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We investigate the modification of meson spectral densities in dense nuclear matter at zero temperature.
These effects are studied in a fully relativistic mean field model which goes beyond the linear density approxi-
mation and also includes baryon resonances. In particular, the rbl&(d520) and\N* (1720) on thep meson
spectral density is highlighted. Even though the nucleon-nucleon loop and the nucleon-resonance loop con-
tribute with the opposite sign, an overall reductionpomeson mass is still observed at high density. Impor-
tantly, it is shown that the resonances cause substantial broadening @hikeon spectral density in matter
and also induce nontrivial momentum dependence. We study the dispersion relations and collective oscillations
induced by thep meson propagation in nuclear matter together with the influence of the mixipgvith the
a, meson. The relevant expression for the plasma frequency is also recovered analytically in the appropriate
limit. The spectral density of tha, meson is also shown.
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[. INTRODUCTION tiple scattering becomes important. We report a quantitative
comparison of the results obtained in the linear approxima-

Electromagnetic radiation constitutes a privileged probdion with a resummed one-loop calculation. We also incorpo-
of matter under extreme conditions. This owes partly to thgate the effect of interacting nuclear matter through the scalar
fact that it decouples from the strongly interacting systenmand vector meson mean fields, motivated by the Walecka
without significant rescattering and also because the virtugnodel. The role of resonances and that of the nucleon loops
photons enjoy a direct coupling to vector mesons. Leptorre examined separately. Finally, we include the recently dis-
pairs thus carry valuable information about the in-mediumcussed mixing effect§s, 7], and report on the spectral den-
properties. sity of thea, for the first time.

Among the light vector mesons, theacquires a special The paper is organized as follows. First the formalism is
importance because of its large decay width. Therefore, thigutlined followed by a discussion of themeson properties
might serve as a chronometer and thermometer to report dAvolving nucleons. Then we consider the effect of the reso-
transient hot and dense hadronic matter. Even theugh ¢ nances on the in-medium spectral densities. Later we discuss
mesons do not have this desired short lifetime, in the methe effect of mixing. We also present the spectral density of
dium they might undergo sufficient broadening leading to arthe @, meson which supplements our understanding of the
interesting signal1]. For the present purpose, however, wemixed propagator of thg in nuclear matter. The calculations
first mostly concentrate on the meson and we discuss the are done in a fully relativistic formalism including the effect
scalar-isovector sector later on. of the mean field. At places the mathematical details are

The in-medium properties of the meson have been es- relegated to the Appendix. Finally we discuss the results and
timated in a variety of models like, for example, QCD sum-conclude.
rules[2], chiral models like Nambu—Jona-Lasinio, effective
hadronic Lagrangian approach&d, and mean-field models.

It is fair to say that, at this point, a clear consensus is still

lacking but that important progress has been realized over It is well known that the spectral density is actually the
the past few years. For a review, 9@d. The angle of this imaginary part of the propagator which in turn is related to
work consists of uniting several physical aspects we findhe polarization functions. Therefore, we first discuss the
important but that had not been treated together in a uniquproperties of thep meson polarization function in dense
approach. So, here, the spectral density in dense nuclear nuclear matter.

matter is studied and the importance of tH&(1520) and Essentially, the spectral density is related with the collec-
N* (1720) is reiterated in a relativistic calculation going be-tive excitation induced by thg meson by its propagation in
yond the linear density approximatidhDA). A relativistic ~ nuclear matter. This is analogous to the photon propagation
calculation has recently been presented5hin the LDA.  in a QED plasma where the propagating particle picks up the
We show that the LDA is a good approximation for densitiescollective modes from the system arising out of the density
below nuclear matter density, but for higher densities mulfluctuations. This is commonly known as plasma oscillation.
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D,.,(a) =D}, (a)+ D} (D) Dg,(q).  (3)
ﬁ The poles are found from the equation
NIV VA + de(a;_DzaHaV]zo_ (4)

FIG. 1. Ring diagrams relevant for the random phase approxi- ) ) ) )
mation. The bracketed term is nothing but the dielectric tensor of the

