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Elliptic flow from a transversally thermalized fireball
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Physics Department, The Ohio State University, Columbus, Ohio 43210

~Received 6 May 2002; published 18 July 2002!

The agreement of elliptic flow data at RHIC at central rapidity with the hydrodynamic model has led to the
conclusion of very rapid thermalization. This conclusion is based on the intuitive argument that hydrodynam-
ics, which assumes instantaneous local thermalization, produces the largest possible elliptic flow values and
that the data seem to saturate this limit. We here investigate the question whether incompletely thermalized
viscous systems may actually produce more elliptic flow than ideal hydrodynamics. Motivated by the ex-
tremely fast primordial longitudinal expansion of the reaction zone, we investigate a toy model that exhibits
thermalization only in the transverse directions but undergoes collisionless free-streaming expansion in the
longitudinal direction. For collisions at RHIC energies, elliptic flow results from the model are compared with
those from hydrodynamics. With the final particle yield andk' distribution fixed, the transversally thermalized
model is shown not to be able to produce the measured amount of elliptic flow. This investigation provides
further support for very rapid local kinetic equilibration at RHIC. It also yields interesting novel results for the
elliptic flow of massless particles such as direct photons.

DOI: 10.1103/PhysRevC.66.014907 PACS number~s!: 25.75.Ld, 24.10.Nz, 24.85.1p
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I. INTRODUCTION

Recently the STAR collaboration showed@1–3# that the
k' and centrality dependence of the measured elliptic fl
coefficientv2 of pions and protons at the Relativistic Hea
Ion Collider ~RHIC! largely agreed with those generate
from the hydrodynamic model simulation of heavy ion co
lisions @4–7#. This was subsequently confirmed by data fro
the PHENIX @8# and PHOBOS@9# collaborations.v2 is the
second coefficient of an azimuthal Fourier expansion of
transverse momentum spectrum around the beam axis@10#
and, for collisions between identical nuclei, is the lowe
nonzero anisotropic flow coefficient at midrapidity. Give
that the main prerequisite of the hydrodynamic model
complete local thermal equilibrium, which requires very i
tense rescattering among the matter constituents, it wa
gued that hydrodynamics should give the largest poss
elliptic flow, and the observation that the data saturate
hydrodynamic limit was taken as evidence that thermali
tion must be very fast at RHIC for central and semicen
collisions @6,7,11#.

Elliptic flow requires reinteractions within the produce
matter as a mechanism for transferring the initial spatial
formation of the reaction zone in noncentral collisions on
momentum space. It is thus plausible to expect that the l
est elliptic flow signal is produced in the hydrodynam
limit, i.e., in the limit of infinite rescattering rates@6,7,11#;
however, a proof for this hypothesis has not yet been fou
In hydrodynamics, collective flow is generated by press
gradients, and flow anisotropies such as elliptic flow requ
anisotropic pressure gradients in the plane transverse to
beam direction. The longitudinal pressure plays a less vis
role: the work done by the longitudinal pressure reduces
transverse energydET /dy and thereby, for given initial con
ditions for the energy density deposited in the reaction zo
the amount of transverse flow at freeze-out. If there were
longitudinal pressure, more of the initially deposited ene
would go into the transverse directions, leading to flat
0556-2813/2002/66~1!/014907~15!/$20.00 66 0149
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transverse momentum spectra. It is, at least in principle, c
ceivable that this could also lead, at fixed radial flow,
larger anisotropies of the transverse collective flow. If th
were indeed the case and, at fixed slope of the an
averaged spectra, larger values ofv2 could be generated in
this way than within the usual hydrodynamic, the early th
malization argument would break down since the RHIC d
@1–3# would no longer saturate the theoretical predicti
from such a model.

To explore this hypothetical possibility, we study in th
paper a toy model which assumes that, at high collision
ergies, during the earliest collision stages the longitudi
momenta of the produced particles do not thermalize,
that the strong initial longitudinal expansion is instead dom
nated by collisionless free-streaming. The initial transve
momenta are much smaller and assumed to therma
quickly. This results in a system with local transverse, b
zero longitudinal pressure. Due to the masslessness of
partons created in the reaction zone the trace of the en
momentum tensor vanishes; in the absence of longitud
pressurePi , the transverse pressureP' must thus be related
to the initial energy density«5T00 by «52P' ~instead of
the usual«53P). This results in a much stiffer equation o
state for the transverse dynamics~see Sec. II B!, giving more
flow and possibly stronger flow anisotropies. Of course
the transverse momenta thermalize, the longitudinal m
menta should do so eventually, too. We assume in our mo
that when this happens the flow anisotropies have alre
almost reached their asymptotic values@12#.

