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Aspects of meson properties in dense nuclear matter
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We investigate the modification of meson spectral densities in dense nuclear matter at zero temperature.
These effects are studied in a fully relativistic mean field model which goes beyond the linear density approxi-
mation and also includes baryon resonances. In particular, the role ofN* (1520) andN* (1720) on ther meson
spectral density is highlighted. Even though the nucleon-nucleon loop and the nucleon-resonance loop con-
tribute with the opposite sign, an overall reduction ofr meson mass is still observed at high density. Impor-
tantly, it is shown that the resonances cause substantial broadening of ther meson spectral density in matter
and also induce nontrivial momentum dependence. We study the dispersion relations and collective oscillations
induced by ther meson propagation in nuclear matter together with the influence of the mixing ofr with the
a0 meson. The relevant expression for the plasma frequency is also recovered analytically in the appropriate
limit. The spectral density of thea0 meson is also shown.
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I. INTRODUCTION

Electromagnetic radiation constitutes a privileged pro
of matter under extreme conditions. This owes partly to
fact that it decouples from the strongly interacting syst
without significant rescattering and also because the vir
photons enjoy a direct coupling to vector mesons. Lep
pairs thus carry valuable information about the in-medi
properties.

Among the light vector mesons, ther acquires a specia
importance because of its large decay width. Therefore,
might serve as a chronometer and thermometer to repor
transient hot and dense hadronic matter. Even thoughv or f
mesons do not have this desired short lifetime, in the m
dium they might undergo sufficient broadening leading to
interesting signal@1#. For the present purpose, however, w
first mostly concentrate on ther meson and we discuss th
scalar-isovector sector later on.

The in-medium properties of ther meson have been es
timated in a variety of models like, for example, QCD su
rules @2#, chiral models like Nambu–Jona-Lasinio, effecti
hadronic Lagrangian approaches@3#, and mean-field models
It is fair to say that, at this point, a clear consensus is s
lacking but that important progress has been realized o
the past few years. For a review, see@4#. The angle of this
work consists of uniting several physical aspects we fi
important but that had not been treated together in a un
approach. So, here, ther spectral density in dense nucle
matter is studied and the importance of theN* (1520) and
N* (1720) is reiterated in a relativistic calculation going b
yond the linear density approximation~LDA !. A relativistic
calculation has recently been presented in@5# in the LDA.
We show that the LDA is a good approximation for densit
below nuclear matter density, but for higher densities m
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tiple scattering becomes important. We report a quantita
comparison of the results obtained in the linear approxim
tion with a resummed one-loop calculation. We also incorp
rate the effect of interacting nuclear matter through the sc
and vector meson mean fields, motivated by the Wale
model. The role of resonances and that of the nucleon lo
are examined separately. Finally, we include the recently
cussed mixing effects@6,7#, and report on the spectral den
sity of thea0 for the first time.

The paper is organized as follows. First the formalism
outlined followed by a discussion of ther meson properties
involving nucleons. Then we consider the effect of the re
nances on the in-medium spectral densities. Later we dis
the effect of mixing. We also present the spectral density
the a0 meson which supplements our understanding of
mixed propagator of ther in nuclear matter. The calculation
are done in a fully relativistic formalism including the effe
of the mean field. At places the mathematical details
relegated to the Appendix. Finally we discuss the results
conclude.

II. FORMALISM

It is well known that the spectral density is actually th
imaginary part of the propagator which in turn is related
the polarization functions. Therefore, we first discuss
properties of ther meson polarization function in dens
nuclear matter.

Essentially, the spectral density is related with the coll
tive excitation induced by ther meson by its propagation in
nuclear matter. This is analogous to the photon propaga
in a QED plasma where the propagating particle picks up
collective modes from the system arising out of the dens
fluctuations. This is commonly known as plasma oscillatio
©2002 The American Physical Society09-1
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Even though in the present work the main focus is not
recover the characteristic features of the plasma oscilla
induced by ther meson, nevertheless, we outline a form
ism in the manner of Chin@8# in order to be able to discus
the spectral density in terms of the dielectric response fu
tion of the nuclear matter. This enables us to incorporate
effect of meson mixing in a straightforward manner@9#.

Ther meson, being a massive spin one particle, can h
both longitudinal and transverse excitations depending u
whether its momenta is perpendicular or parallel to the s
Furthermore, in matter~unlike vacuum! these two modes
will have different characteristic features. These states
designated asPL(q0 ,uqu), PT(q0 ,uqu) with L andT denot-
ing longitudinal and transverse modes.

As already mentioned, we consider the coupling ofr me-
son with n-n, n-R and p-p states and therefore what w
have is the following:

PL(T)5Pnn
L(T)1PRn

L(T)1Ppp
L(T) , ~1!

with R5N* (1520),N* (1720), andn5nucleon. First we
present a general formalism without the effect of mixing a
later we shall address the issue of the possible mixing an
the corresponding modifications.