system

Even though in the present work the main focus is not to
recover the characteristic features of the plasma oscillation
induced by thep meson, nevertheless, we outline a formal- ) ) ) )
ism in the manner of Chifi8] in order to be able to discuss the determinant of which, denoted later bfq), is the di-
the spectral density in terms of the dielectric response funcelectric function. The eigenconditions for collective modes
tion of the nuclear matter. This enables us to incorporate th6an Now be expressed agq) =0. The relevance of the set
effect of meson mixing in a straightforward manie. of ring diagrams and the origin of such an eigencondition
The p meson, being a massive spin one particle, can havéan be_ understood from Imear_ response theory where the
both longitudinal and transverse excitations depending upofuctuation of the current density, the source term for the
whether its momenta is perpendicular or parallel to the spin€son field in nuclear matter, is “picked up” by the vector
Furthermore, in mattetunlike vacuum these two modes field. _ , o
will have different characteristic features. These states are FOr later convenience we define longitudinal and trans-
designated a$I'(qo,|q|), T17(do.|ql) with L and T denot- ~ V€rse dielectric functions as
ing longitudinal and transverse modes.
As already mentioned, we consider the coupling afhe-
son with n-n, n-R and 7-7 states and therefore what we
have is the following: er(q)=1-DCIl;;=1—- D=1~ DCII;. (7)

v__ ov 0 av
€,=0,—D, 1%, ©)

€1(q)=(1+D°Ilyp)(1—DOIl53) + DM pzD T4y, (6)

T8 = 1M 4 1@ 4 ™ 1) In the above equationd functions represerni meson self-
nn Rn e energiesDy=1/(q?>—m?) is the free vector meson propaga-

. . tor of massm, . The eigenmodes of the collective oscilla-
with R=N*(1520) N*(1720), andn=nucleon. First we o< .o given by

present a general formalism without the effect of mixing and
later we shall address the issue of the possible mixing and of _ .2 -0 8
the corresponding modifications. €(q)=e7(q)€(q) =0, (8)

To dgscnbe the nuclear matter ground state.we invoke thSorresponding to the degrees of freedom of a massive vector
mean field approach of quantum hadrodynamics and conse-

; . article. The two identicalor degenerafetransverse collec-
quently the effective nucleon mass is generated through th‘%‘ve Imodes ar;ve;ch glivagn by 9 et v

o meson tadpole of the scalar mean field poteiptif]. The
nucleon mass is determined by solving the following equa- ex(q)=0 9)

tion self-consistently:

and the single longitudinal mode by

. Us |2 [k d3k my
My =My =4 = fo e T el(@)=0, (10

. I which yield the relevant dispersion curves.
To study the collective excitation of the system, the rel-

evant quantity is the dielectric function which actually char-

acterizes the eigenvalue condition for the collective modes.

In the language of field theory this is equivalent to solving It is well known that the free space decay width of fhe

the Schwinger-Dyson equation to determine the dressegheson is dominantly determined by the two-pion channel. In

propagator. The relevance of summing over the ring diaother words its coupling ter-7 loops determines the shape

grams for the study of vector meson propagation is discussegf the free space spectral density.

at length in Ref[8]. The interaction between a neutral vector meson and the
The vector meson propagation is calculated by summingions are given bysee Fig. 2

over ring diagrams, a diagrammatic equivalent of the random

phase approximatiofRPA), which consists of repeated in- L=Gpra(mXd, ) pH. (11

sertions of the lowest order polarization, as illustrated in Fig. The real and imaginary parts of the pion-pion loop have

1(8]. been discussed at length in many places; see, for example,
We make use of the Dyson equation to carry out the sumf10] and references therein. We shall just quote the results

mation here:

A. Pion-pion loop
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FIG. 2. p-mr loop.

FIG. 3. p-nn loop.

@ w2 G(Ko,|K|)=Gg(k) +Gp(Ko,K) (18)
Lm==p7mm
Rell 48 72 with
am2\ % |1+ 1= (1—am2)/M? (k+m})
X[{1=—=] In Vi ;) GF(k):ﬁ (19
M?2 1—\1—(1-4m2)/M? k2—m*2+ie
1 1 3 + and
+8mf,(———2 —2(@) In| 22 po) ,
M2 mp wo T i
2 MZ 4m2 32 . . 0 0 .
ImItM = — Qpanm _ aMa 13 The first term inG°(k), namely,Gg(k), is the same as the
P A48 M 2 free propagator of a spih particle, while the second part,

G3(k), involving (ke — |K|), arises from Pauli blocking and
describes the modifications brought about in nuclear matter
at zero temperature. It deletes the on-mass-shell propagation
of the nucleon in nuclear matter with momenta below the
Fermi momentunj11].

When calculating the polarization functiofl6) with
the nucleon propagatdi8), there will be terms containing
“GeGg,” " GEGp+GpGg,” and “GpGp .” The first term
_ ) ) _ accounts for the free part, i.e., the contributions of the Dirac
In vacuum, the above is a Lorentz invariant quantity and g,5¢c,um Ufw)- while the rest provides the density-

function of g. In matter, however, we shall have nondegen-yenandent part of the polarizatiofIf,), and we can write
erate spectral densities for the longitudinal and transverse v

mode of thep meson.

