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h-3N problem with separable interactions
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The h-3N interaction is studied within the four-body scattering theory adopting purely separable forms for
the two- and three-body subamplitudes, limiting the basic two-body interactions tos waves only. The corre-
sponding separable approximation for the integral kernels is obtained by using the Hilbert-Schmidt procedure.
Results are presented for theh-3H scattering amplitude and for the total elastic cross section for energies below
the triton break-up threshold.
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I. INTRODUCTION

In the last ten years the interaction ofh mesons with
few-nucleon systems has attracted considerable interest
quite a large amount of research has been carried out bot
the experimental as well as on the theoretical side. The m
aim of this activity is to obtain a well-defined conceptu
picture of the low-energyh-nuclear interaction which then
may serve to clarify the foundation of the more fundamen
hN problem.

Of special interest is theh-3N system, for which exactly
soluble models are available. At the same time it enclose
much wider range of phenomena than the more simplehNN
case. In this context we would also like to mention seve
precise experimental investigations ofh-production on three-
body nuclei performed during the last decade@1–3#. Previ-
ous theoretical studies in this area were restricted to var
approximations in treating the few-particle aspects of t
problem. As an earlier nonperturbative calculation, we wo
like to refer to the optical model approach of Ref.@4#, whose
purpose was to estimate qualitatively the possible forma
of boundh-meson states with the lightest nuclei. More r
fined calculations were presented in Ref.@5#, where the au-
thors were able to sum the multiple scattering series for
h-3H amplitude, including several important corrections
the trivial optical limit. Another result reported in Ref.@6#
was obtained within the so-called finite-rank approximat
~FRA! which has recently been applied also to theh produc-
tion from three-body nuclei@7,8#. The crucial point of this
model is the neglect of target excitations during the inter
tion with theh meson. Clearly this assumption allows one
avoid the complications associated with the direct solution
the four-body dynamical equations. Concerning the pres
study, we were guided by the idea that the approximati
used in many-body physics, such as the optical mode
adiabatic treatment of the target, may fail when few-parti
systems are studied. Especially, this seems to be true
small kinetic energies, where the unitarity conditions of t
scattering matrix, nucleon recoil and other effects beco
significant. Their neglect, tolerated in various many-body
proaches, may affect drastically the quality of the few-bo
results. Therefore, the present work is intended to solve
h-3N problem without making any such not well controlle
approximations.
0556-2813/2002/66~2!/024002~11!/$20.00 66 0240
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The basis of our calculation is the four-body formalism
momentum space. Although a variety of methods for solv
the n-particle problem has been proposed in the literatu
the Faddeev-Yakubovsky theory@9,10# and the one of Alt,
Grassberger, and Sandhas~AGS! @11,12# are most conve-
nient and preferred for practical applications. Adopting t
separable representation for the driving two-body potent
as well as for the subamplitudes appearing in the~113! and
~212! partitions of the four-body system, both approach
lead to the same set of effective two-body equatio
@11,13,14#. As is well known, the separable approximation
the integral kernels permits one to represent the dynam
equations in terms of particle exchange diagrams. Due to
tractability and its relatively simple numerical realizatio
this method has received wide acceptance in few-body ph
ics. Thus at present, a feasible formalism of four-parti
theory has been extensively developed, despite the m
more complex structure of the corresponding equations c
pared to the three-body case. After the work of Tjon@15#
impressive results have been obtained in recent years fo
four-nucleon low-energy interaction~see, e.g., Ref.@16#, and
references therein!, as well as for pion absorption on three
nucleon systems@19–21#. With respect to other technique
we would like to refer to recent work in Refs.@17,18#.

The paper is organized as follows. In the next section
outline briefly the formal aspects concerning the applicat
of the four-body formalism to theh-3N system within the
quasiparticle approach. Besides the basic equations we in
duce here the two- and three-body ingredients of the mo
Our results forh-3H elastic scattering are presented in Se
III, and conclusions are drawn in the last section. Details
given in two appendixes.

II. APPLICATION OF THE FOUR-BODY FORMALISM
TO THE h-3N SYSTEM

The separable method is well known to allow one to
duce the n-body problem to an in general simple
(n21)-body case, where one of the constituents appears
quasiparticle, i.e., a two-body bound, virtual or resonan
state. In particular, the three-body equations for the~3→3!
transition amplitudes are exactly reduced to effective tw
particle equations of Lippmann-Schwinger type. Their k
nels contain the off-energy-shell~2→2! amplitudes for all
©2002 The American Physical Society02-1
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A. FIX AND H. ARENHÖVEL PHYSICAL REVIEW C 66, 024002 ~2002!
two-body subsystems. In an analogous manner, the f
body scattering kernels can be expressed in terms of sub
plitudes stemming from the decomposition of the four-bo
system into the partitions~113! and ~212!. Therefore, ap-
proximating these subamplitudes once more by a separ
ansatz we can again reduce the four-body problem to
effective quasiparticle two-body one. The formal details
this two-step reduction scheme may be found in Re
@11,13,14#. Here we restrict ourselves to a brief descripti
of the resulting quasi-two-body equations as applied to
h-3N system.

A. The four-body h-3N equations

Since our formalism does not include Coulomb forces,
will consider for definiteness theh-3H interaction through-
out this paper. All appropriate states are assumed to be p
erly antisymmetrized with respect to the nucleons. The c
responding antisymmetrization procedure is outlined
Appendix A. Then we are led to the following three cha
nels, corresponding to three possible two-quasiparticle p
tions of theh-3N system

~1! h1~3N!, ~2! N1~hNN!, ~3! ~Nh!1~NN!. ~1!

