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Continuum quasiparticle random phase approximation and the time-dependent
Hartree-Fock-Bogoliubov approach
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Quadrupole excitations of neutron-rich nuclei are analyzed by using the linear response method in the
quasiparticle random phase approximation~QRPA!. The QRPA response is derived starting from the time-
dependent Hartree-Fock-Bogoliubov~HFB! equations. The residual interaction between the quasiparticles is
determined consistently from the two-body force used in the HFB equations, and the continuum coupling is
treated exactly. Calculations are done for the neutron-rich oxygen isotopes. It is found that pairing correlations
affect the low-lying states, and that a full treatment of the continuum can change the structure of the states in
the giant resonance region.
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I. INTRODUCTION

The collective excitations of atomic nuclei in the presen
of pairing correlations is usually described in the quasipa
cle random phase approximation~QRPA! @1#. Although the
QRPA was applied to nuclear physics more than 40 years
@2–4#, recently there is a renewed interest on its groun
generated mainly by the studies of unstable nuclei clos
the drip line. In these nuclei characterized by a small nucl
separation energy, the excited states are strongly influen
by the coupling with the quasiparticle~qp! continuum con-
figurations. Among the configurations of particular intere
are the two-qp states in which one or both quasiparticles
in the continuum. In order to describe such excited sta
within QRPA one needs a proper treatment of the continu
coupling, which is missing in the usual QRPA calculatio
based on a discrete qp spectrum.

In nuclei close to the drip lines one expects also a str
connection between the excitations of the system and
properties of the ground state, which may present such sp
ficities as neutron skins. Therefore, in addition to the
spectrum, the residual interaction used in QRPA should
determined from the same two-body force as it is done in
self-consistent continuum RPA calculations@5–7#.

In the past years several attempts@8–10# have been made
to describe consistently both the pairing correlations and
continuum coupling within QRPA. Thus, in Ref.@9# a QRPA
approach was recently developed in which the effect of
continuum is calculated exactly for the particle-hole exci
tions whereas in the particle-particle channel the active sp
is limited to the bound states close to the Fermi level.

A continuum qp linear response approach in which
continuum is included also in the particle-particle chan
was studied in Ref.@10#, but in the calculations the groun
state mean field is fixed independently of the residual in
action.

In this paper we present the first continuum QRPA cal
lations with the single-particle spectrum and the residual
0556-2813/2002/66~2!/024309~9!/$20.00 66 0243
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teraction determined from the same effective two-body for
The ground state is calculated using the continuum Hart
Fock-Bogoliubov~HFB! approach@11# with the mean field
and the pairing field described by a Skyrme interaction an
density dependent delta force, respectively. Based on
same HFB energy functional we derive the QRPA respo
function in coordinate space. The QRPA response is c
structed by using real energy solutions for the continu
HFB spectrum. The calculations are done for the neutr
rich oxygen isotopes.

In Sec. II we present the continuum QRPA formalism, w
specialize the corresponding equations to systems w
spherical symmetry and we discuss the energy-weighted
rule in QRPA. The application of the present theory
neutron-rich oxygen isotopes is done in Sec. III. Section
contains the concluding remarks.

II. FORMALISM

A. Derivation of the generalized Bethe-Salpeter equation

The coordinate space formalism is naturally adapted
treat properly the coupling to the continuum states. In t
section we derive the QRPA equations in coordinate spac
the small amplitude limit of the perturbed time-depende
HFB equations. We start from the time-dependent H
~TDHFB! equations@1#,

i\
]R
]t

5@H~ t !1F~ t !,R~ t !#, ~2.1!

whereR andH are the time-dependent generalized dens
and HFB Hamiltonian. The external periodic fieldF is given
by

F5Fe2 ivt1H.c., ~2.2!

whereF includes both particle-hole and two-particle trans
operators,
©2002 The American Physical Society09-1
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F5(
i j

Fi j
11ci

†cj1(
i j

~Fi j
12ci

†cj
†1Fi j

21cicj ! ~2.3!

and ci
† , ci are the particle creation and annihilation ope

tors, respectively. Assuming that the external field indu
small oscillations around the stationary solution of the H
equations,

R~ t !5R 01R8e2 ivt1H.c., ~2.4!

H~ t !5H 01H8e2 ivt1H.c. ~2.5!

the TDHFB equation~2.1! becomes

\vR85@H8,R 0#1@H 0,R8#1@F,R 0#. ~2.6!

