN EXCITED STATE PHYSICAL REVIEW C66, 024603 ~2002!
equations in the limit of degenerate spectrum physica
means that one can fix the intrinsic coordinate during
barrier transmission process in this limit. There exists a b
rier for each of the two fixed values of the intrinsic coord
nate@14#.

Figure 1 shows that the coupling to intrinsic motion infl
ences the barrier transmission probability qualitatively in
same manner in the sense that it enhances or hinders
transmission probability at low or high energies, resp
tively, when the intrinsic state is initially the excited state
far as the adiabaticity parameter is small. One should, h
ever, notice also the difference in the dot-dashed and s
lines. They significantly differ in the amount of change of t
barrier transmission probabilityP at two energies whereP
shows a step-function-like increase. This means that the
sion barrier distribution appears to be quite different depe
ing on whether the intrinsic state is initially in the ground
in the excited states. In the degenerate spectrum limit, th
a natural consequence of the difference of the weight of
averaging procedure in the so-called zero-point motion
mulas in these two cases@13#.

A surprise occurs when the adiabaticity parameterl
5v/V is 2. The figure shows that the fast intrinsic motio
hinders the barrier transmission probability for a wide ene
region if the intrinsic motion is initially in the excited state

FIG. 1. The barrier transmission probability as a function of
incident kinetic energy in the case wherexf50.
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This contrasts with the enhancement in the case, where
intrinsic state is initially the ground state. The semilogari
mic plot, Fig. 2, shows that the hindrance changes to
hancement only at very low energies, where the barrier tra
mission probability is as small as 1023. A more accurate
expression of the results presented in Fig. 1 is to state
the barrier transmission probability gets more and more
hanced for wider energy region with increasing value ofl if
the intrinsic motion is initially in the ground state. To th
contrary, it gets more and more hindered for wider ene
region with increasingl if the intrinsic state is initially the
excited state.

It would be worth comparing our results with those
Refs. @15,16#, where the effects of channel coupling on th
barrier transmission probability are discussed using a sim
two-level model. We are especially interested in their resu
concerning theQ value dependence of the channel-coupli
effects. References@15,16# have pointed out that the barrie
transmission probability as a function of the energy for ne
tive Q value coupling appears to be smoother than that
positiveQ value coupling. In other words, a larger enhanc
ment of the barrier transmission probability is induced by
negativeQ value coupling than by a positiveQ value cou-
pling at energies below the bare potential barrier. Since
cases of positive and negativeQ values in Refs.@15,16# cor-
respond to the cases of the intrinsic motion being initially
the ground and in the excited states, respectively, in
study, this accords with our results shown in Figs. 1 and
Assuming a constant coupling form factor, Ref.@16# at-
tributes this dependence of the channel coupling effect on
sign of theQ value to the fact that the weights of the low
and higher effective potential barriers, which become r
evant terms for the constant coupling model, interchange
dominance with the sign of theQ value.

Returning to Figs. 1 and 2, it is important to notice th
the barrier transmission probability initiated from the excit
state eventually overwhelms that initiated from the grou
state at very low energies when one decreases the en
from the barrier region. This implies that the effects of cha
nel coupling with positiveQ values dominate at extremel
low energies, and provides an explanation for an extra la
enhancement of heavy-ion fusion cross section at very
energies in systems, where there exist transfer reaction c
nels with positiveQ values@17–21#.

FIG. 2. The barrier transmission probability as a function of t
incident kinetic energy in the case wherexf50 in the semilogarith-
mic plot.
3-3
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SACHIE KIMURA AND NOBORU TAKIGAWA PHYSICAL REVIEW C 66, 024603 ~2002!
B. Dependence on the dimension of the intrinsic states:
Three-level vibrational model with channel coupling

in the tunneling region

The result for the case of slow or adiabatic tunneling, i
for v/V52.0, presented in Fig. 1~d! can be understood by
perturbation theory, which predicts a negative and a posi
potential renormalization for the cases where the intrin
state is initially the ground and excited states, respectively
this connection, the two-level property of the model in t
preceding section plays a crucial role in leading to the h
drance of the barrier transmission probability for the ca
starting from the excited intrinsic state. One can anticipa
quite different behavior if there are more levels and the
cited state is allowed to make transitions not only to
ground state, but also to higher excited states. We show
lytically in the Appendix that this is indeed the case.