Similar to the hydrodynamic simulations@4–7#, we as-
sume that the longitudinal free-streaming dynamics is bo
invariant@14# and correspondingly concentrate on the cen
rapidity region. Starting from a kinetic description of th
longitudinally free streaming but transversally thermaliz
gluonic system@which we call ‘‘transversally thermalized
model’’ ~TTHM!#, we derive a set of macroscopic evolutio
equations~TTHM equations! which we solve with appropri-
ate initial conditions. The impact-parameter dependence
©2002 The American Physical Society07-1
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the initial conditions is handled in the same way as in
hydrodynamic simulations. When comparing our TTHM s
lutions to those from the ideal hydrodynamic model~HDM!
we retune the initial conditions in such a way that for cent
collisions (b50 fm) roughly the same multiplicities an
spectral slopes at midrapidity are obtained. We then comp
the momentum-space anisotropyv2 in the two approaches
as a function of transverse momentumk' and impact param-
eterb.

II. CONSTRUCTING A TRANSVERSALLY THERMALIZED
SYSTEM

A. The phase-space distribution function

We consider a gluon dominated system at a short t
after nuclear contact. We assume that at that time the tr
verse gluon momenta are already thermalized but that
system is still free streaming along the beam direction. T
system is required to possess longitudinal boost invaria
reflecting a boost-invariant primary-particle producti
mechanism@14#. For the easiest implementation we assu
that the collision energy is so high that the colliding nuc
are Lorentz contracted to two infinitesimally thin sheets iz
direction and that all produced particles point back toz5t
50. Their longitudinal momenta and coordinates thus sat
z5uzt or k0z5kzt where uz5kz /k0. This automatically
identifies@14# the rapidity

y5
1

2
lnS k01kz

k02kz
D ~2.1!

of the produced particles with their space-time rapidity

h5
1

2
lnS t1z

t2zD . ~2.2!

We thus make the ansatz

f ~k,x,t !5d~k0z2kzt !h̃~k,x,t !. ~2.3!

Longitudinal free streaming is implemented by the condit

S k0

]

]t
1kz

]

]zD f ~k,x,t !50. ~2.4!

Since thed-function factor solves this equation trivially, thi
implies a constraint forh̃. The latter is most convenientl
expressed by using an alternate coordinate system~we here-
after make explicit use of the masslessness of the produ
gluon degrees of freedom, by settingm'5Am21k'

2 →k'),

t5t coshh, z5t sinhh, ~2.5!

k05k' coshy, kz5k' sinhy. ~2.6!

In these coordinates the ansatz Eq.~2.3! becomes

f ~k,x,t !5
d~h2y!

k't cosh~h2y!
h̃~k' ,x' ,h2y,t!, ~2.7!
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where the dependence ofh̃ on only k' and the difference
h2y results from the requirement of longitudinal boost i
variance. We implement transverse thermalization by the
satz

h̃~k' ,x' ,h2y,t!5
t0k'

g'

cosh~h2y!
1

ek•u/T21
,

~2.8!

where um5g'(coshh,v' , sinhh) is the flow vector with
Bjorken longitudinal flow velocityvz5tanhh @14# and trans-
verse flow velocity v'5v'(x' ,t) (g'

215A12v'
2 ). T

5T(x' ,t) is the temperature characterizing the thermaliz
transverse momentum spectrum. In the local rest frameT is a
function of the rest frame coordinatesx'

* andt* 5t* , which
after the standard@15# successive transverse and longitudin
boosts to the laboratory frame, withv' and vz5tanhh, re-
spectively, are related to the laboratory variables by

t* 5g'~ t coshh2z sinhh2v'•x'!5g'~t2v'•x'!5u•x,
~2.9!

x'
* i5g'@x'i2v'~ t coshh2z sinhh!#

5g'~x'i2v't!52m•x, ~2.10!

x'
*'5x'' . ~2.11!

