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Quadrupole excitations of neutron-rich nuclei are analyzed by using the linear response method in the
quasiparticle random phase approximati@RPA). The QRPA response is derived starting from the time-
dependent Hartree-Fock-Bogoliub@vFB) equations. The residual interaction between the quasiparticles is
determined consistently from the two-body force used in the HFB equations, and the continuum coupling is
treated exactly. Calculations are done for the neutron-rich oxygen isotopes. It is found that pairing correlations
affect the low-lying states, and that a full treatment of the continuum can change the structure of the states in
the giant resonance region.
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[. INTRODUCTION teraction determined from the same effective two-body force.
The ground state is calculated using the continuum Hartree-
The collective excitations of atomic nuclei in the presence=ock-Bogoliubov(HFB) approach 11] with the mean field

of pairing correlations is usually described in the quasipartiand the pairing field described by a Skyrme interaction and a

cle random phase approximatié@RPA) [1]. Although the density dependent delta force, respectively. Based on the

QRPA was applied to nuclear physics more than 40 years agggMme HFB energy functional we derive the QRPA response

[2-4), recently there is a renewed interest on its groundsfunction in coordinate space. The QRPA response is con-

generated mainly by the studies of unstable nuclei close t§iructed by using real energy solutions for the continuum

the drip line. In these nuclei characterized by a small nucleof!FB Spectrum. The calculations are done for the neutron-
h oxygen isotopes.

separation energy, the excited states are strongly influencdlf . .
: - - ; In Sec. Il we present the continuum QRPA formalism, we
by the coupling with the quasipartic continuum con- S . ) P
y ping q P lerp) specialize the corresponding equations to systems with

figurations. Among the configurations of particular interest . . X
are the two-gp states in which one or both quasiparticles arg herlcal symmetry and we d!scuss the energy-weighted sum
ule in QRPA. The application of the present theory to

n the continuum. In order to describe such excited _Stateﬁeutron—rich oxygen isotopes is done in Sec. Ill. Section IV
within QRPA one needs a proper treatment of the continuuM.\tains the concluding remarks

coupling, which is missing in the usual QRPA calculations
based on a discrete qp spectrum.

In nuclei close to the drip lines one expects also a strong
connection between the excitations of the system and the A Derivation of the generalized Bethe-Salpeter equation
properties of the ground state, which may present such speci-
ficities as neutron skins. Therefore, in addition to the APye

: ) . . at properly the coupling to the continuum states. In this
spectru_m, the residual interaction used in Q.RI.DA shou_ld b ection we derive the QRPA equations in coordinate space as
determined from the same two-body force as it is done in th?

self-consistent continuum RPA calculatidiss-7]. he small amplitude limit of the perturbed time-dependent

HFB equations. We start from the time-dependent HFB
In the past years several attemfis-10] have been made TDHFB) equationg 1]
to describe consistently both the pairing correlations and thé '
continuum coupling within QRPA. Thus, in R¢B] a QRPA IR
approach was recently developed in which the effect of the ih —-=[H()+F1),R(O)], 2.9
continuum is calculated exactly for the particle-hole excita-

tions whereas in the particle-particle channel the active space _ . .
is limited to the bound states close to the Fermi level. where’R and’H are the time-dependent generalized density

A continuum qp linear response approach in which the2nd HFB Hamiltonian. The external periodic fiefdis given

continuum is included also in the particle-particle channePY
was studied in Refl10], but in the calculations the ground .
state mean field is fixed independently of the residual inter- F=Fe '“'+H.c, (2.2
action.

In this paper we present the first continuum QRPA calcuwhereF includes both particle-hole and two-particle transfer
lations with the single-particle spectrum and the residual inoperators,

Il. FORMALISM

The coordinate space formalism is naturally adapted to
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F:Zj FWCJ‘*Z] (Flolc 1 Filoe) (2.9 « (ro)=(0ly' (ro)y'(ro)]"), (213

where'(ro) is the particle creation operator in coordinate
andc/, c; are the particle creation and annihilation opera-gpace ands'(ro) = — 20’ (r— o) is its time reversed coun-

tors, respectively. Assuming that the external field inducegerpart. The relation between thie, ¢ and 8T, 8 operators is
small oscillations around the stationary solution of the HFB

equations, 2 .
T — *
) (ro)= U(ro)B+Vi(ro)By, (2.19
R(=R°+R'e “+H.c., (2.4) v 2 Udra) Bt Vidro) Ay
H(t)=H+H'e "+ H.c. (2.5  whereU, andV, are the two components of the HFB wave
) function of the gp state with enerdsj, .
the TDHFB equatior(2.1) becomes Introducing Eq.(2.14 and its Hermitian conjugate into

hoR' =[H' ROJ+[HOR'T+[F.R]. 2.6 Egs.(2.1)—(2.13 one gets with the help of E@2.9),