To describe the nuclear matter ground state we invoke
mean field approach of quantum hadrodynamics and co
quently the effective nucleon mass is generated through
s meson tadpole of the scalar mean field potential@10#. The
nucleon mass is determined by solving the following eq
tion self-consistently:

mn* 5mn24S gs

ms
D 2E

0

kF d3k

~2p!3

mn*

Ak21mn*
2

. ~2!

To study the collective excitation of the system, the r
evant quantity is the dielectric function which actually cha
acterizes the eigenvalue condition for the collective mod
In the language of field theory this is equivalent to solvi
the Schwinger-Dyson equation to determine the dres
propagator. The relevance of summing over the ring d
grams for the study of vector meson propagation is discus
at length in Ref.@8#.

The vector meson propagation is calculated by summ
over ring diagrams, a diagrammatic equivalent of the rand
phase approximation~RPA!, which consists of repeated in
sertions of the lowest order polarization, as illustrated in F
1 @8#.

We make use of the Dyson equation to carry out the su
mation

FIG. 1. Ring diagrams relevant for the random phase appr
mation.
01520
o
n

-

c-
e

e
n

n.

re

d
of

e
e-

he

-

-
-
s.

d
-

ed

g
m

.

-

Dmn~q!5Dmn
0 ~q!1Dma

0 ~q!Pab~q!Dbn~q!. ~3!

The poles are found from the equation

det@dm
n 2Dma

0 Pan#50. ~4!

The bracketed term is nothing but the dielectric tensor of
system

em
n 5dm

n 2Dma
0 Pan, ~5!

the determinant of which, denoted later bye(q), is the di-
electric function. The eigenconditions for collective mod
can now be expressed ase(q)50. The relevance of the se
of ring diagrams and the origin of such an eigencondit
can be understood from linear response theory where
fluctuation of the current density, the source term for t
meson field in nuclear matter, is ‘‘picked up’’ by the vect
field.

For later convenience we define longitudinal and tra
verse dielectric functions as

eL~q!5~11D0P00!~12D0P33!1D0P03D
0P30, ~6!

eT~q!512D0P11512D0P22512D0PT . ~7!

In the above equationsP functions representr meson self-
energies.D051/(q22mv

2) is the free vector meson propag
tor of massmv . The eigenmodes of the collective oscilla
tions are given by

e~q!5eT
2~q!eL~q!50, ~8!

corresponding to the degrees of freedom of a massive ve
particle. The two identical~or degenerate! transverse collec-
tive modes are each given by

eT~q!50 ~9!

and the single longitudinal mode by

eL~q!50, ~10!

which yield the relevant dispersion curves.

A. Pion-pion loop

It is well known that the free space decay width of ther
meson is dominantly determined by the two-pion channel
other words its coupling top-p loops determines the shap
of the free spacer spectral density.

The interaction between a neutral vector meson and
pions are given by~see Fig. 2!

L5grpp~p3]mp!•rm. ~11!

The real and imaginary parts of the pion-pion loop ha
been discussed at length in many places; see, for exam
@10# and references therein. We shall just quote the res
here:

i-
9-2
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RePL(T)5
grpp

2 M2

48p2

3F S 12
4mp

2

M2 D 3/2

lnU11A12~124mp
2 !/M2

12A12~124mp
2 !/M2U

18mp
2 S 1

M2
2

1

mr
2D 22S q0

v0
D 3

lnS v01p0

mp
D G ,

~12!

ImPr
L(T)52

grpp
2 M2

48p S 12
4mp

2

M2 D 3/2

. ~13!

Here 2v05mr52Amp
2 1p0

2.
The free-space spectral density ofr meson is given by the

following expression:

Sr~q2!5
1

p

ImSr~q2!

~q22mr
22Sr!21ImSr

2
. ~14!

In vacuum, the above is a Lorentz invariant quantity an
function ofq2. In matter, however, we shall have nondege
erate spectral densities for the longitudinal and transve
mode of ther meson.

B. Nucleon-nucleon loop

The r-nucleon interaction Lagrangian may be written
~see Fig. 3!

Lint5grF N̄gmtN1 i
kr

2M
N̄smntaN]nGra

m , ~15!

Pmn
ab52 igV

2SIE d4k

~2p!4
Tr@ iGm

a iG~k1q!i Ḡn
biG~k!#,

~16!

whereSI is an isospin factor (SI52 for symmetric nuclear
matter!. The vertex forr-nn is

Gm5gm2
kr

2mn
smnqn. ~17!