The additionali and' subscripts denote the components
x' parallel and perpendicular tov' , respectively, and the
vector mm is defined in Eq.~2.15! below. The sequence o
boosts described here agrees with the standard choice@15#
and gives the simplest structure for the set of four-vect
needed for the decomposition of the energy momentum
sor ~see Sec. II B!. As one can see from Eqs.~2.9!–~2.11!,
the dependence ofT on x'

* and t* in the local rest frame
translates into a dependence onx' and t in the laboratory
frame.

By virtue of the factord(h2y), the argument of the Bose
distribution in Eq.~2.8! reduces in the local rest frame tok
•u5k' , showing explicitly that the system is only transve
sally thermalized. Combining Eqs.~2.7! and ~2.8! and ex-
ploiting thed function, the distribution function simplifies to

f ~k,x,t !5
t0

t
d~h2y!h~k' ,x' ,t !,

h~k' ,x' ,t !5
1

g'

1

ek•u/T21
. ~2.12!

In the new coordinates,f satisfies the relativistic transpo
equation

S k' cosh~h2y!
]

]t
2

k'

t
sinh~h2y!

]

]h
1k'•“'D f ~k,x,t !

5C~k,x,t !, ~2.13!
7-2
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where the collision termC is responsible for keeping th
transverse momenta thermalized while not changing an
the longitudinal momenta. Due to the implemented fre
streaming properties we have

S cosh~h2y!
]

]t
2sinh~h2y!

1

t

]

]h D S t

t0
d~h2y! D50

such that Eq.~2.13! reduces to the following kinetic equatio
for the transverse distribution function:

S k'

]

]t
1k'•“'Dh~k' ,x' ,t!5C~k,x,t !. ~2.14!

The space-time evolution ofh(k' ,x' ,t) is entirely due to
the collisions and collective transverse expansion, but dec
pled from the boost invariant longitudinal expansion. T
collisions must be sufficiently dominant over the transve
expansion to maintain the equilibrium form ofh(k' ,x' ,t)
given above.

We are aiming at a macroscopic description on the b
of the differential conservation laws for energy and mom
tum, similar to hydrodynamics. This requires the constr
tion of Tmn from the distribution functions. Due to the dif
ferent microscopic physics in the longitudinal and transve
directions implemented in our model, there are now m
vectors required to construct a complete set of tensors
respect to whichTmn should be decomposed. The set of fou
vector fields that we need are

um~x' ,h,t!5g'~coshh,v' , sinhh!,

nm~x' ,h,t!5~sinhh,0,0, coshh!,

mm~x' ,h,t!5g'~v' coshh,v̂' ,v' sinhh!. ~2.15!

They arise from the following local rest frame vectors
successive boosts withv' andvz as described above:

um~x' ,h,t!5~1,0,0,0!,

nm~x' ,h,t!5~0,0,0,1!,

mm~x' ,h,t!5~0,v̂',0!. ~2.16!

One is timelike,u251, while the other two are spacelike
n25m2521. They are mutually orthogonal:u•n5u•m
5n•m50. With these vectors, the distribution can be e
pressed in a form that is explicitly boost invariant und
longitudinal boosts,

f ~k,x,t !5
t0

t

d~k•n!~k•u2v'k•m!

ek•u/T21
. ~2.17!

B. Energy-momentum tensor and conservation laws

Based on the structure of Eq.~2.17! for the phase-spac
distribution function we want to derive a macroscopic set
dynamical equations based on the conservation laws for
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ergy and momentum. In terms of the distribution functionf,
the energy-momentum tensor is given by

Tmn~x,t !5ngE d3k

~2p!3

kmkn

k0
f ~k,x,t !, ~2.18!

whereng5238516 is the degeneracy factor for color an
helicity of the gluons. From the preceding section we kn
that f (k,x,t) depends on the three four-vectorsum, nm, and
mm. The most general form of the tensorTmn thus reads

Tmn5Aumun1Bnmnn1Cmmmn1D~umnn1nmun!

1F~ummn1mmun!1G~nmmn1mmnn!1Hgmn.

~2.19!

Since the gluons are massless, the trace ofTmn vanishes,

Tm
m5A2B2C14H50. ~2.20!

In the local rest frame we have

T00* 5A1H5«,

Txx* 5Tyy* 52H5P' ,

Tzz* 5B2H5Pz , ~2.21!

where« is the energy density andP' and Pz are the trans-
verse and longitudinal pressures, respectively. In a gen
frame, all the Lorentz scalar coefficients in Eq.~2.19! can be
found by contractingTmn with all pairwise combinations of
the four-vectorsum, nm, andmm. We will denote these con
tractions by (uTn)[umTmnnn , etc. The details of this calcu
lation are given in Appendix A where we find

~uTu!5A1H5
t0

t
ng

p2T4

60
5«, ~2.22!

