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n-3N problem with separable interactions
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The %-3N interaction is studied within the four-body scattering theory adopting purely separable forms for
the two- and three-body subamplitudes, limiting the basic two-body interactiomsvé&ves only. The corre-
sponding separable approximation for the integral kernels is obtained by using the Hilbert-Schmidt procedure.
Results are presented for the®H scattering amplitude and for the total elastic cross section for energies below
the triton break-up threshold.
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[. INTRODUCTION The basis of our calculation is the four-body formalism in
momentum space. Although a variety of methods for solving
In the last ten years the interaction gf mesons with the n-particle problem has been proposed in the literature,
few-nucleon systems has attracted considerable interest, atite Faddeev-Yakubovsky theo[9,10] and the one of Al,
quite a large amount of research has been carried out both @rassberger, and Sandh@sGS) [11,12 are most conve-
the experimental as well as on the theoretical side. The majatient and preferred for practical applications. Adopting the
aim of this activity is to obtain a well-defined conceptual separable representation for the driving two-body potentials
picture of the low-energyp-nuclear interaction which then as well as for the subamplitudes appearing in(the3) and
may serve to clarify the foundation of the more fundamental2+2) partitions of the four-body system, both approaches
7N problem. lead to the same set of effective two-body equations
Of special interest is theg-3N system, for which exactly [11,13,14. As is well known, the separable approximation of
soluble models are available. At the same time it encloses the integral kernels permits one to represent the dynamical
much wider range of phenomena than the more simylé&l  equations in terms of particle exchange diagrams. Due to this
case. In this context we would also like to mention severatractability and its relatively simple numerical realization,
precise experimental investigationssgfroduction on three- this method has received wide acceptance in few-body phys-
body nuclei performed during the last decdde-3|. Previ- ics. Thus at present, a feasible formalism of four-particle
ous theoretical studies in this area were restricted to varioutheory has been extensively developed, despite the much
approximations in treating the few-particle aspects of thisnore complex structure of the corresponding equations com-
problem. As an earlier nonperturbative calculation, we wouldpared to the three-body case. After the work of Tjdb]
like to refer to the optical model approach of Ref], whose impressive results have been obtained in recent years for the
purpose was to estimate qualitatively the possible formatiofiour-nucleon low-energy interactiqisee, e.g., Ref16], and
of bound »-meson states with the lightest nuclei. More re-references thereinas well as for pion absorption on three-
fined calculations were presented in R&], where the au- nucleon system§19-21]. With respect to other techniques
thors were able to sum the multiple scattering series for theve would like to refer to recent work in Refgl7,18.
»->H amplitude, including several important corrections to  The paper is organized as follows. In the next section we
the trivial optical limit. Another result reported in Rdi6]  outline briefly the formal aspects concerning the application
was obtained within the so-called finite-rank approximationof the four-body formalism to the;-3N system within the
(FRA) which has recently been applied also to heroduc-  quasiparticle approach. Besides the basic equations we intro-
tion from three-body nucl€i7,8]. The crucial point of this duce here the two- and three-body ingredients of the model.
model is the neglect of target excitations during the interacOur results foryp->H elastic scattering are presented in Sec.
tion with the » meson. Clearly this assumption allows one tolll, and conclusions are drawn in the last section. Details are
avoid the complications associated with the direct solution ofjiven in two appendixes.
the four-body dynamical equations. Concerning the present
study,_we were guided b)_/ the idea that the approximations Il. APPLICATION OF THE EOUR-BODY FORMALISM
us_ed in many-body physics, such as the optical mode_l or TO THE »-3N SYSTEM
adiabatic treatment of the target, may fail when few-particle
systems are studied. Especially, this seems to be true for The separable method is well known to allow one to re-
small kinetic energies, where the unitarity conditions of theduce the n-body problem to an in general simpler
scattering matrix, nucleon recoil and other effects becomén—1)-body case, where one of the constituents appears as a
significant. Their neglect, tolerated in various many-body apquasiparticle, i.e., a two-body bound, virtual or resonance
proaches, may affect drastically the quality of the few-bodystate. In particular, the three-body equations for (Be:3)
results. Therefore, the present work is intended to solve th&ansition amplitudes are exactly reduced to effective two-
7-3N problem without making any such not well controlled particle equations of Lippmann-Schwinger type. Their ker-
approximations. nels contain the off-energy-shelk—2) amplitudes for all

0556-2813/2002/6@)/02400211)/$20.00 66 024002-1 ©2002 The American Physical Society



A. FIX AND H. ARENHOVEL PHYSICAL REVIEW C 66, 024002 (2002

two-body subsystems. In an analogous manner, the four- X_ a2 A ol
body scattering kernels can be expressed in terms of suban= * _/_ !

plitudes stemming from the decomposition of the four-body

system into the partition§l+3) and (2+2). Therefore, ap- 1. —--- N C - = .
proximating these subamplitudes once more by a separabl |X:|_ = X + __\__ X +_\_§L +_\_EL N EL
ansatz we can again reduce the four-body problem to ar —
effective quasiparticle two-body one. The formal details of _—

this two-step reduction scheme may be found in Refs. [%;| = \_ +_\_EL+ —/_EL+ J_EL

[11,13,14. Here we restrict ourselves to a brief description —
of the resulting quasi-two-body equations as applied to the FIG. 1. Diagrammatic representation of E8) for the transition
7-3N system. amplitudesX,, of -3N scattering.

