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It is shown that the empirical transition region near neutron nurilbe®0 can be described in terms of the
crossing of configurations in a two-level system, as expected for a first order phase transition.
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Nuclear collectivity is often described in the context of isting phases[12]. (Phase transitions and the symmetry
harmonic vibrator, deformed symmetric rotor, andbreaking they entail have been discussed, for example, in
y-unstable models which constitute a set of basic structureBefs.[13].) In such a case of coexisting phases, the nuclear
with analytical solutions. These three models have been davave functions at and near the critical point can be described
scribed in the framework of the interacting boson approxi-in terms of a mixing andyvirtual) crossing of two specific
mation (IBA) model[1] as the W5), SU@3), and G6) dy-  configurations. The idea is illustrated in Fig. 1.
namical symmetries of IBA, respectively. There are only a The purpose of this Rapid Communication is to show that
few nuclei that are very close to the dynamical symmetrythis is indeed the case in tHé=90 vibrator-to-axial-rotor
limits. The vast majority of nuclei are transitional and musttransition region in which the near-critical-point nuclei
therefore be described by numerical diagonalizations of thé>’Sm and **Nd have been excellently described by the
Hamiltonian. X(5) description. We shall do this by modeling the transition

It has been known for a long tim@—4], based on the region with the IBA model and then by quantitatively ana-
intrinsic state formalism, that the spherical-deformed transilyzing the resulting IBA wave functions before and after the
tion regions in the IBA from (5) to SU3) and from U5) to  critical point.

O(6) behave, in the large boson number limit, as first and In order to study the phase/shape transition fro(B)Wo
second order phase transitions, respectively. The equilibriurBU(3), we use the extended consist€formalism(ECQP
configurations were also classified by means of the separatr{44] of the IBA in which the Hamiltonian takes the form
of the catastrophe formalisifb]. Of course, phase transi-

tional behavior in finite nuclei will be smoothed out com- - A A

pared to infinite (macroscopit systems, but finite nuclei H=egng— xQ¥-QY, )
have also been recently shown by experiments and analysis

to exhibit characteristics of a phase/shape transit@nin- whereny=d"- T and OX=(s'd+d's) + x(d'd) 2.

cluding a critical point, Nuclei at a critical point have re- In order to exhibit the phase transitional behavior, it is
cently been described by a new class of symmgfrg] and : , > P L '
convenient to rewrite this Hamiltonian in terms of a new

empirical examples of the two symmetries in this class, de- .

notgd E5) and xl?5), have been id)(/antifieEQ,lo]. These criti. Parameter=4Ng/(eq/x+4Ng) [11], with Ng the number

cal points can be characterizgtl] as that stage in the tran- of bosons, as

sitional region where changes in the structure, as manifested

in simple observables) invariants, and the wave function

entropy, occur more rapidlye.g., with neutron number or

model parameteyghan at any other stage. That is, these are

the singular points where the derivatives of these quantities

have an extremum and the second derivatives change sign.
The critical point for a vibrator to axial rotor transition,

which is described by the symmetry(%, is the focus of this

Rapid Communication. It is manifested in the spherical- | | |

deformed N=90 region [10]. While many observables 4 )

change rapidly with neutron number in tié=90 region, B erit ¥

this is, however, not a direct proof that a phase transitional giG_ 1. lllustration of the idea of mixing angirtual) crossing

description is appropriate, as opposed, for example, to simysf two configurations as a function of a control paramétetled?,

ply a rapid structural change. However, one particular uniqu&ee below near the critical point of a first order phase transition.

characteristic of a first order phase transitidhe case de- The points¢.,; and{.. are discussed in the text. The interchange of

scribed by X5)] does provide such a test. A first order phasecharacters at the crossing is schematically illustrated by using simi-

transition entails a crossing of the energies of the two coextar symbols(open or closed dotdo indicate similarity of structure.
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FIG. 2. The schematic representation of the IBA parameter
space. The range dfvalues for the phase/shape transition is given ~FIG. 3. The evolution of empiricaR,,=E(4;)/E(2{) and
for Ng=10. Adopted from Ref[15]. E(03) in the Nd-Dy isotopic chains withl>82 compared with the
IBA results (see texk