~uTm!52F52
t0

t
ng

p2T4

120
v'52

v'

2
«, ~2.23!

~mTm!5C2H5
t0

t
ng

p2T4

120
5

1

2
«, ~2.24!

~uTn!52D50, ~2.25!

~nTn!5B2H505Pz , ~2.26!

~nTm!5G50. ~2.27!

From this and Eq.~2.21! we see that

B5H52P' , A5«1P' , ~2.28!

and the tracelessness condition gives

«1P'1P'2
1

2
«23P'5

1

2
«2P'50. ~2.29!

Therefore the equation of state is
7-3
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«52P' . ~2.30!

Combining this with the expression for (mTm) one findsC
50. The expression for the energy momentum tensor is t

Tmn5~«1P'!umun2P'nmnn2P'gmn

1P'v'~ummn1mmun!. ~2.31!

For completeness and later use we also give the expres
for the gluon density in the local comoving frame,

ng5u• j 5
t0

t
ng

z~3!T3

2p2
, ~2.32!

where j m(x) is the gluon number current,

j m~x,t !5ngE d3k

~2p!3

km

k0
f ~k,x,t !. ~2.33!

We now proceed to derive the macroscopic evolution eq
tions. We first rewrite the conservation laws

]nTmn50 ~2.34!

in (h,t) coordinates

coshhS ]T0m

]t
1

1

t

]Tzm

]h D2sinhhS ]Tzm

]t
1

1

t

]T0m

]h D1“'
i Tim

50, ~2.35!

where the sum overi goes over the two transverse direction
When writing these out explicitly in terms of«, P' , and the
longitudinal and transverse flow velocities, using Eqs.~2.31!
and ~2.16!, one finds that all explicit dependence onh dis-
appears. Boost-invariant initial conditions ~i.e.
h-independent initial expressions for« andP' and the struc-
ture~2.16! for the vectorsum,nm, andmm) are thus preserved
by the macroscopic evolution equations.

For the further analysis we can thus concentrate on
dynamics in the central transverse plane atz5h50. There
we have

um5g'~1,v',0!,
]um

]h
5g'~0,0,0,1!, ~2.36!

nm5~0,0,0,1!,
]nm

]h
5~1,0,0,0!, ~2.37!

mm5g'~v' ,v̂' ,0!,
]mm

]h
5g'~0,v̂' ,v'!. ~2.38!

Using theh independence of« andP' we find

]Tzm

]h
5g'

2 ~«1P'!~d0m1v'
i d im!2P'd0m1g'

2 P'~2v'
2 dm0

1~11v'
2 !v'

i d im!5T00d0m1T0id im5T0m, ~2.39!

and the equations of motion~2.35! at z5h50 reduce to
01490
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]T00

]t
1

T00

t
1“'

j Tj 050, ~2.40!

]T0i

]t
1

T0i

t
1“'

j Tji 50. ~2.41!

Using the equation of state~2.30! to eliminate«, these three
equations completely determine the three unknown functi
P' andv' . Since gluons possess no conserved charges
further current conservation laws need to be considered.

III. HYDRODYNAMICS

For later comparison we here shortly review the para
procedure for ideal hydrodynamics based on a locally fu
thermalized phase-space distribution function

f ~k,x,t !5
1

ek•u/T21
. ~3.1!

In this case the energy-momentum tensor has the ideal
decomposition

Tmn5~«1P!umun2Pgmn, ~3.2!

and for a longitudinally boost-invariant systemum has the
same form as in Eq.~2.15!. The equation of state is in thi
case

«53P5ng

p2T4

30
, ~3.3!

and the gluon density in the local rest frame is

ng5ng

z~3!T3

p2
. ~3.4!

Note that the energy per particle

«

ng
5

p4

30z~3!
T'2.7T ~3.5!

agrees exactly with the corresponding expression in
TTHM, see Eqs.~2.22! and ~2.32!.

The pressure is now locally isotropic. With longitudinal
boost-invariant (h-independent! initial conditions for« and
P the ansatz Eq.~2.16! for the flow velocity is preserved in
time by the equations of motion]nTmn50 @14#, and the lat-
ter become

]T00

]t
1

T00

t
1“'

j Tj 052
P

t
~3.6!