A. The four-body #-3N equations L=0. The explicit analytical form of the potentiaB,,
Since our formalism does not include Coulomb forces, wetaking into account the spin-isospin degrees of freedom, is
will consider for definiteness the-H interaction through-  given in the Appendix B. In a more detailed notation the
out this paper. All appropriate states are assumed to be progystem(2) reads
erly antisymmetrized with respect to the nucleons. The cor-
responding antisymmetrization procedure is outlined in x(s9)

(s9) ’
Appendix A. Then we are led to the following three chan- Xainm (PP, B)=(1=001) Z 1 (P.P".E)

nels, corresponding to three possible two-quasiparticle parti- 3
tions of thes-3N system + 2 [1=8,5(1— 847)]
B=1
(1) 7+(3N), (2)N+(7NN), (3) (N7)+(NN). (1)
(Sg) "
X /1 E . " 5

We only need the amplitudes connecting the initial nSESm Zagnmr (PP E)O ()
asymptotic state, consisting of th&lZound state {H) and ,
a freez-meson, with all three channels listed in Et). They ><X(S ') (o o E IO" dp 3
obey a set of three coupled integral equatiGee Appendix e (PP, E) )
A), whose structure is represented by the following matrix

equation: ) i )
The indexs=(0,1) in the above equations corresponds to the

X 0 0 Zy, Zis total spin of the givenNN pair. Clearly, due to the
1 pseudoscalar-isoscalar nature of #heneson, the value of
Xo|l=| Zoa | + Zn L2 23 fixes uniquely the spin structure of the overall four-body
X5 Zay Z3y Zz, O state with total spirB=1/2. In view of the limitation of the
two-body interaction to the dominastwave part, the isospin
0, X4 t of a NN pair is fixed by its spirs through the conditiors
+t=1. The subenergie$; in Eq. (3) are defined as
X 0, Xa . (2
@3 X3 p//2
. Eg=E— M (B=1,2,3), (4)
Here the indexx=1, 2, 3 stands for the channel) from Eq. B
(1). The amplitudeX,, describes the transitiofi)—(«). The
effective potentianZaﬁ are expressed in terms of the form with reduced masses
factors, generated by the separable representation of the sub-
amplitudes appearing in the channéls. _ 3Mym My (2My+m.,)
Because here we consider only low-energy scattering, we M=o ", ym=——
take into account only the dominagivave part of the inter- 3My+m, SMy+m,
action in the two-body subsystems and thus ayaves in
the three- and four-particle states. Therefore, the matrix ele- 2M(My+m,)
ments are diagonal with respect to the total s@irFor the Myg=—pg 77— (5)
elasticy->H scattering we need to consider only those states SMy+m,

where the spins and isospins of all nucleons are coupled to
S=T=1/2. In all expressions to follow we drop the index A graphical representation of the systé®nis shown in Figs.
1 and 2.
The structure of Eq(2) allows one to eliminate the chan-
IFollowing the work{11] we explore the formal analogy with the Nnel (1) yielding an equivalent set of only two coupled equa-
Lippmann-Schwinger equation and use for the driving telps  tions for the amplitudes<; and Xs. In detail, one has for
the suggestive term “potential.” aef{2,3
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{s) {s) {s)
}V,g,sr), /Vd( ,sr{ /VN *m /Vd n /VN *n
- _l_'—\_ = = —l—: 3 —'_;\\'— 7 B _\‘# , :"%‘,:
Z;3= Zp f Zn= \. L= Z23=
(Y —\ = = l\:\_ l—
ufy ufy Vit Wi Wi
FIG. 2. Diagrammatic representation of the potenti|g in the separable approximatideee Appendix B
X (p.p' E)=28 ) (p.p" E) t9(q,9",2=99(9) 72209 (q"), 9)
+ > > f 265 (PP E) with
B:2,3 N 0
-1
n2q 1 1 =[gf(a)]?
" Nl " , p 2dp (S) 7Z)=— — _J - 2d
X0 (E X (PP ) SRS TVY Ry Mrvirec e
i (10

(6)