Here 2wo=m,= 2\/m277+ poz.
The free-space spectral densitypofeson is given by the
following expression:

1 Im3 (%)

2 - .
7 (q2-m2—3,)2%+Im32

S,(g9)

14

1,,,(a) =117 (a)+117,(a), (21

B. Nucleon-nucleon loop

i _
The p-nucleon interaction Lagrangian may be written as 11},,(q)= 2—)49\2,5,[ d*kTr[T ,Ge(k+q)I,Ge(K)],

. (27
(see Fig. 3 (22)
Lin=09 N’y TN+iﬁNO' LTENGY | ph (15 s
P 2 2M 1 a b i ) 4 _
H;w(Q):ngSI d*kTrI",Gr(k+)I',Gp(k)
%= —j Zsf d'k T{iT%G(k+q)iT%iG(Kk)]
=—1 —1nI1 | | | s —
wr = TIOVA] (gya HEETA T, Go(k+ Q)T Ge(K)
(16) _
+T,Gp(k+q)T,Gp(K)]. (23

where S, is an isospin factor$ =2 for symmetric nuclear
matte). The vertex forp-nn is The free part of the self-energy denoted b};llfw is di-
vergent and therefore needs to be regularized. We used the
dimensional regularization scheme with the following condi-

tion:

Kp

I,=v.— om, 0,,9"

17

In Eq.(16), G(K) is the in-medium nucleon propagator given 9nHF(q2)/ﬁ(q2)n|M:HM,q2=m§:0 (n=0,1,2...%).
by [11] (29
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The real part of the density dependent piece of the polarizaln the present case we observe that the free part and the

tion is given by

o GomS [ dk .

(2m*) E*(k)
Tu(k=ak) | Tu(kk+a)
. 25
G we erqeomes %

There is also another term which involves twWoke—|k|),

and which becomes operative beyond twice the Fermi ener

[8].

The trace involved in the calculation of the loop diagram
has three parts corresponding to vector-vector, vector-tensaqr,
and tensor-tensor terms in the vertex functid). Those

can be cast in the following forms:

T = Tiak Kt @)+ T (kK a) + Ti, (k k+),
(26)
To5(k,k+0a) =4[k, (k+q),+ (k+0q) k

_k'(k+q)g,uV+M*zg,uv]i (27)

o0 (K Kt ) = M * 2 g2 28
wo - (KK+Q) v 9 Qur (28)

T (ko ket )= 16| -2 i 2(K- o) — 02K2

MV( 1 Q)— m [Q,U«V( ( q) q
+0%(k-q)—g*M*?) —20°K ,,], (29

where  [C,,= [k#—(k q/qz)qﬂ][k —(k.9/9%q,), Q..

=(—0,,%09,0,/9%) andEj = Jk?+M*2.

Hence the self-energy can be written as

DA =T10(a) + 15 (@) + 11}, (q).  (30)

The HBV(q) functions in this case are as follows:

o Oo o 4 0% K,0°—Quu(k-a)?
H uv 3 | 4 2 y (31)
o EX(k) g"—4(k-q)
2 3
Z [ kM* ke d3k 1
HZt,,H”=g—3S|( M ) 20'Qu | == 5
m o E*(k) q°—4(k-q)
(32

ke d3k K,,+Q,,M*?

o Ex(k) q*—4(k-q)?
(33

9, [ «\?
H££V=——S(—M) (49%)

dense part of the polarization tensor individually satisfy the
above condition.

We should also observe that E@®3) is proportional to
Q_.» and therefore contributes equally to the longitudinal and
transverse modes. In fact, it kS, which in matter induces
the splitting of these two modes as we shall discuss later.
Evidently, the Dirac parivacuum is also proportional to
Q,.» and therefore the modes remain degenerate on account
of Lorentz symmetry. Atq|=0 they are degenerate because
of rotational symmetry.

9 Also, it is worthwhile to point out that we could describe

these effects in the linear density approximation for low
baryonic densities. In this approximation, Eq82)—(34)

Rave a closed form:

oo M* arq,
5= gumps , (35
M* q4
vt+to _ 42 K
HT(L) - g ( 4M )M*(q4_4M*2q(2))va (36)
M* 2,8
2| K T(L)
M5y = =49, 54 o amr 7" (37)

These results could also directly be obtained by multiply-
ing the forward scattering amplitude with the density. Note
that a nonrelativistic limit for the nucleons was taken here, in
order to compare with a known result a few lines below. In
the above expressionsrzqé, a =0 and Brwy=arm -

To provide further insight, one can make a long wave-
length approximation. Whego<Er and|q|<kg, Eq. (36)
reduces tolly{,=g/M*pg. In this limit, with k=0, the
dispersion relation of the density dependent part alone be-
comes

g5=[al2+mZ+02?, (38)

where the plasma frequen€y’= gU/M*pB This is the non-
relativistic result presented by Chii8] for the case ofw
meson propagation in nuclear matter. Furthermore, replacing
g, by the electronic chargee” and putting m,=0, one
obtains the familiar plasma frequency encountered in con-
densed matter physi¢42].

