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Test of two-level crossing at theNÄ90 spherical-deformed critical point
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It is shown that the empirical transition region near neutron numberN590 can be described in terms of the
crossing of configurations in a two-level system, as expected for a first order phase transition.
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Nuclear collectivity is often described in the context
harmonic vibrator, deformed symmetric rotor, a
g-unstable models which constitute a set of basic structu
with analytical solutions. These three models have been
scribed in the framework of the interacting boson appro
mation ~IBA ! model @1# as the U~5!, SU~3!, and O~6! dy-
namical symmetries of IBA, respectively. There are only
few nuclei that are very close to the dynamical symme
limits. The vast majority of nuclei are transitional and mu
therefore be described by numerical diagonalizations of
Hamiltonian.

It has been known for a long time@2–4#, based on the
intrinsic state formalism, that the spherical-deformed tran
tion regions in the IBA from U~5! to SU~3! and from U~5! to
O~6! behave, in the large boson number limit, as first a
second order phase transitions, respectively. The equilibr
configurations were also classified by means of the separ
of the catastrophe formalism@5#. Of course, phase trans
tional behavior in finite nuclei will be smoothed out com
pared to infinite ~macroscopic! systems, but finite nucle
have also been recently shown by experiments and ana
to exhibit characteristics of a phase/shape transition@6#, in-
cluding a critical point. Nuclei at a critical point have re
cently been described by a new class of symmetry@7,8# and
empirical examples of the two symmetries in this class,
noted E~5! and X~5!, have been identified@9,10#. These criti-
cal points can be characterized@11# as that stage in the tran
sitional region where changes in the structure, as manife
in simple observables,Q invariants, and the wave functio
entropy, occur more rapidly~e.g., with neutron number o
model parameters! than at any other stage. That is, these
the singular points where the derivatives of these quant
have an extremum and the second derivatives change s

The critical point for a vibrator to axial rotor transition
which is described by the symmetry X~5!, is the focus of this
Rapid Communication. It is manifested in the spheric
deformed N590 region @10#. While many observables
change rapidly with neutron number in theN590 region,
this is, however, not a direct proof that a phase transitio
description is appropriate, as opposed, for example, to s
ply a rapid structural change. However, one particular uni
characteristic of a first order phase transition@the case de-
scribed by X~5!# does provide such a test. A first order pha
transition entails a crossing of the energies of the two co
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isting phases@12#. ~Phase transitions and the symmet
breaking they entail have been discussed, for example
Refs.@13#.! In such a case of coexisting phases, the nucl
wave functions at and near the critical point can be descri
in terms of a mixing and~virtual! crossing of two specific
configurations. The idea is illustrated in Fig. 1.

The purpose of this Rapid Communication is to show t
this is indeed the case in theN590 vibrator-to-axial-rotor
transition region in which the near-critical-point nucl
152Sm and 150Nd have been excellently described by t
X~5! description. We shall do this by modeling the transiti
region with the IBA model and then by quantitatively an
lyzing the resulting IBA wave functions before and after t
critical point.

In order to study the phase/shape transition from U~5! to
SU~3!, we use the extended consistentQ formalism~ECQF!
@14# of the IBA in which the Hamiltonian takes the form

H5edn̂d2kQ̂x
•Q̂x, ~1!

wheren̂d5d†
•d̃ andQ̂x5(s†d̃1d†s)1x(d†d̃)(2).

In order to exhibit the phase transitional behavior, it
convenient to rewrite this Hamiltonian in terms of a ne
parameter,z54NB /(ed /k14NB) @11#, with NB the number
of bosons, as

FIG. 1. Illustration of the idea of mixing and~virtual! crossing
of two configurations as a function of a control parameter~calledz,
see below! near the critical point of a first order phase transitio
The pointszcrit andz6 are discussed in the text. The interchange
characters at the crossing is schematically illustrated by using s
lar symbols~open or closed dots! to indicate similarity of structure.
©2002 The American Physical Society04-1
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H~z!5cF ~12z!n̂d2
z

4NB
Q̂x

•Q̂xG , ~2!

wherec is a scaling factor. This Hamiltonian describes t
entire U~5!-SU~3! transition by varying only the parameterz
between 0@in the U~5! limit # and 1 @in the SU~3!# with a
critical phase transition atzcrit516NB /(32NB225)→0.5
for NB→` @11#. Figure 2 shows schematically the IBA pa
rameter space with the U~5! (z50) to SU~3! (z51) transi-
tion as the bottom leg of the triangle. The figure also sho
~as a shaded area! the region in which a spherical 01 state
coexists with a deformed 01 state @15#. This phase/shape
coexistence region starts where the deformed minimum
velops in addition to the spherical one and ends where
spherical minimum disappears and only the deformed m
mum remains. ForNB510 ~appropriate for152Sm) andx
52A7/2 the coexistence region corresponds toz
50.51–0.54, and the critical point iszcrit50.54.

