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We investigate properties &= 10 nuclei in theab initio, no-core shell model using realistic Argonne and
CD-Bonn nucleon-nucleonNN) potentials and basis spaces through(® (with basis dimensions reaching
5.5x 10°). Results for binding energies, excitation spedirecluding negative parity and7)-dominated
intruder states electromagnetic properties, and the isospin-mixing correction ofXBe-°B Fermi transition
are presented. FO%B, theseNN potentials produce a"T=1"0 ground state, contrary to the experimental
3*%0, a clear indication of the need for true three-body forces.
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[. INTRODUCTION approach that will also help to elucidate the advantages of
the various strategies, we report here the results of our recent
Various methods can be used to solve systems of morefforts to extend the model space up te 84 for A=10.
than two nucleons interacting by realistic interactiphs 3. It is interesting to studyA=10 nuclei inab initio ap-
For A>4 systems, a prominent approach has been thproaches for several reasons. These nuclei have a rich struc-
Green’s function Monte CarlGFMC) method[2]. An al-  ture with both positive and negative parity bound states.
ternative, and complementary, approach is the no-core shellhere are experimental candidates for the intruder states. It is
model (NCSM) [3-9], which is based on effective interac- also important to study the isospin-mixing correction for the
tions within the framework of a finite Hilbert space. In this °C—1%8 Fermi transition, which is relevant for the investi-
case, one derives an effective interaction for Aleody sys-  gation of the unitarity condition of the CKM matrix. Finally,
tem within a computationally tractable basis space using ¢he GFMC method is now being applied Ae= 10 nuclei, so
method designed to converge towards the exact result. it is interesting to compare the NCSM and the GFMC pre-
The applications of NCSM to date have been performedlictions.
for both the - and the @-shell nuclei in large, multf: () In Sec. Il, we discuss our NCSM formulation, i.e., the
basis spaces. Initial investigations used two-body interacHamiltonian and effective interaction framework. Results for
tions based on &-matrix approacti4], while later, the Lee- the A=10 systems interacting by the CD-Bonn and the Ar-
Suzuki procedur¢l0] was implemented to derive two-body gonne V8 NN potentials are given in Sec. Ill. We discuss
effective interactions for the NCS§&]. The earlieiG-matrix ~ the binding energies, excitation spectra, electromagnetic
approach used a phenomenological paramé&ténat lacked (EM) properties, as well as Gamow-Teller transitions. The
a clear physical motivation. In addition, tk&matrix is non-  isospin-mixing correction for thé&’°C— %8 Fermi transition
Hermitian and Hermiticity was restored by a phenomeno-ds discussed in Sec. Il E. In Sec. IV, we present concluding
logical averaging procedure in many initial investigations.remarks.
The application of the Lee-Suzuki procedure eliminated
these approximationis]. A currently used formulation was Il. Ab initio NO-CORE SHELL MODEL
presented in Refl6] where convergence to exact solutions
was demonstrated for the=3 system. Later, the same was ~ The NCSM approach in the form applied in this paper
accomplished for thd=4 systen{7] and it was also shown Wwas presented recently, e.g., in Ref]. To make the present
that a three-body effective interaction improves the converpaper self-contained, we repeat the basic steps of the method
gence of the method. in this section.
The optimum strategy for the NCSM is to employ the
largest model space possible with the largest number of clus- A. Hamiltonian
ters derived in the effective interaction. Naturally, computa-
tional limitations require a compromise in the size of the
model space and the clusters used in the effective interactio

In the NCSM approach we start from the intrinsic Hamil-
;]onian for theA-nucleon system, i.e.,

Recently, three-body effective interactions have been applied 1A (Bi—pi) A
in the NCSM for nuclei withA<10 [9]. Computational re- Ha=Toot V=~ >, ﬁJr > VN(Fi_Fj)r (1)
strictions limited these calculations tohf), and it seems AT 2m i<j=1

feasible to extend them to#) in the future. On the other

hand, current technology permits larger-scale calculationssherem is the nucleon mass a%(ﬂ—ﬂ), the NN inter-
when implementing only two-body effective interactions, for action, both strong and electromagnetic components. It is
example the NCSM has recently been applied\te8 for  purely a two-body operator without a phenomenological
model spaces extending to7Q [8]. As a complementary single-particle potential. At present, we examine only realis-

0556-2813/2002/6@)/02431414)/$20.00 66 024314-1 ©2002 The American Physical Society



E. CAURIER, P. NAVR’AI'IL, W. E. ORMAND, AND J. P. VARY PHYSICAL REVIEW C66, 024314 (2002

tic two-bodyNN potentials, and extensions to include three-the short-range two-body correlations in a nucleus, by choos-
body NNN interactions are underway. ing an antihermitian operat@, such that

We may use both coordinate-spad8l potentials, such as  _5.,0.S
the Argonne potential$2] or momentum-space dependent H=e "Hpe™. )
NN potentials, such as the CD-Bofti]. In the next step we |y our approachSis determined by the requirements tht
modify the Hamiltonian(1) by adding to it the center-of- anqQ have the same symmetries and eigenspectra over the
mass (c.m) HO Hamiltonian Hem=Tem+Ucm, Where g hspacec of the full Hilbert space. In general, boshand
Uem=3AMO?RZ, R=1/AS{r;. The effect of the HO the transformed Hamiltonian aebody operators. Our sim-
c.m. Hamiltonian will later be subtracted out in the final plest, yet nontrivial approximation t& is to develop a two-
many-body calculation so there is no net influence on intrinhody effective Hamiltoniar(i.e., a=2, wherea represents
sic properties of the many-body system. In fact, in the infi-the cluster number and in effect substitutesAdn the sums
nite space such a potential has no influence on the intrinsigf the above equationsThe next improvement is to develop
properties at all. However, this added/subtracted potential fag three-body effective Hamiltoniare&3). This approach

cilitates the use of the convenient HO basis for evaluatingonsists then of an approximation to a particular level of
the effective interactions. The modified Hamiltonian, with aclustering a<A):

pseudodependence on the HO frequefigycan be cast into

the form H=H®+1 @), (5
AT = where the one-body amatbody pieces are given as
pi 1 -
Hi=Ha+Hcm=> | 5=+ >mQ? -2} A
A= HaTHem, 21 2 5 MR HD=> h,, (6a)
i=1
A
... o mQ? . .
+ 2 VN(ri_rj)__(ri_rj)z}- A
i<j=1 2A A
2 W2 2 Vi (6b)
aj\2
Since we solve the many-body problem in a finite HO
basis space, the realistic nuclear interaction in @g.will with
yield pathological results unless we use it to derive a model- a
space dependent effective Hamiltonian. In general, for an v =e’S(a)HQeS(a)—E h @
A-nucleon system, aA-body effective interaction is needed. 12---a a ="

In the present calculations, we make use of a two-body clus- .

ter approximation for the effective interaction. Large modelwhereS*® is ana-body operator and

spaces are desirable to minimize the role of neglected effects, a a

which a larger _cIusFer would includ% _ ngz hi+2 Vij . )
As the Hamiltoniandd, (1) andHy (2) differ only by a i=1 i<

c.m. dependent term, no dependence(bishould exist for

the intrinsic properties of the nucleus. However, because

the less-thamk-body-cluster approximation for the effective . .

) . . ) . clusters is not possible.

interaction, a dependence d&n arises in our results. This

dependence of2 and on the size of the basis space provides If the full A-body space is divided |r_1to an aCt'.\(@)
. . L model space and an excludég) space, using the projectors
measures of the severity of this approximation.