In Fig. 4 we compare resummed one-loop results of the
p-meson self-energy(without kinematic approximations
with the ones calculated in the linear density approximation.
The ratio of the self-energies for the transverse modes are
shown as a function of density.

It is apparent that the results obtained in the linear density

To include the overall degeneracy factor, the above expresapproximation are consiste(up to a 10% levelwith exact
sions are multiplied by a factor of 2 coming from the neutronone-loop results for nuclear matter at normal density. How-

and proton loodisospin factay. It is clear that the form for

ever, Fig. 4 indicates that for higher densities one needs to go

the polarization tensor conforms to the requirement of curbeyond the LDA which is a popular approximation. Further-

rent conservation, i.e.,

q“I,=0=11% g". (34)

more, a strong energy dependence manifests itself at higher
densities. If one went beyond the bare one-loop and took
higher in order diagrams into account, the scenario might

015209-4
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1.0 S T T q‘é0.3 Gev' | k k
T | MPMQWPW + W&AQMM
N
A AN ]
0_9 - \\ -
: \\ : k+q k-q
3 | RN 1 FIG. 5. p self-energy.
= L N i
E‘O.B I \\ ] f
NN L o= (v6) D 7,0, 49 0).- (41)
- P
07 \ \\ - e
05 Gev v It is clear that like then-n loop, I, {*” also contains a
— = 9,07 GeV | \\ 1 “free” and a density-dependent part. The detailed expression
"""" |q°=°‘9 Ge.v Y L] for the free part is given in the Appendix and has a form
0.0 05 10 15 2.0 I1,,=Q,.,I1(g%. Note also that

/Py

T, (K+a,K)=Tr[i(k+my)il iR$A(k—q)il;
FIG. 4. Comparison of the-meson self-energy calculated at the ukFGK) [i¢ T L Rl (k= il ]
one-loop level with the one calculated in the linear density approxi- =Tr[(kFmp)(¥,0,— 49,.) (K—d+mg)

mation.

X P§A(k—0a)(dgy,—dgsv)]. (42)
change. It might well be the case that terms higher order in . . ) )
coupling might contribute differently in the density expan- /N the above equatiorR 5;5(p) is the Rarita-Schwinger

sion. However, we leave this for future investigations. propagator, given by
RE(p)=(p+mg)P55(p) (43
C. Nucleon-resonance loop
In the present work, we shall consider oy (1520) and 1 2 p*p”
N*(1720), as they couple strongly with tpemeson as in- =(p+mg)| —g*"+ gy 5
dicated in[13]. The corresponding relativistic interactions Mg
are given b v v
g y _1pfy=ofp (44)
fR e or 103m- L3 37 mg '
Ling= 1/3+ We use the on-shell propagator, keeping in mind that there is
RN inSyryF , for 1(37)= _<_) _ an overall sign ambiguity with spin 3/2 particles which arises
m, # 2\ 2 from the special choice of the point transformation properties

(39 of the spin 3/2 Lagrangiafl4,15. Appropriate discussions
can also be found in Ref§5,16,17.
Here ¢* denotes the resonance spinor apdhe nucleon The relevant trace can be written in the following sugges-
spinor, o*'=(i12)[y*,y"] and F*'=9*p"—9"p". tive form:
N*(1520) and\* (1720) have total widths of 120 and 150
MeV, respectively, with corresponding branching ratios into . f, z2 .
the p-N channel of~24 and 115 MeV. Tukk=a)={ =] @™ Qu+ B7K,,, (45
From Fig. 5 it is clear that the polarization tensor has two .
parts, as shown in the figure, which we refer to as the “di-where
rect” and “cross” terms. We present analytical results only

for the first term, but the other term is calculated in a similar 8 K2g*  k%g%(k-q) q*(k-q)
fashion: ai=§ —k?g?+ mymg@®+ —-—2 — 5
Mg Mg Mg
_ Ak OTE (Kk— 1 2k-q)?2  _g%k-q*> (k-q)°
_inil(fdlr): 'f : 4 ol 2 q)z 2_ 2 +(k'q)2+k(k2Q) +2q kzq _(k 3) '
(2m)" (k—=q)"—mg | k*—mj Mg Mg Mg
(46)

8 2
*_ 2 2 I

, (40

i
+ - 5(k2—m?) (ke — |K|)
=

whereS, is the isospin factor. The vertex factors 8F°Np  This structure is similar to what we had for the nucleon loop
can be written as and therefore satisfies the condition of current conservation
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° 800 - N
o = -
750 ] 650 | ~
4 | \
] \
700 . AN
\
\
650 I | | | | \\
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o/p,
FIG. 6. The dispersion curve far showing explicitly the effect

of the baryonic resonances. See the text for details. FIG. 7. The “invariant mass” of thep meson afjq|=0 as a

function of density showing explicitly the effect of the baryonic
resonances. The dashed line here corresponds to the case where
only nucleon loop is considered. The full line represents the case
when we include baryonic resonances also.