In order to demonstrate this through a concrete exam
we discuss in this section the results for the case, where
intrinsic motion has three levels. We assume the follow
coupling matrix:

M5S 0 1 0

1 0 A2

0 A2 0
D . ~11!

The other parameters includingxf are kept to be the same a
those for Fig. 1. Though the levels are truncated at the t
level, this coupling will mimic the vibrational coupling a
long as the coupling is weak and in the case, where
intrinsic state is initially either in the ground state or in t
first excited state.

The results are shown in Fig. 3 for two different values
v/V. The meaning of the dashed and dot-dashed lines is
same as in Fig. 1. The solid line has been obtained by se
the intrinsic motion to be initially in the first excited stat
Figure 3~b! shows that the coupling to the fast intrinsic m

FIG. 3. The barrier transmission probability as a function of
incident kinetic energy in the case where the intrinsic motion
three levels.
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tion now leads to enhancement over whole energy reg
irrespective of whether the intrinsic motion is initially in th
ground or the excited states, and confirms our anticipat
The semilogarithmic plot shows that the barrier transmiss
probability starting from the excited state overwhelms th
starting from the ground state at very low energies, thoug
is not clearly seen in the present linear scale plot. As for
coupling to slow intrinsic motion, the change from Fig. 1~a!
to Fig. 3~a! is what one would expect. There now appe
three energies where the transmission probability ma
step-function-like increase reflecting three effective poten
barriers in the limit of degenerate spectrum, or fast tunneli

C. Dependence on the coupling form factor: Two-level model
with channel coupling outside the tunneling region

Besides the degree of adiabaticity and the dimension
the intrinsic states which we studied in the preceding s
tions, the location of the coupling form factor also gover
the effects of the coupling to intrinsic motion on the barr
transmission probability. In order to demonstrate this asp
we show in Fig. 4 the barrier transmission probability f
two values ofv/V for the case, where the coupling to in
trinsic state is located outside the tunneling region. As
example, we assumexf550 fm. The other parameters ar
the same as those for Fig. 1.

We observe in the figure that the barrier transmiss
probability is hindered over the whole energy region by t
coupling to intrinsic motion if the intrinsic motion is initially
in the ground state, while it is enhanced if the intrinsic st
is initially excited state. This holds irrespective of the valu
of l5v/V shown in Fig. 4. We have confirmed that th
same conclusion holds for the other values ofl.

This result can be easily understood by considering
energy transfer from the intrinsic motion to the macrosco
motion. Since the coupling form factor in this section h
been assumed to be situated in the region outside the po
tial barrier, the positive~negative! energy transfer leads di

s
FIG. 4. The barrier transmission probability as a function of t

incident kinetic energy in the case wherexf550 fm. In the lower
panel, the dashed line is indistinguishable from the solid and
dot-dashed lines at high and low energies, respectively.
3-4
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FUSION FROM AN EXCITED STATE PHYSICAL REVIEW C66, 024603 ~2002!
rectly to the enhancement~hindrance! of the barrier transmis-
sion probability. This contrasts to the case for Fig. 1, wh
the coupling to the intrinsic motion takes place in the barr
region, thus leading to the renormalization of the poten
barrier as well as the energy transfer between the intrin
and the macroscopic spaces. The recognition of the simu
neous existence of the potential renormalization and the
ergy transfer is very important to properly assess the role
channel coupling in the barrier transmission probability, a
is one of the crucial issues to settle down the debates
cerning the role of breakup reactions in heavy-ion fus
reactions induced by unstable nuclei.

In passing, we remark that the solid and the dashed l
for the case ofv/V52.0 are almost parallel at low energie
in the semilogarithmic plot suggesting the validity of th
interpretation of the channel-coupling effects in terms of
energy transfer from the intrinsic to macroscopic spaces~see
Fig. 5!.