P andQ with P+Q=1, it is possible to determine the trans-
formation operatofs, from the decoupling condition

I}Iote that there is no sum ovem" in Eqg. (5), and that a
0 ) 2
perturbative expansion in terms of one-body, two-body, etc.,

B. Two-body effective interaction and the basis space definition «@

—s@,,0 _

In order to derive the effective interaction, we employ the Qae Hae” Pa=0, ©)
Lee-Suzuki S|m|lar|ty transformation meth@iﬂo,lz_l, which and the simultaneous restrictioms(a)Pa: Qas(a)Qazo
yields an Hermitian effective interaction. The approach pre\ote thata-nucleon-state projectord(,Q,) appear in Eq.
sented here leads to the same two-body effective interactiofy) and are applied to tha-nucleon statea), which effec-

as used in our previous papg;6—8. . tively define thea-cluster matrix elements used in the
Let us write the Hamiltoniart2) schematically as A-body calculation.
A A The unitary transformation and decoupling condition, in-
HO = h. + V. 3 tro_duced by Suzuki and Okamoto and referred to as the
A ;1 ' i<j2=l ! @ unitary-model-operator approa¢bMOA) [14], has the so-
lution

In the spirit of Da Providencia and Shakja3] and Lee,
Suzuki and Okamot$10,12), we introduce a unitary trans-
formation of the Hamiltonian, which is able to accommodatewith o satisfyingw=Q,wP,. Furthermore, we also have

S@=arctanfio— "), (10)
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Qae—ngewpa: 0. (11) interaction calculation and cancels out as seen iNBqThe
Ain Eq. (16) is set to 10 in the present application.
With Eg. (10), we have for thea cluster The relative-coordinate two-nucleon HO states used in the
calculation are characterized by quantum numbats jt)
Hao=(Pato'w) Y3(P+Pw'Qy) with the radial and orbital HO quantum numbers correspond-

ing to coordinate and momentunp?, respectively. Typically,
we solve the two-nucleon Hamiltonian in E(L6) for all
two-nucleon channels up through=6. For the channels
with higherj we takeV\ to be zero. Thus, only the relative
kinetic term contributes in such channels in the many-
nucleon calculation.
(aglo|ap)y= 2 <aQ|k>(T<|ap), (13 The model spac®, is defined by the maximal number of
kek allowed HO excitations of thA-nucleon systenN;,axfrom
the condition 21+1<Nigmax— Nspsminn Where Ngpgmin de-
where |ap) and [aq) denote thea-nucleon model- and notes the minimal possible value of the HO quanta of the
Q-space basis states, respectively. The tilde in E8) de-  gpectators, i.e., nucleons not affected by the interaction pro-
notes the inverted matrixap|k), i.e., =, (klap)(aplk’)  cess. For, €.9.1%B, Ngysmii=4 as there are 6 nucleons in the
= S\ and2k<a§,|~k)<k|ap)=5ar . fork,k’ e K. Note the Op shell in the unperturbed ground-state configuration and,
’ PP €.9., Niotmax= Nspsmirit 2+ Nmax, Where N, represents the
maximum HO quanta of the many-body excitation above the
unperturbed ground-state configuration. FUB, Nigmax
=12 for anN,,,=6 or “6A )" calculation.
In order to construct the operatarwe need to select the
t of eigenvectork. In the present application we select the
lowest states obtained in each two-body channel. It turns out
that these states also have the largest overlap with the model
E (ap|(Pyt wTw)’l’zl ap) space for the range df{) we investigate and thE spaces
ap o we select. Their number is given by the number of basis
~ _ states satisfying 2+ | < Nigmax— Nspsmin-
X{ap|K)E(K|lap Finally, the two-body effective interaction is determined
(@l (Pat @) Y al) (14) from the two-nucleon~effective Hamiltonian, obtained from
“pliFam @ @) —ap/. EQ. (14), as Vaer= P,V15P,=Po(Hoer—hy—hy) P,. Apart
from being a function of the nucleon numbar V,¢ de-
pends on the HO frequendYy and on the paramet®yymax
defining the basis space. It has the important property that
o Vaei— V12 fOr Nigimax— =, following from the fact thatw
(ap|(Pat olo)|apy=2 (aplk)(klap). (15  —0 for P—1. We note that{ D +H @ —Hc,, is transla-
kek tionally invariant. We note that in adition to NCSM the Lee-
Suzuki method has also been applied in an analogous way
within the Jacobi-coordinate hyperspherical harmonics

XH(QuoP,+ P (Pt ofw) Y2 (12

If the eigensolutions of the HamiltoniaHg‘2 are given by
HE|k)=E/k), then the operato® can be determined as

sumk denotes a set afp eigenvectors whose properties are
exactly reproduced in the model space, wdthequal to the
dimension of the model space.

With the help of the solution forw (13) we obtain a
simple expression for the matrix elements of the Hermitian,Se
effective Hamiltonian

Herlab) =
<aP| aeff|aP> g‘;@

For computation of the matrix elements @+ w'w) ",
we use the relation

We note that in the limia— A, we obtain the exact solutions
for dp states of the full problem for any finite basis space,

with flexibility for choice of physical states subject to certain method(16].
conditions[15]. ) o _
Now, we introduce our present application, in which we C. Solution of the many-body Schralinger equation
take a=2. Let us write explicitly the two-nucleon Hamil- Once the two-nucleon effective interaction is derived and
tonian in the relative and c.m. coordinates, e.g., transformed from the relative coordinate basis to the single-
particle coordinate basis, we evaluate and diagonalize the
Hey=HoptHoem*Via effective Hamiltonian in arA nucleon (' neutron andzZ

- 5 proton) Slater determinant HO basis that spans a complete
p 1 Nt} space. This choice of the basis together with the fact

02ty V(2 — T g
2m 2 zem. T EN A that the effective Hamiltonian is translationally invariant
guarantees the factorization of each of our wave functions

into a product of a c.m3% () wave function and a wave
- - - - function corresponding to the internal motion. Due to this
_ —Ji(r — . )
wherea HOZf Hoem=hithy, 1= ‘/Z(rl r2), and p property, it is straightforward to remove c.m. effects exactly
= \/g(pl— p,). The two-nucleon problem is then solved in a from all observables. We note that only a nonredundant sub-
relative HO basis space with high precision. The c.m. motiorset of the Slater determinant states are needed to span the
of the two nucleons is not affected by the transformationtranslationally invariantA-nucleonP space, and we isolate

S®@). The termH,.,, does not contribute to the effective this subset by adding a terfa(H. ,— 34) to the effective

(16)
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Hamiltonian with, e.g.,A=10. This procedure moves the 1 o N0
states with excited c.m. motion correspondingly higher in the T Nma":2
calculations and away from the physically relevant states all S Nma": 4
of which have gpassive 0S state of c.m. motion. Due to the ] max™