We only need the amplitudes connecting the init
asymptotic state, consisting of the 3N bound state (3H) and
a freeh-meson, with all three channels listed in Eq.~1!. They
obey a set of three coupled integral equations~see Appendix
A!, whose structure is represented by the following ma
equation:

S X1

X2

X3

D 5S 0

Z21

Z31

D 1S 0 Z12 Z13

Z21 Z22 Z23

Z31 Z32 0
D

3S Q1

Q2

Q3

D S X1

X2

X3

D . ~2!

Here the indexa51, 2, 3 stands for the channel~a! from Eq.
~1!. The amplitudeXa describes the transition~1!→~a!. The
effective potentials1 Zab are expressed in terms of the for
factors, generated by the separable representation of the
amplitudes appearing in the channels~1!.

Because here we consider only low-energy scattering,
take into account only the dominants-wave part of the inter-
action in the two-body subsystems and thus onlys waves in
the three- and four-particle states. Therefore, the matrix
ments are diagonal with respect to the total spinS. For the
elastich-3H scattering we need to consider only those sta
where the spins and isospins of all nucleons are couple
S5T51/2. In all expressions to follow we drop the inde

1Following the work@11# we explore the formal analogy with th
Lippmann-Schwinger equation and use for the driving termsZab

the suggestive term ‘‘potential.’’
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L50. The explicit analytical form of the potentialsZab ,
taking into account the spin-isospin degrees of freedom
given in the Appendix B. In a more detailed notation t
system~2! reads

Xa;nn8
(ss8)

~p,p8,E!5~12da1!Za1;nn8
(ss8)

~p,p8,E!

1 (
b51

3

@12dab~12da2!#

3 (
n9s9s-

E
0

`

Zab;nn9
(ss9)

~p,p9,E!Qb;n9~Eb!

3Xb;n9n8
(s-s8)

~p9,p8,E!
p92dp9

2p2
. ~3!

The indexs5(0,1) in the above equations corresponds to
total spin of the givenNN pair. Clearly, due to the
pseudoscalar-isoscalar nature of theh-meson, the value ofs
fixes uniquely the spin structure of the overall four-bo
state with total spinS51/2. In view of the limitation of the
two-body interaction to the dominants-wave part, the isospin
t of a NN pair is fixed by its spins through the conditions
1t51. The subenergiesEb in Eq. ~3! are defined as

Eb5E2
p92

2Mb
~b51,2,3!, ~4!

with reduced masses

M15
3MNmh

3MN1mh
, M25

MN~2MN1mh!

3MN1mh
,

M35
2MN~MN1mh!

3MN1mh
. ~5!

A graphical representation of the system~3! is shown in Figs.
1 and 2.

The structure of Eq.~2! allows one to eliminate the chan
nel ~1! yielding an equivalent set of only two coupled equ
tions for the amplitudesX2 and X3. In detail, one has for
aP$2,3%

FIG. 1. Diagrammatic representation of Eq.~3! for the transition
amplitudesXa of h-3N scattering.
2-2
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FIG. 2. Diagrammatic representation of the potentialsZab in the separable approximation~see Appendix B!.
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Xa;nn8
(ss8)

~p,p8,E!5Za1;nn8
(ss8)

~p,p8,E!

1 (
b52,3

(
n9s9

E
0

`

Z̃ab;nn9
(ss9)

~p,p9,E!

3Qb;n9
~s9!

~Eb!Xb;n9n8
(s9s8)

~p9,p8,E!
p92dp9

2p2
,

~6!

where the new effective potentials are given by~a,bP$2,3%!

Z̃ab;nn8
(ss8)

~p,p8,E!5@12dab~12da2!#Zab;nn8
(ss8)

~p,p8,E!

1 (
n9s9s-

E
0

`

Za1;nn9
(ss9)

~p,p9,E!Q1;n9~E1!

3Z1b;n9n8
(s-s8)

~p9,p8,E!
p92dp9

2p2
. ~7!

After solving the system~6!, the amplitudeX1 is obtained
from

X1;nn8
(ss8)

~p,p8,E!5 (
b52,3

(
n9s9

E
0

`

Z1b;nn9
(ss9)

~p,p9,E!Qb;n9
~s9!

~Eb!

3Xb;n9n8
(s9s8)

~p9,p8,E!
p92dp

2p2
. ~8!

The set of equations~6! is more suitable for the numerica
solution than Eq.~3!, since in the former case the integratio
over the triton pole in the propagatorQ1 may be carried out
independently from the procedure of solving the system~6!
itself. Thus the kernels in Eq.~6! are smooth functions of the
integration variable, and the equations may be solved by
rect matrix inversion. We recall that below the trito
break-up threshold we are dealing with only nonsingular
tentialsZab .

B. The subamplitudes

The key ingredient of the quasiparticle method@11,14#,
leading to the equations of the type~3!, is the separable
representation of the off-shell scattering amplitudes for
two- and three-body subsystems, appearing in the~212! and
~113! partitions. In our case, the two types of two-bo
subsystems involved areNN andhN, denoted in the follow-
ing by ‘‘d’’ and ‘‘ N* ,’’ respectively. For the correspondin
scattering matrices we adopt the simplest rank-one sepa
form. In detail, we use for theNN interaction
02400
i-
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td
(s)~q,q8,z!5gd

(s)~q!td
(s)~z!gd

(s)~q8!, ~9!

with

td
(s)~z!52

1

2MN
F12

1

4p2E0

`@gd
(s)~q!#2

zMN2q2
q2dqG21

.