The generalized density variation has the form

Ri j8 5S r i j8 k i j8

k̄ i j8 2r j i8
D , ~2.7!

wherer i j8 5^0ucj
†ci u8& is the variation of the particle density

k i j8 5^0ucjci u8& and k̄ i j8 5^0ucj
†ci

†u8& are the fluctuations o
the pairing tensor associated with the pairing vibrations
u8& denotes the change of the ground state wave functionu0&
due to the external field. Instead of the variation of one qu
tity in RPA (r8), we now have to know the variations o
three independent quantities in QRPA, namely,r8, k8, and
k̄8.

It is convenient to solve Eq.~2.6! in the qp representation
in which bothH 0 andR 0 are diagonal@1#. We have now to
express all quantities of Eq.~2.6! in this representation. The
matrixR8 becomes off-diagonal because of the TDHFB co
dition R825R8 imposed on Eq.~2.4!,

R̃i j8 5S 0 R̃8 i j
12

R̃8 i j
21 0

D 5S 0 ^0ub jb i u8&

^0ub j
†b i

†u8& 0 D ,

~2.8!

whereb i
† , b i are, respectively, the qp creation and annihi

tion operators of an HFB statei with energyEi . Conse-
quently, Eq.~2.6! gives

R̃8 i j
125

H̃8 i j
121F̃ i j

12

\v2~Ei1Ej !
, ~2.9!

R̃8 i j
2152

H̃8 i j
211F̃ i j

21

\v1~Ei1Ej !
. ~2.10!

Here,H̃8 andF̃ stand forH8 andF in the qp representation
We now proceed to calculateH̃8 i j

12 and H̃8 i j
21. The varia-

tions of the particle and pairing densities in coordinate r
resentation are defined by

r8~rs!5^0uc†~rs!c~rs!u8&, ~2.11!

k8~rs!5^0uc~r s̄ !c~rs!u8&, ~2.12!
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k̄8~rs!5^0uc†~rs!c†~r s̄ !u8&, ~2.13!

wherec†(rs) is the particle creation operator in coordina
space andc†(r s̄)522sc†(r2s) is its time reversed coun
terpart. The relation between thec†,c andb†,b operators is

c†~rs!5(
k

Uk~rs!bk1Vk* ~rs!bk
† , ~2.14!

whereUk andVk are the two components of the HFB wav
function of the qp state with energyEk .

Introducing Eq.~2.14! and its Hermitian conjugate into
Eqs.~2.11!–~2.13! one gets with the help of Eq.~2.8!,

ra8 ~rs!5(
i j

U i j
a1~rs!R̃8 i j

121U i j
a2~rs!R̃8 i j

21, a51,2,3,

~2.15!

where we have introduced the following notation for the de
sity variations:

r85S r18

r28

r38
D 5S r8

k8

k̄8
D ~2.16!

and the 332 matricesUi j are defined by

Ui j ~rs!5S Ui~rs!Vj~rs! U j* ~rs!Vi* ~rs!

Ui~rs!U j~r s̄ ! Vi* ~rs!Vj* ~r s̄ !

2Vi~rs!Vj~r s̄ ! 2Ui* ~rs!U j* ~r s̄ !
D .

~2.17!

Here, we have used the same notation as introduced be
for the time reversed particle operators, i.e.,f (r s̄)
522s f (r2s).

Next, we must calculate the variationH̃8 of the HFB
Hamiltonian in the qp representation. This is obtained fro
the corresponding quantity in coordinate representa
through the transformation@1#,

H̃85W†H8W, ~2.18!

where the matrixW is defined by

W5S U V*

V U* D . ~2.19!

One thus gets

H̃8 i j
125E dr(

s
Ūi j*

11~rs!H811~r !2Ūi j
†21~rs!H812~r !

2Ū i j
†31~rs!H821~r !, ~2.20!
9-2
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H̃8 i j
215E dr(

s
Ūi j*

12~rs!H811~r !2Ūi j
†22~rs!H812~r !

2Ū i j
†32~rs!H821~r !, ~2.21!

where Ūi j 5Ui j 2Uj i . This antisymmetric combination ap
pears by taking into account the relationH8 i j

2252H8 j i
11 @1#.

Similar equations hold for the matrix elements of the ext
nal field ~2.3!.

In coordinate representation the variation of the H
Hamiltonian is expressed in terms of the second derivat
of the HFB energy functionalE @r,k,k̄ # with respect to the
densities. Thus, in our matrix notation we can write~see
Appendix!