> 1 Npo=
translational invariance of our approach, the physical2 - ] Nrnax=6
T}

eigenenergies and other observables are independént of
The evaluation of thé\-nucleon Hamiltonian and its di-

agonalization is a highly nontrivial problem due to very large

dimensions we encounter. In the present work, we performec

] ——Npax=8

{1 —-GFMC

the many-body calculation with two completely independent 80 4—5—5—= 515 25 25 27 25 3

shell model codes. First, we used a newly developed versior
of the codeaNTOINE [17]. Second, we employed the many-
fermion dynamicMFD) shell-model cod¢18] used in the FIG. 1. 19 ground-state energy dependence on the HO fre-
previous NCSM investigations. Both codes work in te  quency for the 6-8% model spaces calculated using the effective
scheme for basis spaces comprising many major shells angkeraction derived from the AV8NN potential with Coulomb in-
use the Lanczos diagonalization algorithm. TRETOINE  cluded. The GFMC result is from RéfL9]. In the inset, the ground-
code allows a sophisticated selection of the pivot vector firsttate energies at the HO frequency minima as a functiow,@f are

by diagonalizing:]2 in a small model space and second by plotted.
using the eigenvectors from smaller model spaces as pivots
for the larger model spaces. This reduces the number of We also investigate electromagnetic and weak transitions.
Lanczos iterations needed for the convergence of the lowedthroughout this study, we employ traditional one-body tran-
states. Also, the algorithm for the calculation of the Hamil-sition operators with the free nucleon charges. We note that
tonian matrix elements is very efficient due to a special basiglue to the factorization of our wave functions into a product
ordering that allows a very fast generation of all the nonzer®f the intrinsic and the3#Q c.m. component we obtain
matrix elements, which are obtained with just three integetranslationally invariant transition matrix elements for the
additions. ThevFD code, on the other hand, is parallelized observables we investigate here. In general, it is possible to
using MPI and runs efficiently on parallel machines. It al-correct for the c.m. motion for any observable within our
lows one to compute many Lanczos iterations needed to oformalism. As we work in a truncated basis space, the tran-
tain higher lying states and their properties. Also, the wavesition operators should also be renormalized through a well-
functions obtained by theFD can be further processed by a controlled theoretical framework. The relevant method was
parallelized code that we developed to obtain, e.g., one- andiscussed in Ref3]. To compute a two-body correction to
two-body transition densities. the one-body operator is more involved than the evaluation
We note that theNTOINE code has been under develop- of the effective interaction, however. This complexity arises
ment since 198917] and its algorithms have been highly because the transformation from relative plus c.m. coordi-
optimized for running on a single processor machine such agates to single-particle coordinates is needed in a sufficiently
a scientific workstation. Thelrd has been under develop- large two-nucleon space typically comprising excitations up
ment since 199218] as a general purpose code for a varietyto several hundred (). In the present study, we do not cal-
of fermionic systems and its algorithms have been highlyculate this correction. It will be a subject of our future work.
optimized for running on parallel machines. These codeglere, rather, we investigate the basis size dependence of the
have been developed independently by different groups anabservables that gives us a good impression of the extent of
different algorithms are involved. Hence, the agreement rethe needed renormalization.
ported here and elsewhdi@] to within machine precision of
results from theaNTOINE and themFD is significant. A 198

hQ [MeV]

As our method depends on the basis-space size and the
HO frequency, we first performed investigations of the low-

We performed calculations up through thé(® basis est states of théd=10 nuclei in basis spaces fron.0}
spaces, with dimensionslp=1.2x10’, using both codes through &Q (1AQ through 9%Q) for the positive-
and cross checked that the same results were obtained. Theegative} parity states and for the HO frequency range
calculations in the larger spaces up through te)9(Ny,  7#Q=8-28 MeV. In Figs. 1 and 2, the dependence for the
~5.5x 10°) were performed only using theNTOINE code. 1 0 state of'%B obtained using the Av8and the CD-Bonn

We present results obtained using the nonlocal CD-Bon2000NN potentials, respectively, is shown. We seek a region
[11] NN potential and the local Argonne Vg§2] NN poten-  where the eigenenergy is approximately independent of the
tial, which is an isospin invariant and slightly truncated ver-HO frequency. This behavior is found in the largest model
sion of the AV18NN potential. The Coulomb interaction was space in the range of abofuf) =12—15 MeV and we select
included. The use of the AV8is advantageous since some A{Q)=14 MeV for our detailed investigations of the excited
preliminary results are available for this potential with thestates. In general, we obtain a better convergence rate and a
Green's function Monte Carlo(GFMC) method for weaker HO frequency dependence for the CD-Bblivi po-
A=10[19]. tential. For both potentials, even though full convergence is

Ill. A=10 RESULTS
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80r . 3 Nma=0 8 ot 1 B 7Q=14 MeV 40
-35F % { —— Npax=2 r A — — ~2* 1
-40F 1 Npyg=4 7 —_— -2
> -45¢ ] N6 40 —_—
§ _50__ : — Nmax= 6 o O>: ’ R
w55 ] —— Nimay=8 . — — 3
601 . ] §5~3+04 T ~25 0
-85 . CD-Bonn ] R ol
70 1OB S . e ] E 4 CD’B@HH — ]
75 s . ~ 20— —— - 25 0
80540 12 14 16 18 20 22 24 26 28 N5 ——— . w3
hQ [MeV] 2. "o~ —
01— —
FIG. 2. 1% ground-state energy dependence on the HO fre- -
guency for the 6- 8% model spaces calculated using the effective "mo——
interaction derived from the CD-Bonn 2000N potential. In the 3+ 0 1t 0
inset, the ground-state energies at the HO frequency minima as Exp 8 6102 4%Q 2nQ 0mQ

function of N, are plotted.

FIG. 3. Experimental and theoretical positive-parity excitation
not quite achieved, we observe the convergence behavior apectra of%B. Results obtained in 0-#8) model spaces are com-
both the HO frequency dependence becomes weaker and, pared. The effective interaction was derived from the CD-Bonn
discussed later, the relative differences in the excitation spe@000NN potential in a HO basis withi{) =14 MeV. The experi-
tra are smaller with increasing basis size. mental values are from Reff20].

To better judge this convergence pattern, we plot in the
insets of Figs. 1 and 2 th¥,,,,, dependence of the energies at 30 state energies as obtained in the(4 and the &Q
the minima of the HO frequency curves. For the AV8al-  spaces in Fig. 4. Apparently, the two states do cross at some
culation, we compare with the GFMC resUli®]. In Table I,  higher frequencies. However, over the region of the |&&bt
we summarize the lowest eigenenergy results. ¥Brwith dependence, the*D state is consistently below the'o
AV8', we obtained a reasonable agreement with the GFMGtate. More importantly, aN ., increases, the range of fre-
results. We note that our CD-Bonn binding energies arejuencies with 10 as the ground state increases. Thus, we
about 1.5-2 MeV larger than the corresponding A¥8sults  conclude that both the Argonne and the CD-B&hN poten-
and that both potentials underbind by as much as 10 MeVials predict the 10 state as the ground state ¥8, which
when compared to experiment. is in disagreement with the experimental observation o 3

In Fig. 3, we present thé’B excitation spectrum for the ground state. This fact, in addition to the underbinding, is a
basis spaces from#d) to 8 () obtained using the CD-Bonn very strong indication for the need of multinucleon forces.
2000 NN potential and the selected HO frequency?d?  This level reversal has also been confirmed in the GFMC
=14 MeV. We observe a strong indication of convergencecalculations for the Argonne potentialsee Table), and is
namely, that the differences in the spectra decrease and tlikely due to an insufficient spin-orbit interaction present in
level stability increases with largé\,,,,. We can see that our the realisticNN potentials. Furthermore, prelimenary calcu-
calculation predicts the 10 ground state contrary to the ex- lations that include a real three-body force indicate that both
perimental 30. To shed more light on this issue, we presentthe total binding energy as well as the level ordering can be
the complete HO frequency dependence of tHé@ Band the brought to agreement with experimejit9]. We also note

TABLE I. The NCSM results at the HO frequency minima in 8¥@)# ) basis space for the ground-state
(lowest negative-parity-stateenergies, in MeV, dfB,°Be,’°C,*Li, and °He using the AvV8 and the
CD-Bonn NN potentials with Coulomb included. The GFMC results for the AM89] are shown for
comparison. We note the NCSM is not a variational calculation. Thus, more binding does not necessarily
imply a better result.

