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We discuss the effects of intrinsic degrees of freedom on the barrier transmission probability of a macro-
scopic variable especially in the case when the intrinsic motion is initially in an excited state based on
coupled-channels calculations. We analyze in detail the dependence of channel-coupling effects on the degree
of adiabaticity, the properties of the intrinsic motion such as the number of coupled intrinsic states and the
nature of either vibrational or rotational couplings, and the location of the coupling form factor. We show that
significant transitions from excited states to the ground state take place in the low-energy region even in the
cases where one would expect almost no nonadiabatic transitions because of the large excitation energy of the
intrinsic motion. This suggests the fusion barrier to be renormalized by a tunneling-assisted intrinsic transition.
We also analytically show that the potential renormalization by a fast environment crucially depends on
whether it is initially in the ground or in the excited states and on the number of coupled intrinsic states.
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I. INTRODUCTION review the coupled-channels formalism. In Sec. Il we dis-
cuss the numerical results of the effects of intrinsic degrees
It is now well established that the coupling of the relative of freedom on the barrier transmission probability under
motion between the colliding nuclei to nuclear intrinsic de-various circumstances. In Sec. IV we discuss the transition
grees of freedom Signiﬁcanﬂy enhances the cross section @roperties of the intrinsic motion during the barrier transmis-
heavy-ion fusion reactions at energies below the Coulomi§ion process. We show that the intrinsic motion makes a
barrier[1,2]. On the other hand, one of the current topics instrong transition to the ground state to facilitate the quantum
nuclear physics is to clarify the screening effects by boundunneling. We summarize the paper in Sec. V. We add an
electrons in the target nucleus in low-energy nuclear reacappendix to elucidate the properties of the potential renor-
tions in laboratorie$3]. malization by a fast environment, i.e., in the slow or adia-
A question that has not yet been fully explored is whethefatic tunneling. To that end we use the influence functional
some peculiar effects arise if the intrinsic degrees of freedorethod of the path integral formalism. This will help one to
are initially in an excited state. This corresponds, e.g., to theinderstand the numerical results in Sec. lll that a fast envi-
effects of transfer reactions with a posm\@ value on ronment hinders the barrier transmission probablllty for wide
heavy-ion fusion reactions and to the screening effects in theange of energies including the tunneling region if it starts
case, where the electronic state is initially an excited state iffitially from the excited state in the two-channels model,
the sense of the united system. The distribution of the intrinwhile it enhances in the three level problem irrespective of
sic states after tunne“ng, i.e., the transition probabi“tyWhether it starts |n|t|ally from the ground state or the first
among the intrinsic states in the tunneling process, has alsxcited state.
not been analyzed in detail, because so far almost all studies
dealt with Only the inclusive transmission probablllty The 1l. COUPLED-CHANNELS FORMALISM
transition properties, however, play an important role in de-
termining the effective potential for the tunneling process We consider a system consisting of a macroscopic vari-
such as the potential renormalization due to the screeningblex, which undergoes a quantum tunneling, and the other
effects. degrees of freedorg, which we call the intrinsic degrees of
The aim of this paper is to shed light on these question§reedom. We assume that the total Hamiltonian is given by
based on the direct numerical solution of schematic coupled-
channels equations. A simple schematic model is advanta- p2
geous to analyze in detail the dependence of the effects of H= 2—+U(x)+Hm(§)+VC(x,§), 1)
intrinsic degrees of freedom on various conditions such as K
the degree of adiabaticity, the properties of the intrinsic mo- R
tion, and the location of the coupling form factor. Thesewherep and n are the conjugate momentum xoand the
analyses will provide useful informations on realistic screenimass, respectively, arld(x) the bare potential barrier. The
ing problems, and also on the fusion reactions induced by;,(¢) is the Hamiltonian of the intrinsic degrees of free-
unstable nuclej4—§]. dom, andV.(x,¢) the coupling Hamiltonian betweenand
The paper is organized as follows. In Sec. Il, we briefly (. Thex corresponds to the coordinate of the relative motion
between the target and projectile nuclei in both heavy-ion
collisions and screening problem, whifenuclear intrinsic
*Electronic address: sachie@nucl.phys.tohoku.ac.jp degrees of freedom in heavy-ion collisions and the coordi-
"Electronic address: takigawa@nucl.phys.tohoku.ac.jp nates of electrons in the screening problem.
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We assume that the eigenfunctions and the corresponding The effects of intrinsic motion can significantly differ in