~10!

Here the upper index~s! stands for the singlet (s50) and
triplet (s51) NN states. For the form factorsgd

(s)(q) we use
the simplest parametrization

gd
(s)~q!5gd

(s)
bs

2

bs
21q2

. ~11!

Analogously, we choose in thehN channel

tN* ~q,q8,z!5gN*
h

~q!tN* ~z!gN*
h

~q8!, ~12!

with

tN* ~z!52@z1MN1mh2M02Sh~z!2Sp~z!#21,
~13!

where

Sr~z!5E
0

` @gN*
r

~q!#2

z1mh2mr2
q2

2mrN
1 i e

q2dq

2p2
~14!

and

gN*
r

~q!5gN*
r br

2

br
21q2

, mrN5
MNmr

MN1mr
, rP$p,h%.

~15!

The parameters appearing in Eqs.~11!, ~13!, and ~15! are
summarized in Table I. Those for theNN interaction were
taken from the low-energyNN fit presented in Ref.@22#, and
the hN-parameters are chosen as to reproduce the scatte
length ahN5(0.751 i 0.27) fm which agrees with the mos
recent results@23,24#. However, our parametrization gives
different value for the effective range parameterr 05(1.95
1 i 0.07) fm compared tor 05(1.51 i 0.24) fm of Ref.@24#.
Unfortunately, we are not able to fit both valuesahN
2-3



A. FIX AND H. ARENHÖVEL PHYSICAL REVIEW C 66, 024002 ~2002!
TABLE I. Listing of parameters determining the separable parametrization of theNN andhN scattering matrices.

gd
(0) (MeV21/2) gd

(1) (MeV21/2) b0 (fm21) b1 (fm21) gN*
h A2mh gN*

p A2mp bh (fm21) bp (fm21) M0 ~MeV!

0.4076 0.4863 1.4488 1.4488 2.10 1.04 6.5 4.5 1661
a

a

uc
a

th
rt
c

ac

ee
ffi

s

nd-
and r 0 simultaneously, which is of course the price one h
to pay for using the simplest separable ansatz~9!. When
comparing our predictions with those of Refs.@5,6# we use
also other sets ofhN parameters chosen in such a way th
they lead in each case to the corresponding value ofahN
used there~see Table III!.

Turning now to the general scheme, we have to introd
also the separable representation for the three-body sub
plitudes, which will then serve as a necessary input for
four-body calculation. For this purpose we apply the Hilbe
Schmidt expansion. The main formal aspects of the pro
dure can be found, e.g., in Refs.@25,26#.

The three-nucleons-wave doublet amplitudesU1;ss8 , ap-
pearing in the channel~1! obey the equation~see, e.g., Ref.
@27#!

U1;ss8~q,q8,E!5V1;ss8~q,q8,E!

1 (
s950,1

E
0

`

V1;ss9~q,q9,E!

3td
(s9)S E2

3q92

4MN
DU1;s9s8~q9,q8,E!

q92dq9

2p2
,

s,s850,1. ~16!

The effective potentials are defined in terms of the form f
tors gd(k) of the two-nucleon amplitude~9! as

V1;ss8~q,q8,E!5
Lss8

2 E
21

11
gd

(s)S UqW 81
1

2
qWU Dgd

(s8)S UqW 1
1

2
qW 8U D

E2
q2

MN
2

q82

MN
2

qW •qW 8

MN

3d~ q̂•q̂8!, s,s850,1, ~17!

where E denotes the total c.m. kinetic energy in the thr
nucleon system, and the matrix of the spin-isospin coe
cients is given by

L5S 1

2
2

3

2

2
3

2

1

2

D . ~18!

The Hilbert-Schmidt expansion for the driving termV1;ss8
reads

V1;ss8~q,q8,E!52(
n

ln~E!un
(s)~q,E!un

(s8)~q8,E!,

~19!
02400
s

t

e
m-
e
-
e-

-

-

where the functionsun
(s)(q,E) are taken as the eigenfunction

of the kernel of Eq.~16! with the eigenvaluesln , i.e.,

un
(s)~q,E!5

1

ln~E! (
s850,1

E
0

`

V1;ss8~q,q8,E!td
(s8)S E2

3q82

4MN
D

3un
(s8)~q8,E!

q82dq8

2p2
, s50,1. ~20!

They are normalized according to

(
s50,1

E
0

`

un
(s)~q,E!td

(s)S E2
3q2

4MN
Dun8

(s)
~q,E!

q2dq

2p2
52dnn8 .

~21!

The separable form of the amplitude can easily be found

U1;ss8~q,q8,E!5(
n

un
(s)~q,E!Q1;n~E!un

(s8)~q8,E!,

Q1;n~E!5
ln~E!

ln~E!21
. ~22!

The amplitudes for thehNN scattering, related to the
channel~2! and denoted in the following byŪ2;i j with i , j
P$d,N* %, are coupled into two independent sets correspo
ing to two possible spin-isospinhNN s-wave states (S;T)
5(0;1) and (1;0),denoted by an upper index~s! with s
P$0,1%, each of the form

Ū2;dd
(s) ~q,q8,E!5E

0

`

V2;dN*
(s)

~q,q9,E!tN* S E2
q92

2m̃N*
D

3Ū2;N* d
(s)

~q9,q8,E!
q92dq9

2p2
, ~23!