AV8Geme AV8icsm CD-Bonnycsu Exp
108 (1%0) —55.67(26) —55.37 —56.75 —64.033
108 (3*0) —53.23(26) —53.83 —55.63 —64.751
108 (270) —48.53 —49.82 —59.641
0Be (0%1) —56.11(20) —55.35 —57.06 —64.977
0Be (171) —48.45 —49.68 —59.017
10c (0*1) —50.87 —52.33 —60.321
19 (072) —36.12 —36.82 (1'2) —45.316 (72)
e (073) —21.93 —22.14 —30.340
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-40— T

B 10 B

We also investigated the electromagnetic transitions as
well as the quadrupole and magnetic moments of the lowest

451 # 1 7% Nmx=8 108 Jeyels. Results obtained using the CD-BAX poten-
= CD-Bonn —=1"Nmax=8 tial at the optimal HO frequency dfQ0=14 MeV are pre-
% -501 3* N 4 sented in Table Il. To judge the stability and the trends of our
u e results, the dependence on the basis size in the#()
-55|- { 71 Nia= range is shown. The calculated magnetic moments of the
L ¢ 3,0 and the 10 states are stable and in a reasonable agree-

_GC 1 1 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22 2

hQ [MeV]

ment with experiment. The;3 quadrupole moment shows a
steady increase with the basis size but even in fh@ ®asis
space the experimental value is underestimated by about
FIG. 4. 1% 170 and 30 state energy dependence on the HO 16%. Here, we used free nucleon charges and no operator
frequency for the 4Q and 8.Q model spaces calculated using the renormalization due to basis-space truncation. The sensitivity
CD-Bonn 2000NN potential. of basis size on ouE2 results suggest the need to employ
effective transition operators, which may be evaluated within
that this situation is similar to other calculations we havethe present framework and will be a topic for future work.
performed usings-matrix based effective interactions for the Our results for the transitions to thg @ and the 30 states
sd-shell nucleus®Na, which fail to predict the experimental indicate an inadequate description of these states in concert
ground state spin. with the problems found in the excitation energy spectrum.

TABLE II. The NCSM 9B, °Be, and'°C E2 transitions, ine?> fm* quadrupole moments, ia fm? M1 transitions, inuZ, and
magnetic moments, ipy obtained using the CD-BonNN potential and the HO frequendy) =14 MeV in the 4 — 8% () basis spaces.

Free nucleon charges were used in our calculations. The experimental values are frogORef.

108 440 670 810 Exp
Q(3;0)) [e fm?] +6.059 +6.462 +6.799 +8.47256)
w(370) [un] +1.862 +1.857 N/A +1.8006
w(170) [un] +0.850 +0.846 N/A +0.6312
B(E2;1;0—3;0) 4.025 4.199 4.512 4.130.06
B(E2;1,0—3,0) 0.077 0.126 0.163 1.710.26
B(E2;1,0—1;0) 2.706 3.195 3.742 0.880.40
B(E2;3;0—1;0) 3.395 4.081 4.754 20:52.6
B(M1;0;1—1;0) 13.659 13.463 13.345 >1.61
B(M1;1;0—1;0) 0.0010 0.0008 N/A 0.0028)
B(M1;1,0—0;1) 0.271 0.262 0.241 0.1970.018
B(M1;2,0—-3;0) 0.0017 0.0013 0.0019 0.00@
B(M1;2,0—1;0) 0.0001 0.0001 0.0000 0.0m)
B(M1;2,0—1,0) 0.0255 0.0252 0.0251 0.0
B(M1;2;1—3/0) 0.659 0.529 0.457 0.044)
B(M1;2;1-1/0) 0.045 0.051 0.056 0.320.04
B(M1;2/1—-1,0) 3.283 3.302 3.265 2.860.36
B(M1;2;1—2/0) 3.722 3.612 N/A 2.580.36
B(M1;2,0—3;0) 0.064 0.112 0.170 0.0502)
B(M1;2;0—1;0) 0.0000 0.0001 0.0003 0.08
B(M1;4,0—-3;0) 0.0011 0.0013 0.0013 0.043

¢ 410 670 81O Exp
B(E2;2{ —0;) 4.018 4.913 5.702 12:32.0

10Be 450 670 810 Exp
B(E2;2; —07) 5.703 6.080 6.584 10451.1
B(E2;2; —07) 0.087 0.119 0.133 N/A
B(E2;0ny—21)(Eqr, [MeV]) 0.022(24.76 0.10819.93 0.07316.99 3.3x2.06.18
B(E2;0p—21)(Eqr [MeV]) 1.315(31.5) 1.38425.59 1.98822.00 3.3r2.06.189
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20 ; TABLE lll. The NCSM excitation energies, in MeV, and con-
91 1 figurations of the two lowest8 170 states and the intruder D
f‘g : OB ' CD-’BOHM —30 state using the CD-BonNN potential with Coulomb included. Re-
16 1 +0=14 MeV : Mo sults obtained in the () and &) basis space using()
52 g - G N =14 MeV are presented.
13|
S 18¢ — 108 64.0) basis space
S 15k — T E,[MeV] 0hQ  2hQ  4hQ  64Q
< T9Fro —_— ‘
kg 8F30 \ g Jpp—— 4 . —4* 0 170 0.0 0.58 0.21 0.13 0.08
7E4 ON— —_— 170 2.94 057 021 013 0.9
A N— 0+ 1 +
L2 0— / 170 19.87 0.02 0.62 0.22 0.14
4F2r0 , —_— e
L1+t 0 - . . . o+
g For | o— p— 3 0 198 8%) basis space
(l) N ST ) 7 o T E([Mev] 0RQ 2:Q  4hQ 6RO 8AQ
89MQ (6-THQ @-5HQ (2-31Q (0-1)HQ
Exp (90 6DH2 (45mQ G902 - 170 0.0 0.55 0.19 0.14 0.07 0.05
FIG. 5. Experimental and theoretical negative-parity excitation 10 2.82 054 019 014 007 0.06
spectra of 1% shown together with selected low-lying positive- 10 16.85 0.02 053 023 013 0.08

parity states including the intruder'D state. Results obtained in
1-9%Q model spaces are compared. The calculated excitation en-

ergies are obtained by comparing their energies inNh€) space  states as well as the smooth convergence pattern of the
with the ground state in theN(—1)2() space. The effective inter- negative-parity () -dominated states. Significantly larger

action was derived from the CD-Bonn 200N potential in a HO  basis spaces would be needed to obtain convergence of this
basis withAQ)=14 MeV. The experimental values are from Ref. intruder state.

[20].