(g~#Il,,=0=1II,,q" in momentum spac)eTjV involves the
same gauge invariant fornis,, andQ,,, .

In order to evaluatélzv conveniently, we choosé to be
along thez axis, i.e.,q=(0,,0,0/q|), and k-q=E*(k)qq
—|k||g|x, wherey is the cosine of the angle betwekrand
ﬁ. After ¢ integration the nonvanishing componeﬁtgv are

the p meson mass as a function of nuclear density. The Dirac
vacuum and the density-dependent part of the self-energy
contribute with opposite signs to that of the invariant mass.

At lower densitiesl'[fw is mainly responsible for the low-
ering of thep mass while at higher densities the mass again
tends to increase becauseHJﬁ,,. Note that those two self-
(47) energies contribute with opposite signs. This behavior was
also observed in the case of theand o mesons in Refl9].

0 My 0 0
0 0 My O

My, O O Tl
D. p-ay mixing via n-n loop
: : D . . o
MOFGOE\)/GF, fgr isotropic nuclear matter we hat/s,=I13; Before we start the discussion on the&, mixing involv-
and I, =113, and, hence, taking all this into account, we ing n-n polarization in nuclear matter, we should say a few
have only two nonvanishing independent components ofvords on thea, coupling to the nucleon. A more detailed

Hgv, linear combinations of which gives us the longitudinal study of thea, propagation in a dense medium can be found
and transverse components Hﬁv: HE(q)z —H80+ HS'?s in [6]. The interaction is described by the following Lagrang-
andTI2(q)=M2,=T13,. ian:

We can now estimate the dispersion curves of ghae-
son in nuclear matter. As mentioned, they appear as poles in
the propagator and therefore zeros of the dielectric functions
shown in Egs(9) and(10). In Fig. 6 we show the dispersion Where ¢ and ¢, correspond to the nucleon arg fields,
curves forp meson forp=1.5p4 baryonic density. It is clear and 7, is a Pauli matrix. The values used for the coupling
that the p meson physical maséwhen q,=0) drops in  parameters are obtained from REE8]. We do not invoke
nuclear matter from its free space value. The dashed curvde coupling ofa, to the baryonic resonances since currently
shows the results with the-n loop only and the solid one this is not precisely known.
corresponds to the case where the direct coupling ofpthe  The polarization vector through which tag couples top
with N* (1520) andN*(1720) is also considered. It should via then-n loop is obtained by evaluating the Feynman dia-
be noted that the resonance-particle excitations contributgram in Fig. 8 and is given by
with opposite signs to that of the-n loop. This partially
offsets the lowering of the meson mass in nuclear matter.
Figure 7 shows the variation of the “invariant massif

Lin= gaOE(ﬁao ,aTa¢v (48)

4

T G(KT,G(k+0a)],
(49)

Hﬂ<qo,|&|>=2igaog,,f

(2m)*

Here by “invariant mass” we mear/q2—|q|?. Of course, when ~Where 2 is an isospin factor. With the evaluation of the trace
the meson is at rest, this defines the energy of ghi@a nuclear — and after a little algebra E@50) can be put into a suggestive
matter. form:
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n S, (GeV?)
4.0
do P
—-=>— 30
25
2.0
n 15
FIG. 8. ag-p mixing via nucleon-nucleon loop. 1.0
0.5
9,9 2 02
pIa, KQ 3
IT,(qo.lal) = — 2q2(2m:—2m ) s
v n 0.8
q, (GeV) 1.0 = 1.0
q 12 \Ge 7 o8 99 7
14 : :
. &K k,— q—; k-q) 04 03 M, (GeV)
X f " 2 5 (50
o E (k) q —4(kQ) 30 F ! T T T T T ]
L p/p= 15
This immediately leads to two conclusions. First, it respects ° ]
the current conservation conditiog“Il,=0=1I1,q". Sec- e oL Gev ]
ond, there are only two components which survive the inte- =y c:v ]
gration over azimuthal angle. This guarantees that it is only = /\ ]
the longitudinal component of the meson which couples to & i 1 ]
the scalar meson while the transverse mode remains unal- S 15 [ I .
tered. Furthermore, current conservation implies that out of o I AN
the two nonzero components &F,, only one is indepen- 10 F VA N
dent. [ -V
In the presence of mixing the combined meson propagator 05 b ,/' ‘-\ 1
can be written in a matrix form where the dressed propagator I \ \ ]
would no longer be a diagonal matrix: L-— ]
0.0 1 1 1 1
04 05 06 07 08 09 10
D=D°+DOIID. (51) M, (GeV)
It is to be noted that the free propagator is diagonal and has FIG. 9. The longitudinal spectral density for tpemeson with
the following form: mixing at densityp=1.5p,.
0
Do D,, O 52 My O 0 Iy Il
0 Ay 0 II,; O 0 0
0 0 II, O 0 |. (56)