The generalized density variation has the form p;(m):; uﬁl(ra)ﬁ,iljz+uﬁz(ra)7~z,ﬁl, a=123,
) pij K (2.19
Rij:(_, ) (2.7)
Kij 7 Pji

where we have introduced the following notation for the den-

wherep/, =(0|c]c;|") is the variation of the particle density, SIY variations:

«i;=(0lc;c|") and ;{j=(0|c?c?|’> are the fluctuations of

the pairing tensor associated with the pairing vibrations and P1 p
|") denotes the change of the ground state wave fun¢@ipn p=|rs|=| K (2.16
due to the external field. Instead of the variation of one quan- / o
tity in RPA (p'), we now have to know the variations of Ps
t_h’ree independent quantities in QRPA, namely, «', and and the 32 matrices4; are defined by
K .
It is convenient to solve Ed2.6) in the gp representation . _ * *
in which both° andR © are diagonal1]. We have now to Uiro)Vjre)  Up(ro)V; (ri)
express all quantities of E@2.6) in this representation. The Ui(ro)= Ui(rg)uj(r_) Vi*(rg)vj*(m)
matrix R" becomes off-diagonal because of the TDHFB con- . — . e
dition R'?="R’ imposed on Eq(2.4), —Vi(ro)Vj(ro) —Ui(ro)Uj(ro) 017
- 0 R{? 0 0lg;Bil") . .
Ri,j: - _ olgl gl 0 , Here, we have used the same notation as introduced before
RYj 0 { |’Bj Al for the time reversed particle operators, i.€(ro)
28  =_20f(r—o).

whereg/, B, are, respectively, the qp creation and annihila- Next, we must calculate the variatioh’ of the HFB
tion operators of an HFB statewith energyE;. Conse- Hamiltonian in the qp representation. T_hls is obtained frqm
quently, Eq.(2.6) gives the corresponding quantity in coordinate representation

through the transformatioft],

112 ﬂ,ﬁz—'_ﬁiljz ~
R o (E+E)" 2.9 A =W"H'W, (2.18
21, F21 where the matrixV is defined by
R H”—ﬂ (2.10
g ﬁw-i—(E,-i—E]) U V*
~ ~ W= e (2.19
Here,H' andF stand forH’ andF in the gp representation. v u

We now proceed to calculafe’* and H' ', The varia-

i
tions of the particle and pairing densities in coordinate rep—one thus gets

resentation are defined by

PRSPPI G KL LR U AUt

k' (ra)=(0ly(ro) (ra)|'), (2.12 —U [P ro)H' Y1), (2.20
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— — 1) 1 —5 1o In the case of transitions from the ground state to excited
H' :f dr> U (ro)H ) — U ro)H H(r) states within the same nucleus, only {p&,ph component
7 of G is acting. If the interaction does not depend on spin
_5532('.0,)7_{/21('.), (2.21) variables the strength function is thus given by

where U;; =U; —U;; . This antisymmetric combination ap- 1 " o o ’
pears by taking into account the relatiofi;?= —#' ;" [1]. S(w)=——Im f FH (NG (r,r' o)FH(r")dr dr'.
Similar equations hold for the matrix elements of the exter- (2.29
nal field (2.3).

In coordinate representation the variation of the HFB . . o
Hamiltonian is expressed in terms of the second derivatives [N the equations above we have not introduced explicitly

. — . the isospin degree of freedom. This can be done directly on
of th?.HFB energy functlona&". [p’K’K]. with respect to the the final equations by doubling the dimension of the matrices
densities. Thus, in our matrix notation we can wrisee

in order to distinguish between neutrons and protons.