H85S H811

H812

H821
D 5Vr8, ~2.22!

whereV is the residual interaction matrix, namely,

Vab~rs,r 8s8!5
]2E

]rb~r 8s8!]rā~rs!
, a,b51,2,3.

~2.23!

Here, the notationā means that whenevera is 2 or 3 thenā
is 3 or 2.

It should be noted that in the three dimensional space,
first dimension represents the particle-hole~ph! subspace, the
second the particle-particle~pp! one, and the third the hole
hole ~hh! one. This is due to the definitions~2.11!–~2.13!.

Using Eqs.~2.9!, ~2.10!, ~2.15!, and ~2.20!–~2.22!, we
finally land on the coupled equations

r85G0Vr81G0F, ~2.24!

whereF is the three dimensional column vector

F5S F11

F12

F21
D ~2.25!

andG0 is the unperturbed Green function defined by

G0
ab~rs,r 8s8;v!5(

i j

U i j
a1~rs!Ūi j*

b1~r 8s8!

\v2~Ei1Ej !1 ih

2
U i j

a2~rs!Ūi j*
b2~r 8s8!

\v1~Ei1Ej !1 ih
. ~2.26!

By definition, the QRPA Green functionG relates the per-
turbing external field to the density change,

r85GF. ~2.27!

Combining with Eq.~2.24! we obtain the generalized Bethe
Salpeter equation,

G5~12G0V!21G05G01G0VG. ~2.28!
02430
-

s

e

In the case of transitions from the ground state to exci
states within the same nucleus, only the~ph,ph! component
of G is acting. If the interaction does not depend on sp
variables the strength function is thus given by

S~v!52
1

p
Im E F11* ~r !G11~r ,r 8;v!F11~r 8!dr dr 8.

~2.29!

In the equations above we have not introduced explic
the isospin degree of freedom. This can be done directly
the final equations by doubling the dimension of the matri
in order to distinguish between neutrons and protons.

B. Spherical symmetry

In the case of spherical symmetry each qp state is den
by the quantum numbers (E,l , j ,m), whereE is the qp en-
ergy and (l jm) are the standard notations for the orbital a
total angular momenta. Performing the summation over
projection of the total angular momentum and over the s
variables one gets for the unperturbed Green function~2.26!,

G0
ab~r ,r 8;v!5 (

l pj p ; l qj q
LM

uAl pj p ; l qj q

L u2gl pj p ; l qj q

ab ~r ,r 8;v!

3YLM~ r̂ !YLM* ~ r̂ 8!, ~2.30!

where the expression for the geometrical coefficie
Al pj p ; l qj q

L is

Al pj p ; l qj q

L 5A2 j p11

8p
@11~2 ! l p1 l q1L#S j p

1

2
L0U j q

1

2D .

~2.31!

This expression holds for a residual interaction witho
gradient terms. We do not give here the expressions for
case involving gradient terms since in the calculations
Sec. III we use a Landau-Migdal form for the residual inte
action.

The radial Green functionsgl pj p ; l qj q

ab (r ,r 8;v) are ex-

pressed in terms of the qp energiesEk and the corresponding
radial HFB wave functions, i.e.,uk(r )5ul k , j k

(Ek ,r ) and

vk(r )5v l k , j k
(Ek ,r ). Thus, the radial Green function for

given pair of quantum numbers (l qj q ,l pj p) is given by

gl pj p ; l qj q

ab ~r ,r 8;v!5 X
Ep ,Eq

U pq
a1~r !Ūpq

b1~r 8!

\v2~Ep1Eq!1 ih

2
U pq

a2~r !Ūpq
b2~r 8!

\v1~Ep1Eq!1 ih
, ~2.32!

where
9-3
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Upq~r !5S up~r !vq~r ! uq~r !vp~r !

2up~r !uq~r ! vp~r !vq~r !

vp~r !vq~r ! 2up~r !uq~r !
D ,

Ūpq5Upq1Uqp . ~2.33!

In Eq. ~2.32! the X symbol indicates that the summation
taken both over the discrete and the continuum qp state

The unperturbed Green function expressed by Eq.~2.30!
can be used together with an interaction which does not
pend on spin variables in order to get the radial QRPA Gr
function, given by Eq.~2.28!.

All the equations should be written in neutron-proton fo
malism. Thus, each supermatrix (G0 , G, V) is divided in
nine blocks corresponding to the ph, pp, hh case and e
one of these blocks is divided in four sub-blocks correspo
ing to the nn, np, pn, and pp quantities. The way to calcu
explicitly the residual interaction supermatrix is given in t
Appendix.