In Eq. (54) the noninteracting propagators fay andp are
given, respectively, by Hypy 0 0 Iz IIg

M, 0 0 Iy II%

Ao(q)= 9?— m§0+ ie (53 For theay, meson, the free part of the self-energy is given by
~0,,+0,0,/9° ap( 2 8 62‘0 *2_ 2 * *2_ 2
DY (q)=—5—F——. (54  11%(q ):F 3(m*“—m?) —4(m* —m)m—(m*“—m*)
g —my+ie ™
*2_ _ 2
In fact, it is the polarization matrix which involves nondiago- X fldxln w - Jldx
nal elements as shown below, characterizing the mixing 0 m?—x(1—x)g? 0

m*2—x(1—x)g?

H:(sz(q) HV(q))_ 67

IT,(q) TI%(q)

(55) X(mZ_X(l_X)qZ)In[ m?—x(1—x)g?

After ¢ integration the nonvanishing componenid To determine the collective modes, one defines the dielectric
are function in the presence of the mixed terp&s:
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8

0.
M Gy, 10

FIG. 10. The longitudinal spectral density for theneson with

mixing at densityp=2.5p,.

2
S, (GeV?)

038

€(do,|q|) =de(1—DOI) = €2 X e,

where e corresponds to two identical transverfde modes
and e, correspond to the longitudinal mode with the mix-
ing. The latter also characterizes the mode relevant foaghe

propagation:

1
ETzl_dol_.[T, d0=

2

q
€mix=(1—doIT) ) (1= ApIlg) ——== Agdg(I1p)2.

al?

2_ 2 i’
Q*—mo+ie
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lll. p SPECTRAL DENSITY IN NUCLEAR MATTER

Unlike in free space, the longitudinal and transvepse
spectral densities are nondegenerate and they are functions of
go and|q|, independently. Furthermore, in matter the scalar
and vector mesons can mix. This also modifies the longitu-
dinal p spectral density through the off-diagonal mixing
terms in Eq.(56).

Now in the presence of mixing, the spectral densities can
be defined in terms of the dielectric function as

1
Si(do.lal.pe)=— (60)

—I
T

do(1- AOHS)}
€mix .

On the other hand, the transverse spectral density is unaf-
fected by the mixing and has the following form:

T
St(qo.lal.pe)=— ;|m T—doll,|" (61)

Figure 9 shows the longitudinal spectral densi®y)(at a
densityp=1.5, as a function of three momentég(=q,)
and invariant mass\{;). This includes the effect af-n loop
and the direct coupling of the meson withN* (1520) and
N* (1720). The three-peak structure of the spectral density is
similar to what has already been observed in nonrelativistic
calculations in Refs[19,20. Such a characteristic behavior
of the spectral density in the presence of resonance has been
also observed in pion-nucleon dynamics. The collective
modes induced by the density fluctuations can be identified
as thep meson mode and\-resonance modes. Individual
contributions of the resonances to the in-medijpirapectral
function are shown again in Fig. 11, but at a different density.

Figure 10 is as Fig. 9 but for higher density. We note that
at higher density the spectral density gets even broader. Fur-
thermore, with increasing momenta all the peaks merge into
one broad peak, indicating the fact that at high momenta the
collective behavior dies down and the meson shows a behav-
ior of a free propagation in matter.

Next we show how individual resonant states modify the

It is evident that only the longitudinal component gets p spectral density in matter. In Fig. 11, the dashed-dotted line

modified because of the mixing, and whéh,=0 we re-

cover the same expression as ELp).

i i p/p=25 ]
. [ I,m qz=0.1 GeV

.f\

i

1\
~ .l’ in—medium ]
R T oy TR
% | " ] Voo only 1520 -
2

=

wn

0.5

0.0

04

S, (Gev?)