Here th er ind tands for the singlets&0 d
where the new effective potentials are given(byBe{2,3}) ere the upper indexs) stands for singlets¢=0) an

triplet (s=1) NN states. For the form factos” (q) we use

S(ss , / , the simplest parametrization
Z(asﬁs;r)m'(pip 1E):[1_5aﬂ(1_5a2)]zfﬁs;2\n/(pip 1E) 'mp P zadl
" (s¢) B
S "
+ > f Zy (PP E)O 1 (€ 9P (=9 ———. (11)
n"g"s” J0 BS + q
(8"s") (o p"2dp” Analogously, we choose in theN channel
><Zlﬁ:n”n'(p P E) 272 () ’
t*,,,Z:”* *Z”* ,, 12
After solving the systent6), the amplitudeX; is obtained N+ (6,97:2) =0y () 7+ (2)G (07 (12
from .
with
) (0 E)— T (s9) " (s
Xion (P E)= 3 E 2w (P E)O S (Ep) e (2) = —[2+ My+m,~Mo—3 (2) -3 (2)] %,
n2
(") (o ot 2y P dp
XX (P"P",E) o2 (8)  where
The set of equation§) is more suitable for the numerical S (2)= * [gﬁl*(q”z g°dq (14)
solution than Eq(3), since in the former case the integration LA 2 2
over the triton pole in the propagat®; may be carried out z+m,—m,— 20 tle
independently from the procedure of solving the sys{émn g
itself. Thus the kernels in E@6) are smooth functions of the d
integration variable, and the equations may be solved by di-
rect matrix inversion. We recall that below the triton 5 M
break-up threshold we are dealing with only nonsingular po- p _ P P __Mnm,
tentialsZ 4. O+ ()= s ,3§+q2”“"'“ My+m,’ pelmnt.
(15

B. The subamplitudes

The key ingredient of the quasiparticle methidd, 14,  The parameters appearing in Eqsl), (13), and (15 are
leading to the equations of the ty8), is the separable summarized in Table |. Those for thé¢N interaction were
representation of the off-shell scattering amplitudes for théaken from the low-energh N fit presented in Re{.22], and
two- and three-body subsystems, appearing inf24€2) and  the 7N-parameters are chosen as to reproduce the scattering
(1+3) partitions. In our case, the two types of two-body lengtha,n=(0.75+i0.27) fm which agrees with the most
subsystems involved aféN and »N, denoted in the follow- recent result$23,24]. However, our parametrization gives a
ing by “d” and “N*,” respectively. For the corresponding different value for the effective range parametgr=(1.95
scattering matrices we adopt the simplest rank-one separabtei 0.07) fm compared to,=(1.5+i 0.24) fm of Ref.[24].
form. In detail, we use for th&IN interaction Unfortunately, we are not able to fit both values,
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TABLE |. Listing of parameters determining the separable parametrization dfi bhend »N scattering matrices.

g (Mev 3 g (Mev ¥ By (fm™) By (fm™Y)  gl.\2m, gf.\2m, B, (fm™Y) B, (fm 1) Mg (MeV)
0.4076 0.4863 1.4488 1.4488 2.10 1.04 6.5 45 1661

andr, simultaneously, which is of course the price one hasvhere the functionsﬁf)(q,g) are taken as the eigenfunctions
to pay for using the simplest separable ans&z When of the kernel of Eq(16) with the eigenvalues,, i.e.,
comparing our predictions with those of Ref5,6] we use

also other sets of)N parameters chosen in such a way that

they lead in each case to the corresponding value,gf Uﬁs)(q,5)=

3 12
Vlss’ qq 5)7'(5)( d )

used thergsee Table II). s'=01 4My
Turning now to the general scheme, we have to introduce q'2dq’
also the separable representation for the three-body subam- X ugs’)(q',g) > 5=0,1. (20)

plitudes, which will then serve as a necessary input for the
four-body calculation. For this purpose we apply the Hilbert-
Schmidt expansion. The main formal aspects of the proceThey are normalized according to
dure can be found, e.g., in Ref&5,24.

The three-nucleos-wave doublet amplituded; .y , ap- 3q
pearing in the channéll) obey the equatiolisee, e.g., Ref. E (S)(q &) T(S)( a ) ©(q g) — S -
[27])

Ul;ss’(qvql-g)zvl;ss’(Qaq,ng)

(21)

The separable form of the amplitude can easily be found
+ 2 Vl s2(0,9",€)

!I_Ol ’
° i i Ui (0,08 = 2 ud(0.6)01,4(E)uf(".8),
. 3qH , qH dq/!
XTgS )<5 4M )Ul s's! (q q g) 2 )
T 01.,4(5= i (22)
s,s’=0,1. (16) ue An(6) =1