C. The energy-weighted sum rule in the QRPA

It is often stated that the Thouless theorem@12# concern-
ing the energy-weighted sum rule~EWSR! of RPA is also
valid for the QRPA. We give here an explicit proof of th
theorem for the nontrivial case of QRPA.

The Thouless theorem extended to the QRPA means
the equality

(
n

Enu^nuFuQRPA&u25 1
2 ^HFBu†F,@H,F#‡uHFB&

~2.34!

must be satisfied. In the above equation,uHFB& is the HFB
ground state anduQRPA& is the correlated QRPA groun
state whileun& stands for the excited QRPA states.

To demonstrate this equality we use the QRPA equati
in configuration space@1#. The specific point of the demon
stration is that the one-body operatorF is now expressed in
terms of qp operators,

F5(
kk8

f kk8ck
†ck85(

kk8
l l 8

f kk8@Ukl* Uk8 l 8b l
†b l 81Ukl* Vk8 l 8b l

†b l 8
†

1Vkl* Uk8 l 8b lb l 81Vkl* Vk8 l 8b lb l 8
†

#. ~2.35!

The calculation of the left-hand side~lhs! of Eq. ~2.34! in-
troduces quantities such as^QRPAuFun&. They can be writ-
ten as

^QRPAuFun&5~ f̄ T f̄ †!S Xn

YnD , ~2.36!

where

f̄ l l 85(
kk8

f kk8hkk8 l l 8 , ~2.37!
02430
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hkk8 l l 85Vkl8
* Uk8 l2Vkl* Uk8 l 8 . ~2.38!

Equation~2.36! allows us to get for the lhs of Eq.~2.34!
an expression similar to the one of Ref.@12# @Eq. ~36!#, i.e.,

S15
1

2~ f̄ T 2 f̄ †! S A B

B* A* D S f̄ *

2 f̄
D . ~2.39!

The right-hand side~rhs! of Eq. ~2.34! is obtained by
using Eq.~2.35! and the definition of theA andB matrices of
QRPA,

Akk8 l l 85^HFBu@bk8bk ,@H,b l
†b l 8

†
##uHFB&, ~2.40!

Bkk8 l l 852^HFBu@bk8bk ,@H,b l 8b l ##uHFB&, ~2.41!

with k,k8 and l , l 8. Expressing the rhs withA, B, and f̄
leads to Eq.~2.39!.

This proof is valid for a density-independent force. In t
case of a density-dependent force the relation should rem
valid provided the density-dependent terms commute withF,
as it has been shown for the RPA case@1#.

III. HFB ¿QRPA CALCULATIONS OF OXYGEN
ISOTOPES

A. HFB calculations

We apply our formalism to the calculation of neutron-ric
oxygen isotopes18,20,22,24O. The ground states are calculate
within the continuum HFB approach@11# where the con-
tinuum is treated exactly. The HFB equations are solved
coordinate space with a step of 0.25 fm for the radial co
dinate. In the HFB the mean field quantities are calculated
using the Skyrme interaction SLy4@13#, while for the pairing
interaction we take a zero-range density-dependent inte
tion given by

Vpair5V0F12S r~r !

r0
D aGd~r 12r 2!, ~3.1!

whereV0 , r0, anda are the parameters of the force. Due
its zero range, this force should be used in the HFB calcu
tions with a cutoff in qp energy. To minimize the number
free parameters, we adapt here the prescription of R
@14,15# which relates the energy cutoff with theV0 value for
the free neutron-neutron system. To extend this prescrip
to finite nuclei, we use the relation between the energy« of
the particle inside nucleus and the energy«0 of a free par-
ticle,

«~k!5«0~k!
m

m*
1UHF , ~3.2!

wherem* is the effective mass,k the momentum, andUHF
the Hartree-Fock potential. Sincem* depends on the densit
we takem* /m50.7, which is the bulk value form* . From
ecuto f f we can deduce the qp cutoff energyEcuto f f . With this
prescription we verified that the calculated HFB neutr
9-4