Ū2;N* d
(s)

~q,q8,E!

5V2;N* d
(s)

~q,q8,E!1E
0

`FV2;N* d
(s)

~q,q9,E!td
(s)S E2

q92

2m̃d
D

3Ū2;dd
(s) ~q9,q8,E!1V2;N* N*

(s)
~q,q9,E!

3tN* S E2
q92

2m̃N*
D Ū2;N* d

(s)
~q9,q8,E!Gq92dq9

2p2
.

The reduced masses appearing in Eq.~23! are defined by
2-4
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m̃N* 5
MN~MN1mh!

2MN1mh
, m̃d5

2MNmh

2MN1mh
. ~24!

The corresponding effective potentials are

V2;dd
(s) ~q,q8,E!50,

V2;dN*
(s)

~q,q8,E!

5
1

A2
E

21

11
gd

(s)S UqW 81
1

2
qWU DgN*

h S UqW 1
mhN

MN
qW 8U D

E2
q2

MN
2

q82

2mhN
2

qW •qW 8

MN

d~ q̂•q̂8!,

V2;N* d
(s)

~q,q8,E!5V2;dN*
(s)

~q8,q,E!, ~25!

V2;N* N*
(s)

~q,q8,E!

5
1

2E21

11
gN*

h S UqW 81
mhN

MN
qWU DgN*

h S UqW 1
mhN

MN
qW 8U D

E2
q2

MN
2

q82

2mhN
2

qW •qW 8

mh

3d~ q̂•q̂8!,

whereE is the total c.m. kinetic energy of thehNN system.
The properly antisymmetrized amplitudes forhNN scatter-
ing are expressed in terms ofŪ2;i j

(s) as ~see Refs.@28,29#!

U2;dd
(s) 5Ū2;dd

(s) , U2;N* d
(s)

5
1

A2
Ū2;N* d

(s) , s50,1. ~26!

Analogously to Eq.~22! we have (i , j P$d,N* %)

U2;i j
(s) ~q,q8,E!5(

n
v i ;n

(s)~q,E!Q2;n
(s) ~E!v j ;n

(s)~q8,E!,

Q2;n
(s) ~E!5

hn
(s)~E!

hn
(s)~E!21

, ~27!

where the form factorsv i ;n
(s) obey the homogeneous equatio

v i ;n
(s)~q,E!5

1

hn
(s)~E!

(
j 5d,N*

E
0

`

V2;i j
(s) ~q,q8,E!

3t j
(s)S E2

q82

2m̃ j

D v j ;n
(s)~q8,E!

q82dq8

2p2
, s50,1.

~28!

Here, of course, one hastN*
(s)

5tN* (s50,1), and the eigen
functions are normalized as
02400
(
i 5d,N*

E
0

`

v i ;n
(s)~q,E!t i

(s)S E2
q2

2m̃ i
D v i ;n8

(s)
~q,E!

q2dq

2p2

52dnn8 . ~29!

In the actual calculation we have neglected anypNN states.
Their inclusion would imply an increase in the number
channels in the final equations as well as adoption of rela
istic kinematics which would lead to much more compl
formalism. On the other hand, due to its small mass, the p
is expected to give only minor corrections to low-ener
h-nucleus scattering@29,30#.

Apart from the genuine three particle scattering amp
tudes, we also need as input the effective amplitudes,
noted here byU3;i j

(s) , which describe two independent pairs
interacting particles in the channel~3!. The corresponding
equations read in our case

U3;dd
(s) ~q,q8,E!5E

0

`

V3;dN*
(s)

~q,q9,E!tN* S E2
q92

2nN*
D

3V3;N* d
(s)

~q9,q8,E!
q92dq9

2p2
, ~30!

U3;N* d
(s)

~q,q8,E!5V3;N* d
(s)

~q,q8,E!

1E
0

`

V3;N* d
(s)

~q,q9,E!td
(s)S E2

q92

2nd
D

3U3;dd
(s) ~q9,q8,E!

q92dq9

2p2
,

whereE is the sum of the internal energies in theNN andhN
subsystems. In the expressions~30! the notationsnd5mhN
andnN* 5MN/2 are used. The effective potentials are

V3;dd
(s) ~q,q8,E!50,

V3;dN*
(s)

~q,q8,E!5
gd

(s)~q8!gN*
h

~q!

E2
q2

2mhN
2

q82

MN

,

~31!
V3;N* d

(s)
~q,q8,E!5V3;dN*

(s)
~q8,q,E!,

V3;N* N*
(s)

~q,q8,E!50.

Analogously to the treatment above, we introduce the fo
factors wi ;n

(s) ( i P$d,N* %) as the eigenfunctions of th
Lippmann-Schwinger kernel

wi ;n
(s)~q,E!5

1

jn
(s)~E!

(
j 5d,N*

E
0

`

V3;i j
(s) ~q,q8,E!t j

(s)S E2
q82

2n j
D

3wj ;n
(s)~q8,E!

q82dq8

2p2
, i , j P$d,N* %, ~32!
2-5
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with an orthogonality condition analogous to Eq.~29!. Then
the separable form of the transition matrices is generated
the Hilbert-Schmidt expansion

U3;i j
(s) ~q,q8,E!5(

n
wi ;n

(s)~q,E!Q3;n
(s) ~E!wj ;n

(s)~q8,E!,

Q3;n
(s) ~E!5

jn
(s)~E!

jn
(s)~E!21

. ~33!