B. °C
We note that for technical reasons the observables in the
87 model space were evaluated using states W@jth0,
hence, some observables were not availgbie Clebsch-

The ground-state energy results fofC are shown in
Table | and the HO frequency and basis-size dependence for
Gordon coefficient being identical to zero our CD-Bonn 2000 calculation are shown in Fig. 6. We see

In Fig. 5, we present the negative-parity energy leveldrom Fig. 6 that with increasing basis size a HO frequency

obtained using the CD-Bonn 2000 in basis spaces from thdependence is obtained. Also, the differences between suc-
140 up through the 8. The excitation energies are rela- cessive curves and energy minima decrease with increasing
tive to the (N\—1)AQ ground states. As with the positive- PaSIS Size- . o

parity states, we observe a convergence pattern with increas- "€ B(E2) value of the 21071 transition is known

ing basis size. This is particularly evident within the negative®XPerimentally[20], and the result obtained with the CD-
parity spectrum. On the other hand, the convergence of thEONNNN potential with2() =14 MeV is shown in Table II.
overall negative-parity spectrum relative to the positive—_our results shoyv steady increase ywth the basis size, but even
parity ground state is somewhat slower than seen for thd the 82() basis space the experimental value is underesti-
ground state itself. Nonetheless, even though the negativéd@ted considerably, again indicating the need for effective
parity spectrum is not yet fully converged, it is apparent ittransition operators,

will lie higher in excitation than experiment. This is consis-

tent with an overall trend observed in other NCSM calcula- 30— o177 7+ 1 1 1 1) N -0

tions, and it is an interesting speculation whether a true tree-  -35[ ' max
body force will be necessary to correct this behavior. We also  -4o0
note that in contrast to the low-lying positive parity states, 5 .45
the Ieve_l ordering for_ negative-parity states is in better agree;: _50[
ment with the experimental trend. w

— Nmax:2

—— N ay=4

—t Nmax=6

—N

max=8

In addition to the negative-parity states, in Fig. 5 we also ar \\ ]
exhibit properties of so-called “intruder” states, which are % 1OC +, CD-Bonn "]
characterized with structure dominated by high€) excita- -85 S . ]
tions. Of particular interest to us is the’ @ state which we 70410 12 14 16 18 20 22 24 26 2

first observe below 20 MeV in the#d) space and drops he [MeV
below 17 MeV in the &) space. Our calculated intruder [MeV]

state, detailed in Table Ill, is predominantly &Q state. FIG. 6. 1°C ground-state energy dependence on the HO fre-

TQiS state may be a candidate for the observed 5.18 MeYuency for the 0-8Q model spaces calculated using the effective
1*0 resonance located just above fhe + « threshold. The interaction derived from the CD-Bonn 2000N potential. In the

substantial decrease of the intruder’s exciation energy witlhset, the ground-state energies at the HO frequency minima as a
the basis size contrasts the stability of thie(D-dominated  function of N, are plotted.
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TABLE IV. Gamow-Teller B(GT) value dependence on the 21

basis-space size for th®C(0*1)—%B(1; 0) transition obtained ?g T —
using the CD-BonnNN potential and the HO frequenc§ () 18

=14 MeV in the 40 —8A() basis spaces. The experimental 17t
value is from Ref[21].

— 0" 1

0c(0*1)—1%(1;0) 450 670 810 Exp

B(GT) 4847 4750  4.695  3.44

E [MeV]

In Table 1V, we compare our calculat&{GT) values for
the 1°C(071)—1%B(1;0) transition to experiment. Unlike
the B(E2) results, théB(GT) calculations show good stabil-
ity with respect to the basis-size change, and suggest that th
renormalization of Gamow-Teller operator due to the basis
truncation should be small. It is interesting to note, though,
that we overestimate the experimental value in a similar FIG. 8. Experimental and theoretical positive-parity excitation
fashion to results obtained in phenomenological shell-modedpectra ofBe. Results obtained in 0-4&) model spaces are com-
calculations also performed with free nucleon Gamow-Tellempared. The effective interaction was derived from the CD-Bonn
operator reported in Ref21]. 2000NN potential in a HO basis witfi Q) =14 MeV. The experi-

mental values are from Ref20].

QU QDR OOW WD
. l\li T
/

1— - . - . -
Exp 8rQ 6112 41Q 21Q 0nQ

C. %Be L . . )
excitation energies obtained in the—DA() spaces are

Our ground-state energy results féfBe are shown in  shown relative to theN—1)%Q ground states. As for the
Table I and a complete HO frequency and the basis siz@ositive-parity states, we observe a convergence pattern
dependence for our AvV8calculation is shown in Fig. 7. We where the changes in the excitation energies decrease with
make a comprison with the GFMC res[ii9] obtained using  increasing basis size. In addition, as witf8, the overall
the sameNN potential. We observe a reasonable agreemengonvergence of the negative parity excitation energies is
similarly as for'°B. As expected from analog symmetry, our sjower than those with positive parity. It is interesting to note
calculations for*®Be and'C are quite similar. Comparing that the level ordering agrees with experiment in all basis
the results in Figs. 6 and 7, we see that the HO frequency, agaces, although in the smaller spaces thd Gtate lies
well as basis size, dependecies are weaker and thus fasgglow the 4 1. The experimental position of the' @ state is
convergence is obtained for the CD-Bonn potential in oumot known and thus we infer that it is likely to lie above the

approach. o ~ 471 state. We also note that the level spacing improves with
Our calculated'®Be excitation spectra are presented in

Fig. 8 for the CD-BonrNN potential. As with'°B, selected gé -

B(E2) values calculated at the selected HO frequency of E

A Q=14 MeV are listed in Table II. f? s IOBe CD—Bonn 41
We also investigated th&’Be negative parity states, and fg E nQ=14 MeV ol

these are shown in Fig. 9 for the CD-BoNMN potential. The 15¢ :_’; i

:': f‘%: —— :— —-r1

30 ] * Nmax=0 o f? = — _
-35- E ___Nmax=2 E _Zg é;‘ } - — : - :

= of Nt B oglrN—

§ _50-_ - —‘_ Nmax=6 g 5;4» 11 >=

g 55 1 —— Nimax=8 2 E _— .
sob N T 0v11 7 -GFMC FL2l—— »_:; i
st 10gg . AV8 N ol
70f . ] oLo l———o —— — 01

T S e T Exp 89%Q (6-7hQ 4-5HQ 2-31Q (0-1)1Q

8 10 12 14 16 18 20 22 24 26 2
hQ [MeV] FIG. 9. Experimental and theoretical negative-parity excitation
spectra of®Be shown together with selected low-lying positive-
FIG. 7. %Be ground-state energy dependence on the HO freparity states. Results obtained in 149 model spaces are com-
quency for the 0—8€) model spaces calculated using the effective pared. The calculated excitation energies are obtained by comparing
interaction derived from the AV8 NN potential with Coulomb in-  their energies in th&N# () space with the ground state in thil (
cluded. The GFMC result is from Rdfl9]. In the inset, the ground- —1)%() space. The effective interaction was derived from the CD-
state energies at the HO frequency minima as a functiow,gf are Bonn 2000NN potential in a HO basis witlh()=14 MeV. The
plotted. experimental values are from R¢R0.
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TABLE V. Gamow-Teller B(GT) value dependence on the TABLE VI. The NCSM excitation energies, in MeV, and con-
basis-space size for thH8B8(3; 0)—°Be(J™1) transitions obtained figurations of the four lowest’Be 0"1 states plus additional @
using the CD-BonnNN potential and the HO frequencg() intruder states using the CD-BoMN potential with Coulomb in-
=14 MeV in the 4 — 6%/ basis spaces. The experimental val- cluded. Results obtained in théi @, 64, and &) basis space

ues are from Ref.22]. usingf2Q=14 MeV are presented.
19B(3%0)—1Be(J"1AE,) 410 670 Exp 1%Be 440 basis space
n JT E, [MeV] 04 Q 240 45Q
B(GT;2,1,3.37) 0.108  0.124  0.080.03
B(GT;2; 1,5.96) 1529  1.479 0.950.13 071 0.0 0.64 0.21 0.15
B[GT;(2)"1,9.4 0.122  0.094 0.3t0.08 0,1 9.51 0.66 0.19 0.15
B(GT;3"1) 0.161  0.176 N/A 051 12.14 0.66 0.19 0.15
B(GT;4"1) 0.0013  0.0021 N/A 041 20.35 0.68 0.16 0.16
041 24.76 0.01 0.73 0.26
0g1 31.51 0.08 0.67 0.25

the size of the basis compared to experiment. Thé& and
171 states have almost the same experimental energy, and iQquT
our calculations we underpredict the excitation energy of the