In Eq. ~16!, G(k) is the in-medium nucleon propagator give
by @11#

FIG. 2. r-pp loop.
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G~k0 ,ukW u!5GF~k!1GD~k0 ,kW ! ~18!

with

GF~k!5
~k”1mn* !

k22mn*
21 i e

~19!

and

GD~k0 ,uku!5~k”1mn* !
ip

Ek
d~k02Ek!u~kF2uku!. ~20!

The first term inG0(k), namely,GF
0(k), is the same as the

free propagator of a spin12 particle, while the second par
GD

0 (k), involving u(kF2ukW u), arises from Pauli blocking and
describes the modifications brought about in nuclear ma
at zero temperature. It deletes the on-mass-shell propaga
of the nucleon in nuclear matter with momenta below t
Fermi momentum@11#.

When calculating the polarization function~16! with
the nucleon propagator~18!, there will be terms containing
‘‘ GFGF , ’’ ‘‘ GFGD1GDGF, ’’ and ‘‘ GDGD . ’’ The first term
accounts for the free part, i.e., the contributions of the Di
vacuum (Pmn

F ), while the rest provides the density
dependent part of the polarization (Pmn

D ), and we can write

Pmn~q!5Pmn
F ~q!1Pmn

D ~q!, ~21!

Pmn
F ~q!5

2 i

~2p!4
gV

2SIE d4kTr@GmGF~k1q!ḠnGF~k!#,

~22!

Pmn
D ~q!5

2 i

~2p!4
gV

2SIE d4kTr@GmGF~k1q!ḠnGD~k!

1GmGD~k1q!ḠnGF~k!

1GmGD~k1q!ḠnGD~k!]. ~23!

The free part of ther self-energy denoted byPmn
F is di-

vergent and therefore needs to be regularized. We used
dimensional regularization scheme with the following con
tion:

]nPF~q2!/]~q2!nuM
n* →M ,q25m

s
250 ~n50,1,2, . . . ,̀ !.

~24!

FIG. 3. r-nn loop.
9-3
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The real part of the density dependent piece of the polar
tion is given by

Pmn
D 5

gv
2pSI

~2p!4E d4k

E* ~k!
d~k02E* ~k!!u~kF2ukW u!

3F Tmn~k2q,k!

~k2q!22M* 2
1

Tmn~k,k1q!

~k1q!22M* 2G . ~25!

There is also another term which involves twou(kF2uku),
and which becomes operative beyond twice the Fermi ene
@8#.

The trace involved in the calculation of the loop diagra
has three parts corresponding to vector-vector, vector-te
and tensor-tensor terms in the vertex function~17!. Those
can be cast in the following forms:

Tmn5Tmn
vv ~k,k1q!1Tmn

vt1tv~k,k1q!1Tmn
tt ~k,k1q!,

~26!

Tmn
vv ~k,k1q!54@km~k1q!n1~k1q!mkn

2k•~k1q!gmn1M* 2gmn#, ~27!

Tmn
vt1tv~k,k1q!54M*

kv

M
q2Qmn , ~28!

Tmn
tt ~k,k1q!516S kv

4M D 2

@Qmn~2~k•q!22q2k2

1q2~k•q!2q2M* 2!22q2Kmn#, ~29!

where Kmn5@km2(k.q/q2)qm#@kn2(k.q/q2)qn), Qmn

5(2gmn1qmqn /q2) andEk* 5Ak21M* 2.
Hence the self-energy can be written as

Pmn
D ~q!5Pmn

vv ~q!1Pmn
vt1tv~q!1Pmn

tt ~q!. ~30!

The Pmn
D (q) functions in this case are as follows:

Pmn
vv 5

gv
2

p3
SIE

0

kF d3k

E* ~k!

K mnq22Qmn~k•q!2

q424~k•q!2
, ~31!

Pmn
vt1tv5

gv
2

p3
SI S kM*

4M D2q4QmnE
0

kF d3k

E* ~k!

1

q424~k•q!2
,

~32!

Pmn
tt 52

gv
2

p3
SI S k

4M D 2

~4q4!E
0

kF d3k

E* ~k!

Kmn1QmnM* 2

q424~k•q!2
.

~33!

To include the overall degeneracy factor, the above exp
sions are multiplied by a factor of 2 coming from the neutr
and proton loop~isospin factor!. It is clear that the form for
the polarization tensor conforms to the requirement of c
rent conservation, i.e.,

qmPmn
D 505Pmn

D qn. ~34!
01520
a-

gy

or

s-

r-

In the present case we observe that the free part and
dense part of the polarization tensor individually satisfy t
above condition.

We should also observe that Eq.~33! is proportional to
Qmn and therefore contributes equally to the longitudinal a
transverse modes. In fact, it isKmn which in matter induces
the splitting of these two modes as we shall discuss la
Evidently, the Dirac part~vacuum! is also proportional to
Qmn and therefore the modes remain degenerate on acc
of Lorentz symmetry. Atuqu50 they are degenerate becau
of rotational symmetry.