eigenvalues of;, are known, two opposite situations concerning adiabatidig~13]. In
this connection, we denote the curvature of the bare potential
Hin| ém) = €ml ém), (20 barrier and the energy quanta of the intrinsic excitation,

. ) —€1, ash) and fw, respectively, and calh=w/() the
and expand the total wave function on the basis of thosggjapaticity parameter. The larger valuedotorresponds to

eigenfunctions, slower or more adiabatic tunneling or equivalently to faster
intrinsic motion. Note, however, that the adiabaticity is in-
WX, 5)22 Yo(X) (€. 3) fluenc;ed also by other parameters such as the strength of
m coupling[12].
We consider the case, where the coupling Hamiltonian is IIl. EEFECTS OF INTRINSIC MOTION
given by a product of two factors, ON THE BARRIER TRANSMISSION PROBABILITY
V(X&) =f(X)M(&), (4) A Two-leyel model Wi.th chaqnel coupling
in the tunneling region
wheref(x) is called the coupling form factor, ard is an We first consider a two-level model that is given by the

operator in the space of intrinsic motions. The following following coupling matrix
coupled-channels equations then follow:

2d2

“Zuae OV

N .
Xm(X) + €mxm(X) 1o

The coupling matrix given by Eq(10) appears to be the

. two-channel truncation of the vibrational coupling. However,

100 2 (MMM ) xm () =Exm(X). (5 as we show shortly, this model can lead to a very different
' effect from that of the genuine vibrational coupling when the

initial state is the excited state. We further assume 0 to

We assume that botbl(x) and f(x) are nonzero only for e , .
represent the channel coupling in the tunneling region.

small values ofx, and that we are interested in the barrier

transmission probability when thevariable impinges upon . Figure 1 shows the barrier transmission probabHitgs a
the potential barrier fromx=o towards x=—%. The function of the incident kinetic enerdy for four represen-

coupled equations are then solved with the following bound:["’,‘tive values _Of gdiabaticity. The dashed line is the tr.ansr.nis-
ary conditions: sion probability in the absence of the channel coupling, i.e.,

whenf, is set to be zero. As it should be, the transmission
probability is about 0.5 when the incident energy coincides

> tnie’ikn’((bn(g) (x<0) 6) with the height of the potential barrier, i.e., dg
" ke =10 MeV.
P(x,&)— The dot-dashed and solid lines are the barrier transmission
> [l e kg1 ekm¥]p (&)  (x>0), probability when the coupling to the intrinsic motion is set
m \/—m on. The former and the latter correspond to the cases, where

(7) the intrinsic state is initially the ground state and the excited
state, respectively.
wherek,,=V2u(E—e€,)/An. The amplitude of the incident The behavior of the dot-dashed line for the case when the
wavel, is taken to bedy,, if the intrinsic motion is initially intrinsic motion is initially in the ground state is rather fa-
in the stateg,, . Once the transmission amplitudes are miliar in the study of heavy-ion fusion reactions at energies
determined, the barrier transmission probability is given by near qnd below th_e Qou_lomb parrler in the past dec?des- The
coupling to a fast intrinsic motion enhances the barrier trans-
mission probability over the whole energy region as is shown
P=> |t,|2 (8)  for the case of\=w/Q=2.0. On the other hand, the cou-
n pling to slow intrinsic motion enhances the barrier transmis-
We assume throughout the paper that the bare potenu%figg_F’Trﬁ?saf’r'gﬁ]ydaéé'\;’“{)eenseggffoﬂﬂeh'g‘:seeri gfg‘fzg"gg_gf‘er
and the coupling form factor are given by and 1.0. As is also well known, this can be understood by
considering the limit of degenerate spectrum, i.e., when
U(x)= Yo (x)= fo ) =0, where the coupled equations can be decoupled into two
cost(x/a)’ cosh (x—x)/a] one-dimensional problems with lower and higher potential
barriers than the bare potential barfi@}. This fact shows up
Furthermore, we fix the values tfy, a, a;, andw to be 10  in the barrier transmission probability even for finite values
MeV, 15 fm, 15 fm, and 2000 Me\¢?, c being the light of w in the form of the step-function-like increase at two
velocity, respectively. energies. Note that the decoupling of the coupled-channels
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FIG. 2. The barrier transmission probability as a function of the
incident kinetic energy in the case whege=0 in the semilogarith-
mic plot.