le
ff

th
d
ga
an
ti

th

e
in

er
u-

t

e
.,

e
ns
ac

o
rm
-

o
a
rt
-

d.
it

ua
un
gy
0

e of
e
tion
ls
is

-
ox
ing
ox

of-
f the
on-
n is
cure
ac-

t

he

-
ise.
xy-

nt
s
n the
u-
n

la-

re

ase.
are

un-

s
r
to

ial
w-

ted

CONTINUUM QUASIPARTICLE RANDOM PHASE . . . PHYSICAL REVIEW C 66, 024309 ~2002!
pairing gap Dn remains constant for each coup
(V0 ,Ecuto f f). In the HFB calculations we choose a qp cuto
energy equal to 50 MeV. Then, the prescription of Ref.@14#
gives V052415.73 MeV fm3. The parameterr0 is set to
the usual saturation density, 0.16 fm23. The value of the
parametera is chosen so as to reproduce the trend of
experimental gap. Note that the calculated gap is define
the integral of the pairing field whereas the experimental
is related to mass differences of the neighboring nuclei
therefore, there is no need to have an exact quantita
agreement. We find that the best choice isa51.5. Note that
the trend of the experimental gap is at variance with
empirical ruleD512/AA MeV. All the pairing gap values
are displayed in Table I. It should be noted that, in the cas
HFB1Skyrme calculations, if one has a reasonable pair
gap in 18,20O then the pairing is weaker in22O and absent in
24O. This is due to the 1d5/2 and 2s1/2 subshell closure. A
similar trend is observed in calculations using Gogny int
action @18#. As seen in Table I, in the case of QRPA calc
lations using a Woods-Saxon potential@10# the gaps are
larger due to the fact that the energy distance between
relevant subshells is smaller.

B. QRPA calculations

In the QRPA calculations the residual interaction is d
rived in principle from the interaction used in the HFB, i.e
the Skyrme force and the pairing force~3.1!. The zero-range
part of the forces pose no problem. The velocity-depend
terms of the Skyrme force bring additional complicatio
which can be avoided by approximating the residual inter
tion in the~ph,ph! subspace by its Landau-Migdal limit@19#
where the interacting particle and hole have the Fermi m
mentum and the transferred momentum is zero. The Sky
interaction has onlyl 50 andl 51 Landau parameters. Tak
ing the Landau-Migdal form for the~ph,ph! interaction sim-
plifies greatly the numerical task, at the cost of the loss
some consistency. In this work we calculate only natural p
ity ~non-spin-flip! excitations and we drop the spin-spin pa
of the~ph,ph! interaction which plays a minor role. The Cou
lomb and spin-orbit residual interactions are also droppe

The QRPA Green function can be evaluated starting w
the unperturbed Green function given by Eq.~2.32!. The
latter is constructed by using the solutions of the HFB eq
tions, i.e., the qp energies and the corresponding wave f
tions U andV. All the qp states are included until an ener
cutoff of 50 MeV, allowing pairs of qp energy until 10

TABLE I. Neutron pairing gaps,DExp is the experimental value
taken as the odd-even mass difference@16#, DPhen is using the
empirical 12/AA MeV prescription@17#, DHFB is calculated in the
present work, andDWS is the gap used in Ref.@10#.

DExp ~MeV! DPhen ~MeV! DHFB ~MeV! DWS ~MeV!

18O 1.95 2.83 1.96 2.74
20O 1.83 2.68 1.85 3.13
22O 1.52 2.56 1.04 3.30
24O 0.49 2.45 0.00 3.39
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MeV. In a schematic picture, these pairs are representativ
excitations from the16O core, and also excitations of th
valence neutrons. The generalized Bethe-Salpeter equa
~2.28! is solved with a step of 0.5 fm and all radial integra
are carried out up to 22.5 fm. The strength distribution
calculated untilvMax550 MeV, with a step of 100 keV and
an averaging widthh5150 keV. We have studied two vari
ants of calculations, the full continuum variant and a b
variant where the qp spectrum is discretized by calculat
the HFB solutions with a box boundary condition, the b
radius being 22.5 fm. For24O only box calculations have
been performed.

In a fully consistent calculation the spurious center-
mass state should come out at zero energy. Because o
Landau-Migdal form of the interaction adopted here the c
sistency between mean field and residual qp interactio
broken and the spurious state becomes imaginary. We
this defect by renormalizing the residual interaction by a f
tor a. We find that in all cases the spurious stateJp512

comes out at zero energy fora50.80. We have checked tha
the EWSR are satisfied within 1% to 5%.

C. Quadrupole excitations in oxygen isotopes

We calculate quadrupole strength distributions with t
operators F05( i r i

2Y20( r̂ i) ~isoscalar! and F0

5( i r i
2Y20( r̂ i)tz( i ) ~isovector!. All results presented corre

spond to the SLy4 interaction except when stated otherw
The strength distributions calculated in the neutron-rich o
gen isotopes are displayed in Fig. 1.