In the spirit of the terminology, adopted for the separa
approach, we may interpret the functionwi ;n as the form
factor of the two-particle ‘‘bound state’’j when the other two
particles are in the ‘‘bound state’’i.

In Figs. 3 through 5 we present the leading eigenval
ln(E) and the real parts ofhn

(s)(E) andjn
(s)(E). Several com-

ments are in order.
~1! The validity of separable expansion above is stron

limited to the energy region below the triton break-up thre
old 3H→n1d, i.e., to energies E,«d , where «d
'22.22 MeV denotes the deuteron binding energy. Abo
this region (E>«d), due to the singularities appearing in th
propagators as well as in the potentials, the kernels of
equations become noncompact, and the Hilbert-Schmidt
pansion loses its meaning. Therefore we shall restrict
consideration to the region below the triton break-up thre
old.

~2! The eigenvaluel1
(1) goes through unity at the energ

E5E 3H'213 MeV, which is essentially lower than the e
perimental value of the triton binding energyE 3H

exp

'28.5 MeV. This disagreement is a consequence of us
the extremely simple YamaguchiNN scattering matrix~9!.
Although this ansatz fits low-energyNN scattering, it has too
long a tail into the high-momentum region and, therefo
predicts too much binding for the three-nucleon system.

~3! The modulus of the eigenvaluesl i andl i 11 are close
to each other. Therefore, one can expect, that the lea
terms in the expansion~22! will cancel each other to a larg
extent, which may lead to a relatively slow convergence r
of the sum. In order to demonstrate how well a finite su
~22! may represent the exact amplitude, we show in Fig
the ratio of the Schmidt norms

FIG. 3. Left panel: The leading eigenvalues of the Hilbe
Schmidt expansion for the three-nucleon scattering amplitude in
S5T51/2 state. Right panel: The ratio between the Schmidt no
of the kernelsO andOn as defined by Eqs.~34! and ~35!.
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Rn~E!5
iOni
iOi ~34!

of the operators

O5Atd
(1)V11

N Atd
(1), On5Atd

(1)~V11
N 2V11,n

N !Atd
(1),

~35!

whereV11,n
N is given by the sum~19! containing only the first

n terms. We see that the rate of convergence is not v
impressive but appears to be sufficient for the practical c
culation. Already in the region close to the two-body thres
old (E5«n,d) the six leading terms in Eq.~19! accumulate
more than 95% of the Schmidt norm ofO. The same is valid
for thehNN case and especially for the (hN)1(NN) chan-
nel as may be seen from Figs. 4 and 5.

The triton wave function was extracted from the pole
the 3N scattering amplitude. In the present calculation
have restricted ourselves to the principal, spatially co
pletely symmetrics-wave part, which in the usual notatio
~see, e.g., Ref.@31#! reads

C 3H 52jaCs~pW 1 ,pW 2 ,pW 3!, ~36!

whereja denotes the completely antisymmetric spin-isos
part, given by

ja5
1

A2
~x (0)z (1)2x (1)z (0)!. ~37!

The spin functionx (s) (s50,1) describes a three-nucleo
spin51/2 state which is obtained by coupling first the spi
of two nucleons to a spins and then by couplings with the

e
s

FIG. 4. The same as in Fig. 3 forhNN scattering in the (S;T)
5(1;0) state.

FIG. 5. The same as in Fig. 3 for the (hN)1(NN) partition.
2-6
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h-3N PROBLEM WITH SEPARABLE INTERACTIONS PHYSICAL REVIEW C 66, 024002 ~2002!
spin of the third nucleon to a total spin 1/2. The isosp
function z (t) (t50,1) is constructed in the same manner.

The spatial partCs, completely symmetrical with respec
to the nucleon momenta, is given by

Cs~pW 1 ,pW 2 ,pW 3!5
1

A3
~11P131P23!c~k12,q3!. ~38!

Here,k12 and q3 are the usual Jacobi momenta for the tr
~112!13. The functionc(k,q) can be expressed within ou
formalism in terms of the eigenfunctions~20! as follows:

c~k,q!5
1

A2
@u(0)~k,q!2u(1)~k,q!#, ~39!

with

u(s)~k,q!5Ngd
(s)~k!td

(s)~E 3H23q2/4MN!

3
u1

(s)~q,E 3H!

E 3H23q2/4MN2k2/MN

. ~40!

The normalization factorN is taken from the residue of th
3N scattering matrix~7! at E5E 3H , and one finds

N225Fdl1

dE G
E 3H

. ~41!

The elastich-3H scattering amplitudeFh 3H(p) is then ex-

pressed in terms of the amplitudesX1;11
(ss8) , taken on the en-

ergy shell

Fh 3H~p!52
mh 3H

2p
@X1;11

(00)~p,p,E!1X1;11
(11)~p,p,E!

22X1;11
(10)~p,p,E!# ~42!

with p5A2mh 3HE andmh 3H being theh-3H reduced mass
One should note that in the calculation of the amplitudesX1

TABLE II. The scattering lengthah 3H as a function of the num-
berna of separable terms kept in the Hilbert-Schmidt expansion
the ~113! and ~212! amplitudes. The values ofn1 , n2 and n3

denote the number of terms kept in the separable expansion o
amplitudes~22!, ~27!, and~33!, respectively.

n1 n2 n3 ah 3H ~fm!