Appendix
r11
H B. Spherical symmetry
’ 112 ’ . .
H=|H =Vp', (2.22 In the case of spherical symmetry each gp state is denoted
3121 by the quantum number<£(l,j,m), whereE is the gp en-
_ _ _ _ _ ergy and (jm) are the standard notations for the orbital and
whereV is the residual interaction matrix, namely, total angular momenta. Performing the summation over the
20 projection of the total angular momentum and over the spin
(9 .
VB(ror' )= ,, C ap=123. variables one gets for the unperturbed Green fund2o®6),
Ipp(r'a’)dp,(ro) (2.23
2.2 By ') = Lo 2928 &
B N Go"(r,r';w) |pj§qjq |Alp]p;lqjq| glpjp;lqjq(ryr ;o)
Here, the notatiom means that whenever is 2 or 3 thena LM

is 3 or 2.

It should be noted that in the three dimensional space, the
first dimension represents the particle-h@glb) subspace, the
second the particle-partici@p) one, and the third the hole- where the expression for the geometrical coefficients

hole (hh) one. This is due to the definitiong.11)—(2.13. Af g is

XY (DY), (2.30

Using Egs.(2.9, (2.10, (2.15, and (2.20—(2.22, we  "*’
finally land on the coupled equations
, , Ar —\/zj"ﬂ 14(—)etlatL| L0ljes
p =GoVp' +GgyF, (2.24 Lipilgiq— g L1T( 1lip5L0]iaz]-
whereF is the three dimensional column vector (2.31
11
F This expression holds for a residual interaction without
E=| F12 (2.25 gradient terms. We do not give here the expressions for the
F21 case involving gradient terms since in the calculations of
Sec. Il we use a Landau-Migdal form for the residual inter-
and G, is the unperturbed Green function defined by action.
- The radial Green functionsg,“p]ﬁp;|qjq(r,r’;a;) are ex-
CFror o =S U ro) P (r' o) pressed in terms of the gp energigsand the corresponding
o (royr'o’w)= ~ ho—(E+E)+i7y radial HFB wave functions, i.ey(r)=u ; (E.r) and

W — B2 vk(r)=uv, j (Ek.r). Thus, the radial Green function for a
i (rg)uﬁ (r'e’) (2.26 given pair of quantum numbersy,,l,j,) is given by

 ho+(E+E)+in

By definition, the QRPA Green functio® relates the per- » , L{gé(r)b_{gé(r’)
turbing external field to the density change, 9o gigMT ?w):Ej:E hwo—(EytEq)tin
pEq

"=GF. 2.2 —
e 220 U
Combining with Eq.(2.24) we obtain the generalized Bethe- N hiwo+(Ep+Eg) +in’ (2.32

Salpeter equation,

G=(1-GoV) 1Gy=Gy+GyVG. (2.289  where
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Up(rvg(r) Ug(rvp(r)
Upg(r)=| —Up(Nug(r)  vp(rvg(r) |,
vp(Nug(r)  —up(r)ug(r)

Upg=Upq+Ugp- (2.33

In Eq. (2.32 thei symbol indicates that the summation is
taken both over the discrete and the continuum gp states.

The unperturbed Green function expressed by (B0

can be used together with an interaction which does not d

PHYSICAL REVIEW (56, 024309 (2002

hkkr”r:V:|,Ukr|_V:|Ukr|r. (23&

Equation(2.36) allows us to get for the |hs of E¢2.34
an expression similar to the one of REE2] [Eq. (36)], i.e.,

— —v/A B
Slzg(f-r _fT)(B* A*)

The right-hand sidgrhs) of Eq. (2.34 is obtained by

T

f_) . (2.39

egsing Eq.(2.35 and the definition of thé& andB matrices of

pend on spin variables in order to get the radial QRPA GreelQRPA’

function, given by Eq(2.28).

All the equations should be written in neutron-proton for-

malism. Thus, each supermatriGg, G, V) is divided in

nine blocks corresponding to the ph, pp, hh case and each
one of these blocks is divided in four sub-blocks correspond-

Akk’ll’:<HFB|[:3k’ﬁk-[H’ﬁrﬂrr]]lHFB>i (2.40

Bk 1= —(HFB|[ Bk B«.[H. B B11|HFB), (2.41)

ing to the nn, np, pn, and pp quantities. The way to calculatdith k<k’ andI<I". Expressing the rhs with, B, andf
explicitly the residual interaction supermatrix is given in the |€@ds to Eq(2.39.