The effective potentials are defined in terms of the form fac- The amplitudes for theyNN scattering, related to the
tors gq(k) of the two-nucleon amplitudéd) as channel(2) and denoted in the following by,.; with i,]
e{d,N*}, are coupled into two independent sets correspond-

| |+ s | 1 ing to two possible spin-isospigNN swave states $;T)
Agg (+290 (]9 +50 94| |+ 34 =(0;1) and (1;0),denoted by an upper indets) with s
Vis9(0,9",6)= f T 2 A €{0,1}, each of the form
ST G X
MN MN MN n2
xd(g-§'), s,8'=0,1, (17) US(a,0".6)= f Vi (0,9, 5>TN*(5— ﬁ
N*

where £ denotes the total c.m. kinetic energy in the three qr/qu
nucleon system, and the matrix of the spin-isospin coeffi- _(zs)N*d(q” q,8)—— JERE (23
cients is given by

i3 Uk a(0,0',)
A 2 2 (18 2
f— , q//
21 =Vohea(®a',E)+ f V(0 xf)r&s)(E—T
2 2 2,LLd
( ) 4 (s) ”
The Hilbert-Schmidt expansion for the driving teivh ¢ Pad(A”,0".€) T Vo (,9".6)
I’eadS qHZ _(S) , q//qun
X TN* 5_ 221 N*d( 1q 5) 2772 "
N*

Viss(0.0".6)== 2 M(Ou(a.8)u(q".8),
(19  The reduced masses appearing in &) are defined by
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~ _ MN(MN+m”) _ 2MNm.” (24)
N oMyt m, M9 oM m,
The corresponding effective potentials are
VEia(a.q",€)=0,
V(0,96
N M‘UN_,,
ol elesza)
_\/E 1 g_q_z_ q/2 —q*‘q*/ q q ’
My 2u,n My
v &)=V £ 25
2N*d(qq ) 2dN*(q d, ) ( )

Vens (4,07,E)

_1J+lg[\|* q+MNq )gN* q+ MNq )
2] g 9% q¢

Xd(9-4'),

wheref is the total c.m. kinetic energy of theNN system.
The properly antisymmetrized amplitudes fpNN scatter-

ing are expressed in terms Uf(2 1 as(see Refs[28,29)

1 g

:E 2;N*d

Analogously to Eq(22) we have (,j e{d,N*})

US%a=US%a, s=0,1. (26)

USi(q.9",8)= 2 v&(a,£08(v (9,9,

7€)

@(S) -
n(&)= 61

: (27)

where the form factors(s) obey the homogeneous equation

v{(a,6)= (S)(g)] dN*f V)i (a.a',6)
2 12 ’
><T(5>(5— a ) o’ P 9 , $=0,1.
27 21
(28)

Here, of course, one hafl=rN* (s=0,1), and the eigen-

functions are normalized as

PHYSICAL REVIEW C 66, 024002 (2002

S | v@e| e ik

i=dN* /0

:_5nnr .

v.(a, e)

Ai
(29

In the actual calculation we have neglected aryN states.
Their inclusion would imply an increase in the number of
channels in the final equations as well as adoption of relativ-
istic kinematics which would lead to much more complex
formalism. On the other hand, due to its small mass, the pion
is expected to give only minor corrections to low-energy
n-nucleus scatterinf29,30.

Apart from the genuine three particle scattering ampli-
tudes, we also need as input the effective amplitudes, de-
noted here byJ(;? , which describe two independent pairs of
interacting partlcles in the chann&). The corresponding
equations read in our case

qHZ
2VN*)

(SSEjd(qq ‘c") Jv(gs)dN*(qqu.g)TN*(é‘—

//2d "
(s) "ot a q
V N*d(q q vg) 2772 ’

(30

U a(9,07,8) =Vl 4(0,0".E)

"2
f VO (0.8 4| e-
iN*d 2Vd

"2

qdq

USy(a”,a’,8

wheref is the sum of the internal energies in tR&l and N
subsystems. In the expressiof@)) the notationsvy= u ,n
and v+ =My/2 are used. The effective potentials are

(SS)dd(qq ,£)=0,

VO, ()= 98 (a") g7 (a)
;dN*

T 42 42
q q-
2:“77N MN

(31
V(SN*d(qq &)= V(st*(q 0,8,

Vihene(9,07,6)=0.