2 2 2 2.511 i 1.60
4 2 2 2.541 i 1.66
4 4 2 3.681 i 3.46
4 4 4 3.991 i 4.74
6 4 4 3.981 i 4.75
6 6 4 4.161 i 5.52
6 6 6 4.181 i 5.67
6 8 6 4.191 i 5.69
02400
entering Eq.~42!, the driving termsZ1i andZi1 ( i 52,3) in
Eqs.~6! and~8! were redefined in view of the approximatio
~36! ~see Appendix B!.

III. RESULTS AND DISCUSSION

In Table II we present our results for theh-3H scattering
length obtained by keeping a finite number of terms in
Hilbert-Schmidt expansion of the amplitudes~22!, ~27!, and
~33!. One can see, that the rate of convergence ofah 3H is
approximately the same as that for the integral kernels
cussed in the previous sections~see Figs. 3, 4, and 5!. The
choicen154, n25n356 provides rather satisfactory accu
racy. Our result obtained with thehN-input corresponding to
ahN5(0.751 i 0.27) fm @24# is

ah 3H5~4.21 i5.7! fm. ~43!

First we note that the scattering length is rather large, wh
may be explained as a consequence of the virtual state~the
real part of the scattering length is positive! generated by the
strong attraction of theh-3N interaction. The large magni
tude of ah 3H indicates that the corresponding pole of t
scattering amplitudeFh 3H(p) lies near the elastic scatterin
threshold. Turning to the region of positive energies,
present in Fig. 6 the total cross section for elastich-3H scat-
tering. Here the virtualh-3H state manifests itself in a stron
enhancement ofs(E) when E approaches the threshol
value. It would appear natural that this effect is really o
served, e.g., inh-production inpd collisions @2#.

As already mentioned, we compare in Table III our pr
dictions on theh-3H scattering length with those of Refs
@5,6# using anhN-interaction which reproduces theahN scat-
tering length of Refs.@5,6#. One must note a rather stron

r

he

FIG. 6. Total cross section of elastich-3H scattering versus the
c.m. kinetic energyE.

TABLE III. Comparison of the predictions for the
h 3H-scattering lengths of the present model with the ones obta
in Refs.@5,6# for the correspondinghN-scattering length.

ahN ~fm! ah 3H ~fm! ah 3H ~fm! ~this work!

0.571 i 0.39 1.321 i 4.37 @5# 2.231 i 3.00
0.291 i 0.36 0.581 i 2.17 @5# 0.971 i1.72
0.271 i 0.22 0.411 i 2.00 @6# 0.691 i 0.67
0.551 i 0.30 21.561 i 3.00 @6# 2.351 i 1.68
2-7
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difference of the results, especially for the real part ofah 3H .
Apparently, the latter must be very sensitive to the posit
of the pole in the amplitude as it lies close to zero ener
Very rough agreement may be noticed with Ref.@5#. But
there is a tendency of our prediction to give a larger value
Reah 3H , which is probably due to the difference in thehN
range parameterr 0 noted in the beginning of Sec. II B.

As to the question about the existence of a quasibo
state, which anh meson can form with the lightest nucle
@4–6,32#, we see that within our model theh-3N interaction
is not strong enough in order to bind theh-3H system. This
conclusion does not support the results of the FRA model@6#
or those of the optical model@4,32# where anh-3N bound
state appears already for rather modest values of thehN
scattering length. It should also be remembered that our
culations are based on the rank-one separableNN potential
which is known to overestimate the attraction in the thr
nucleon system. Therefore, we expect that the use of m
refined NN models will most likely reduce the probabilit
for binding theh-3H system.

IV. CONCLUSION

In the present paper, the four-body scattering formali
has been applied to study theh-3N interaction in the energy
region very close to theh-3H elastic scattering threshold
The calculational scheme, which formally allows an ex
solution, is based on the separable approximation of the
propriate integral kernels. The validity of this approach
justified by the fact that the drivingNN andhN interactions
are governed mainly by theS-matrix poles, lying in each
case near the low-energy region. Therefore, the separ
potentials, giving the correct structure of the amplitude clo
to the poles, are expected to provide an adequate approx
tion. In the present paper we have realized one of the p
sible schemes for solving theh-3N four-body problem. To
test its applicability, we have investigated the Hilbe
Schmidt procedure for constructing a separable represe
tion of finite rank of the four-body kernels. The examinati
of their Schmidt norms shows that the rate of convergence
increasing the rank is not very fast, but satisfactory for pr
tical purposes. Keeping six to eight terms in the separa
expansion, we have obtained a rather good precision.
same conclusion is valid for the calculation of theh-3H scat-
tering length. At the same time we would like to point o
that the present calculation suffers from the oversimplifi
tion of theNN interaction, for which the rank-one Yamagu
chi potential has been used. Of course, this shortcoming
be cured by using a more sophisticated separable approx
tion for theNN scattering matrix, requiring only more com
putational efforts. Thus, our results may be considered a
starting point for more realistic calculations.

APPENDIX A

In this appendix the transition amplitudes forh-3N scat-
tering are defined with due consideration of the Pauli pr
ciple for nucleons. We begin with the two-body equatio
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resulting from the quasiparticle approach to the four-bo
problem@11,14#

Xab;nn8~pW ,pW 8,E!5Zab;nn8~pW ,pW 8,E!