Appendix.

C. The energy-weighted sum rule in the QRPA

It is often stated that the Thouless theorgt@] concern-
ing the energy-weighted sum rulEWSR of RPA is also

valid for the QRPA. We give here an explicit proof of this

theorem for the nontrivial case of QRPA.

The Thouless theorem extended to the QRPA means that

the equality

EV E,|(»|F|QRPA)|?=} (HFB|[F,[H,F]]HFB)
(2.39

must be satisfied. In the above equatiiif-B) is the HFB
ground state andQRPA) is the correlated QRPA ground
state while|v) stands for the excited QRPA states.

This proof is valid for a density-independent force. In the
case of a density-dependent force the relation should remain
valid provided the density-dependent terms commute twjth
as it has been shown for the RPA c4sé

Ill. HFB +QRPA CALCULATIONS OF OXYGEN
ISOTOPES

A. HFB calculations

We apply our formalism to the calculation of neutron-rich
oxygen isotopes®202226_ The ground states are calculated
within the continuum HFB approacfll] where the con-
tinuum is treated exactly. The HFB equations are solved in
coordinate space with a step of 0.25 fm for the radial coor-
dinate. In the HFB the mean field quantities are calculated by
using the Skyrme interaction SLy43], while for the pairing
interaction we take a zero-range density-dependent interac-
tion given by

To demonstrate this equality we use the QRPA equations

in configuration spacgl]. The specific point of the demon-
stration is that the one-body operateris now expressed in
terms of gp operators,

;
F=2 fuecice =2 fuelUgUi Bl B+ UiVie BB,
KK’ kK’
0

+V:|Uk/|/,3|,3|/+V§|ka|'ﬁ|B|T/]- (2.39

The calculation of the left-hand sidéhs) of Eq. (2.34) in-
troduces quantities such 4QRPAF|v). They can be writ-
ten as

(X"
(QRPAF|v)=(T" f*)(YV>, (2.36

where

f||':2 frr Nk
kk’

(2.37

1_(&
Po

Vpair:VO }5“1_"2)1 (3.
whereV,, po, anda are the parameters of the force. Due to
its zero range, this force should be used in the HFB calcula-
tions with a cutoff in qp energy. To minimize the number of
free parameters, we adapt here the prescription of Refs.
[14,15 which relates the energy cutoff with thg value for

the free neutron-neutron system. To extend this prescription
to finite nuclei, we use the relation between the energyf

the particle inside nucleus and the energyof a free par-
ticle,

m
e(k)=g%Kk) — +Upg, (3.2
m

wherem* is the effective masgs the momentum, antd ;¢

the Hartree-Fock potential. Sino&* depends on the density
we takem*/m=0.7, which is the bulk value fom*. From
€cutoff W€ can deduce the gp cutoff enefBy,ios. With this
prescription we verified that the calculated HFB neutron
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TABLE I. Neutron pairing gapsig,, is the experimental value MeV. In a schematic picture, these pairs are representative of
taken as the odd-even mass differeri¢€], Appe, is using the  excitations from the'®O core, and also excitations of the
empirical 124/A MeV prescription[17], Ay is calculated in the  valence neutrons. The generalized Bethe-Salpeter equation
present work, and s is the gap used in Ref10]. (2.28 is solved with a step of 0.5 fm and all radial integrals
are carried out up to 22.5 fm. The strength distribution is
Aexp (MeV)  Appen (MeV)  Ayeg (MeV) Aws(MeV)  calculated untikoy,,=50 MeV, with a step of 100 keV and

180 1.95 283 1.96 274 an averaging wi_dthy= 150 keV. Wg have studied two vari-

200 1.83 268 1.85 3.13 ants of calculations, the full continuum variant and a b_ox
224 152 256 1.04 3.30 variant where 'the ap spectrum is discretized _py calculating
240 0.49 2 45 0.00 3.39 the HFB solutions with a box boundary condition, the box

radius being 22.5 fm. Fof*O only box calculations have
been performed.