Analogously to the treatment above, we introduce the form
factors WI(S% (ie{d,N*}) as the eigenfunctions of the
Lippmann-Schwinger kernel

q12
f gs?j(q'ql,f)ﬂ(s)(g—z—u)

J

(S) &)=
n(h8)= 5@(6), <

!

xwiS(q’ oI N, @

272
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FIG. 3. Left panel: The leading eigenvalues of the Hilbert- FIG. 4. The same as in Fig. 3 foyNN scattering in the & T)

Schmidt expansion for the three-nucleon scattering amplitude in the (1:0) state.
S=T=1/2 state. Right panel: The ratio between the Schmidt norms

of the kernels® and ©,, as defined by Eqg34) and (35). ([N

Ral&= Ty

(39)

with an orthogonality condition analogous to Eg9). Then
the separable form of the transition matrices is generated byf the operators

the Hilbert-Schmidt expansion
O=\TPVIND, 0= VTPV VR )T,

U (0.0'.6)=3 w8080, @9
Wherev?1n is given by the sunfl9) containing only the first
n terms. We see that the rate of convergence is not very
impressive but appears to be sufficient for the practical cal-
culation. Already in the region close to the two-body thresh-
old (£=g,4) the six leading terms in Eq19) accumulate
In the spirit of the terminology, adopted for the separablemore than 95% of the Schmidt norm 6% The same is valid
approach, we may interpret the functiow., as the form for the 7NN case and especially for the;) +(NN) chan-
factor of the two-particle “bound statg”when the other two nel as may be seen from Figs. 4 and 5.
particles are in the “bound state” The triton wave function was extracted from the pole of

In Figs. 3 through 5 we present the leading eigenvalueghe 3N scattering amplitude. In the present calculation we
\,(£) and the real parts o,f,gs)(g) andgff)(g). Several com- have restricted ourselves to the principal, spatially com-
ments are in order. pletely symmetricswave part, which in the usual notation

(1) The validity of separable expansion above is strongly(see, €.g., Re{31]) reads
limited to the energy region below the triton break-up thresh- as x o« =
old *H—n+d, ie., to energies&<gy, where g4 Way = —E3W(P1,P2,P3),
~—2.22 MeV denotes the deuteron binding energy. Above a . . . :
this region €=¢,), due to the singularities appearing in the Where_g denotes the completely antisymmetric spin-isospin
propagators as well as in the potentials, the kernels of thB&rt: given by
equations become noncompact, and the Hilbert-Schmidt ex-
pansion loses its meaning. Therefore we shall restrict our
consideration to the region below the triton break-up thresh-
old.

(2) The eigenvalua{ goes through unity at the energy The spin functiony(® (s=0,1) describes a three-nucleon
&=E3y~—13 MeV, which is essentially lower than the ex- spin=1/2 state which is obtained by coupling first the spins
perimental value of the triton binding energfngp of two nucleons to a spis and then by coupling with the
~—8.5 MeV. This disagreement is a consequence of using
the extremely simple YamaguchNN scattering matrix(9).

&9

e (&=
= -1

(33
(36)

§a=%(x<°>z<1>—x<“z;<°)>. 37

Although this ansatz fits low-enerdyN scattering, it has too o £® 03 R,
long a tail into the high-momentum region and, therefore, o4 I ®
predicts too much binding for the three-nucleon system. 02

(3) The modulus of the eigenvaluas and\;, ; are close 00
to each other. Therefore, one can expect, that the leading
terms in the expansiof22) will cancel each other to a large
extent, which may lead to a relatively slow convergence rate
of the sum. In order to demonstrate how well a finite sum
(22) may represent the exact amplitude, we show in Fig. 3
the ratio of the Schmidt norms

-100  -1000

E [MeV]

FIG. 5. The same as in Fig. 3 for thel) + (NN) partition.
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TABLE II. The scattering lengtl,, s, as a function of the num- 7
bern, of separable terms kept in the Hilbert-Schmidt expansion for 6l s s
the (1+3) and (2+2) amplitudes. The values af;, n, and ng 5 nH—nH
denote the number of terms kept in the separable expansion of the 4
amplitudes(22), (27), and(33), respectively. =,
©
n, n, Ns a, 3y (fm) 2
1F
2 2 2 2.514i1.60 o
4 2 2 2.54+i 1.66 o 2 4 s 3 10
4 4 2 3.68+i 3.46 E [MeV]
4 4 4 3.99i 4.74 . . .
6 4 4 3.98-i 4.75 FIS. 6._ Total cross section of elastig®H scattering versus the
6 6 4 41641 5.52 c.m. kinetic energy.
6 6 6 4.18+i 5.67 . . . .
6 8 5 410+ 5.69 entering Eq.(42), the driving termsZ;; andZ;; (i=2,3) in

Egs.(6) and(8) were redefined in view of the approximation
(36) (see Appendix R

spin of the third nucleon to a total spin 1/2. The isospin
function /) (t=0,1) is constructed in the same manner. Ill. RESULTS AND DISCUSSION
The spatial part’s, completely symmetrical with respect

e In Table Il we present our results for the3H scatterin
to the nucleon momenta, is given by b he 9

length obtained by keeping a finite number of terms in the
1 Hilbert-Schmidt expansion of the amplitudéx?), (27), and
SRR RN (33). One can see, that the rate of convergence pf; is
W7(P1.P2,Ps) \/§(1+P13+ P2 ¥(Ki2,Gs).  (39) approximately the same as that for the integral kernels dis-
cussed in the previous sectiofsee Figs. 3, 4, and)5The