%Be 6% basis space
E [MeV]  0iQ 200 4hQ 6RO

2, 1 state and overpredict thg' 2 excitation energy. Thisis 071 0.0 0.58 0.21 0.13 0.08
again likely due to an insufficient spin-orbit interaction in the 051 9.78 0.61 0.19 0.12 0.08
NN potentials. At the same time, the calculated excitation 031 12.26 0.60 0.19 0.13 0.08
energy of the 11 state is too high, and although extrapola- 0;1 19.93 0.04 0.60 0.22 0.14
tions are not straightforward, we expect, based on our expe-o; 1 25 59 0.17 0.52 0.17 0.14
rience in lighter systems, that modextN potentials predict o .
the 171 state to be above thg 2 state. As was the case for Be 840} basis space
108, the negative parity states tend to be too high in excita- JT E(Mev]  0AQ 220 4R 6RO BAQ
tion relative to experiment by 1-2 MeV. 01 0.0 055 019 014 007 005
1oBW§+a(I)SO evaluated the Gamow-Teller transitions from the 0/1 9.65 0.57 0.18 0.13 0.07 0.05
ground state to severéPBe stategTable ) and 0:1 11.95 056 018 014 007 005
fpund qualltatlve agree'ment' with experimental 'values pub- 01 16.99 0.02 054 0.23 013 0.08
lished in Ref.[22]. At this point, we focus attention on the 01 2200 016 0.45 019 012 0.08

properties of the spectrum of Gstates, as these have bearing
on our ability to evalaute the isospin-mixing corrections to

. . . 0 .
the Fermi matrix element irt°C. For this reason, the four Tpis state was also studied within cluster models such as,
Iovyest 01 s_tates are shown_ln Flg. 8.1In addmon,_ the eXCi-g ., the molecular orbital modép5] or antisymmetrized
tation energies andiQ) configurations for low-lying 0 mojecular dynamics approag®é]. To illustrate the behavior
states, and the first two “intruder” states are shown in Tableyf these intruder states. in Fig. 10 we show the excitation

VI. These intruder states are characterized by having signifiénergy of the these states plus tHe(D-dominated § 1 state
cant multi#() excitations. While both of these intruders are

generally Z() in nature, they are in fact quite different. In

[ -0t 1

particular, the lower intruder largely consists of two-particle 30 JIOBB CD-Bonn
excitations from the p shell into the &1d shell, while the C W0=14MeV
second intruder level is dominated by one-particie(2 ex- a5t : ' 0% 1
citations. Of these two states, the second has a larger Cou- i - .
lomb matrix element with the ground stafigecause on av- N 820 F { —_—
erage it differs by just one partigleand therefore the analog S p \otreder0l
of this state in%C and '%B will have a larger effect the S, 15 -
isospin-mixing correction to the Fermi matrix element. & : Bl

Overall, starting atNp,—=2, the positions of the I0F T ot 1
072 -dominated 0 1 states are quite stable, which is in con- -
trast to the two “intruder” 0" 1 levels whose excitation en- 5L T .
ergies drop dramatically with increasing basis size. This be- i — : i
havior is similar to that of the “intruder” states that we oLo 1 — - -0 1
recently studied irfBe with the NCSM[8]. Of considerable Exp 850 6nQ  4nQ

importance is the location of these states and their correspon- g 10. Experimental and theoreticaf 2, 051, and 0'1 in-

dance to experiment. Unfortunately, only two 8tates have tyder state excitation spectra of’Be. Results obtained in
been identified in'°Be, and there is theoretical speculation 4—g#0 model spaces are shown. The effective interaction was

[23,24 that the § 1 state at 6.179 MeV is actually a two- derived from the CD-Bonn 200NN potential in a HO basis with
particle excitation intruder state similar to our lower intruder.zZQ =14 MeV. The experimental values are from Ref0].
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15 "2 0Be (Fig. 9) results, we observe that ouriQ states are
= loLi CD-B 1o about 2 MeV above their experimental counterparts. Ex-
11b -Bonn  —_ | : : Fp

10k . trapolating this to ourLi results, we conclude that the low-

est negative- and the positive-parity states'dfi would be
found at approximately the same energy.

9
& Sr : " ; +
o 7l G We obtain the positive parity’2, 1*2, and 0" 2 states to
§ 6F o2 I be almost degenerate. In the largest space employ€d\8e
Boslro T~ — — obtain the 12 as the ground state for the CD-Bonn 2000
¢ 70 k_ I NN potential. We expect that an increase of the spin-orbit
ST s — interaction due to, e.g., the three-body force would bring the
f o x I 22 state below the 12 state.
0 L 2 _\_..:z.::z,;= :.:(1)+ %
Exp (-9mQ (6-7hQ (4-5%Q 2-31Q (0-11Q E. 1%He

FIG. 11. The calculated lowestlying positive-parity and  The search for the neutron rich nucletfle was reported
negative-parity state excitation energiesi@ifi. Results obtained in  in Ref. [28]. Our ground-state energy results féiHe ob-
0-9%Q model spaces are compared. The negative-parity excitatiofeiined for the CD-Bonn 2000 and the AV&IN potentials
energies are obtained by comparing their energies inN¥i€) are shown in Table |. We observe the smallest difference in
space with the ground state in thil{ 1)% () space. The effective our results between the AV&nd the CD-Bonn compared to
interaction was derived from the CD-Bonn 20BN potential ina  the other isobars. However, we note that this could be af-

HO basis withh()=14 MeV. fected by different convergence rate for the two potentials
) and a overall slower convergence rate for resonance states in
relative to the ground state and thg 2 level. These are our method.