1.5

1.0

represents the spectral density fop coupled only to the
-7 andn-n loop. This shows the meson peak shifts to-

i" p/p= 25
N q,=0.7 GeV

in-medium ]

\ T only 1720 7 FIG. 11. The longitudinal
| seeees only 1520 A
la 4 —-= no res

spectral density for the meson
with mixing at densityp=2.50

with and without considering
resonances.
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S, (GeV?) S, (GeV?)
35
3.0
25
2.0
1.5
1.0
0.5

0.0
0.2

0.70 1.0 G
04 q, (GeV)
q,(GeV) ¢

0.8

0.80
M. (GeV 20
o5 0.7 ,(GeV)

0.
04 M, (GeV)

0.8
FIG. 14. Spectral density for the, meson with mixing at den-

FIG. 12. The transverse spectral density for theneson with sity p=1.5po.
mixing at densityp=1.5p.

wards lower invariant mass. Similarly dotted and dashed %o-9].Ps ™ €mix '
curves correspond to the cases when we WN€1520) and In Figs. 14 and 15 the spectral densities of #aemeson
N*(1720) as indicated in the figure. are presented at densitips=1.50¢ and p=2.5. It is evi-

The shift owes to ther meson mean field which lowers dent that thea, spectral density also gets broadened in me-
the nucleon mass considerably in nuclear matter. Also notdium. A marked shift towards the lower invariant mass indi-
that dotted curve has a double-hump structure with the introcates that th@, mass also drops in nuclear matter.
duction of theN*(1520). For nonrelativistic calculations, 10 illustrate the spectral density modification in matter,
such a feature had been observefli]. The addition of the W€ presens, as a function of density. The solid line in Fig.
baryonic resonance also moves strength to the low invariark® shows the free spectral density. We find that with in-
mass region. Hence we conclude that the resonant states &&asing density it acquires more strength in the low invari-
largely responsible for the broadening of thespectral den- ant mass region anq also becomes flattened. Dashed, dotted,
sity in nuclear matter. Furthermore, in the presence of thémd dashed-dotted lines represent results for 0.5, 1.5, a_nd 2.5
resonant states themeson gets broadened so much that th%n.or?al _nuclc_eartmatter den_smes. r’? shm_alclj.pectslk atrr)]pea;fs |r: tr}e
interpretation of thep meson as a good quasiparticle fails to n:igxir?; invariant mass region, which indicates the etiect o
carry any sense. . . In Fig. 17, the two-dimensional projection of thg spec-

The transverse spectral densit$;] also shows interest-

, ; > tral density atq|=0.7 GeV (=1) shows that with increas-
ing features at low momenta._Agaln we observe that at high g densitya, gets narrower and moves towards low invari-
momenta thep-spectral density gets flattened. The momen-5nt mass region. This is understandable from the reduction of
tum dependence d&; is also observed to be different than

that of S_ (see Figs. 12 and 13At higher densities we see

A S_(GeV®
even more pronounced effects as shown in Fig. 13. 6oV

The spectral density for the, meson is defined as 03
S,(GeV?) 02
1.0
08 0.1
06
0.4
0.2
o6 % (GeV)
12
06
08
2 °F i ) 10
e f ©* M 1.2
g 12 W i (Gev)
FIG. 13. The transverse spectral density for theneson with FIG. 15. Spectral density for thee, meson with mixing at den-
mixing at densityp=2.5p,. sity p=2.5p,.
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S, (GeV?)
35

S, (GeV?)
3.0

25

6
“"'\4
=i
[
e
mv.\
2
0 [ [ et Sy
05 06 07 08 09 10 11
M, (GeV)
FIG. 16. The longitudinal spectral density for theneson with FIG. 17. The spectral density for tlag meson with mixing as a
mixing as a function of density. function of density(upper part and a cross section for different

densities(lower parj.
phase space. It might be recalled here that resonant states do

not couple taa, and therefore we do not observe any broad-gets flattened in nuclear matter with the incorporation of the
ening in thea, channel. resonant states lik&\* (1520) andN*(1720). In fact, in
strongly interacting matter, the original distribution of the
can become so broad that it is no longer possible to interpret
In the present work we present quantitative results of th S a quasi-particle excitation. This was also observed in Refs.
in-medium meson properties. The meson spectral densitids»13- It should also be noted that in the presence of the
are evaluated for the first time in a fully relativistic mean Sc@lar mean field the meson mass goes down as a function
field model which goes beyond linear density approximatiorf density. _ _
and we discuss the limitation and applicability of the LDA. ~ This broadeneg spectral density shows an accumulation
We find that meson spectral densities in matter are quit€f strength towards the lower invariant mass region. This
different from those in free space. The difference stemavould definitely imply production of dileptons with low in-
partly from the existence of a preferred frame attached to thegariant masses in excess of what we might expect from the
nuclear matter. While in free space the transverse and longfree p spectral density. We plan to extend this work to the
tudinal component of the spectral density are degenerate, finite temperature region in the near future. Furthermore, the
in matter they show different qualitative behaviors. Further-broadeneg spectral density would also affect the width of
more, we include other purely in-medium effects, forbiddenthe resonance states likd*(1520) or N*(1720) which