pairing gap A, remains constant for each couple In a fully consistent calculation the spurious center-of-
(Vo,Ecutor). In the HFB calculations we choose a gp cutoff MaSS state should come out at zero energy. Because of the
energy equal to 50 MeV. Then, the prescription of R&#] Landau-Migdal form of the interaction adopted here the con-
gives Vo= —415.73 MeV fnf. 'fhe parametepy, is set to sistency between mean field and residual qp interaction is
the usual saturation density, 0.16 fi The value of the broken and the spurious state becomes imaginary. We cure

parametera is chosen so as to reproduce the trend of théhis defect t_)y renormalizing the residual ir_lteraction byt_alfac—
experimental gap. Note that the calculated gap is defined 4Qr a. We find that in all cases the spurious stafe=1

the integral of the pairing field whereas the experimental gag®Mes out at zero energy fer=0.80. We have checked that
is related to mass differences of the neighboring nuclei an{'®¢ EWSR are satisfied within 1% to 5%.

therefore, there is no need to have an exact quantitative

agreement. We find that the best choiceris 1.5. Note that C. Quadrupole excitations in oxygen isotopes

the trend of the experimental gap is at variance with the e calculate quadrupole strength distributions with the

empirical ruleA=12//A MeV. All the pairing gap values operators FO:EiriZYZO(Fi) (isoscalar and Fq

are displayed in Table I. It should be noted that, in the case Of:EirizYzo(Fi)tz(i) (isovectol. Al results presented corre-

HFB+Skyrme calculations, if one has a reasonable pairin ) . .
4 b gspond to the SLy4 interaction except when stated otherwise.

gap in 18290 then the pairing is weaker iffO and absent in The strenath distributi lcutated in th wron-rich
2%0. This is due to the ds;, and ,,, subshell closure. A € strength distributions caiculated in the neutron-rich oxy-
rgen isotopes are displayed in Fig. 1.

similar trend is observed in calculations using Gogny inte . . . .
g >ogny One can identify a strong low-lying state and the giant

action[18]. As seen in Table I, in the case of QRPA calcu- .
lations using a Woods-Saxon potentidl0] the gaps are quadr_upole_ resongnc(é;QR). The low-lying state becomes
larger due to the fact that the energy distance between tHAOre 'S‘gsp'” admixed as .the.neL.Jtrop EXCESS Increases. Inthe
relevant subshells is smaller. case of?*0 the strength distribution is similar to that calcu-
lated in Ref[10] with a Woods-Saxon potential for the mean
) field, although pairing effects are negligible in our calcula-
B. QRPA calculations tion whereas the gap of Ref.[10] is sizable. The main
In the QRPA calculations the residual interaction is de-difference is the position of the first2state located at 4.0
rived in principle from the interaction used in the HFB, i.e., MeV here and 5.0 MeV in Ref10]. In the other nuclei this
the Skyrme force and the pairing for6@1). The zero-range low-lying state is at lower energies. This is due to tfe,2
part of the forces pose no problem. The velocity-dependergubshell closure irf*O. The HF single-particle energies are
terms of the Skyrme force bring additional complicationsgiven in Table Il. The 2y, state is more bound in th&O
which can be avoided by approximating the residual interachucleus, suggesting a stronger subshell closure in this case.
tion in the (ph,ph subspace by its Landau-Migdal limfit9] ~ The occupation factors of these states calculated in HFB are
where the interacting particle and hole have the Fermi modisplayed in Table Il. The &, starts to be significantly
mentum and the transferred momentum is zero. The Skyrmpopulated in®?0 due to the pairing correlations. In th&20
interaction has only=0 andl=1 Landau parameters. Tak- spectra mainly three low-lying peaks are present. In the un-
ing the Landau-Migdal form for théph,ph interaction sim-  perturbed case they correspond to thedgdlds,),
plifies greatly the numerical task, at the cost of the loss of1ds,,2s;,), and (1ds,,1d3,) two-gp neutron configura-
some consistency. In this work we calculate only natural partions. Their energies are given in Table lll. i#20 the
ity (non-spin-flip excitations and we drop the spin-spin part configuration (Hs,1d5,) has a very low strength whereas
of the (ph,ph interaction which plays a minor role. The Cou- the (1dsj,1ds;), (1dss,2S15) configurations have similar
lomb and spin-orbit residual interactions are also dropped. strength. The effect of the residual interaction, in addition to
The QRPA Green function can be evaluated starting witradmix the configurations, is to lower the energy of the initial
the unperturbed Green function given by HQ.32. The (1ds,,1ds;) peak and to increase the strength of the low-
latter is constructed by using the solutions of the HFB equalying state(cf. Fig. 1.
tions, i.e., the gp energies and the corresponding wave func- The effect of the residual interaction #fO is displayed
tionsU andV. All the gp states are included until an energy in Fig. 2, showing the isoscalar strength functions calculated
cutoff of 50 MeV, allowing pairs of gp energy until 100 with the unperturbed Green functi@y, and with the fullG.
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70 = TABLE Ill. Two gp energies(MeV) of the (1ds;,1ds,),
60 d 200 (1dsj5,2s1/9), and (Idsp,1dg,) configurations of the unperturbed
50 | strength function for thé®2%20 nuclei.
~ 40 2 180 200 20
% zg (1ds1ds.) 452 4.16 4.60
S o g W (1ds/2,251)) 5.72 4.36 3.35
< g M oo (1ds5,1d3,) 10.39 9.09 7.70
g o WAL MR SR e,
S= 70 ¢ .
L 60 5 20 a2 *0 . .
= b 3 mixture between hlghly_ deformed states and the usual shell
*m : 3 model state$27,28. This allows to successfully reproduce
< 405 B both theE2 andB(E2) of the low-lying states. As stated in
LI £ s Ref. [27], for heavier oxygen isotopes, the energies of the
20 ‘ E deformed states become higher, and thus the admixture is
10 MU . 3 smaller. This may explain why the calculatBdE2) are in
o H \ ‘.uuwﬁ)a, JE good agreement with the experimental data3b#%0 nuclei.