Also, it is worthwhile to point out that we could describ
these effects in the linear density approximation for lo
baryonic densities. In this approximation, Eqs.~32!–~34!
have a closed form:

PT(L)
vv 524gv

2 M* aT(L)

q424M* 2q0
2
rB , ~35!

PT(L)
vt1tv54gv

2S kM*

4M D q4

M* ~q424M* 2q0
2!

rB , ~36!

PT(L)
tt 524gv

2S k

2M D 2 M* q2bT(L)

q424M* 2q0
2
rB . ~37!

These results could also directly be obtained by multip
ing the forward scattering amplitude with the density. No
that a nonrelativistic limit for the nucleons was taken here
order to compare with a known result a few lines below.
the above expressionsaT5q0

2, aL5q2 andbT(L)5aL(T) .
To provide further insight, one can make a long wav

length approximation. Whenq0,EF and uqu,kF , Eq. ~36!
reduces toPT(L)

vv 5gv
2/M* rB . In this limit, with k50, the

dispersion relation of the density dependent part alone
comes

q0
25uqu21mv

21V2, ~38!

where the plasma frequencyV25gv
2/M* rB . This is the non-

relativistic result presented by Chin@8# for the case ofv
meson propagation in nuclear matter. Furthermore, repla
gv by the electronic charge ‘‘e’’ and putting mv50, one
obtains the familiar plasma frequency encountered in c
densed matter physics@12#.

In Fig. 4 we compare resummed one-loop results of
r-meson self-energy~without kinematic approximations!
with the ones calculated in the linear density approximati
The ratio of the self-energies for the transverse modes
shown as a function of density.

It is apparent that the results obtained in the linear den
approximation are consistent~up to a 10% level! with exact
one-loop results for nuclear matter at normal density. Ho
ever, Fig. 4 indicates that for higher densities one needs to
beyond the LDA which is a popular approximation. Furthe
more, a strong energy dependence manifests itself at hi
densities. If one went beyond the bare one-loop and t
higher in order diagrams into account, the scenario mi
9-4
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ASPECTS OF MESON PROPERTIES IN DENSE . . . PHYSICAL REVIEW C 66, 015209 ~2002!
change. It might well be the case that terms higher orde
coupling might contribute differently in the density expa
sion. However, we leave this for future investigations.

C. Nucleon-resonance loop

In the present work, we shall consider onlyN* (1520) and
N* (1720), as they couple strongly with ther meson as in-
dicated in @13#. The corresponding relativistic interaction
are given by

Lint5H f RNr

mr
c̄mgncFmn for I ~Jp!5

1

2 S 32

2 D
f RNr

mr
c̄mg5gncFmn for I ~Jp!5

1

2 S 31

2 D .

~39!

Here cm denotes the resonance spinor andc the nucleon
spinor, smn5( i /2)@gm,gn# and Fmn5]mrn2]nrm.
N* (1520) andN* (1720) have total widths of;120 and 150
MeV, respectively, with corresponding branching ratios in
the r-N channel of;24 and 115 MeV.

From Fig. 5 it is clear that the polarization tensor has t
parts, as shown in the figure, which we refer to as the ‘‘
rect’’ and ‘‘cross’’ terms. We present analytical results on
for the first term, but the other term is calculated in a simi
fashion:

2 iPmn
6(dir)5SIE d4k

~2p!4

Tmn
6 ~k,k2q!

~k2q!22mR
2 F 1

k22mn
2

1
ip

Ek
d~k22mn

2!u~kF2uku!G , ~40!

whereSI is the isospin factor. The vertex factors forR3/2Nr
can be written as

FIG. 4. Comparison of ther-meson self-energy calculated at th
one-loop level with the one calculated in the linear density appro
mation.
01520
in

o
-

r

Gma
6 5

f r

mr
~g5!(161)/2~gmqa2q”gma!. ~41!

It is clear that like then-n loop, Pmn
6(dir) also contains a

‘‘free’’ and a density-dependent part. The detailed express
for the free part is given in the Appendix and has a fo
Pmn5Qm,nP(q2). Note also that

Tmn
6 ~k1q,k!5Tr@ i ~k”1mn!iGma

6 iR3/2
ab~k2q!iGb,n

6 #

5Tr@~k”7mn!~gmqa2q”gma!~k”2q”1mR!

3P3/2
ab~k2q!~qbgn2q”gbn!#. ~42!

In the above equationR 3/2
mn(p) is the Rarita-Schwinger

propagator, given by

R 3/2
mn~p!5~p”1mR!P3/2

mn~p! ~43!