Here, ky, andq; are the usual Jacobi momenta for the treechoicen; =4, n,=n;=6 provides rather satisfactory accu-
(1+2)+3. The functiony(k,q) can be expressed within our racy. Our result obtained with theN-input corresponding to

formalism in terms of the eigenfunctiorig0) as follows: a,n=(0.75+i 0.27) fm[24] is
1 a,3y=(4.2+i5.7) fm. (43
y(k,a) = —=[u@(k,q)—uP(k,q)], B9 , , .
V2 First we note that the scattering length is rather large, which

. may be explained as a consequence of the virtual $tiage
with real part of the scattering length is positigenerated by the
strong attraction of they-3N interaction. The large magni-

u®(k,q)=Ng{ (k) 75 (£ 34— 30%/4M ) tude of a, 3 indicates that the corresponding pole of the
© scattering amplitud& , 3,(p) lies near the elastic scattering
u;”(9,E3y) threshold. Turning to the region of positive energies, we

(40) present in Fig. 6 the total cross section for elastieH scat-

tering. Here the virtuah->H state manifests itself in a strong
The normalization factoN is taken from the residue of the €nhancement oir(E) when E approaches the threshold

53H_3q2/4MN_k2/MN .

3N scattering matrix7) at £= €3, and one finds value. It would appear natural that this effect is really ob-
served, e.g., ing-production inpd collisions[2].
d\, As already mentioned, we compare in Table Il our pre-
_2=[d—5} (41)  dictions on then-3H scattering length with those of Refs.
€3y [5,6] using anpN-interaction which reproduces tlag,y scat-

tering length of Refs[5,6]. One must note a rather strong
The elasticy->H scattering amplitudé-, sy(p) is then ex-

pressed in terms of the amplitud®§’;), taken on the en- ~ TABLE Il Comparison of the predictions for the
' 7 ®H-scattering lengths of the present model with the ones obtained

ergy shell ) i )
in Refs.[5,6] for the correspondingyN-scattering length.
., an(p) = — L2 X Op,p. )+ XL p.p,E) an (m) a5 (M) a5 (m) Ghis work
0.57+i 0.39 1.32-i 4.37[5] 2.23+i 3.00
—2X{%(p.p.E)] (42)  0.29+i0.36 0.58i 2.17[5] 0.97+i1.72
0.27+i 0.22 0.41i 2.00[6] 0.69+i 0.67
with p= 2, 34E and u,, 3y being then-*H reduced mass. .55+ 0.30 —1.56+i 3.00[6] 2.35+i 1.68

One should note that in the calculation of the amplitudes

024002-7



A. FIX AND H. ARENHOVEL PHYSICAL REVIEW C 66, 024002 (2002

difference of the results, especially for the real paragf,. ~ resulting from the quasiparticle approach to the four-body
Apparently, the latter must be very sensitive to the positiorProblem[11,14

of the pole in the amplitude as it lies close to zero energy. ., .,

Very rough agreement may be noticed with REF]. But Xapginn'(P,P"E)=Zopinn (P.P",E)

there is a tendency of our prediction to give a larger value of

Rea, 3y, which is probably due to the difference in th\ + 2 2 | Zaynw(P,P"E)O (E)
range parametary noted in the beginning of Sec. Il B. v o

As to the question about the existence of a quasibound 3
state, which any meson can form with the lightest nuclei X Xy (B0 E) _ (A1)
[4-6,33, we see that within our model thg-3N interaction " (2m)3

is not strong enough in order to bind the*H system. This . _

conclusion does not support the results of the FRA mfglel Here the effective potentials

or those of the optical modéH,32] where anz-3N bound

state appears already for rather modest values ofziNe Z . (BB .E)= u® (§.8)r(2)u? (§ &
scattering length. It should also be remembered that our cal- oo (B0, E)= 2 UEn(0,6)7(2) (01,1
culations are based on the rank-one separiliNepotential (A2)

which is known to overestimate the attraction in the three-

nucleon system. Therefore, we expect that the use of mor@® represented by the particle exchange diagi@es e.g.,
refined NN models will most likely reduce the probability Fi9- 2. They include the propagator(z) of the quasiparti-

for binding the,-3H system. cle “i” depending on the two-body subenergy
p2 p12 p> ﬁ/
z=E— - - , A3
IV. CONCLUSION 2M,  2Mpg  my (43)