We performed IBA calculations for the Nd, Sm, Gd, a
Dy isotopes withN.82, centered on the critical point atN
590, using an extremely simple parametrization of t
Hamiltonian, namely,z50.2310.085Nn , where Nn is the
number of neutron bosons. ThisNn dependence is similar to
that of Scholtenet al. @16# for the Sm isotopes. The param
eterk was set equal to 0.0195 MeV andx52A7/2.

Despite the simplicity of this parametrization, the calc
lations reproduce the transitional region quite well. As tw
examples, we show in Fig. 3 the data and calculations
R4/2[E(41

1)/E(21
1) and forE(02

1), in order to illustrate the
typical finite-body phase transitionlike trajectory of an o
servable through the transition region. The excitation ene
minimum for the 02

1 state near the critical point reflects th
crossing of spherical and deformed configurations~see be-
low!.

In order to study whether the behavior of the system
indeed that of a first order phase transition, we investig
whether the wave functions can be expressed in term
two-level mixing and whether the spherical and deform

FIG. 2. The schematic representation of the IBA parame
space. The range ofz values for the phase/shape transition is giv
for NB510. Adopted from Ref.@15#.
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configurations interchange as one traverses the critical po
as illustrated schematically in Fig. 1. To do so, we focus
the 01

1 and 02
1 states.~Similar results should apply for othe

spins.! The N590 transition region is rapid, but, as seen
Fig. 3, the results have only a small dependence on the bo
numberNB for a given z. This allows us to simplify the
analysis by studying the wave functions for a constantNB .
We chooseNB510, appropriate to152Sm.

The system is a two level system in the vicinity of th
critical point zcrit if the first two 01 eigenstates of the
HamiltonianH(z) span a ‘‘universal’’ two-dimensional vec
tor space. One can write the wave vectors of the first t
01,2

1 (z) states of the HamiltonianH(z) as an expansion in
any complete orthonormal set of wave functions. We cho
the set corresponding to the critical pointzcrit . That is, we
write

0i
1~z!5(

n
an,i u0n

1~zcrit !&, ~3!

where (n(an,i)
251. To focus on the two-level aspect, w

write this as

0i
1~z!5a1,i u01

1~zcrit !&1a2,i u02
1~zcrit !&1aR,i uR~zcrit !&

~4!

for i 51,2, whereR stands for the ‘‘rest’’ of the wave func
tion, that is, for all the componentsu0n

1(zcrit)& with n.2,
whereaR,i56A( j .2aj ,i

2 , and (a1,i)
21(a2,i)

21(aR• i)
251.

We now ask whether the physical 01
1 and 02

1 states in
effect span only a two level basis in the vicinity ofzcrit . Of
course, far fromzcrit , both 01

1 and 02
1 would be described

by many terms in an expansion in thezcrit basis. Indeed,
well beyond the region of phase coexistence there is o
one well-developed minimum. For example, ne
U~5!@SU~3!#, there is no deformed@spherical# configuration,
and the 01

1 state in either limit would have significant com
ponents of manyzcrit wave functions. It is therefore appro

r
FIG. 3. The evolution of empiricalR4/2[E(41

1)/E(21
1) and

E(02
1) in the Nd-Dy isotopic chains withN.82 compared with the

IBA results ~see text!.
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priate to choose a range ofz values large enough that th
structural changes are significant but small enough tha
two-level description might apply. Specifically, we look
the wave functions of the 01,2

1 states atz65zcrit6Dz and we
have takenzcrit50.54 andDz50.1. From the IBA wave
functions we obtain the results in Table I.