5~p”1mR!F2gmn1
1

3
gmgn1

2

3

pmpn

mR
2

2
1

3

pmgn2gmpn

mR
G . ~44!

We use the on-shell propagator, keeping in mind that ther
an overall sign ambiguity with spin 3/2 particles which aris
from the special choice of the point transformation propert
of the spin 3/2 Lagrangian@14,15#. Appropriate discussions
can also be found in Refs.@5,16,17#.

The relevant trace can be written in the following sugg
tive form:

Tmn
6 ~k,k2q!5S f r

mr
D 2

a6Qmn1b6Kmn, ~45!

where

a65
8

3 F2k2q21mnmRq21
k2q4

mR
2

22
k2q2~k•q!

mR
2

2
q4~k•q!

mR
2

1~k•q!21
k2~k•q!2

mR
2

12
q2k•q2

mR
2

2
~k•q!3

mR
2 G ,

~46!

b65
8

3
~k•q2k22mR

2 !
q2

mR
2

.

This structure is similar to what we had for the nucleon lo
and therefore satisfies the condition of current conserva

FIG. 5. r self-energy.
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TEODORESCU, DUTT-MAZUMDER, AND GALE PHYSICAL REVIEW C66, 015209 ~2002!
(qmPmn505Pmnqn in momentum space!. Tmn
6 involves the

same gauge invariant formsKmn andQmn .
In order to evaluatePmn

D conveniently, we chooseqW to be

along thez axis, i.e., q5(q0,0,0,uqW u), and k•q5E* (k)q0

2ukW uuqux, wherex is the cosine of the angle betweenkW and
qW . After f integration the nonvanishing componentsPmn

D are

S P00 0 0 P03

0 P11 0 0

0 0 P22 0

P30 0 0 P33.

D . ~47!

Moreover, for isotropic nuclear matter we haveP22
D 5P33

D

and P01
D 5P10

D , and, hence, taking all this into account, w
have only two nonvanishing independent components
Pmn

D , linear combinations of which gives us the longitudin
and transverse components ofPmn

D : PL
D(q)52P00

D 1P33
D

andPT
D(q)5P11

D 5P22
D .

We can now estimate the dispersion curves of ther me-
son in nuclear matter. As mentioned, they appear as pole
the propagator and therefore zeros of the dielectric functi
shown in Eqs.~9! and~10!. In Fig. 6 we show the dispersio
curves forr meson forr51.5r0 baryonic density. It is clear
that the r meson physical mass~when qz50) drops in
nuclear matter from its free space value. The dashed c
shows the results with then-n loop only and the solid one
corresponds to the case where the direct coupling of thr
with N* (1520) andN* (1720) is also considered. It shou
be noted that the resonance-particle excitations contrib
with opposite signs to that of then-n loop. This partially
offsets the lowering of ther meson mass in nuclear matte

Figure 7 shows the variation of the ‘‘invariant mass’’1 of

1Here by ‘‘invariant mass’’ we meanAq0
22uqu2. Of course, when

the meson is at rest, this defines the energy of ther in nuclear
matter.

FIG. 6. The dispersion curve forr showing explicitly the effect
of the baryonic resonances. See the text for details.
01520
f
l

in
s

ve

te

ther meson mass as a function of nuclear density. The D
vacuum and the density-dependent part of the self-ene
contribute with opposite signs to that of the invariant ma

At lower densitiesPmn
F is mainly responsible for the low

ering of ther mass while at higher densities the mass ag
tends to increase because ofPmn

D . Note that those two self-
energies contribute with opposite signs. This behavior w
also observed in the case of thev ands mesons in Ref.@9#.

D. r-a0 mixing via n-n loop

Before we start the discussion on ther-a0 mixing involv-
ing n-n polarization in nuclear matter, we should say a fe
words on thea0 coupling to the nucleon. A more detaile
study of thea0 propagation in a dense medium can be fou
in @6#. The interaction is described by the following Lagran
ian:

Lint5ga0
c̄fa0 ,atac, ~48!

wherec and fa0
correspond to the nucleon anda0 fields,

and ta is a Pauli matrix. The values used for the coupli
parameters are obtained from Ref.@18#. We do not invoke
the coupling ofa0 to the baryonic resonances since curren
this is not precisely known.

The polarization vector through which thea0 couples tor
via then-n loop is obtained by evaluating the Feynman d
gram in Fig. 8 and is given by

Pm~q0 ,uqW u!52iga0
grE d4k

~2p!4
Tr@G~k!GmG~k1q!#,

~49!

where 2 is an isospin factor. With the evaluation of the tra
and after a little algebra Eq.~50! can be put into a suggestiv
form:

FIG. 7. The ‘‘invariant mass’’ of ther meson atuqu50 as a
function of density showing explicitly the effect of the baryon
resonances. The dashed line here corresponds to the case
only nucleon loop is considered. The full line represents the c
when we include baryonic resonances also.
9-6
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Pm~q0 ,uqu!5
grga0

p3
2q2S 2mn* 2

kq2

2mn
D

3E
0

kF d3k

E* ~k!

km2
qm

q2
~k•q!

q424~k•q!2
. ~50!