D. Dependence on the property of the intrinsic motion:
Two-level rotational model with channel coupling

in the tunneling region

Another interesting situation is the case where the c
pling matrix has a finite diagonal component,

M5S 0 1

1 dD . ~12!

Such a coupling matrix withd5 2
7 A5 is encountered when

one discusses the effects of the rotational excitation of
deformed target on its fusion cross section with a spher
projectile at low energies@22#. In this case, the diagona
component describes the so-called reorientation effect
the sign of f 0 is also important, positive representing th
prolate and negative the oblate deformations of the ta
nucleus, respectively@1,2#. In this section, we study the
properties of the effects of intrinsic motion given by the co
pling matrix Eq.~12! by assumingd5 2

7 A5.
Figure 6 shows the results for the case wheref 0

52 MeV. All the other parameters are the same as those
Fig. 1. We see close similarities between the vibrational
rotational couplings shown in Figs. 1 and 6. However, wh
one compares the two cases carefully, one finds clear di
ences between them.

FIG. 5. The barrier transmission probability as a function of
incident kinetic energy in the case wherexf550 fm in the semi-
logarithmic plot.
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Let us first compare the dot-dashed lines in Figs. 1~a! and
6~a!. Both of them show step-function-like increase at tw
energies. A difference is that these two energies are loc
nearly symmetrically from the bare barrier position, i.e.,
MeV, in Fig. 1~a!, while fairly asymmetrically in Fig. 6~a!.
Also, the amount of increase ofP is more asymmetric in Fig.
6~a!. These differences are associated with the reorienta
term, i.e., the finite value ofd in Eq. ~12!, and have been
used in the past decade in the so-called fusion barrier di
bution analysis of heavy-ion fusion reactions at energies n
and below the Coulomb barrier in order to identify the im
portant nuclear intrinsic degrees of freedom. It is interest
to notice that these differences remain for the case, when
intrinsic state is initially in the excited state. Another impo
tant observation is that the unexpected hindrance of the
rier transmission probability in the case, where the init
state starts from the excited state, forv/V52 coupling ap-
pears also for the rotational coupling. A difference of t
rotational coupling from the vibrational coupling is that th
deviation of the dot-dashed and the solid lines from
dashed line becomes visibly asymmetric.

Figure 7 shows the results forf 0522 MeV. The change
of the dot-dashed line from Fig. 6~a! to Fig. 7~a! is familiar
in the barrier distribution analysis of heavy-ion fusion rea
tions. Considering the limit of extremely slow rotation, it ca
be understood in terms of the changes of the position and
weight of two effective barriers caused by the change
deformation from the prolate to oblate shapes. A novel p
nomenon happens for the case ofv/V52. Contrary to the
cases of vibrational coupling and the rotational coupling
the prolate shape shown in Figs. 1~d! and 6~b!, respectively,
the barrier transmission probability is enhanced over
whole energy region also for the case, where the intrin
motion is initially in the excited state.

IV. TRANSITION PROPERTIES OF THE INTRINSIC
MOTION

Another issue that we wish to discuss in this paper is
transition properties of the intrinsic motion. To this end, w

FIG. 6. The barrier transmission probability as a function of t
incident kinetic energy in the case of rotational model with posit
f 0.
3-5
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SACHIE KIMURA AND NOBORU TAKIGAWA PHYSICAL REVIEW C 66, 024603 ~2002!
introduce the notationsT(g→e) and T(g→g) to represent
the squared barrier transmission coefficientsut2u2 and ut1u2,
respectively, in the case when the intrinsic state is initia
the ground state, andT(e→e) andT(e→g), respectively, to
represent them in the case when the intrinsic state is initi
the excited state.