This contrasts with the enhancement in the case, where the
intrinsic state is initially the ground state. The semilogarith-
mic plot, Fig. 2, shows that the hindrance changes to en-
hancement only at very low energies, where the barrier trans-
mission probability is as small as 18 A more accurate
expression of the results presented in Fig. 1 is to state that
the barrier transmission probability gets more and more en-
hanced for wider energy region with increasing valué. of

the intrinsic motion is initially in the ground state. To the
contrary, it gets more and more hindered for wider energy
region with increasing\ if the intrinsic state is initially the
excited state.

It would be worth comparing our results with those in
Refs.[15,16], where the effects of channel coupling on the
barrier transmission probability are discussed using a similar
two-level model. We are especially interested in their results
concerning theQ value dependence of the channel-coupling
effects. Referencdd 5,16 have pointed out that the barrier
transmission probability as a function of the energy for nega-
equations in the limit of degenerate spectrum physicallytive Q value coupling appears to be smoother than that for
means that one can fix the intrinsic coordinate during thepositive Q value coupling. In other words, a larger enhance-
barrier transmission process in this limit. There exists a barment of the barrier transmission probability is induced by a
rier for each of the two fixed values of the intrinsic coordi- negativeQ value coupling than by a positiv@ value cou-
nate[14]. pling at energies below the bare potential barrier. Since the

Figure 1 shows that the coupling to intrinsic motion influ- cases of positive and negati@values in Refs[15,16 cor-
ences the barrier transmission probability qualitatively in therespond to the cases of the intrinsic motion being initially in
same manner in the sense that it enhances or hinders thige ground and in the excited states, respectively, in our
transmission probability at low or high energies, respecstudy, this accords with our results shown in Figs. 1 and 2.
tively, when the intrinsic state is initially the excited state asAssuming a constant coupling form factor, R¢L6] at-
far as the adiabaticity parameter is small. One should, howtributes this dependence of the channel coupling effect on the
ever, notice also the difference in the dot-dashed and solidign of theQ value to the fact that the weights of the lower
lines. They significantly differ in the amount of change of theand higher effective potential barriers, which become rel-
barrier transmission probabilit at two energies wher®  evant terms for the constant coupling model, interchange the
shows a step-function-like increase. This means that the fudominance with the sign of th@ value.
sion barrier distribution appears to be quite different depend- Returning to Figs. 1 and 2, it is important to notice that
ing on whether the intrinsic state is initially in the ground or the barrier transmission probability initiated from the excited
in the excited states. In the degenerate spectrum limit, this istate eventually overwhelms that initiated from the ground
a natural consequence of the difference of the weight of thetate at very low energies when one decreases the energy
averaging procedure in the so-called zero-point motion forfrom the barrier region. This implies that the effects of chan-
mulas in these two cas¢$3]. nel coupling with positiveQ values dominate at extremely

A surprise occurs when the adiabaticity parameter low energies, and provides an explanation for an extra large
=w/Q is 2. The figure shows that the fast intrinsic motion enhancement of heavy-ion fusion cross section at very low
hinders the barrier transmission probability for a wide energyenergies in systems, where there exist transfer reaction chan-
region if the intrinsic motion is initially in the excited state. nels with positiveQ values[17-21].