One can identify a strong low-lying state and the gia
quadrupole resonance~GQR!. The low-lying state become
more isospin admixed as the neutron excess increases. I
case of24O the strength distribution is similar to that calc
lated in Ref.@10# with a Woods-Saxon potential for the mea
field, although pairing effects are negligible in our calcu
tion whereas the gapD of Ref. @10# is sizable. The main
difference is the position of the first 21 state located at 4.0
MeV here and 5.0 MeV in Ref.@10#. In the other nuclei this
low-lying state is at lower energies. This is due to the 2s1/2
subshell closure in24O. The HF single-particle energies a
given in Table II. The 2s1/2 state is more bound in the24O
nucleus, suggesting a stronger subshell closure in this c
The occupation factors of these states calculated in HFB
displayed in Table II. The 2s1/2 starts to be significantly
populated in22O due to the pairing correlations. In the18,20O
spectra mainly three low-lying peaks are present. In the
perturbed case they correspond to the (1d5/2,1d5/2),
(1d5/2,2s1/2), and (1d5/2,1d3/2) two-qp neutron configura-
tions. Their energies are given in Table III. In18,20O the
configuration (1d5/2,1d3/2) has a very low strength wherea
the (1d5/2,1d5/2), (1d5/2,2s1/2) configurations have simila
strength. The effect of the residual interaction, in addition
admix the configurations, is to lower the energy of the init
(1d5/2,1d5/2) peak and to increase the strength of the lo
lying state~cf. Fig. 1!.

The effect of the residual interaction in22O is displayed
in Fig. 2, showing the isoscalar strength functions calcula
with the unperturbed Green functionG0 and with the fullG.
9-5
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The effect of the residual interaction is to gather the stren
to generate collective modes such as the GQR and the
lying state.

The E2 energy andB(E2) value of the first 21 state are
displayed in Table IV. As noted before, theE2 energy in24O
is larger than in other isotopes due to the 2s1/2 subshell clo-
sure. TheE2 energy in18O is overestimated and that of22O
is underestimated as compared to experiment. This show
noted previously in QRPA calculations with a constant g
~Ref. @24#!, that the energy prediction of the low-lying mode
is a delicate task in RPA-type models. TheB(E2) values are
well reproduced except for the problematic18O nucleus.
This discrepancy observed for theB(E2) value of 18O is
also found in several shell-model calculations@25,26# and in
previous QRPA calculations@24#, showing a limitation of
such models to study18O low-lying states. Indeed this hig
B(E2) anomaly may be due to the presence of deform
states in the experimental low-lying spectra of18O @27#.
Moreover, the observation of many low-lying states in th
nucleus can be described by bands characteristics of th
tational spectra. It has been suggested that the low-ly
states in these nuclei~such as16,17,18O) can be described as

FIG. 1. Isoscalar~solid line! and isovector~dashed line! quad-
rupole strength functions calculated in continuum QRPA for
18,20,22,24O isotopes.

TABLE II. 1 d5/2, 2s1/2, and 1d3/2 levels in the18,20,22,24O nu-
clei. For each nucleus the left column shows the single-part
energies~MeV! calculated with the HF approximation, and the rig
column displays the occupation factors for the single-qp levels
culated with the HFB model.

18O 20O 22O 24O

1d5/2 -6.7 0.31 -6.9 0.62 -7.2 0.93 -7.7 1
2s1/2 -4.0 0.03 -4.2 0.08 -4.6 0.18 -4.9 1
1d3/2 0.3 0.01 0.3 0.02 0.2 0.01 0.2 0
02430
th
w-

as
p

d

ro-
g

mixture between highly deformed states and the usual s
model states@27,28#. This allows to successfully reproduc
both theE2 andB(E2) of the low-lying states. As stated i
Ref. @27#, for heavier oxygen isotopes, the energies of
deformed states become higher, and thus the admixtur
smaller. This may explain why the calculatedB(E2) are in
good agreement with the experimental data for20,22O nuclei.
The B(E2) in 24O is predicted smaller than those of light
isotopes, which supports the 2s1/2 subshell closure effect. In
order to display the structure of the low-lying sector, t
calculated energies andB(E2) of the second and third 21

states are shown in Table V for the oxygen isotopes. The2
1

and 23
1 energies are overestimated in the case of18O,

whereas a good agreement is found for the energy of the2
1

state for 20O. This may support the presence of deform
admixtures in the light neutron-rich oxygen isotopes such
18O.