0 10 20 30 40 500 The B(E2) in 20 is predicted smaller than those of lighter
E* isotopes, which supports thesg, subshell closure effect. In
order to display the structure of the low-lying sector, the
FIG. 1. Isoscalafsolid line) and isovectofdashed lingquad-  calculated energies arB(E2) of the second and third*2
rupole strength functions calculated in continuum QRPA for thestates are shown in Table V for the oxygen isotopes. Tjhe 2
16202220 isotopes. and 2 energies are overestimated in the case 8®,
whereas a good agreement is found for the energy of jhe 2
The effect of the residual interaction is to gather the strengtitate for 2°0. This may support the presence of deformed
to generate collective modes such as the GQR and the lowggmixtures in the light neutron-rich oxygen isotopes such as
lying state. 180y
~ The E2 energy and3(E2) value of the first 2 state are The calculated ,/M , ratios indicate that the neutron are
displayed in Table IV. As noted before, tB@ energy in*®O  more coherently contributing to the excitation when their
is larger than in other isotopes due to thg,2subshell Clo-  number is increasing. For example, kg /M , ratio for 2O
sure. TheE2 energy in*®0 is overestimated and that 810 js more than twice thel/Z value, indicating a very strong
is underestimated as compared to experiment. This shows, §&utron contribution to the excitation. The calculated
noted previously in QRPA calculations with a constant 9apm ,/M,, ratio is correctly reproducing that A0 deduced
(Ref. [24]), that the energy prediction of the low-lying modes from proton scattering experiments. In the case'3 the
is a delicate task in RPA-type models. TREE2) values are  experimentaM ,/M , is not well reproduced. This is linked
well reproduced except for the problemattO nucleus. g the fact that thé8(E2) value is not well described by the

This discrepancy observed for ti®(E2) value of %0 IS model. The transition densities for the first low-lying 2
also found in several shell-model calculatid@2$,26 and in
previous QRPA calculationg24], showing a limitation of

such models to study®O low-lying states. Indeed this high 100 :
B(E2) anomaly may be due to the presence of deformed 90
states in the experimental low-lying spectra 800 [27]. 80 F
Moreover, the observation of many low-lying states in this n E
nucleus can be described by bands characteristics of the ro- % 70 3
tational spectra. It has been suggested that the low-lying S 60
states in these nucléuch as'®1"1®) can be described as a *E 50 L
g L
TABLE II. 1dg;, 25,5, and Iy, levels in the820:2226 ny- N@/ 40
clei. For each nucleus the left column shows the single-particle o 30 3
energiegMeV) calculated with the HF approximation, and the right @ 20t
column displays the occupation factors for the single-gp levels cal- a/ 10 aat
culated with the HFB model. R A5 P
180 200 220 240 00 " 40