In the present paper, the four-body scattering formalismvhere M, denotes the reduced mass in the two-particle
has been applied to study the3N interaction in the energy  channela. The form factorsu®,, are generated by the sepa-

region very close to they-°H elastic scattering threshold. raple expansion of the subamplitudes in the-3) and(2+2)
The calculational scheme, which formally allows an exactyartitions

solution, is based on the separable approximation of the ap-

propriate integral kernels. The validity of this approach is . . ~

justified by the fact that the drivingiN and 7N interactions Uﬁ(q,q,’g):; Uin(G,8)0 (n(O)Un(0".8).  (Ad)
are governed mainly by th&matrix poles, lying in each

case near the low-energy region. Therefore, the separab|g ihe casea=(1+3) the functionsU¢(d,q’,€) are the fa-

potentials, giving the correct structure of the amplitude closgijiar Lovelace amplitudes appearng within the pure sepa-

to the poles, are expected to provide an _adequate approximgsp|e approach to the three-body scatterif@]. For
tion. In the present paper we have realized one of the POS;=(2+2) these functions describe two independently propa-
sible schemes for solving thg-3N four-body problem. To  g4iing pairs of particles, each treated as a quasiparticle. In

test its applicability, we have investigated the Hilbert- Eq. (A2) the energies and &’ in the subsystema and 8
Schmidt procedure for constructing a separable represem?éspectively are defined by '

tion of finite rank of the four-body kernels. The examination

of their Schmidt norms shows that the rate of convergence by 2 p'2
increasing the rank is not very fast, but satisfactory for prac- E=E-— oM and &'=E— VIR
tical purposes. Keeping six to eight terms in the separable @ B
expansion, we have obtained a rather good precision. T
same conclusion is valid for the calculation of theéH scat-
tering length. At the same time we would like to point out
that the present calculation suffers from the oversimplifica- M, Mg

tion of theNN interaction, for which the rank-one Yamagu- G=p'+—Pp, q§' =p+—7p, (AB)
chi potential has been used. Of course, this shortcoming can M M

e et 0010« Mfherer s he mass o te exchangedparde uaspar-
putational efforts. Thus, our res,ults may be considered as ficle). After partla] wave decom.posmlon, Eo[sAl). are re-
art it f : ' listic caloulations fuced to a set of mtegral'equatlons in one variable, being
starting point for more rea : thus manageable for practical purposes.

Turning to the »-3N system we will firstly define the
notation. The set of channels we are interested in is given by
Eqg. (1). In what follows, we do not consider the explicit

In this appendix the transition amplitudes fpr3N scat-  structure of the equations, connected with the separable ex-
tering are defined with due consideration of the Pauli prinjpansion of the basic subamplitud@sdex “n” in Eq. (A4)]
ciple for nucleons. We begin with the two-body equationsand drop also the spin-isospin indices. It is convenient to

(A5)

h?he momentdj andq’ in Eq. (A2) are of course functions of
p andp’

APPENDIX A
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order the nucleons always cyclically, since in this case wélhen, taking into account the obvious identities
have not to trace the sign, when changing from one state to
another. Denoting the nucleons as particles 1, 2, and 3, we 0,=0,=0,=0, (¢=23 (A12)
consider the following seven states which contrib@teOne » _ ) _ )
state in channel 1(123)), denoted as 1(ji) three states in and defining the properly antisymmetrized amplitudes in the
channel 2]1(523), [2(431), [3(412), denoted as 2with i  channels 1 to 3 by
=1,2,3 ,(iii) three states in channel 817)(23)), |(27)(31)), ;3
[(377)(12)), denoted as 3with i=1,2,3. a_ a_ — _

Here we assume that the wave functions of the sub- X=X Xo 3 21 Xo for a=23, (ALY
systems containing two and three nucleons are already anti-
symmetrized. For the present purpose we are interested e arrive at the following set of equations:
those amplitudes, which describe the transitions from chan-

nel 1 to the channels 1,;2and 3. They will be denoted Xi= \/521;21®2Xg+ \/§Zl:31®3xa’
respectively a,, Xe, with i=1,2,3. Then using the sepa- . . .
rable approximation for the amplitudég2), (27), and(33), X5=1/3Z;, .1+ V325,10 1X3+ 225, .2,0,X5
Egs.(Al) take the form
G- (AL (225,54 Z5,.5)05%5, (A14)
3 3
Xl:gl Zl;zj®2]x2j+j21 lesj®3jxsj1 X§= \/5231;1"‘ \/5231;1®1xi+(2231;22+Z31;21)®2x§-
3 The last step we have to make is to change from the driving
Xo=Zp 1425 10X+ 2 (1= 8:)Zs 505 Xy, termsZ,, .5, 10 the terms, which couple the antisymmetrized
o v =1 VTR TETE states
3
A7 1 ~
+ 2 23,305, (A7) Z15=—=(1(123|Z|P1(523))
V3
: =(7(123)|Z|1(923))=Zy 5, (A15)

X3 =23 1123 101X+ ;1 Z3,:2,02, Xz,

Here P stands for the cyclic permutations of the nucleon
wherei=1,2,3. The meaning of the driving ternfs@,iﬁj is labels according to

explained schematically by the diagrammatical representa- L o ] ) -
tion in Fig. 2. Their analytical expressions are given in Ap- [Pi(nik))=[i(njk))+|i(7ki))+[k(7i])). (A16)
pendix B. The termsZ, 3; and Z3 2; have different struc-
tures fori=j and fori#] and therefore are written down
separately. 1. .