6 8 10 12 14
Ey [MeV]

FIG. 1. The barrier transmission probability as a function of the
incident kinetic energy in the case wheteg=0.
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FIG. 3. The barrier transmission probability as a function of the  FIG. 4. The barrier transmission probability as a function of the
incident kinetic energy in the case where the intrinsic motion hasncident kinetic energy in the case whetg=50 fm. In the lower
three levels. panel, the dashed line is indistinguishable from the solid and the

dot-dashed lines at high and low energies, respectively.

B. Dependence on the dimension of the intrinsic states:

Three-level vibrational model with channel coupling
in the tunneling region

tion now leads to enhancement over whole energy region
irrespective of whether the intrinsic motion is initially in the
ground or the excited states, and confirms our anticipation.
The result for the case of slow or adiabatic tunneling, i.e.,The semilogarithmic plot shows that the barrier transmission
for w/Q=2.0, presented in Fig.(d) can be understood by a probability starting from the excited state overwhelms that
perturbation theory, which predicts a negative and a positivstarting from the ground state at very low energies, though it
potential renormalization for the cases where the intrinsidS not clearly seen in the present linear scale plot. As for the
state is initially the ground and excited states, respectively. 1§OUPling to slow intrinsic motion, the change from Figa)l
this connection, the two-level property of the model in thet0 Fig. 3@ is what one would expect. There now appear
preceding section plays a crucial role in leading to the hinihree energies where the transmission probability makes
drance of the barrier transmission probability for the Cas(Jstep.—fun.ct|on—I|I_<e_|ncrease reflecting three effective potenpal
starting from the excited intrinsic state. One can anticipate ®arriers in the limit of degenerate spectrum, or fast tunneling.
quite different behavior if there are more levels and the ex-
cited state is allowed to make transitions not only to the
ground state, but also to higher excited states. We show ana-
lytically in the Appendix that this is indeed the case. Besides the degree of adiabaticity and the dimension of
In order to demonstrate this through a concrete exampléghe intrinsic states which we studied in the preceding sec-
we discuss in this section the results for the case, where th@ns, the location of the coupling form factor also governs
intrinsic motion has three levels. We assume the followingthe effects of the coupling to intrinsic motion on the barrier

C. Dependence on the coupling form factor: Two-level model
with channel coupling outside the tunneling region

coupling matrix: transmission probability. In order to demonstrate this aspect,
we show in Fig. 4 the barrier transmission probability for
o 1 0 two values ofw/Q for the case, where the coupling to in-
M=[1 0 2. (11) trinsic state is located outside the tunneling region. As an
example, we assume;=50 fm. The other parameters are
0 V2 0 the same as those for Fig. 1.

We observe in the figure that the barrier transmission

The other parameters including are kept to be the same as probability is hindered over the whole energy region by the
those for Fig. 1. Though the levels are truncated at the thirdoupling to intrinsic motion if the intrinsic motion is initially
level, this coupling will mimic the vibrational coupling as in the ground state, while it is enhanced if the intrinsic state
long as the coupling is weak and in the case, where thés initially excited state. This holds irrespective of the values
intrinsic state is initially either in the ground state or in the of A = w/{) shown in Fig. 4. We have confirmed that the
first excited state. same conclusion holds for the other values\of

The results are shown in Fig. 3 for two different values of  This result can be easily understood by considering the
w/Q. The meaning of the dashed and dot-dashed lines is thenergy transfer from the intrinsic motion to the macroscopic
same as in Fig. 1. The solid line has been obtained by settingotion. Since the coupling form factor in this section has
the intrinsic motion to be initially in the first excited state. been assumed to be situated in the region outside the poten-
Figure 3b) shows that the coupling to the fast intrinsic mo- tial barrier, the positivenegative energy transfer leads di-
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6 8 10 12 14
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FIG. 5. The barrier transmission probability as a function of the
incident kinetic energy in the case whetg=50 fm in the semi-
logarithmic plot.