The calculatedMn /M p ratios indicate that the neutron ar
more coherently contributing to the excitation when th
number is increasing. For example, theMn /M p ratio for 24O
is more than twice theN/Z value, indicating a very strong
neutron contribution to the excitation. The calculat
Mn /M p ratio is correctly reproducing that of20O deduced
from proton scattering experiments. In the case of18O the
experimentalMn /M p is not well reproduced. This is linked
to the fact that theB(E2) value is not well described by th
model. The transition densities for the first low-lying 21

e

le

l-

TABLE III. Two qp energies ~MeV! of the (1d5/2,1d5/2),
(1d5/2,2s1/2), and (1d5/2,1d3/2) configurations of the unperturbe
strength function for the18,20,22O nuclei.

18O 20O 22O

(1d5/2,1d5/2) 4.52 4.16 4.60
(1d5/2,2s1/2) 5.72 4.36 3.35
(1d5/2,1d3/2) 10.39 9.09 7.70

FIG. 2. Isoscalar quadrupole strength function calculated in c
tinuum QRPA for the 22O nucleus. The unperturbed streng
~dashed line! is also shown.
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TABLE IV. Energy, proton contribution to the reduced transition probabilitiesB(E2), and ratio of the
transition matrix elementsMn /M p for the first 21 state in the18,20,22,24O nuclei, calculated with the presen
model. MeasuredE2, B(E2) values and theMn /M p ratios corresponding to the experimental data
displayed in brackets.

18O 20O 22O 24O

E2 ~MeV! 3.2/~2.0! a 2.3/~1.7! a 1.9/~3.2! b 4.0
B(E2) (e2fm4) 14/(4562) c 22/(2862) c 22/(2168) d 9
(Mn /M p)21 2.88/(1.1060.24) e 3.36/(3.2560.80) e 3.53 4.37

aReference@20#.
bReference@21#.
cReference@22#.
dReference@23#.
eReference@24#.
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state of the neutron-rich oxygen isotopes are displayed
Fig. 3. In the case of22,24O the neutron transition density i
located more on the surface than the proton one, poss
indicating the presence of a neutron skin.

The pairing effects are depicted in Fig. 4, where the c
tinuum QRPA calculation is compared to a HF1RPA calcu-
lation for the 22O nucleus. The effect of pairing is to shift t
higher energy the low-lying peak, and to split the second1

state into two states with smaller strength. There is also s
effect in the GQR region.

In order to investigate the effect of the density depe
dence of the pairing interaction we have also calculated
strength distributions with a density-independent interacti
i.e., r0 going to infinity in Eq.~3.1!. In the HFB calculation,
the V0 parameter has been chosen to reproduce the ex
mental gap of18O, V052220 MeV fm3 ~in this case the
prescription of Ref.@14# is no longer applied!. Figure 5 com-
pares the results in18O calculated with the density
dependent and density-independent interactions. The e
of the density dependence is to increase the energies o
21 states, and to slightly lower the strength of the low-lyi
states.

Box discretization calculations have also been perform
in order to test the box boundary condition approximatio
The results are shown in Fig. 6 for22O. One can see tha
only the low-lying state is nearly insensitive whereas
structure of the GQR is more affected by the way the c
tinuum is treated. This shows the necessity of the exact c

TABLE V. Energy and proton contribution to the reduced tra
sition probabilitiesB(E2) in the 18,20,22,24O nuclei, calculated with
the present model for the 22

1 ~upper lines! and 23
1 ~lower lines!

states. MeasuredE2 values corresponding to the experimental d
are displayed in brackets.

18O 20O 22O 24O

22
1 : E2 ~MeV! 5.3/~4.0! a 4.2/~4.1! a 6.2 7.1

22
1 : B(E2) (e2fm4) 1.0 0.3 1.4 4.0

23
1 : E2 ~MeV! 9.8/~5.3! a 8.3/~5.2! a 7.5 8.1

23
1 : B(E2) (e2fm4) 1.5 2.5 2.5 0.7

aReference@20#.
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tinuum treatment in order to study the giant resonances
neutron-rich oxygen isotopes.

Since our full calculations~HFB1QRPA! have only the
Skyrme and the pairing interaction as inputs, the results m
be used to learn about the different Skyrme parametrizatio
Figure 7 shows a comparison of results obtained with
SLy4 @13#, SGII @7#, and SIII@29# for the 20O nucleus. There
is no drastic effect depending on the force. The SIII inter
tion shifts some low-lying states to higher energy and
creases the strength of the state located around 5 MeV.
three interactions produce a splitting of the GQR but
SGII force predicts more strength in the lower componen
the giant resonance.