The two-level character of the system in the vicinity
the critical point is demonstrated by the small componen
the ‘‘rest’’ vectorsR and by the fact that the wave function
of the 01

1 and 02
1 states, for bothz1 andz2 , are close to the

form for two-state mixing, namely,

u01
1~z!&51a1u01

1~zcrit !&1a2u02
1~zcrit !&, ~5!

u02
1~z!&51a2u01

1~zcrit !&2a1u02
1~zcrit !&, ~6!

that isa1,152a2,2[a1 anda1,25a2,1[a2.
We note that the amplitude of the ‘‘rest’’ vectoruR& is

larger for the 02
1 state, which is not surprising since this sta

is much closer in energy to the other 0i
1 ,i .2 states and will

mix to some degree with them. Nevertheless, the predo
nantly two-state mixing character of the solutions nearzcrit
is clear from the table.

It may at first appear from the overlaps in Table I that t
structures of the 01

1 states before and after the critical poi
are similar, and the same for the 02

1 states. However, this is
not true as can be seen from Table I itself, where the rela
signs of the main components of the 01

1(z2) and 01
1(z1)

states are not the same. In fact, the interchange of char
at a virtual crossing that we wanted to test~see earlier dis-
cussion of Fig. 1! is clear if the overlap of the 01

1 state atz2

is taken with the 01
1 and 02

1 states atz1 . These overlaps are
^01

1(z2)u01
1(z1)&50.51 and ^01

1(z2)u02
1(z1)&50.78.

These numbers show that the 01
1(z2) state more closely re

sembles the 02
1(z1) state rather than the 01

1(z1) ground
state. The idea is illustrated in Fig. 1, where similarity in t
dots ~solid or open! indicates similarity in structure.

The evolution of structure withz and the interchange o
character around the critical point may also be seen from
calculated values of characteristic observables and from
overlaps of the wave functions nearzcrit with spherical and
deformed wave functions. The calculated values forR4/2 and
E(21

1), for NB510 andk50.0195 MeV, forz5z2 , are

TABLE I. Wave functions of the 01
1 and 02

1 states near the
critical point in terms of the basis 0m

1(zcrit). The values for the
‘‘rest’’ vector R are given asAaR,i

2 , see Eq.~4!. The values are given
for z25zcrit20.1 and z15zcrit10.1 wherezcrit50.54 for NB

510.

Physical state Basis

01
1(zcrit) 02

1(zcrit) R
01

1(z2) 20.864 10.495 0.092
02

1(z2) 10.488 10.782 0.388
01

1(z1) 20.861 20.477 0.176
02

1(z1) 20.498 10.713 0.494
02130
a

f

i-

e

ter

e
he

2.14 and 0.562 MeV, respectively. In contrast, forz.zcrit

we have, atz5z1 : R4/253.24 andE(21
1)50.089 MeV.

Concerning the wave functions themselves, Fig. 4~a!
shows the overlaps of the actual ground state wave funct
from the fits with the SU~3! ground state~each overlap is
extracted for the appropriate boson numberNB). This figure
shows both the evolution towards a deformed SU~3! ground
state and the remarkable similarity in the behavior of ad
cent elements nearN590.

The trend in Fig. 4~a! is isolated more cleanly if calcula
tions as a function ofz are carried out for a constant boso
number so that different overlaps are taken with the same
of limiting basis states. To this end, we show, in Fig. 4~b!, the
overlaps of the ground state wave functions with both
U~5! (z50) and SU~3! (z51) wave functions forNB510.
Again, there is clearly a crossing nearzcrit where the 01

1

state changes from predominantly of U~5!, or vibrator char-
acter, to SU~3!, or rotor character.

In conclusion, from a simple analysis of the wave fun
tions of IBA calculations that reproduce quite well the exte
sive data in the Nd-Dy isotopes in the spherical-deform
transition region nearN590, we have shown that, near th

FIG. 4. ~a! Overlaps of the ground state wave functionscz
(NB)

obtained from the fit of the Nd-Dy nuclei~the same calculations a
in Fig. 3! with the SU~3! ground state wave function for the sam
NB . ~b! Overlaps of the ground state wave functioncz(01

1) as a
function ofz with the SU~3! (z51) ground state wave function an
the U~5! (z50) ground state wave function forNB510. Note the
change of character from predominantly vibrator to predominan
rotor asz passeszcrit50.54.
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critical point, the wave functions comprise a two-level sy
tem that mixes and that the structural change at the crit
point corresponds to a~virtual! crossing of the spherical an
deformed configurations. These are, in fact, character
signatures of a first order phase transition.
ev
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