rectly to the enhancemetfttindrance of the barrier transmis-
sion probability. This contrasts to the case for Fig. 1, where 6 8 10 12 14

the coupling to the intrinsic motion takes place in the barrier Ex [MeV]

region, thus leading to the renormalization of the potential _ o o _

barrier as well as the energy transfer between the intrinsic F!G- 6. The barrier transmission probability as a function of the
and the macroscopic spaces. The recognition of the Simultir-]c'dem kinetic energy in the case of rotational model with positive
neous existence of the potential renormalization and the en?

ergy transfer is very important to properly assess the role of | et us first compare the dot-dashed lines in Figs) and
channel coupling in the barrier transmission probability, ands(a). Both of them show step-function-like increase at two
is one of the crucial issues to settle down the debates corenergies. A difference is that these two energies are located
cerning the role of breakup reactions in heavy-ion fusionnearly symmetrically from the bare barrier position, i.e., 10
reactions induced by unstable nuclei. MeV, in Fig. 1(a), while fairly asymmetrically in Fig. @&).

In passing, we remark that the solid and the dashed line8lso, the amount of increase Bfis more asymmetric in Fig.
for the case ofv/Q)=2.0 are almost parallel at low energies 6(a). These differences are associated with the reorientation
in the semilogarithmic plot suggesting the validity of the term, i.e., the finite value ofl in Eq. (12), and have been
interpretation of the channel-coupling effects in terms of theused in the past decade in the so-called fusion barrier distri-

energy transfer from the intrinsic to macroscopic spdses  bution analysis of heavy-ion fusion reactions at energies near
Fig. 5. and below the Coulomb barrier in order to identify the im-

portant nuclear intrinsic degrees of freedom. It is interesting
to notice that these differences remain for the case, when the
intrinsic state is initially in the excited state. Another impor-
tant observation is that the unexpected hindrance of the bar-
rier transmission probability in the case, where the initial
Another interesting situation is the case where the coustate starts from the excited state, tof()=2 coupling ap-

D. Dependence on the property of the intrinsic motion:
Two-level rotational model with channel coupling
in the tunneling region

pling matrix has a finite diagonal component, pears also for the rotational coupling. A difference of the
rotational coupling from the vibrational coupling is that the
0 1 deviation of the dot-dashed and the solid lines from the

M= 1 dl- (12)  dashed line becomes visibly asymmetric.

Figure 7 shows the results fédg=—2 MeV. The change
of the dot-dashed line from Fig(® to Fig. 7a) is familiar
Such a coupling matrix witld=32/5 is encountered when in the barrier distribution analysis of heavy-ion fusion reac-
one discusses the effects of the rotational excitation of théions. Considering the limit of extremely slow rotation, it can
deformed target on its fusion cross section with a sphericalbe understood in terms of the changes of the position and the
projectile at low energie$22]. In this case, the diagonal weight of two effective barriers caused by the change of
component describes the so-called reorientation effect andeformation from the prolate to oblate shapes. A novel phe-
the sign off, is also important, positive representing the nomenon happens for the case«@f()=2. Contrary to the
prolate and negative the oblate deformations of the targegases of vibrational coupling and the rotational coupling for
nucleus, respectively1,2]. In this section, we study the the prolate shape shown in Figsdiand Gb), respectively,
properties of the effects of intrinsic motion given by the cou-the barrier transmission probability is enhanced over the
pling matrix Eq.(12) by assumingi=2 5. Who_le energy region also for the case, where the intrinsic

Figure 6 shows the results for the case whdge Motion is initially in the excited state.
=2 MeV. All the other parameters are the same as those for
Fig. 1. We see close similarities between the vibrational and
rotational couplings shown in Figs. 1 and 6. However, when
one compares the two cases carefully, one finds clear differ- Another issue that we wish to discuss in this paper is the
ences between them. transition properties of the intrinsic motion. To this end, we

IV. TRANSITION PROPERTIES OF THE INTRINSIC
MOTION
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6 8 10 12 14 energies, where the barrier transmission is dominated by the

] quantum tunneling, if the initial intrinsic state is the excited
state. This is surprising, because the large value of the adia-
baticity parameteh = /) would predict almost no nona-
diabatic transition to take place in the tunneling energy re-
gion. This large transition is, however, natural, to enhance
the tunneling probability. We name this phenomenon as the
tunneling-assisted intrinsic transition.