]T0i

]t
1

T0i

t
1“'

j Tji 50. ~3.7!

The main difference between these hydrodynamical eq
tions and our TTHM toy model equations~2.40! and~2.41! is
the pressure term on the right hand side of Eq.~3.6! which is
7-4
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ELLIPTIC FLOW FROM A TRANSVERSALLY . . . PHYSICAL REVIEW C66, 014907 ~2002!
absent in Eq.~2.40!. It indicates the longitudinal work don
by the isotropic pressure in hydrodynamics; in the TTH
model there is no longitudinal pressure that could do work
the longitudinal direction.

IV. INITIAL CONDITIONS

We consider Au1Au collisions at RHIC energies. Th
initial energy density distribution in the transverse plane a
function of impact parameterb is taken to be proportional to
the density of binary nucleon collisions in the transve
plane, calculated from the normalized nuclear thickn
function,

TA~x'!5E rA~x' ,z!dz, E d2x'TA~x'!5A. ~4.1!

For the nuclear number density we took the Woods-Sa
parametrization

rA~x'!5
r0

e(r 2R0)/j11
~4.2!

with R051.14A1/3 fm and j50.54 fm. For collisions be-
tween the nuclei of massesA and B the number of binary
nucleon collisions per unit area in the transverse plane i

dN~x' ,b!

d2x'

5s0TA~x'!TB~b2x'!, ~4.3!

where s0540 mb is the total inelastic nucleon-nucleo
cross section. We assume that the generated energy den
proportional to this density. We performed two classes
calculations: in the first class we used the same maxim
initial energy density as the authors of Refs.@6,7# @«05e0
[23.0 GeV/fm3 for central (b50 fm)] collisions at an ini-
tial time t050.6 fm/c) in order to compare the HDM an
TTHM results for similar initial conditions. In the secon
class of simulations we retuned the initial conditions
TTHM such that the same multiplicity densitydN/dy and
the same slope for the transverse momentum spectrum
midrapidity as in HDM is obtained. Both sets of results w
be discussed in the following section.

V. ELLIPTIC FLOW IN A TRANSVERSALLY
THERMALIZED SYSTEM

A. Freeze-out prescription

Just as the HDM, our TTHM model describes the tim
evolution of macroscopic thermodynamic quantities t
must be converted to particle spectra before one can com
with experiments. In order to do so we use the well-kno
Cooper-Frye prescription@16# that gives the particle spec
trum in terms of an integral over the phase-space distribu
function along a so-called freeze-out hypersurfaceS(x),

E
dN

d3k
5

dN

dyk'dk'df
5

ng

~2p!3ES
k•d3S~x! f ~x,k!.

~5.1!
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d3Sm(x) is the four-vector integral measure normal to t
hypersurface, and in the TTHM casef (x,k) is a transversally
thermalized distribution function of the form~2.12!, with
flow velocity um evaluated along the freeze-out hypersurfa
S and temperatureT calculated via Eq.~2.22! from the en-
ergy density onS. Longitudinal boost invariance dictate
freeze-out along a surface of fixed longitudinal proper tim
t f(x'), and we can write

Sm~x!5~t f~x'!coshh,x' ,t f~x'!sinhh!. ~5.2!

This gives

k•d3S5~k' cosh~y2h!2k'•“'t f!t fdhd2x' . ~5.3!

Of course, theh integration is trivial due to the factord(h
2y) in the distribution function in Eq.~2.12!.

B. TTHM vs HDM for identical initial conditions

In Fig. 1 we compare results for the elliptic flow from th
TTHM and HDM models for identical initial conditions
taken from@6,7#. Since the temperature parameterT has a
different meaning in our model than usual~only the trans-
verse momenta are thermalized!, we enforce ‘‘freeze-out’’
~i.e., we stop the dynamical evolution and calculate the sp
tra and momentum space anisotropies! along a surface of
constant energy density« f . We show results for two value
of this parameter both of which lie in the quark-hadron tra
sition region. Since hadronization certainly involves longit
dinal momentum exchange, it will violate our assumption
longitudinal free-streaming, and we should definitely not f
low the TTHM dynamics beyond the hadronization point.
course, by truncating the dynamics at such high freeze
energy densities we forfeit the possibility of comparing o
results directly with experiment. However, a large fraction
the elliptic flow should already have developed at this po

FIG. 1. v2 as a function of impact parameter at two freeze-o
energy densities« fo . The solid lines are from our TTHM mode
while the dashed lines are from hydrodynamic simulations w
identical initial conditions.
7-5
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U. HEINZ AND S. M. H. WONG PHYSICAL REVIEW C66, 014907 ~2002!
@5,17#, and we can still make a meaningful comparison b
tween the hydrodynamic evolution of a fully thermalize
quark-gluon plasma and that of a longitudinally fre
streaming gluonic system with only transverse thermali
tion, by comparing the gluon spectra at this common ‘‘fina
energy density« f .