This immediately leads to two conclusions. First, it respe
the current conservation condition,qmPm505Pnqn. Sec-
ond, there are only two components which survive the in
gration over azimuthal angle. This guarantees that it is o
the longitudinal component of ther meson which couples to
the scalar meson while the transverse mode remains u
tered. Furthermore, current conservation implies that ou
the two nonzero components ofPm , only one is indepen-
dent.

In the presence of mixing the combined meson propag
can be written in a matrix form where the dressed propag
would no longer be a diagonal matrix:

D5D 01D 0PD. ~51!

It is to be noted that the free propagator is diagonal and
the following form:

D 05S Dmn
0 0

0 D0
D . ~52!

In Eq. ~54! the noninteracting propagators fora0 andr are
given, respectively, by

D0~q!5
1

q22ma0

2 1 i e
, ~53!

Dmn
0 ~q!5

2gmn1qmqn /q2

q22mr
21 i e

. ~54!

In fact, it is the polarization matrix which involves nondiag
nal elements as shown below, characterizing the mixing

P5S Pmn
r ~q! Pn~q!

Pm~q! Pa0~q!
D . ~55!

After f integration the nonvanishing componentsP
are

FIG. 8. a0-r mixing via nucleon-nucleon loop.
01520
s

-
ly

al-
f

or
or

as

S P00 0 0 P03 P0

0 P11 0 0 0

0 0 P22 0 0

P30 0 0 P33 P3

P0 0 0 P3 Pa0

D . ~56!

For thea0 meson, the free part of the self-energy is given

Pa0~q2!5
3ga0

2

2p2 F3~m* 22m2!24~m* 2m!m2~m* 22m2!

3E
0

1

dx lnFm* 22x~12x!q2

m22x~12x!q2 G2E
0

1

dx

3~m22x~12x!q2!lnFm* 22x~12x!q2

m22x~12x!q2 G . ~57!

To determine the collective modes, one defines the dielec
function in the presence of the mixed terms@8#:

FIG. 9. The longitudinal spectral density for ther meson with
mixing at densityr51.5r0.
9-7
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e~q0 ,uqW u!5det~12D 0P!5eT
23emix, ~58!

whereeT corresponds to two identical transverse~T! modes
andemix correspond to the longitudinal mode with the mi
ing. The latter also characterizes the mode relevant for tha0
propagation:

eT512d0PT , d05
1

q22mr
21 i e

,

emix5~12d0PL!~12D0Ps!2
q2

uqW u2
D0d0~P0!2. ~59!

It is evident that only the longitudinal component ge
modified because of the mixing, and whenP050 we re-
cover the same expression as Eq.~10!.

FIG. 10. The longitudinal spectral density for ther meson with
mixing at densityr52.5r0.
01520
III. r SPECTRAL DENSITY IN NUCLEAR MATTER

Unlike in free space, the longitudinal and transverser
spectral densities are nondegenerate and they are functio
q0 and uqu, independently. Furthermore, in matter the sca
and vector mesons can mix. This also modifies the long
dinal r spectral density through the off-diagonal mixin
terms in Eq.~56!.

Now in the presence of mixing, the spectral densities c
be defined in terms of the dielectric function as

SL~q0 ,uqu,rB!52
1

p
ImFd0~12D0Ps!

emix
G . ~60!

On the other hand, the transverse spectral density is u
fected by the mixing and has the following form:

ST~q0 ,uqu,rB!52
1

p
ImF d0

12d0PT
G . ~61!

Figure 9 shows the longitudinal spectral density (SL) at a
densityr51.5r0 as a function of three momenta (uqu5qz)
and invariant mass (Mi). This includes the effect ofn-n loop
and the direct coupling of ther meson withN* (1520) and
N* (1720). The three-peak structure of the spectral densit
similar to what has already been observed in nonrelativi
calculations in Refs.@19,20#. Such a characteristic behavio
of the spectral density in the presence of resonance has
also observed in pion-nucleon dynamics. The collect
modes induced by the density fluctuations can be identi
as ther meson mode andN-resonance modes. Individua
contributions of the resonances to the in-mediumr spectral
function are shown again in Fig. 11, but at a different dens

Figure 10 is as Fig. 9 but for higher density. We note th
at higher density the spectral density gets even broader.
thermore, with increasing momenta all the peaks merge
one broad peak, indicating the fact that at high momenta
collective behavior dies down and the meson shows a be
ior of a free propagation in matter.