The situation for the case @/ =0.25 is less dramatic.
However, one can still observe a large transition from the
excited state to the ground state in the tunneling energy re-
gion when the intrinsic state is initially the excited state. The
transition from the ground to excited states exists in this case
also in the tunneling energy region. A large transition is pre-
dicted to occur at high energies irrespective of whether the
6 8 10 12 14 intrinsic motion is initially in the ground state or excited

Ex [MeV] state.

FIG. 7. The barrier transmission probability as a function of the
incident kinetic energy in the case of rotational model with negative

fo. We have discussed the effects of intrinsic degrees of free-
dom on the barrier transmission probability of a macroscopic
introduce the notation$(g—e) and T(g—g) to represent variable. We have compared their features in the cases where
the squared barrier transmission coefficie|r11§$2 and|t1|2, the intrinsic state is initially in an excited state and in the
respectively, in the case when the intrinsic state is initiallyground state under various circumstances. The most striking
the ground state, anfi(e—e) andT(e—Q), respectively, to  difference has been observed for an adiabatic, i.e., a slow,
represent them in the case when the intrinsic state is initiallysarrier transmission when the intrinsic motion has only two
the excited state. states and when the coupling form factor is located in the
As an example, here we consider the case studied in Setnneling region. In this case, the barrier transmission prob-
lIIA. The results are shown in Fig. 8, which shows the ratiosability is hindered for a wide range of energy if the intrinsic
of the transmission probabilities in different channBlsz  state is initially in the excited state contrary to the enhance-
=T(g—e)/T(g—Qg) andT(e—g)/T(e—e) for two differ-  ment in the case where the initial intrinsic state is the ground
ent cases of adiabaticity by the dashed and solid lines, restate. We have shown also that this effect is intimately re-
spectively. In the case @b/)=2.0, there is almost no tran- lated to the two-dimensional property of the model, and dis-
sition over the whole energy region if the initial intrinsic appears indeed when the two-dimensional model is replaced
state is the ground state. At high energies, there is almost nigy a three-dimensional model.
transition also in the case when the intrinsic state is initially We have then discussed the transition properties of the
the excited state. These can be attributed to the large exciténtrinsic state by taking a two-channel model with the cou-
tion energy of the intrinsic motion. To the contrary, therepling form factor in the tunneling region as an example. We
occurs a very strong transition to the ground state at lovhave shown that the intrinsic state makes a very strong tran-
sition from the excited state to the ground state in the tun-

V. SUMMARY

6 8 10 12 14 neling energy region even for the case where the energy
<00 = ' scale of the intrinsic motion is as large as twice the barrier
10r @ T(g—e)/T(g—sg) === curvature, so that one would normally expect almost no
8 T(e—g)/Tle—e) nonadiabatic transition to occur. The transition properties for
6 the other cases studied in Sec. IV are qualitatively similar.
4 We will discuss the implications of these intrinsic transitions
2 for the potential renormalization in a separate paj&d]
based on the semiclassical mean-field theory of quantum tun-
neling[24,25.
Rir z I
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+ bz(t)e‘fzt’ﬁ( 1) . (AB)

