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Accuracy of multipole expansion of density distribution in calculating the potential
for deformed spherical interacting pair
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The interaction potential for a deformed-spherical pair is calculated, and the error in using the truncated
multipole expansion is evaluated for different numbers of terms of the expansion considered. It was found for
the internal region of the nuclear part that three terms are sufficient, but for the surface and tail region up to five
terms are necessary, while for the Coulomb potential three terms were found to be sufficient.
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In recent years, nuclear reactions involving deformed nu- _
clei have become an important topic of research in nucleaUe%(R,ﬁFJ dr1dropr(ry,ri+9)Ve(S)pp(ra,ro—s)e! M,
physics[1]. One type of these reactions is the fusion reac- ®)
tion, which is an important intermediate step in the produc-
tion of superheavy nuclei by heavy ion collisions. ThewhereR is the separation distance between the interacting
nuclear potential between the interacting nuclei plays an imnuclei, andg is the relative orientation angle of the target
portant role in describing the reaction process. nucleus symmetry axis measured with respect to the separa-
A model that is commonly used in deriving a heavy iontion vectorR.
(HI) potential is the double folding mod¢R]. The basic The deformed density(r, #) has the form
input into the folding calculation is the nuclear densities of
the colliding nuclei. If one or both have deformed density Po
distribution, the use of this model to derive Coulomb or pr(1,0)= T w7 (4)
nuclear interaction potentials becomes very difficult, since
the six-dimensional integral cannot be simplified to fewer ) ] .
dimensions. In this case, one usually simplifies the foldingVhereR(6) is the half density radius expressed by the rela-
model by expanding the density distribution of the deformed'On
nuclei using a multipole expansi@8]. This method is useful
and reduces the amount of calculation except in some cases, R(0)=Ro[1+ 85Y0(0)+ 54Y 4o( 6)]. (5)
where the nucleon-nuclediNN) force is density dependent.

In the multipole expansion one may take a finite number ofs anq 5, are the quadrupole and hexadecapole deformation
terms(usually three termsand neglect the othef8]. Since parameters.

this method is used frequently in deriving the real part of the 1,5 multipole expansion of the target nuclear density dis-
HI potential for deformed-deformed and spherical-deformedyi, tion has the form

pairs of nuclei, it is interesting to test its accuracy. In the

present paper, we estimate the accuracy of the multipole ex-

pansion in deriving the heavy ion potential. We include both pr(N)=> pim(N)Yim(8, ), (6)
qguadrupole and hexadecapole deformation parameters, and Im

determine the number of terms in the multipole expansion
needed to guarantee a very small percentage error.

We limit ourselves here to the interaction potential be-
tween deformed target and spherical projectiiee Fig. L
The HI potential in this model is divided into a direct part
U4, and an exchange pat,,,

U(R,B)=Uq4(R,B) +Ued R, B). oY)

They are stated in Ref§2] and[3] as follows:

Target projectile.

Ud(R"B):f dradrapr(ry)Va(9)pp(ra), @) FIG. 1. The coordinate system.
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and for an axially symmetric shape and limit the deformationcillator model shape, the integration ovgrcan be per-

to quadrupole and hexadecapole cases only, (Eqis re- formed. It should be noted that the above method of

duced to[4] calculatingU 4 can be extended easily for density dependent
finite rangeNN force.

7) To examine the accuracy of the multipole expansion of
the matter or charge density distribution of a deformed target
nucleus, one estimates the error in using this expansion in

the sum is usually truncated &t4. Since the multipole deriving the interaction potential for a deformed-spherical

expansion of the deformed nuclear or charge distribution iswclear pair, such as tté%-°0 nuclear pair, for example.
frequently used3] to approximate the density form in Eq. Figure 2 shows the percentage of error in the multipole den-

(4), one should estimate the error in using the truncated exsity expansion against the radial distamd®r two different

pansion, Eq(7). This error depends on the number of termsvalues of the anglgg=0.0°, 90.0°, and the deformation pa-

included in the expansion together with the order of deforrameters of?*% is taken to bed,=0.261 ands,=0.0,
mation considered. For example, if only the quadrupole de--0.087.

formation is present, we get good accuracy using a small The percentage of error of the density

number of terms in the expansion, B{), while the exis-

tence of the quadrupole and hexadecapole deformations pT—pT

needs larger numbers of terms to have good representation of Xm= X 100%, (10

the deformed density, Eq4). The error in using multipole

expansion depends also on the orientation angle of the davherep+(r,#), is given by Eq.(4) andm is the upper sum

formed nucleus, and on the range of il force. limit in Eq. (7).