compared with the three corresponding experimental states.
It is apparent from the figure that at.8) the two intruders

are beginning to exhibit a behavior consistent with conver-
gence, as the rate of change in the excitation energies is
decreasing with the larger model spaces. A crude attempt to Superallowed Fermj3 transitions in nuclei J"=0",T
predict the converged energies based on an exponentially 1)— (J"=0",T=1) provide an excellent laboratory for
decaying function oN,,, &8s was also done for the intruders precise tests of the properties of the electroweak interaction,
in 8Be[8], leads to excitation energies of the order 12.4 andand have been the subject of intense study for several de-
16.5 MeV for the two intruder levels. At this point it is worth cades (see Refs.[29—-41]). According to the conserved-
noting that generically we find the excitation energies of thevector-currenfCVC) hypothesis, for pure Fermi transitions
negative-parity, one-particle excitations to be too high bythe product of the partial half-life, and the statistical phase-
1-2 MeV. Assuming that this difference is corrected by aspace factof should be nucleus independent and given by
three-nucleon force, it is not unreasonable to expect that the

excitation energy of the two-particle excitation intruder K

would be lower still by 2—4 MeV. In addition, with this ft=——7,

lower excitation energy, this intruder will start to mix with GyIMe|

the 0 () state at 9.65 MeV, and will likely lead to a,@ where  K/(%)®=2m%In 24/(m.c)®=8.120 270(12X 10”7

state with a lower excitation energy than presently predicted 2 . /
Unfortunately, at present we are not able to give a furtherGev 8, Gy is the vector coupling constant for nuclear

indication as to the nature of the 6.179 MeV state'iBe. iecay' and Mg is the Fermi matrix ~element,Mg
= (| T+|¢;). By comparing the decay rates for muon and

nuclear FermiB decay, the Cabibbo-Kobayashi-Maskawa

(CKM) mixing matrix elemen{34] betweenu andd quarks
The experimental situation is not clear concerning the parfv,q) can be determined and a precise test of the unitarity

ity of the ground state of*’Li [27]. We performed the condition of the CKM matrix is possible under the assump-

positive- and negative-parity calculations up through(8  tion of the three-generation standard mo&3,34.

and 9:.Q) spaces, respectively. As seen in Fig. 11, our results For tests of the standard model, two nucleus-dependent

show the positive-parity states lie below the negative-paritycorrections must be applied to experimentalvalues. The

states. However, the trend with increasing basis size showfgst is a series of radiative corrections to the statistical phase-

that the negative parity-state binding energies approach quitgpace factor embodied in the factéisandAg, giving[35—

rapidly the positive-parity state binding energies, and in the37]

largest spaces, the negative-parity states lie within 3 MeV of

the positive-parity states. At present, we are not in a position fr=T1(1+ 6+ AR), (18

to make a definitive extrapolation and predict the parity of

the *°Li ground state for either of thé&lN potentials we Where 8y is due to standard, electromagnetiouter”) ra-

employed, but we predict the states of different parity to liediative correctiongsee. p. 45 in Refl35]) and Ay is what

within 1 or 2 MeV. Also, by examining out’B (Fig. 5) and  has been referred to as the “inner” radiative correctieae

IV. ISOSPIN-MIXING CORRECTION
FOR THE 1°C—1%8B FERMI TRANSITION

(17

D. 19
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p. 47 of Ref.[35]) and includes axial-vector interference  TABLE VII. Isospin-mixing correctiondc, in %, dependence
terms[37,38. The second correction, which is the subject ofon the basis-space size for the€(0*1)—'%B(0* 1) Fermi transi-

this work, modifies the nuclear matrix elemevit- and is tion. The values correspond to calculations with the ground-state
due to the presence of isospin-nonconserildC) forces energies at the HO frequency minima at each basis space. The CD-
(predominantly Coulomb This correction is denoted b§. ~ Bonn 2000NN potential was used.

[30,31,4Q and modifies the Fermi matrix element [iyi¢|? o et 10mt
— | M FO|2(1_ 50)’ whereM FO:[T(T+ 1)_TZiTZf]1/2 is the C(O 1)—> B(O 1) 0h Q) 210 47 Q) 640 841 0)

value of the matrix element under the assumption of pure 8¢ [%] 0.029 0.051 0.068 0.095 0.121
isospin symmetry.
With the correctionsdg, Ag, and 6c, a “nucleus-

independent”7t can be defined by Bonn 2000 NN potential [11] that includes isospin and
charge symmetry breaking in the strong interaction.
Ft=Ft(1+ S+ Ap)(1— 8c), (19) Our goal is to evaluate the Fermi matrix element
Me=(1B8,071|T_|*°C,071), (21)

and the CKM matrix element,q is given by[38]
which is equal toy2 for an isospin-invariant system. The
2Iin2 A7 2084.386) s Fermi matrix element and the correctidg was computed
|vudl?= Vi , (200  using basis spaces ranging fro’h @ to 82 for a wide
7 Ggmec @ range of HO frequncies, i.e.h()=8 MeV to #Q
=24 MeV. We quote as our final result the value we obtain
where the Fermi coupling consta@g is obtained from in the largest accessible space, i.ef(B at the HO fre-
muon 3 decay, and includes radiative corrections. Currentlyquency, where the ground-state energy is at its minimum,
ft values for nine superallowed transitions have been med-e.,2Q) =14 MeV. However, the trends and dependecies on
sured with an experimental precision of 0.2% or betterboth N, and ) are important to gauge convergence and
[32,42. With these precise measurements and reliable estihis motivates this more extensive investigation.
mates for the corrections, the CVC hypothesis can be con- From the point of view of the beta decay 8iC, a good
firmed by checking the constancy of ttf#é values for each description of theT=1 states is important. One measure of
nucleus, while the unitarity condition of the CKM matrix is our calculations is the coefficients of the isobaric mass mul-
tested by comparing the extracted valuevgf with the val-  tiplet equation(IMME) [BE(T,)=a+bT,+ cTE]. For A
ues determined fov ,¢=0.2199(17)[38] andv,,<0.0075 =10, we findb=2.365 MeV andc=0.535 MeV, which
(90% confidence leve[43], i.e.,v?=v2 +vi+vi=1. are to be compared with the experimental valueshbof
For the nine accurately measured cases, the isospir=2.328 MeV andc=0.362 MeV. The largec-coefficient
mixing correctiond: has been evaluated within the frame- indicates a somewhat strong isotensor component in the ef-
work of the shell model and split into two componefis  fective interaction. We note, though, that thecoefficient
=8 m+ Sro. Thefirst, 8, , is due to mixing with low-lying  decreases with increasing model space.
040 levels within the conventional shell-model space. The The calculated isospin-mixing correctionssc=1
second Sgo accounts for states lying outside the shell-model—|Mg|?/2, in %, are presented in Table VIl and in Fig. 12. In
space, in particular, @d-1h, 24 excitations, through a general, the size of the correction depends on the nuclear
mismatch in the radial overlap between the converted protonadius; the smaller the radius the larger the Coulomb energy
and neutron in the parent and daughter nuclei, respectivelynd thus the larger the correction. At the same time, the size
With these corrections, the unitarity condition of the CKM of the correction also depends on the position of the
matrix is found to be 0.99550.0017[44], which represents 1p-1h, 2A() states that influence the ground-state isospin
a three-sigma deviation. Of particular interest is understand-

ing whether the previous estimates 6f are somehow 0.20r— - - - L
flawed due to the decomposition into the two components. In -~ 1% 100%1 OB 1 —hQ=12MeV
this regard, the NCSM may be able to shed light on this  o,0 ] T hQ=13MeV

question as both components & are contained within the & o.12f 0*1 501 q = ha=1a:Ney
same large-scale calculation. E 0.10F _ ] —hQ=15MeV

Previously, we applied the no-core shell model wave ~ 098} . = 1 ——hQ=16 MeV
functions to compute the isospin-mixing correction of the 2% 1 ——hQ=18 MeV
10c, 10 i transiti i oo CD-Bonn 2000