Scientists under the Contract No. 12006231. Assuming that the intrinsic motion is initially in the statg,
we obtain up to the second order of the coupling Hamil-
APPENDIX: PROPERTIES OF THE POTENTIAL tonian,
RENORMALIZATION BY A FAST ENVIRONMENT
1 [t .
In this appendix, we discuss the properties of the potential by(t)=1— _Zj dt, f(x(ty))e i€/t
renormalization by a fast environment, i.e., in the slow or i<ty
adiabatic tunneling of a macroscopic variable, which we call 4
a translational motion. xf di,f(x(t,))e'<2/", (A7)
t
1. Path integral representation of the inclusive barrier 1t
transmission probability bz(t):?J dtlf(x(tl))eietllﬁ' (A8)
ih ),
We start from the path integral representation of the in- i
clusive barrier transmission probabilif9] with €= e,— €;.
. . . B We perform the partial integration to the second integral
P(E)=lim (p'_gf)f dTe(”ﬁ)ETf dT e (/MET in Eq. (A7) and the integral in Eq(A8) in order to discuss
xj—oe \ M 0 0 the effects of a fast environment, and ignore all the terms
Xg— =0 including the ratio ofdf/dt to w=e€/% [9,10]. The results
- read
Xf D[X(t)]f DIX(1)]el/MISCT) =S D]
i t
. i1+ — [ It (a9)
X p(X(1),T;x(1),T), (A1) eh”Jy
whereS;(x,T) is the bare action of the translational motion 1
a|ong a path((t), b2(t)~ - Zf(x(t)) (Alo)

T, We have used thdt(x(t;))=0.
S, T)= o dt| 5 ux("=UX®) . (A2) It is now straightforward to obtain the following expres-
sion of the influence functional:
The effects of environment are described by the two-time _ i (7
influence functional defined by p~¢ e(TT)/ﬁ( 1— h_J’ dt,[f(x(t))]%+---
€ tj

p&&ﬁ;x(t),n:; (i 0T (x(D),TIng)

X (A1)

i (T
— 2 ...
1+ ﬁffti dty[ f(x(ty))]°+
X (ngux(t),T)|n;), (A3) o -
We have used the fact that the coupling is abseftatdT.
where |n;) is the initial state of the environment, which BY exponentiating, we obtain
evolves with time according to the time evolution operator

. . i T T 1
satisfying p~¢ El(TT)/ﬁ'eXP( [ f dt;[f(x(t))]z/ﬁ)
t

Lo . -
IﬁEU(X,t)_[Hin(g)+Vc(X(t)a§)]U(X,t), (A4) XeX[{ i de}—%[f(')‘z(’i’))]Z/ﬁ) (A12)
§

along each path(t) with the initial condition Inserting this result into EqAL), we see that the effects of a

fast environment can be represented by a static potential

u(x(t),t=t)=1. (AS) " renormalization given by
2. Influence functional and potential renormalization by a fast AV=— E[f(x)]z (A13)
environment: Two-level model € '

What one needS iS to determine the inﬂuence fUnCtionaI. We can |dent|fy the |n|t|a| Statd)l W|th the ground state.
To that end, we study the time evolution of the intrinsic stateyn that casee is positive, so that EA13) implies that the
d(t)=u(x,t) ¢(t;) instead ofu(x,t). In the two-channel fast environment lowers the tunneling barrier. Alternatively,
model that we considered in Sec. I, we put one can identify the initial staté, with the excited state. In
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that casee is negative, so that E§A13) means that the fast _ [f(x(1))]?
environment makes the tunneling barrier higher. This ex- p~ ~elee(T-Ming P("(Kz_l)f dt_—e/ ﬁ)
plains why the barrier transmission probability has been hin- f

dered for a wide range of energy when the fast environment = [f(x(t))]2

is initially in the excited state in the two-channel problem, as Xex;{ 1)J dt / ﬁ)
has been demonstrated in FigdiL

(A15)

3. Three-level model N | | b
The potential renormalization is now given
One can do the same study for a three-level model. We P g y

consider a general case, where the coupling maifixs
given by )12
AV (k2 1)[ ( )]

(A16)

M=[1 0 « (A14)

Equation(A16) agrees with Eq(A13) for k= 2. This ex-
and assume that,— ;= e3— €,= €. If the intrinsic motion ~ plains why the fast environment has a similar enhancement

is initially in the second state, i.e., in th#, state, then the effect when it is initially in the first excited state in the three-
influence functional representing the effects of a fast envilevel model as that when it starts from the ground state in the

ronment is given by two-level model.
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