1 (
gÞa

(
n9

E Zag;nn9~pW ,pW 9,E!Qgn9~E!

3Xgb;n9n8~pW 9,pW 8,E!
d3p9

~2p!3
. ~A1!

Here the effective potentials

Zab;nn8~pW ,pW 8,E!5(
i

ui ;n
a ~qW ,E!t i~z!ui ;n8

b
~qW 8,E8!

~A2!

are represented by the particle exchange diagrams~see, e.g.,
Fig. 2!. They include the propagatort i(z) of the quasiparti-
cle ‘‘ i ’’ depending on the two-body subenergy

z5E2
p2

2Ma
2

p82

2Mb
2

pW •pW 8

mk
, ~A3!

where Ma denotes the reduced mass in the two-parti
channela. The form factorsui ;n

a are generated by the sep
rable expansion of the subamplitudes in the~113! and~212!
partitions

Ui j
a~qW ,qW 8,E!5(

n
ui ;n

a ~qW ,E!Qan~E!uj ;n
a ~qW 8,E!. ~A4!

In the casea5~113! the functionsUi j
a (qW ,qW 8,E) are the fa-

miliar Lovelace amplitudes appearing within the pure se
rable approach to the three-body scattering@27#. For
a5~212! these functions describe two independently pro
gating pairs of particles, each treated as a quasiparticle
Eq. ~A2! the energiesE andE8 in the subsystemsa and b,
respectively, are defined by

E5E2
p2

2Ma
and E85E2

p82

2Mb
. ~A5!

The momentaqW andqW 8 in Eq. ~A2! are of course functions o
pW andpW 8

qW 5pW 81
Ma

mk
pW , qW 85pW 1

Mb

mk
pW 8, ~A6!

wheremk is the mass of the exchanged particle~or quasipar-
ticle!. After a partial wave decomposition, Eqs.~A1! are re-
duced to a set of integral equations in one variable, be
thus manageable for practical purposes.

Turning to theh-3N system we will firstly define the
notation. The set of channels we are interested in is given
Eq. ~1!. In what follows, we do not consider the explic
structure of the equations, connected with the separable
pansion of the basic subamplitudes@index ‘‘n’’ in Eq. ~A4!#
and drop also the spin-isospin indices. It is convenient
2-8
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h-3N PROBLEM WITH SEPARABLE INTERACTIONS PHYSICAL REVIEW C 66, 024002 ~2002!
order the nucleons always cyclically, since in this case
have not to trace the sign, when changing from one stat
another. Denoting the nucleons as particles 1, 2, and 3
consider the following seven states which contribute:~i! One
state in channel 1:uh~123!&, denoted as 1,~ii ! three states in
channel 2:u1~h23!&, u2~h31!&, u3~h12!&, denoted as 2i with i
51,2,3 ,~iii ! three states in channel 3:u~1h!~23!&, u~2h!~31!&,
u~3h!~12!&, denoted as 3i with i 51,2,3.

Here we assume that the wave functions of the s
systems containing two and three nucleons are already
symmetrized. For the present purpose we are intereste
those amplitudes, which describe the transitions from ch
nel 1 to the channels 1, 2i , and 3i . They will be denoted
respectively asX1 , Xa i

with i 51,2,3. Then using the sepa
rable approximation for the amplitudes~22!, ~27!, and~33!,
Eqs.~A1! take the form

X15(
j 51

3

Z1;2j
Q2 j

X2 j
1(

j 51

3

Z1;3j
Q3 j

X3 j
,

X2i
5Z2i ;11Z2i ;1Q1X11(

j 51

3

~12d i j !Z2i ;2 j
Q2 j

X2 j

1(
j 51

3

Z2i ;3 j
Q3 j

X3 j
,

X3i
5Z3i ;11Z3i ;1Q1X11(

j 51

3

Z3i ;2 j
Q2 j

X2 j
,

~A7!

where i 51,2,3. The meaning of the driving termsZa ib j
is

explained schematically by the diagrammatical represe
tion in Fig. 2. Their analytical expressions are given in A
pendix B. The termsZ2i ;3 j

and Z3i ;2 j
have different struc-

tures for i 5 j and for iÞ j and therefore are written dow
separately.

The wave functions of different states belonging to t
same channel may be obtained from each other by cy
permutation of the nucleon coordinates. This fact allows o
to obtain various relations between the transition amplitu
Za i ;b j

. For example, we have by cyclic permutation

Z21 ;22
5^1~h23!uZu2~h31!&5^2~h31!uZu3~h12!&5Z22 ;23

.
~A8!

Repeating the procedure, one finds the general relation
iÞ j ,

Z2i ;2 j
5Z21 ;22

. ~A9!

In the same manner and by applying a combination o
cyclic permutation with a permutation within an antisymm
trized NN state, one obtains for the transition 2→3 the gen-
eral relations

Z2i ;3i
5Z21 ;31

, ~A10!

Z2i ;3 j
5Z21 ;32

for iÞ j . ~A11!
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Then, taking into account the obvious identities

Qa1
5Qa2

5Qa3
[Qa ~a52,3! ~A12!

and defining the properly antisymmetrized amplitudes in
channels 1 to 3 by

X1
a5X1 , Xa

a5
1

A3
(
i 51

3

Xa i
for a52,3, ~A13!

we arrive at the following set of equations:

X1
a5A3Z1;21

Q2X2
a1A3Z1;31

Q3X3
a ,

X2
a5A3Z21 ;11A3Z21 ;1Q1X1

a12Z21 ;22
Q2X2

a

1~2Z21 ;32
1Z21 ;31

!Q3X3
a , ~A14!