1ds, -6.7 031 -69 062 -72 093 -7.7 1

25y -40 003 -42 008 -46 018 -49 1 FIG. 2. Isoscalar quadrupole strength function calculated in con-
1dsp 03 001 03 002 02 001 02 0 tinuum QRPA for the?0O nucleus. The unperturbed strength
(dashed lingis also shown.
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TABLE IV. Energy, proton contribution to the reduced transition probabiliB¢&2), and ratio of the
transition matrix elements,,/M,, for the first 2" state in the'®2%?226 nuclei, calculated with the present
model. Measured2, B(E2) values and theéM,/M ratios corresponding to the experimental data are
displayed in brackets.

180 200 220 240

E2 (MeV) 3.2(2.02 2.3(1.7)2 1.9/3.2) P 4.0
B(E2) (e*m%) 14/(45+2) © 22/(28+2) ¢ 22/(21+8) ¢ 9
(M /M )5+ 2.88/(1.16-0.24)® 3.36/(3.25-0.80)° 353 437

8Referencd 20].

bReferencg21].

‘Referencd22].

dreferencd 23].

*Referencd 24].

state of the neutron-rich oxygen isotopes are displayed itinuum treatment in order to study the giant resonances in

Fig. 3. In the case of>?%0 the neutron transition density is neutron-rich oxygen isotopes.

located more on the surface than the proton one, possiblg Since our full calculationsHFB+QRPA) have only the

indicating the presence of a neutron skin. kyrme and the pairing interaction as inputs, the results may
The pairing effects are depicted in Fig. 4, where the conbe€ used to learn about the different Skyrme parametrizations.

; c Figure 7 shows a comparison of results obtained with the
tinuum QRPA calculation is compared to a HRPA calcu- 20
lation for the 220 nucleus. The effect of pairing is to shift to SLy4[13], SGII[7], and SHI[29] for the *'O nucleus. There

: i . is no drastic effect depending on the force. The SllI interac-
higher energy the low-lying peak, and to split the second 2 tion shifts some low-lying states to higher energy and in-

state into two states with smaller strength. There is also SOM& eases the strength of the state located around 5 MeV. Al
effect in the GQR region. three interactions produce a splitting of the GQR but the

In order to investigate the effect of the density depen-ggj| force predicts more strength in the lower component of
dence of the pairing interaction we have also calculated thgye gjant resonance.

strength distributions with a density-independent interaction,

i.e., po going to infinity in Eq.(3.1). In the HFB calculation, IV. CONCLUSIONS

the V, parameter has been chosen to reproduce the experi-

mental gap of*®0, Vy,=—220 MeVn? (in this case the We have derived the Bethe-Salpeter equation for the
prescription of Ref[l4] is no |0nger app“e)j Figure 5 com- QRPA from the small amplltude limit of the perturbed time
pares the results in*%0 calculated with the density- depe_ndent HFB equations. This approach ensures the _self-
dependent and density-independent interactions. The effe€Pnsistency at the conceptual level between the mean field,
of the density dependence is to increase the energies of tfig€ Pairing field, and the gp residual interaction. The QRPA

2% states, and to slightly lower the strength of the low-lying 0.03 I
0]
states. 0.02
Box discretization calculations have also been performed )
in order to test the box boundary condition approximation. 0.01
The results are shown in Fig. 6 f&fO. One can see that
only the low-lying state is nearly insensitive whereas the 0

structure of the GQR is more affected by the way the con- 001
tinuum is treated. This shows the necessity of the exact con<s ~

é -0.02 L L ERTI I L A T
L < 0.03
TABLE V. Energy and proton contribution to the reduced tran-

sition probabilitiesB(E2) in the 18202226 nuclei, calculated with ~ “@ .02
the present model for the;2(upper lineg and % (lower lineg

states. MeasureB?2 values corresponding to the experimental data 0.01
are displayed in brackets.