The wave functions of different states belonging to the Z2=3(PL(723)|Z|PL(723) =225 >,
same channel may be obtained from each other by cyclic
permutation of the nucleon coordinates. This fact allows one
to obtain various relations between the transition amplitudes
Z,, By For example, we have by cyclic permutation

In a similar manner we obtain

2= Z21;1:

Zyg=—=(n(123)|Z|P(17)(23))=Z 3,

=
—=(n
Z5,:2,=(1(723)[Z|2(%31)=(2(931)|Z|3(712) =25, >, V3
(A8) (A17)
1. ~
Repeating the procedure, one finds the general relation for Z23=3(PL(723)|Z|P(19)(23))=2Z5 3, Z5 ;3,,
i#]j,
ZZi 12 - 221322' (A9) Za1= Zsl;l,
In the same manner and by applying a combination of a 230=223,;2,% 23,12,
cyclic permutation with a permutation within an antisymme- o . i
trized NN state, one obtains for the transition-3 the gen-  Substituting Eq(A17) into Eq. (A14), we end up with the
eral relations system(2).
Zzi ;3i2221;31, (AlO) APPENDIX B

In this appendix we list the explicit expressions for the

2, :3J=Z21i3z for i#j. (A11) driving terms, appearing in the separable-potential approach
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TABLE IV. Listing of symbols appearing in EqB1).

7 Qe TP y 7 f(p.p") og i
/ = 1> ~
Z(ISZ?n)n’ Osg ugs) p'+3p e p2 . 3pr2 . B-p’ U&s)n 5t By
iy My 2My 2My
’ = 2 > ' R
AN Oss uf® p'+3p 7 p? L% 2 . pp wi, 5 Ly
2/"77N 4MN MN MN
/ (s) ~ ’ ~
ZgZ?n)n' 2Ass UN*;n P+ Knx o TN p2 p/2 p-p’ US\IS*);n P M P
My+m
NT Zine 2 MntTm, My+m,
1(ss) , (s) " (s) oo (s)
Loz 9ss Vdin p’+ %ﬁ Td p? " p_,z p-p’ Wain o+ 'U”?Nﬁ,
7 2N 20g My my
2(ss') , ©) T * 2 aa (s") 5+ 15
233 2Ass UN*;n B+ ‘ItﬂN B ™N iz n p'? n p-p W:n Ptzp
N MN 2 N
to the »-3N problem. As was mentioned already, we con- Zys=Z33+72. (B3)

sider onlys-wave orbitals in all subsystems. Therefore the
spin algebra may be done independently. The corresponding,o remaining driving terms are obtained from
spin-isospin coefficientd;y andA ¢y are found by applying
the usual angular momentum recoupling schefses, e.g.,

Ref. [33]). All driving terms have the same general func- Z(Zslfn)n,(p,p’,E):Z(lsz;i),n(p’,p,E), (B4)
tional form
25, (pp' ) Ziiaw (PR B)=Z50, (0" PE), (B9
Qg (+1 pz ' ' ' '
=$fln$’<q,5— 5 )?[E—f(p,p’)] ZGon (PP E) =250 (p",p.E). (86)

12 In accordance with the approximati@86) for the target

9. =5 )d(f)' p"). (B1)  wave function, we redefine the driving terrdis, and Z; in

p Eq. (6) as well as the term&;, and Z,5 in (8). Instead of
We list in Table IV for each driving term the corresponding them, we introduce effective potentials which are symme-
assignments for the various symbols appearing in(Bd), trized over the singlet and tripl®IN states in the triton
where Ay is defined by

x5

3
4

INTS
|

A= (B2)

1
2

Blw

) Zioi (PP E) =255 0,/ (PP E)

1
=520 (PP B) =20, (P E)].

The coefficient 2 in the term&,, and Z3; stems from the (B7)
identity of the nucleons, as described in Appendix A. The
reduced masses are defined in E&, (15), and(24). Fur-

thermore, one should note that we have spli into two ~ The other terma;'(;l?n)'l’ z(13351)n , and?éi?n), , are defined by
terms analogous relations.
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