Figure 1 showsv2 as a function of the impact paramet
b. v2(b)5^cos(2f)&(b) is computed from thek'-integrated
gluon spectrum at freeze-out as

v2~b!5

E k'dk'df cos~2f!
dN

dyk'dk'df
~b!

E k'dk'df
dN

dyk'dk'df
~b!

5

E df cos~2f!
dN

dydf
~b!

E df
dN

dydf
~b!

. ~5.4!

Figure 2 shows that,for identical initial conditions, the
TTHM dynamics generates alarger momentum-space asym
metry v2 than hydrodynamics. We also see thatv2 has not
yet fully saturated at these values of« f ; the reason for this
can be found in Table I which shows that, with the very ha
equation of state and initial conditions used here, the ab
values of« f are reached quite early, before the initial spat
deformation has been fully eliminated~see also Fig. 1 in Ref
@18#!.

The larger values ofv2 from TTHM, however, come also
with much flatter transverse momentum spectra, as show
Fig. 2. Part of this flattening is due to a higher freeze-
temperature in the TTHM. By comparing Eqs.~2.22! and
~3.3! one sees at the same energy density« f the temperatures
in the two models are related byTf,T5(2t f /t0)1/4Tf,H . With

FIG. 2. Gluonk' distribution for central collisions (b50 fm)
and two different values for the freeze-out energy density, for id
tical initial conditions. The solid lines are for our model while th
dashed lines are for hydrodynamics.
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thet f values given in Table I, the TTHM freeze-out temper
ture is about a factor 2 higher than the HDM one. Howev
the inverse slopes of the spectra shown in Fig. 2 differ
more than this factor 2~the difference is closer to a facto
2.5–2.6!. This implies that TTHM also creates somewh
stronger radial flow than HDM which, in view of its harde
equation of state, is not unexpected.

The initial conditions for the hydrodynamic model~in
particular, the initial energy density! were tuned@6# to repro-
duce the measured final multiplicity densitiesdNch/dy and
spectral slopes in central Au1Au collisions at RHIC; clearly,
with these same initial conditions, the transversally therm
ized model TTHM will no longer be anywhere close to the
data. The largerv2 values from TTHM in Fig. 1 therefore
cannot be compared with the RHIC data, and the compar
with HDM in Fig. 1 is misleading. For a meaningful com
parison the initial conditions for TTHM should first be ad
justed in such a way that at least the multiplicity densit
and spectral slopes for central collisions are similar in b
models. This will be our next step.

Before doing so, let us shortly comment on the rapid
densitiesdN/dy and collision durations listed in Table I. Fo
identical initial conditions, the TTHM gives considerab
lower multiplicity densities. This is mostly due to the high
freeze-out temperature in the TTHM, which implies th
each gluon carries more energy@see Eq.~3.5!#, so the same
freeze-out energy density« f translates into fewer gluons
This argument overestimates the difference between
models, though; the actual difference is smaller since in
HDM the calculation ofdN/dy involves an integration ove
space-time rapidityh which can be interpreted as taking a
average over fireballs with different flow rapiditieshÞy and
correspondingly reduced~redshifted! effective temperatures
Teff5Tf /cosh(h2y).

Longitudinal boost invariance implies that the total tran
verse energy per unit rapidity,dET /dy, is independent ofy.
Due to the absence of longitudinal pressure, no longitud
work is done in the TTHM anddET /dy is a constant of
motion. This is different from the HDM where work done b
the longitudinal pressure reducesdET /dy with time. ~Both
statements were checked numerically.! Table I shows that,
within numerical accuracy, the gluon multiplicity per un
rapidity, dN/dy, is also constant in time. While in ideal hy
drodynamics~HDM! this is a simple consequence of entro
conservation~for boost-invariant systemsdS/dy is a con-
stant of motion@14#, and for massless particles the entro
per particle is independent of temperature!, there is no such
simple reason for this observation in the TTHM which is f

-

TABLE I. Rapidity densities aty50 and final timest f for cen-
tral collisions with identical initial conditions~see text! in the
TTHM and HDM simulations.