C— "B Fermi transition45]. In that study, we were lim- 0.02f E onn ]
ited to the 4() basis spaces. Also, the formalism used in  o.00l ) s y . s
Ref.[45] was such that full convergence to the exact solution N

max

would not be achieved with increasing basis size. In the
present paper, we extend our investigations up t/¢)8 FIG. 12. Isospin mixing correction for the'®C(0*1)
space, examine the HO frequency dependence of our results,'°8(0"1) Fermi transition as a dependence on the basis size
use a consisterdb initio formalism that guarantees conver- from the 0. to the 8:Q space for several HO frequencies. The
gence to the exact solution, and, finally, use the new CD€D-Bonn 2000NN potential was used.
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mixing. The lower these states appear, the larger the correcealistic Argonne and CD-BonNN potentials, we calculated
tion. Unfortunately, the excitation energy of these states ibinding energies, excitation spectiacluding negative par-
not known experimentally. In our calculations, as a functionity and intruder () -dominated statg¢sas well as electro-
of the HO frequency: (2, these two effects cancel to a cer- magnetic properties and Gamow-Teller transitions.
tain degree because a lower frequency leads to a larger radius For 1°B, the Argonne and the CD-BonXN interactions
but at the same time a lower position of thp-1h states. produce aJ"T=1"0 ground state, contrary to experimen-
Consequently, we observe little dependencédron the HO  tally observed 30 ground state. This is a clear indication of
frequency. On the other hand, we observe a strong depefthe need for true three-body forces to describe the low-lying
dence in the isospin-mixing correction dueNgy,. The rea-  structure in complex nuclei. From odfLi results, we con-
son for this strondN .« dependence is the overall decrease include that the lowest negative- and the positive-parity states
the excitation energy of thepk1h, 24() states with increas- of °Li would be found at approximately the same energy. In
ing basis size discussed in Sec. Il C. many ways, thed= 10 system represents an excellent Labo-
It is apparent from both Table VII and Fig. 12 that a ratory for testing the effects of true three-nucleon forces.
saturation in the isospin-mixing correction with increasing e investigated the isospin-mixing correction of tHe
basis size is not yet achieved. At present, our best result.198 Fermi transition, and obtained.=0.12%. However,
obtained in the 8() space is5c=0.12%. This result is com- we expect that this correction will still increase if we were
patible with the previously published value oB:  able to access larger basis spaces, and obtain an estimate of
~0.159)% by Ormand and Brownh41] obtained in a phe- 0.19% based on perturbation theory and a rough estimate of
nomenological treatment. Also it is compatible with our ear-the excitation energy of the firstptlh, 24 state in the
lier result published in Ref45]. Given the convergence pat- full calculation. Given this modest result and the fact that the
tern exhibited by the “intruder” states discussed in Sec. Il Cunitarity of the CKM matrix would require a value of.
it is likely that oc will increase with a larger model space. =0.58(19), it is unlikely that the the breakdown of unitarity
However, a rough estimate of the fullf can be obtained via in the CKM matrix is due to a miscalculation, or a missing
perturbation theory. The contribution téc due to the component, in the previous estimatesdpf.
02, 01 states is approximately 0.03%s shown in We note that the NCSM differs from the standard shell
Table VII), and, consequently, in thi,,,=8 model space model approach, concerning the description of loosely bound
the contribution of the higher-lying @-1h, 22 states is states or the isospin-mixing correction, e.g., as used in Ref.
~0.09%. If we assume that all of this contribution can be[23] or in Ref.[41]. In particular, the standard shell model
attributed to the first calcuatedpilh state, an estimate the relies on the assumption that an effective interaction exists
full value of 6c would be and is often determined by tuning to experimental properties.
This is also the case for the single-particle properties, where
Egﬁﬂ 2 solutions to Woods-Saxon or Hartree-Fo@nd sometimes
0.03+0.09 —r | | (22)  even harmonic oscillatprpotentials are used. Again, these
Ex are frequently “tuned” to experiment by using the appropri-
ate separation energy. In the NCSM approach, on the other
whereE, is the excitation energy of theptlh, 27 () state in  hand, no single-particle energies are used and the effective
the & () space and the full model space. In Sec. Il C, Wejnteraction is not emprically determined, but rather derived
arrived at rough estimate of 16.5 MeV f&", leading to  from the underlying internucleon interaction in a way that
6c~0.19%. Note that in some ways this is an overestimatgyuarantees convergence to the exact solution with the basis
as some fraction of the remaining 0.09% contribution is duesize enlargement. In the NCSM, it is possible that a precise
to states that lie higher in excitation energy than the firsidescription of loosely bound and unbound, single-particle
calculated p-1h state. At this point, it is clear that a0l  resonances, might need a large number of oscillator states; in
calculation is desirable to shed more light on #esatura-  particular manyi(), one-particle excitations. This is an im-
tion issue. Such a calculation is likely within reach and mayportant area for future exploration in the NCSM. For the
be done in a near future. isospin-mixing correction, the primary difference between
Finally, we note that unitarity of the CKM matrix would the NCSM and the standard shell-model approach lies in
require a value of 0.589) for 5 [ft(1+5g+Ag)=3154  how low-lying configuration mixing and the radial mismatch
* 5.1t 2.4 [46]]. Consequently, although our results areare treated. In the standard shell model, these contributions
not yet conclusive for a new value @ for the 1°C transi-  are treated separately, and proton and neutron radial wave
tion, it is unlikely that failure to satisfy the unitarity condi- functions obtained from an appropriate mean field using ex-
tion for the CKM matrix is due to a miscalculation, or a perimental separation energies are ugedwell as sum over
missing component, in the previous estimates of the isospinntermediate parent stajesOn the other hand, both these

5(::

mixing correction to the Fermi matrix element. contributions are accounted for within the NCSM formalism.
In particular, the radial-overlap mismatch is primarily de-
V. CONCLUSIONS scribed by mixing with higher-lying 2Q), one-particle exci-

tations by the Coulomb interaction. It is important to note
We performed large-scalab initio no core shell model that in addition to the strength of the Coulomb matrix ele-
calculations forA=10 nuclei with basis spaces up through ment, the isospin-mixing amplitudes are also determined by
the 9:.Q with matrix dimensions reaching 5&L0°. Using  the excitation energies of theh®) states. Our study finds
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that these excitation energies are also dependent on tlgent results, either the use of higher-body effective many-
model space size, and that although convergence is not ybbdy forces or improved computational capacity, or both. We
found some stablization appears to be evident. need and expect additional breakthroughs to access the en-
We feel that is likely that 1®€) calculations forA=10 larged range of phenomena where higher thaf.Cconfigu-
nuclei will soon be within reach and are planned for the nearations play a major role.
future. Such calculations will be interesting for an extended
study of the intruder states and the the isospin-mixing cor-
rection. In particular, we will re-examine thé°C—1%B
Fermi transition investigation where we need still larger
model space results in order to conduct a reasonable extrapo- This work was performed in part under the auspices of the
lation. U.S. Department of Energy by the University of California,
Finally, we make an overall observation. Th® initio Lawrence Livermore National Laboratory under Contract
NCSM with our present theory foH. and present No.W-7405-Eng-48. P.N. and W.E.O. received support from
computer/algorithm/code technologies provide reasonablyDRD Contract No. 00-ERD-028. This work was also sup-
convergenp-shell results for states dominated b#@ con-  ported in part by U.S. DOE Grant No. DE-FG-02-87ER-
figurations. Most other states appear to require, for converd0371, Division of High Energy and Nuclear Physics.
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