. { . . . . . . .
H(O)=c|(1—)ny— Ox. Ox|, (2) coqf|gurat|ons mterchgnge as one traverses the critical point,
4Ng as illustrated schematically in Fig. 1. To do so, we focus on
the 0] and G states(Similar results should apply for other

wherec is a scaling factor. This Hamiltonian describes theSPins) The N=90 transition region is rapid, but, as seen in
entire U5)-SU(3) transition by varying only the parametgr ~ Fig. 3, the results have only a small dependence on the boson
between 0[in the U5) limit] and 1[in the SU3)] with a  numberNg for a given{. This allows us to simplify the
critical phase transition at.;=16Ng/(32Ng—25)—0.5  analysis by studying the wave functions for a constdgt
for Ng— [11]. Figure 2 shows schematically the IBA pa- We chooseNg= 10, appropriate td>’Sm.
rameter space with the(8) ({=0) to SU3) ({=1) transi- The system is a two level system in the vicinity of the
tion as the bottom leg of the triangle. The figure also showsritical point {c; if the first two 0" eigenstates of the
(as a shaded argthe region in which a spherical'Ostate  HamiltonianH({) span a “universal” two-dimensional vec-
coexists with a deformed "0 state[15]. This phase/shape tor space. One can write the wave vectors of the first two
coexistence region starts where the deformed minimum ded; A¢) states of the Hamiltoniaki({) as an expansion in
velops in addition to the spherical one and ends where thany complete orthonormal set of wave functions. We choose
spherical minimum disappears and only the deformed minithe set corresponding to the critical poifyt;; . That is, we
mum remains. FoNg=10 (appropriate for'®>Sm) andy  write
=—\/7/2 the coexistence region corresponds
=0.51-0.54, and the critical point &,;;=0.54. ey 1ntrs
We performed IBA calculations f%r Iche Nd, Sm, Gd, and 0" (Q) ; an |0y (Zerit)), ©)
Dy isotopes withN>82, centered on the critical point At
=90, using an extremely simple parametrization of thewhere S (a,;)>=1. To focus on the two-level aspect, we
Hamiltonian, namelyZ=0.23+0.08N,,, whereN, is the  write this as
number of neutron bosons. THis, dependence is similar to
that of Scholteret al. [16] for the Sm isotopes. The param- 0" () =ay;[0y (Lerit)) +a2;105 (Lerit)) +ar i IR(Lerit))
eter x was set equal to 0.0195 MeV and= — \7/2. 4
Despite the simplicity of this parametrization, the calcu-_ o
lations reproduce the transitional region quite well. As twof0" I=1,2, whereR stands for the reft of the wave func-
examples, we show in Fig. 3 the data and calculations fokion, that is, for all the component®; ({cir)) with n>2,
Ru,=E(4;)/E(27) and forE(0}), in order to illustrate the Whereag =+ \2;-za;;, and @)%+ (az;)*+ (ar.)*=1.
typical finite-body phase transitionlike trajectory of an ob- We now ask whether the physical Gand 0; states in
servable through the transition region. The excitation energgffect span only a two level basis in the vicinity &f;; . Of
minimum for the § state near the critical point reflects the course, far from¢;;, both 0f and 0 would be described
crossing of spherical and deformed configurati¢sse be- by many terms in an expansion in tifg,; basis. Indeed,
low). well beyond the region of phase coexistence there is only
In order to study whether the behavior of the system isone well-developed minimum. For example, near
indeed that of a first order phase transition, we investigatéJ(5)[SU(3)], there is no deformefispherica) configuration,
whether the wave functions can be expressed in terms afnd the § state in either limit would have significant com-
two-level mixing and whether the spherical and deformedponents of many,;; wave functions. It is therefore appro-
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TABLE |. Wave functions of the § and G states near the —
critical point in terms of the basis [{¢..). The values for the 1.00 o 7
“rest” vector Rare given as/EZR: , see Eq(4). The values are given 3 1
for {_=¢.it—0.1 and{, ={.iy+0.1 where{.;=0.54 for Ng N ovst 4
=10. EE | |
Physical state Basis AE 0.50 1
0 (fei) 03 (Zort) R 2
05 (¢-) ~0.864 +0.495 0.092 v 025¢ 1
0,(¢-) +0.488 +0.782 0.388 - 1
07 (¢4) —0.861 ~0.477 0.176 0.00 F -
05 (£4) -0.498 +0.713 0.494
1.00 [ ]
priate to choose a range ¢gfvalues large enough that the o.75 | |
structural changes are significant but small enough that ¢ A~ ™
two-level description might apply. Specifically, we look at ¢ " ]
the wave functions of thepZ states at . = (it = A, and we S 0507 1
have taken.;=0.54 andA,=0.1. From the IBA wave & L 1
functions we obtain the results in Table I. v 025
The two-level character of the system in the vicinity of

the critical point is demonstrated by the small component of I
the “rest” vectorsR and by the fact that the wave functions 000 - .
of the 0] and 0y states, for botlg . and{_ , are close to the oo o0z o4 o6 os 1o
form for two-state mixing, namely, ¢