X3
a5A3Z31 ;11A3Z31 ;1Q1X1

a1~2Z31 ;22
1Z31 ;21

!Q2X2
a .

The last step we have to make is to change from the driv
termsZa i ;b j

to the terms, which couple the antisymmetriz
states

Z125
1

A3
^h~123!uZuP̂1~h23!&

5^h~123!uZu1~h23!&5Z1;21
. ~A15!

Here P̂ stands for the cyclic permutations of the nucle
labels according to

uP̂i ~h jk !&5u i ~h jk !&1u j ~hki !&1uk~h i j !&. ~A16!

In a similar manner we obtain

Z225
1

3
^P̂1~h23!uZuP̂1~h23!&52Z21 ;22

,

Z215Z21 ;1 ,

Z135
1

A3
^h~123!uZuP̂~1h!~23!&5Z1;31

,

~A17!

Z235
1

3
^P̂1~h23!uZuP̂~1h!~23!&52Z21 ;32

1Z21 ;31
,

Z315Z31 ;1 ,

Z3252Z31 ;22
1Z31 ;21

.

Substituting Eq.~A17! into Eq. ~A14!, we end up with the
system~2!.

APPENDIX B

In this appendix we list the explicit expressions for t
driving terms, appearing in the separable-potential appro
2-9
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TABLE IV. Listing of symbols appearing in Eq.~B1!.

Z̃ab;nn8
(ss8) Vss8 ũn

(s) qW t̃ f (p,p8) ṽn
(s) qW 8

Z12;nn8
(ss8) dss8 un

(s) pW 81
1
3 pW td

(s)
p2

2m̃d

1
3p82

4MN
1

pW•pW8

2MN

vd;n
(s)

pW1
m̃d

2MN
pW8

Z13;nn8
(ss8) dss8 un

(s) pW 81
2
3 pW td

(s)
p2

2mhN
1

3p82

4MN
1

pW•pW8

MN

wd;n
(s)

pW1
mhN

MN
pW8

Z22;nn8
(ss8) 2Lss8 vN* ;n

(s)

pW 81
m̃N*

MN1mh
pW

tN* p2

2m̃N*
1

p82

2m̃N*
1

pW•pW8

MN1mh

vN* ;n
(s8)

pW1
m̃N*

MN1mh
pW

Z23;nn8
1(ss8) dss8 vd;n

(s)

pW 81
m̃d

mh
pW

td
(s)

p2

2mhN
1

p82

2m̃d

1
pW•pW8

mh

wd;n
(s)

pW1
mhN

mh
pW8

Z23;nn8
2(ss8) 2Lss8 vN* ;n

(s)

pW 81
m̃N*
MN

pW
tN* p2

MN
1

p82

2m̃N*
1

pW•pW8

MN

wN* ;n
(s8) pW 1

1
2 pW 8
n
he
di

c-

g

h

e-
to the h-3N problem. As was mentioned already, we co
sider onlys-wave orbitals in all subsystems. Therefore t
spin algebra may be done independently. The correspon
spin-isospin coefficientsdss8 andLss8 are found by applying
the usual angular momentum recoupling schemes~see, e.g.,
Ref. @33#!. All driving terms have the same general fun
tional form

Z̃ab;nn8
(ss8)

~p,p8,E!

5
Vss8

2 E
21

11

ũn
(s)S q,E2

p2

2Ma
D t̃@E2 f ~p,p8!#

3 ṽn
(s)S q8,E82

p82

2Mb
Dd~ p̂• p̂8!. ~B1!

We list in Table IV for each driving term the correspondin
assignments for the various symbols appearing in Eq.~B1!,
whereLss8 is defined by

L5S 1
4 2 3

4

2 3
4

1
4

D . ~B2!

The coefficient 2 in the termsZ22 and Z23
2 stems from the

identity of the nucleons, as described in Appendix A. T
reduced masses are defined in Eqs.~5!, ~15!, and~24!. Fur-
thermore, one should note that we have splitZ23 into two
terms
o

d

02400
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ng

e

Z235Z23
1 1Z23

2 . ~B3!

The remaining driving terms are obtained from

Z21;nn8
(ss8)

~p,p8,E!5Z12;n8n
(s8s)

~p8,p,E!, ~B4!

Z31;nn8
(ss8)

~p,p8,E!5Z13;n8n
(s8s)

~p8,p,E!, ~B5!

Z32;nn8
(ss8)

~p,p8,E!5Z23;n8n
(s8s)

~p8,p,E!. ~B6!

In accordance with the approximation~36! for the target
wave function, we redefine the driving termsZ21 andZ31 in
Eq. ~6! as well as the termsZ12 and Z13 in ~8!. Instead of
them, we introduce effective potentials which are symm
trized over the singlet and tripletNN states in the triton

Z12;1n8
(ss8)

~p,p8,E!→Z̄12;1n8
(ss8)

~p,p8,E!

5
1

2
@Z12;1n8

(00)
~p,p8,E!2Z12;1n8

(11)
~p,p8,E!#.

~B7!

The other termsZ̄21;n81
(ss8) , Z̄13;1n8

(ss8) , andZ̄31;n81
(ss8) are defined by

analogous relations.
p
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