in vacuum on the account of Lorentz symmetry, like mesomprobably would shed some light on the issue of mixing reso-
mixing. In matter thep can also be modified because of its nant states in the photoabsorption cross-sections. For the
mixing with a scalaKisovectoj ao meson. This effect, as we complete determination of thp spectral density and the
have seen, modifies only the longitudinal component of théroadening of the resonant state, a self-consistent approach

spectral density. should be adoptefb]. Studies along such directions are in
In our model we observe that tikemeson spectral density progress.

IV. SUMMARY AND CONCLUSIONS

015209-10
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APPENDIX A: FREE PART OF THE N-N LOOP

Polarization tensors arising out of tmen excitation of
the Dirac sea:

3(g%) =—

H;';=—2(g;) { (A+Iu2)q%Q,,

(A1)

1
—2q2Q#,,fO dxx(1—x)InD |,

1gv M* k
2 72 2M Q“”

1
+ 0
eq(

1 1 1
+q2f dxx2InD—q2f dxxInD—mzf dxinD
0 0 0

1
A+In,u deInD,
0

(A2)

q2
A+m?In(u?)—mP+—
q

(A3)

A

! In4
——y+
.~ vtinda,

D=M*2—g’x(1—X).

All the terms containing\ are infinite and need to be sub-
tracted out.

APPENDIX B: FREE PART OF THE N-R LOOP
Hi]l:l(dlr): Q,uVH(qz)r (Bl)

where

I1(0?,u) = (T11(g%) +115(q?) + 5(g?) + I14(g%) +115(g?)
+116(g%) +117(9?) + [g(g?)), (B2)

1
I,(g%)= (D+2x2q2)(A+Inm2)+f dx(D—DInD
0
2
a°Qu,
—209°%%nD) |—*%£~ B3
q ) 3072 (B3)
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He(qz):[D(AHnMZ)-FfoldX(D—DIn D) 3

I7(g?) =

PHYSICAL REVIEW C 66, 015209 (2002

I1,(g?) =|2(3D?+ 18D g*x*+ 4q*x*) (A + Inu?)

1
+f dx(9D?+36Dg*x*>+6D?In D
0

2
9°Qu

_ 2,2 _Qrdyd
36Dg“x“InD—-8g*x*InD) 8112 >

1
20%x(3D+20%x?) (A +Inu?)+ f dx(39?xD
0

2
Q,uv

2

—30g2xDInD—2qg*x%In D)

R

11,(0?) = —[(2D+QZX2)(A+|HM2)

2
Q,u,v

7T

9°Q,,
1

6m2

fdx(D 2DInD— q2x2InD)

1
I5(g?%) = — mym, (A+InM2)—f dxinD
0

9°Q,,

2m?

1dx
2D(3D+2q2x2)(A+|np,2)+f — D(9D
0 mR

2
6DIND—40g%x?InD) d Q“V,
12872

+4g°x%—

g(g?) = —{ foldeqzx(AJrln,uz)

2
Q/.LV

3272

1dx
+f —(Dq x—g?xDInD)
OmR

APPENDIX C: IDENTITIES INVOLVING RARITA-
SCHWINGER SPINORS

A#Y(p)=2, WH(p)¥*(p)

1
=(p+Mg)| —g*"+ 5 v4y"
2pp” 1pty'—y'p*
3 M2 3 Mg
=(p+Mgr)P53(p) (CY
1 ) 2p,
¥uP52(P)= M, - (MR—p9) YT M) (C2
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Clearly the above and the following equations vanish wherit is to be noted that the above equation also takes a much

the spin 3/2 state is on-shell, so does KZP) also: simpler form when we have an on-shell spin 3/2 projection
operator:
nv 1 2 2 zpﬂ
P32(P) Y, =3 MR=PI)| 7™ (€3
® " P, YH(p)=0=""(p)p,, (C5)
Another useful relation in this respect is the identity
2 (p>—M3) ) 2
(k=p)P48(P) (k—p), =5 ——5——[p?~2k-p] K Pas(pIk,=—5[(k-p)?>=M3K2].  (CB)
3 M3 3Mg
+—[(k- p)2—M32k?]. It is evident thatp ,P45(p)p,=0 when the spin 3/2 particle
3Mz is on-shell, i.e.p°=M3. In the rest frame of the resonant

(C4  state R, we, therefore, hakg P42k, = 3k2.
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