Next we show how individual resonant states modify t
r spectral density in matter. In Fig. 11, the dashed-dotted
represents ther spectral density forr coupled only to the
p-p andn-n loop. This shows ther meson peak shifts to
FIG. 11. The longitudinal
spectral density for ther meson
with mixing at densityr52.5r0

with and without considering
resonances.
9-8
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wards lower invariant mass. Similarly dotted and dash
curves correspond to the cases when we haveN* (1520) and
N* (1720) as indicated in the figure.

The shift owes to thes meson mean field which lower
the nucleon mass considerably in nuclear matter. Also n
that dotted curve has a double-hump structure with the in
duction of theN* (1520). For nonrelativistic calculations
such a feature had been observed in@13#. The addition of the
baryonic resonance also moves strength to the low invar
mass region. Hence we conclude that the resonant state
largely responsible for the broadening of ther spectral den-
sity in nuclear matter. Furthermore, in the presence of
resonant states ther meson gets broadened so much that
interpretation of ther meson as a good quasiparticle fails
carry any sense.

The transverse spectral density (ST) also shows interest
ing features at low momenta. Again we observe that at hig
momenta ther-spectral density gets flattened. The mome
tum dependence ofST is also observed to be different tha
that of SL ~see Figs. 12 and 13!. At higher densities we se
even more pronounced effects as shown in Fig. 13.

The spectral density for thea0 meson is defined as

FIG. 12. The transverse spectral density for ther meson with
mixing at densityr51.5r0.

FIG. 13. The transverse spectral density for ther meson with
mixing at densityr52.5r0.
01520
d
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are

e
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-

SS~q0 ,uqu,rB!52
1

p
ImFD0~12d0Ps!

emix
G . ~62!

In Figs. 14 and 15 the spectral densities of thea0 meson
are presented at densitiesr51.5r0 and r52.5r0. It is evi-
dent that thea0 spectral density also gets broadened in m
dium. A marked shift towards the lower invariant mass in
cates that thea0 mass also drops in nuclear matter.

To illustrate the spectral density modification in matt
we presentSL as a function of density. The solid line in Fig
16 shows the freer spectral density. We find that with in
creasing density it acquires more strength in the low inva
ant mass region and also becomes flattened. Dashed, do
and dashed-dotted lines represent results for 0.5, 1.5, and
normal nuclear matter densities. A small peak appears in
higher invariant mass region, which indicates the effect
mixing.

In Fig. 17, the two-dimensional projection of thea0 spec-
tral density atuqu50.7 GeV (c51) shows that with increas
ing densitya0 gets narrower and moves towards low inva
ant mass region. This is understandable from the reductio

FIG. 14. Spectral density for thea0 meson with mixing at den-
sity r51.5r0.

FIG. 15. Spectral density for thea0 meson with mixing at den-
sity r52.5r0.
9-9
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phase space. It might be recalled here that resonant stat
not couple toa0 and therefore we do not observe any broa
ening in thea0 channel.

IV. SUMMARY AND CONCLUSIONS

In the present work we present quantitative results of
in-medium meson properties. The meson spectral dens
are evaluated for the first time in a fully relativistic mea
field model which goes beyond linear density approximat
and we discuss the limitation and applicability of the LD
We find that meson spectral densities in matter are q
different from those in free space. The difference ste
partly from the existence of a preferred frame attached to
nuclear matter. While in free space the transverse and lo
tudinal component of ther spectral density are degenera
in matter they show different qualitative behaviors. Furth
more, we include other purely in-medium effects, forbidd
in vacuum on the account of Lorentz symmetry, like mes
mixing. In matter ther can also be modified because of
mixing with a scalar~isovector! a0 meson. This effect, as w
have seen, modifies only the longitudinal component of
spectral density.

In our model we observe that ther meson spectral densit

FIG. 16. The longitudinal spectral density for ther meson with
mixing as a function of density.
01520
do
-

e
es

n

te
s
e
i-

,
-

n

e

gets flattened in nuclear matter with the incorporation of
resonant states likeN* (1520) andN* (1720). In fact, in
strongly interacting matter, the original distribution of ther
can become so broad that it is no longer possible to inter
as a quasi-particle excitation. This was also observed in R
@5,13#. It should also be noted that in the presence of
scalar mean field ther meson mass goes down as a functi
of density.

This broadenedr spectral density shows an accumulati
of strength towards the lower invariant mass region. T
would definitely imply production of dileptons with low in
variant masses in excess of what we might expect from
free r spectral density. We plan to extend this work to t
finite temperature region in the near future. Furthermore,
broadenedr spectral density would also affect the width
the resonance states likeN* (1520) or N* (1720) which
probably would shed some light on the issue of mixing re
nant states in the photoabsorption cross-sections. For
complete determination of ther spectral density and the
broadening of the resonant state, a self-consistent appr
should be adopted@5#. Studies along such directions are
progress.