The aim of the present work is to estimate this error in In Fig. 2(a), the errorx, results from three terms in the
calculating the direct part of the HI potential, since the cal-multipole expansion for the values ofless than the de-
culation of the exchange pdi%] for the deformed-spherical formed nucleus half radius=6.8 fm); the error in the expan-
or deformed-deformed interaction pairs does not depend osion is negligible. For larger values of even for§,=0,
the multipole expansion approximation. To calculatethree terms of the multipole expansion are not sufficient to
U4(R,B) for a deformed spherical nuclear pair, we start byrepresent p1(r,6). The percentage of errok, (for r
transforming the integration variables in EQ) defined by  >8.5 fm andB=90°) reaches 20%, while faf,= +0.087, it

p(.0)= 2 pi()Yig(0),

pT

the relations jumps to more than 80%. Figurd® shows that four terms
of the multipole expansion are sufficient for the case of
r=r;—R=r;—s, 5,=0.0,8=0.0°, 90.0°, while Fig. &) shows that five terms
: of the expansion reduce the errors in the two cases,ef
which leads to +0.087.

To show the effect of this error in calculating the Cou-
Ud(R,B)zf dsVd(s)f drpr(R+r)pp(r+s), (8  lomb and nuclear potentials in &*%U-°0 nuclear pair, we
compare the calculated 4(R,8) using Eq.(9) with that
wheres is the vector joining the interacting nucleons. base(_j on a multipole expansion truncated after three, four,
Taking the Fourier transform gf,(r +3), and noting that ~ and five terms. We denote the latter BY(R, B) for m=4,
the projectile nucleus is spherical, the integration avém 6, and 8, and the method of calculatitlj is outlined in
Eq. (8) becomes Ref. [3].
The NN potential used is the M3Y-Reid type, whose direct

d part consists of the two finite range interactions
GUR,s,8)=8| pr(r+R)py(x)

X jo(KN)jo(ks)jo(kx)drk2dkx2dx.

Vy(s)=Vi+V,,

where
Substituting in Eq(8), one gets o ds
V1=7999——, (113
Ud(R,,B)zsf k2ko' drpr(r+R)
and
on(kr)f dsVy(s)jo(ks) g 2%
Vp=—2134.35——. (11b

H 2
Xf Jo(kX)pp(X)x"dX. ©) The zero range interaction is usually taken as an approxi-

) ) ) mation for the finite range exchange part of the MSN-
The integration oves can be performed analytically for potential, and is taken to be

Coulomb, Yukawa, and Gaussian shapesvgfs). More-
over, if the projectile nuclear density has a Gaussian or os- Vey(S8)=V3=—2765(s). (110
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FIG. 2. The percentage of error in the multipole density expan-
sion against the radial distancefor two different values of the

angles=0.0°, 90.0°.

Table | presents the percentage of error in the nuclear

8U, %.

Percentage error

potential components for selected separation distances at the
orientation angleg=0.0°, 90.0°, for a specifié,=0.087.

Figures 3-5 show the percentage of errors in the folded
potentialssUY', sUJ', andsUT', based on th&lN potentials
V., V,, andVj, respectively, for all sets of parameteBs

S5, and é,.

The results of the calculations can be summarized as fol

lows:
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FIG. 3. Percentage of errors in folded potental .

(i) For the separation distande<8 fm the multipole

expansion with only three terms can be considered enough
for deriving the nuclear HI potential for the three values of
04. As the separation distance increases furth&dﬂ in-
creases also and becomes dependent on the ran{¥\ of

(i) For Coulomb interaction, the error in using three force, the orientation angle, and the value of the hexadeca-
terms in the multipole expansion was negligible for the thregpole deformation. The figures and the table show that three

values of §,, and for the two orientation angle8=0.0,

terms of the multipole expansion produce large errors in cal-

90.0° of 28U. Then the use of a multipole expansion with culating the HI nuclear potential; it is more than 40%Rat
three terms is sufficient to calculate the Coulomb potential o= 12 fm, 8=90.0°, ands,=0.087, but fors,=0, this error

the 238U-1%0 nuclear pair.

is reduced to less than 20%.

TABLE |. Percentage of error in nuclear potential components for selected separation distances.

% error

B° R (fm) ouU? ou® ou8 oU3 oU% oU3 oU3 sU3 oU3
8 1.545 0.128 0.002 1.473 0.118 —0.002 1.594 0.138 0.006
10 7.363 1.115 0.015 6.741 1.000 0.017 7.843 1.207 0.010
12 16.208 4.604 0.926 14.796 3.994 0.761 17.162 5.033 1.073
14 21.250 7.292 2.83 19.937 6.593 1.727 21.918 8.219 2.740

90 8 -1.208 0.088  -0.012 -1.1116 0.083  —0.011 -1.268 0.099  —0.009
10 —11.412 1.925 —0.128 —3.655 1575 -0.106  —12.865 2266  —0.146
12 —-39.114 11439 —2583  —32.785 9.216 —1.926  —42.693 13.415  —2.439
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FIG. 4. Percentage of errors in the folded potensial]' . FIG. 5. Percentage of errors in the folded potendidly' .

(i) Adding thel=6 term of the multipole expansion,  (iv) The multipole expansion with five termis<8 is a
the percentage of error in all cases is reduced to less tharery good approximation for the deformed density distribu-
14%, and the limited expansion may be sufficient to repretion and has a few percent of error in calculating the nuclear
sent the case aof,=0, 8=0.0°. HI potential even for the case%#0 andB+0.
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