As an example, here we consider the case studied in
III A. The results are shown in Fig. 8, which shows the rat
of the transmission probabilities in different channelsRTR
[T(g→e)/T(g→g) andT(e→g)/T(e→e) for two differ-
ent cases of adiabaticity by the dashed and solid lines,
spectively. In the case ofv/V52.0, there is almost no tran
sition over the whole energy region if the initial intrins
state is the ground state. At high energies, there is almos
transition also in the case when the intrinsic state is initia
the excited state. These can be attributed to the large ex
tion energy of the intrinsic motion. To the contrary, the
occurs a very strong transition to the ground state at

FIG. 7. The barrier transmission probability as a function of
incident kinetic energy in the case of rotational model with nega
f 0.

FIG. 8. Ratios of the transmission probabilities in differe
channelsT(g→e)/T(g→g) andT(e→g)/T(e→e).
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energies, where the barrier transmission is dominated by
quantum tunneling, if the initial intrinsic state is the excite
state. This is surprising, because the large value of the a
baticity parameterl5v/V would predict almost no nona
diabatic transition to take place in the tunneling energy
gion. This large transition is, however, natural, to enhan
the tunneling probability. We name this phenomenon as
tunneling-assisted intrinsic transition.

The situation for the case ofv/V50.25 is less dramatic
However, one can still observe a large transition from
excited state to the ground state in the tunneling energy
gion when the intrinsic state is initially the excited state. T
transition from the ground to excited states exists in this c
also in the tunneling energy region. A large transition is p
dicted to occur at high energies irrespective of whether
intrinsic motion is initially in the ground state or excite
state.

V. SUMMARY

We have discussed the effects of intrinsic degrees of fr
dom on the barrier transmission probability of a macrosco
variable. We have compared their features in the cases w
the intrinsic state is initially in an excited state and in t
ground state under various circumstances. The most stri
difference has been observed for an adiabatic, i.e., a s
barrier transmission when the intrinsic motion has only t
states and when the coupling form factor is located in
tunneling region. In this case, the barrier transmission pr
ability is hindered for a wide range of energy if the intrins
state is initially in the excited state contrary to the enhan
ment in the case where the initial intrinsic state is the grou
state. We have shown also that this effect is intimately
lated to the two-dimensional property of the model, and d
appears indeed when the two-dimensional model is repla
by a three-dimensional model.

We have then discussed the transition properties of
intrinsic state by taking a two-channel model with the co
pling form factor in the tunneling region as an example. W
have shown that the intrinsic state makes a very strong t
sition from the excited state to the ground state in the t
neling energy region even for the case where the ene
scale of the intrinsic motion is as large as twice the bar
curvature, so that one would normally expect almost
nonadiabatic transition to occur. The transition properties
the other cases studied in Sec. IV are qualitatively simi
We will discuss the implications of these intrinsic transitio
for the potential renormalization in a separate paper@23#
based on the semiclassical mean-field theory of quantum
neling @24,25#.
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APPENDIX: PROPERTIES OF THE POTENTIAL
RENORMALIZATION BY A FAST ENVIRONMENT

In this appendix, we discuss the properties of the poten
renormalization by a fast environment, i.e., in the slow
adiabatic tunneling of a macroscopic variable, which we c
a translational motion.

1. Path integral representation of the inclusive barrier
transmission probability

We start from the path integral representation of the
clusive barrier transmission probability@9#

P~E!5 lim
xi→`

xf→2`

S pipf

m2 D E
0

`

dTe( i /\)ETE
0

`

dT̃ e2( i /\)ET̃

3E D@x~ t !#E D@ x̃~ t̃ !#e( i /\)[St(x,T)2St( x̃,T̃)]

3r„x̃~ t̃ !,T̃;x~ t !,T…, ~A1!

whereSt(x,T) is the bare action of the translational motio
along a pathx(t),

St~x,T!5E
0

T

dtS 1

2
m ẋ~ t !22U„x~ t !…D . ~A2!