IV. CONCLUSIONS

We have derived the Bethe-Salpeter equation for
QRPA from the small amplitude limit of the perturbed tim
dependent HFB equations. This approach ensures the
consistency at the conceptual level between the mean fi
the pairing field, and the qp residual interaction. The QR

FIG. 3. Neutron and proton transition densities of the first1

state of18,20,22,24O nuclei.

a
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Green function is decomposed into the ph, pp, and hh ch
nels. The supermatrix representing the residual interactio
determined self-consistently from the Skyrme and the pair
interactions used in the HFB calculations. The Thoul
theorem concerning the EWSR sum rule is shown to hold
the case of self-consistent QRPA.

As an application we have studied the quadrupole exc
tions of the neutron-rich oxygen isotopes using Skyrme-t
interactions for the mean field and a zero-range, dens
dependent interaction for the pairing field. In the numeri
study we have approximated the ph residual interaction c
ing from the Skyrme force by its Landau limit. The couplin
to the continuum appears to have a sizable effect on the G
and a minor effect on the low-lying states. This shows
importance of the full continuum treatment in order to stu
giant resonances in neutron-rich nuclei. The low-lying sta

FIG. 4. Isoscalar strength function calculated in continu
QRPA ~solid line! and HF1RPA ~dashed line! with box boundary
conditions for the22O nucleus.

FIG. 5. Isoscalar strength function calculated with a dens
independent pairing interaction~solid line! and density-dependen
pairing interaction~dashed line! with box boundary conditions for
the 18O nucleus.
02430
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are sensitive to the pairing interaction. The first 21 state of
18O is not well described, as previously noted with oth
models such as shell-model calculations. Additional inve
gations on this nucleus are called for. The continuum QR
shows its ability to reproduce the experimental data of
first 21 state for heavier oxygen isotopes, and it predict
lowering of theB(E2) value for the24O nucleus. A future
improvement of the model will be to include fully th
velocity-dependent terms of the Skyrme interaction in the
channel. Work along these lines is in progress.

APPENDIX A: HAMILTONIAN PERTURBATION
AND RESIDUAL INTERACTION

The HFB energy functional is written as follows:

-

FIG. 6. Isoscalar strength function calculated in continuu
QRPA~solid line! and with a box discretization~dashed line! for the
22O nucleus.

FIG. 7. Isoscalar quadrupole strength function calculated in c
tinuum QRPA for the20O nucleus with various Skyrme interac
tions: SLy4~solid line!, SGII ~dashed line!, and SIII ~dotted line!.
9-8



on

ip

CONTINUUM QUASIPARTICLE RANDOM PHASE . . . PHYSICAL REVIEW C 66, 024309 ~2002!
E5(
ml

tmlrml1
1

2 (
mlpq

^ lquV̄ump&rpqrml

1
1

4 (
mlpq

^ lmuV̄Pupq&k lm* kpq , ~A1!

with V̄ the antisymmetrized interaction andV̄p the antisym-
metrized pairing interaction.

The HFB Hamiltonian is

H i j
0 5S hi j D i j

D i j
† 2hji*

D ~A2!

with

hi j 5
]E

]r i j
,D i j 5

]E
]k i j*

. ~A3!

Next we expand the perturbation of the Hamiltonian
the densities perturbations and get

H8 i j
115(

kl

]2E
]rkl]r i j*

rkl8 1
1

2

]2E
]kkl]r i j*

kkl8 1
1

2

]2E
]k̄kl]r i j*

k̄kl ,

~A4!
v,

tta

a

uc

02430
H8 i j
125(

kl

]2E
]rkl]k i j*

rkl8 1
1

2

]2E
]kkl]k i j*

kkl8 , ~A5!

H8 i j
215(

kl

]2E
]rkl]k̄ i j*

rkl8 1
1

2

]2E
]k̄kl]k̄ i j*

k̄kl8 , ~A6!

H8 i j
2252H8 j i

11. ~A7!

To get H8 in coordinate space, we use the relationsh
between the densities,

r~rs!5(
i j

f i* ~rs!f j~rs!r j i , ~A8!

k~rs!5(
i j

f i~r s̄ !f j~rs!k j i , ~A9!

k̄~rs!5(
i j

f i* ~r s̄ !f j* ~rs!k j i* , ~A10!

wheref i(rs) is the nucleon wave function.
Using Eqs.~A4!–~A7! together with Eqs.~A8!–~A10! al-

lows to calculateH8 in coordinate space, and get Eq.~2.22!.
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