07 (£))=+a4] 01 (erit)) + |05 (Lerit)) ) FIG. 4. (a) Overlaps of the ground state wave functiom(;”B)

obtained from the fit of the Nd-Dy nucléihe same calculations as
03 (£))=+a5|01 (erit)) —a1|05 (Lerit)) (6)  in Fig. 3 with the SU3) ground state wave function for the same

Ng. (b) Overlaps of the ground state wave functiqs@(of) as a
function of { with the SU3) ({=1) ground state wave function and
the U5) ({=0) ground state wave function fdtg=10. Note the
change of character from predominantly vibrator to predominantly
rotor as{ passes,i;=0.54.

that isa; ;= —a,,=a; anda, ,=a,;=a,.

We note that the amplitude of the “rest” vect¢R) is
larger for the § state, which is not surprising since this state
is much closer in energy to the othef (I>2 states and will
mix to some degree with them. Nevertheless, the predomi- )
nantly two-state mixing character of the solutions ngay, ~ 2-14 and 0.562 MeV, respectively. In contrast, {or {cit
is clear from the table. we have, at/={, : Ry,=3.24 andE(2,)=0.089 MeV.

It may at first appear from the overlaps in Table | that the Concerning the wave functions themselves, Figa) 4
structures of the P states before and after the critical point Shows the overlaps of the actual ground state wave functions
are similar, and the same for thg Gtates. However, this is from the fits with the S(B) ground state(each overlap is
not true as can be seen from Table | itself, where the relativéxtracted for the appropriate boson numbig). This figure
signs of the main components of thg @_) and 0 (¢,) shows both the evolution towards a deformed&@round
states are not the same. In fact, the interchange of charactgiate and the remarkable similarity in the behavior of adja-
at a virtual crossing that we wanted to tésee earlier dis- cent elements neadd = 90.
cussion of Fig. 1is clear if the overlap of the D state at/ The trend in Fig. 4) is isolated more cleanly if calcula-
is taken with the gj and q states at , . These overlaps are tions as a function of are carried out for a constant boson
(07 (¢)|07 (¢£4)y=0.51 and <01+(§_)|O§(§+)>=0.78. number so that different overlaps are taken with the same set
These numbers show that thg (@_) state more closely re- Of limiting basis states. To this end, we show, in Figh)4the
sembles the D(¢,) state rather than the;@Z,) ground ©verlaps of the ground state wave functions with both the
state. The idea is illustrated in Fig. 1, where similarity in theU(5) ({=0) and SU3) ({=1) wave functions folNg= 10.
dots (solid or open indicates similarity in structure. Again, there is clearly a crossing ne&y;, where the @

The evolution of structure witlf and the interchange of state changes from predominantly of3)) or vibrator char-
character around the critical point may also be seen from thacter, to SU3), or rotor character.
calculated values of characteristic observables and from the In conclusion, from a simple analysis of the wave func-
overlaps of the wave functions ne&y;;; with spherical and tions of IBA calculations that reproduce quite well the exten-
deformed wave functions. The calculated valuesRgs and  sive data in the Nd-Dy isotopes in the spherical-deformed
E(2)), for Ng=10 andx=0.0195 MeV, for{={_, are transition region neaN=90, we have shown that, near the
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critical point, the wave functions comprise a two-level sys- We are grateful to F. lachello, S. Pittel, K. Heyde, W.
tem that mixes and that the structural change at the criticalazarewicz, M. Zirnbauer, and H. Zittarz for illuminating
point corresponds to @virtual) crossing of the spherical and discussions of this topic. Work supported under U.S. DOE
deformed configurations. These are, in fact, characteristiGrant Nos. DE-FG02-91ER-40609 and DE-FG02-88ER-
signatures of a first order phase transition. 40417 and DFG Grant No. Br 799/11-1.
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