0
10 %0 0 0 -0.01
25 : E2 (MeV) 5.3(4.02 42(4D% 62 7.1 002 b it Lec i
24 : B(E2) (e*fm%) 1.0 0.3 14 40 b2 4 6 80 2 4 6 8
23 : E2 (MeV) 9.8(5.3% 8.3(522% 75 81 r (fm)
24 : B(E2) (e*fm% 1.5 25 25 07

FIG. 3. Neutron and proton transition densities of the first 2
%Referencd 20]. state of 18202226 nyclei.
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FIG. 4. Isoscalar strength function calculated in continuum FIG. 6. Isoscalar strength function calculated in continuum
QRPA (solid line and HFRPA (dashed ling with box boundary  QRPA(solid line) and with a box discretizatiofdashed lingfor the
conditions for the®?0 nucleus. 220 nucleus.

Green function is decomposed into the ph, pp, and hh chanye sensitive to the pairing interaction. The first &tate of

nels. The supermatrix representing the residual interaction issq is not well described, as previously noted with other
determined self-consistently from the Skyrme and the pairing,qqels such as shell-model calculations. Additional investi-
interactions used in the HFB calculations. The Thoulesgations on this nucleus are called for. The continuum QRPA
theorem concerning the EWSR sum rule is shown to hold irgpqys its ability to reproduce the experimental data of the
the case of self-consistent QRPA. _ first 2" state for heavier oxygen isotopes, and it predicts a
As an application we have studied the quadrupole exc'tarowering of theB(E2) value for the?“O nucleus. A future
tions of the neutron-rich oxygen isotopes using Skyrme-typ&, ,-ovement of the model will be to include fully the

interactions for the mean field and a zero-range, densityye|ocity-dependent terms of the Skyrme interaction in the ph
dependent interaction for the pairing field. In the numerical.p5nnel. Work along these lines is in progress.

study we have approximated the ph residual interaction com-
ing from the Skyrme force by its Landau limit. The coupling
to the continuum appears to have a sizable effect on the GQR
and a minor effect on the low-lying states. This shows the
importance of the full continuum treatment in order to study
giant resonances in neutron-rich nuclei. The low-lying states

APPENDIX A: HAMILTONIAN PERTURBATION
AND RESIDUAL INTERACTION

The HFB energy functional is written as follows:

100 ¢
90 7 100 :
80} |1 20
n i 80 |
% 70 7 - Gno density ‘—‘I/-\ 70
2 60 7 ------ Gdensity %
: - 3
G40 g 50
o F [ r
~ b e 40 F
— 30 ] F
K g ~30¢F
| 20 P :
B 0k m 20
X g0t = Tt
o . . ) Yot
0 15 20 25 0 4
* 0
E #
FIG. 5. Isoscalar strength function calculated with a density-
independent pairing interactiosolid line) and density-dependent FIG. 7. Isoscalar quadrupole strength function calculated in con-
pairing interaction(dashed ling with box boundary conditions for tinuum QRPA for the?’0 nucleus with various Skyrme interac-
the %0 nucleus. tions: SLy4(solid line), SGII (dashed ling and Slll (dotted ling.
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CONTINUUM QUASIPARTICLE RANDOM PHASE . ..

1

522 tmIPmI'I'E 2 <IQ|V|mp>quPml
ml mlipq

1 Ny *
+Z 2 <|m|VP|pQ>K|prq’ (A1)
mipq

with V the antisymmetrized interaction an_q the antisym-
metrized pairing interaction.
The HFB Hamiltonian is

po (MR (A2)
lay
with
e e .
ap Y IK; .

Next we expand the perturbation of the Hamiltonian on

the densities perturbations and get

PE —
Kyl

2 2
s 1 Pe 1

i —puts Kyt
ij Pk Kl
KT dpdps; 2 K]

2 gxdp}
(A4)

PHYSICAL REVIEW C 66, 024309 (2002

12 e . 1 9 (A5)
T T < PxT5 TKus
ki (?pm(?Kﬁ 2 (9Kk|(9Kﬁ
H121 (925 g 1 (925 7 (A6)
= —_p _ K y
! Kl apk|ﬁKﬁ K 2 aKk|(5’K?\]j kl
HP=—H (A7)

To getH’ in coordinate space, we use the relationship

between the densities,

p(ra>=; PF(ra)¢i(ro)p;i, (A8)
K<ra>=; bi(ra)¢i(ro)kji, (A9)
?(ro)=§j) oF(ro)df (ro)wl, (A10)

where ¢;(r o) is the nucleon wave function.

Using Eqgs.(A4)—(A7) together with Eqs(A8)—(A10) al-

lows to calculate{’ in coordinate space, and get Eg.22).
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