FIG. 17. The spectral density for thea0 meson with mixing as a
function of density~upper part! and a cross section for differen
densities~lower part!.
9-10
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APPENDIX A: FREE PART OF THE N-N LOOP

Polarization tensors arising out of then-n̄ excitation of
the Dirac sea:

Pmn
vv 52

1

2 S gv

p D 2F1

3
~D1 lnm2!q2Qmn

22q2QmnE
0

1

dxx~12x!ln DG , ~A1!

Pmn
vt1tv5

1

2

gv
2

p2

M* kv

2M
QmnFD1 lnm22E

0

1

dxln DG ,
~A2!

Pmn
tt 52

gr
2

~4p!2 S k

M D 2

QmnF1

6
q2S D1m2ln~m2!2m21

q2

q2

1q2E
0

1

dxx2ln D2q2E
0

1

dxxln D2m2E
0

1

dxln D D G ,

~A3!

D5
1

e
2g1 ln4p,

D5M* 22q2x~12x!.

All the terms containingD are infinite and need to be sub
tracted out.

APPENDIX B: FREE PART OF THE N-R LOOP

Pmn
RN(dir)5QmnP~q2!, ~B1!

where

P~q2,m!5~P1~q2!1P2~q2!1P3~q2!1P4~q2!1P5~q2!

1P6~q2!1P7~q2!1P8~q2!!, ~B2!

P1~q2!5F ~D12x2q2!~D1 ln m2!1E
0

1

dx~D2D ln D

22q2x2ln D !Gq2Qmn

32p2
~B3!
01520
s
by

P2~q2!5F2~3D2118Dq2x214q4x4!~D1 lnm2!

1E
0

1

dx~9D2136Dq2x216D2ln D

236Dq2x2ln D28q4x4ln D !G q2Qmn

128mR
2p2

,

P3~q2!52F2q2x~3D12q2x2!~D1 lnm2!1E
0

1

dx~3q2xD

23q2xDln D22q4x3ln D !G q2Qmn

32mR
2p2

,

P4~q2!52F ~2D1q2x2!~D1 lnm2!

1E
0

1

dx~D22D ln D2q2x2ln D !Gq2Qmn

16p2
,

P5~q2!52mNmDF ~D1 lnm2!2E
0

1

dxln DGq2Qmn

16p2
,

P6~q2!5FD~D1 lnm2!1E
0

1

dx~D2D ln D !Gq2Qmn

32p2
,

P7~q2!5F2D~3D12q2x2!~D1 lnm2!1E
0

1 dx

mR
2

D~9D

14q2x226D ln D24q2x2ln D !Gq2Qmn

128p2
,

P8~q2!52F E
0

1

dxDq2x~D1 lnm2!

1E
0

1 dx

mR
2 ~Dq2x2q2xDln D !Gq2Qmn

32p2
.

APPENDIX C: IDENTITIES INVOLVING RARITA-
SCHWINGER SPINORS

Dmn~p!5( Cm~p!C̄n~p!

5~p”1MR!F2gmn1
1

3
gmgn

1
2

3

pmpn

MR
2

2
1

3

pmgn2gnpm

MR
G

5~p”1MR!P3/2
mn~p! ~C1!

gmP3/2
mn~p!5

1

3MR
~MR

22p2!S gn2
2pn

MR
D . ~C2!
9-11



e uch
ion

t

TEODORESCU, DUTT-MAZUMDER, AND GALE PHYSICAL REVIEW C66, 015209 ~2002!
Clearly the above and the following equations vanish wh
the spin 3/2 state is on-shell, so does Eq.~C3! also:

P3/2
mn~p!gn5

1

3MR
~MR

22p2!S gm2
2pm

MR
D . ~C3!

Another useful relation in this respect is the identity

~k2p!mP3/2
mn~p!~k2p!n5

2

3

~p22MR
2 !

MR
2 @p222k•p#

1
2

3MR
2 @~k•p!22MR

2k2#.

~C4!
s.

e

e

s,

01520
nIt is to be noted that the above equation also takes a m
simpler form when we have an on-shell spin 3/2 project
operator:

pmCm~p!505Cn~p!pn , ~C5!

kmP3/2
mn~p!kn5

2

3MR
2 @~k•p!22MR

2k2#. ~C6!

It is evident thatpmP3/2
mn(p)pn50 when the spin 3/2 particle

is on-shell, i.e.,p25MR
2 . In the rest frame of the resonan

state R, we, therefore, havekmP3/2
mnkn5 2

3 k2.
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