The effects of environment are described by the two-ti
influence functional defined by

r„x̃~ t̃ !,T̃;x~ t !,T…5(
nf

^ni uû†
„x̃~ t̃ !,T̃…unf&

3^nf uû„x~ t !,T…uni&, ~A3!

where uni& is the initial state of the environment, whic
evolves with time according to the time evolution opera
satisfying

i\
]

]t
û~x,t !5@Hin~j!1Vc„x~ t !,j…#û~x,t !, ~A4!

along each pathx(t) with the initial condition

û„x~ t !,t5t i…51. ~A5!

2. Influence functional and potential renormalization by a fast
environment: Two-level model

What one needs is to determine the influence functio
To that end, we study the time evolution of the intrinsic st
f(t)5û(x,t)f(t i) instead of û(x,t). In the two-channel
model that we considered in Sec. II, we put
02460
d
nd
g

al
r
ll

-

e

r

l.
e

f~j,t !5b1~ t !e2 i e1t/\S 1

0D 1b2~ t !e2 i e2t/\S 0

1D . ~A6!

Assuming that the intrinsic motion is initially in the statef1,
we obtain up to the second order of the coupling Ham
tonian,

b1~ t !512
1

\2Et i

t

dt1f „x~ t1!…e2 i et1 /\

3E
t i

t1
dt2f „x~ t2!…ei et2 /\, ~A7!

b2~ t !5
1

i\Et i

t

dt1f „x~ t1!…ei et1 /\, ~A8!

with e5e22e1.
We perform the partial integration to the second integ

in Eq. ~A7! and the integral in Eq.~A8! in order to discuss
the effects of a fast environment, and ignore all the ter
including the ratio ofd f /dt to v5e/\ @9,10#. The results
read

b1~ t !;11
i

e\2Et i

t

dt1@ f „x~ t1!…#2, ~A9!

b2~ t !;2
1

e
f „x~ t !…. ~A10!

We have used thatf „x(t i)…50.
It is now straightforward to obtain the following expre

sion of the influence functional:

r;ei e(T̃2T)/\S 12
i

\eEt i

T̃
d t̃1@ f „x̃~ t̃ 1!…#21••• D

3S 11
i

\eEt i

T

dt1@ f „x~ t1!…#21••• D . ~A11!

We have used the fact that the coupling is absent atT andT̃.
By exponentiating, we obtain

r;ei e1(T̃2T)/\expS i E
t i

T

dt
1

e
@ f „x~ t !…#2/\ D

3expS 2 i E
t i

T̃
d t̃

1

e
@ f „x̃~ t̃ !…#2/\ D . ~A12!

Inserting this result into Eq.~A1!, we see that the effects of
fast environment can be represented by a static pote
renormalization given by

DV52
1

e
@ f ~x!#2. ~A13!

We can identify the initial statef1 with the ground state.
In that case,e is positive, so that Eq.~A13! implies that the
fast environment lowers the tunneling barrier. Alternative
one can identify the initial statef1 with the excited state. In
3-7
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that case,e is negative, so that Eq.~A13! means that the fas
environment makes the tunneling barrier higher. This
plains why the barrier transmission probability has been h
dered for a wide range of energy when the fast environm
is initially in the excited state in the two-channel problem,
has been demonstrated in Fig. 1~d!.

3. Three-level model

One can do the same study for a three-level model.
consider a general case, where the coupling matrixM is
given by

M5S 0 1 0

1 0 k

0 k 0
D ~A14!

and assume thate22e15e32e25e. If the intrinsic motion
is initially in the second state, i.e., in thef2 state, then the
influence functional representing the effects of a fast en
ronment is given by
i,

es

hy
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s
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r;ei e2(T̃2T)/\expS 2 i ~k221!E
t i

T

dt
@ f „x~ t !…#2

2e Y \ D
3expS i ~k221!E

t i

T̃
d t̃

@ f „x̃~ t̃ !…#2

2e Y \ D . ~A15!

The potential renormalization is now given by

DV5~k221!
@ f ~x!#2

2e
. ~A16!

Equation~A16! agrees with Eq.~A13! for k5A2. This ex-
plains why the fast environment has a similar enhancem
effect when it is initially in the first excited state in the thre
level model as that when it starts from the ground state in
two-level model.
C

s.

ys.
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