TTHM HDM

« f (GeV/fm3) dN/dy t f (fm/c) dN/dy t f (fm/c)

0.6 780 6.95 944 5.97
0.8 780 6.48 940 5.36
7-6
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ELLIPTIC FLOW FROM A TRANSVERSALLY . . . PHYSICAL REVIEW C66, 014907 ~2002!
from local equilibrium. Detailed checks revealed that, with
numerical accuracy, in the TTHM not only the transver
energy per particle,ET /N5(dET /dy)/(dN/dy), but, in fact,
also the entirek' spectrum of the gluons is completely tim
independent.

If the system were transversally homogeneous and
panded only longitudinally, this would not be surprising:
the absence of transverse gradients the conservation law
~2.40! for T00 simplifies to

]~tT00!

]t
50 ~5.5!

with T005« cosh2h. In TTHM a constant product«t implies
a constant temperature@see Eq.~2.22!#, which, in the ab-
sence of transverse flow, then leads to a time-indepen
transverse momentum spectrum. In our case, however,
system expands in the transverse direction and cools.
studies show that, in the longitudinal rest frame, the resul
loss in thermal transverse energy per particle is exactly c
pensated by the gain in transverse collective motion ene
in a way that exactly preserves the shape of the transv
momentum distribution. Although one should think that the
must be a simple reason for this intriguing behavior, we h
not been able to find a simple analytical proof and can t
only present the numerical evidence.

The longer freeze-out times in the TTHM simulations~see
Table I! are a reflection of the lack of longitudinal pressu
In the HDM the pressure performs longitudinal work a
thus causes a more rapid decrease of the energy density
time than in the TTHM. This is further elucidated in Fig.
where we show the freeze-out timet f(x,y) as a function of
position in the transverse plane. One sees that, for iden
initial conditions, the HDM simulations lead to universal
earlier freeze-out. This figure also shows that for noncen
Pb1Pb collisions (b57 fm) the source at freeze-out is st
larger in they direction perpendicular to the reaction pla
than in the reaction plane; the initial out-of-plane deform

FIG. 3. The freeze-out timet f(x,y) as a function of the trans
verse coordinatesx andy, respectively, for a freeze-out energy de
sity « f50.6 GeV/fm3. The solid ~dashed! lines are for TTHM
~HDM!, respectively. The upper set of curves is for central co
sions (b50 fm) where the freeze-out surface is azimuthally sy
metric. The lower set of curves corresponds tob57 fm where we
present cuts along thex andy axes, as indicated, to show the spat
azimuthal anisotropy at freeze-out. The impact parameterb points
in x direction.
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tion of the reaction zone thus has not yet fully disappea
when the dynamical evolution was stopped. This expla
why the elliptic flow had not yet saturated, see Fig. 1 a
Fig. 9 below.

C. Retuning the initial conditions for TTHM

Our TTHM model does not include the hadronization
gluons and hence does not allow us to compute hadron s
tra; hence we cannot directly compare the gluon multiplic
densitydN/dy and theirk' distribution from TTHM at« f to
any data. However, the relation of these quantities to
observable hadron spectra after hadronization is not expe
to depend on their dynamical history prior to reaching t
freeze-out point« f . Thus, if we want to create TTHM solu
tions which are likely to lead, after hadronization, to hadr
spectra with similar normalization and shape as the data
can use the gluon rapidity densities andk' spectra from
existing hydrodynamic calculations with initial condition
thatweretuned to real data in@6#, evaluate them at the sam
value of« f where we stop the TTHM evolution, and retun
the TTHM initial conditions such that they reproduce the
HDM gluon spectra. With the TTHM spectra thus tied dow
to the final state in central (b50 fm) collisions from the
HDM, we can then repeat our comparison of elliptic flow
the two models under more realistic boundary conditions

For the common decoupling point we chose in bo
TTHM and HDM the value« f50.35 GeV/fm3. This may
appear somewhat low for still using only gluon degrees
freedom@with an ideal gas equation of state~EOS! in the
HDM case#, but it has the advantage that then the hydrod
namic model with the ideal massless EOS used here
duces an elliptic flowv2 of roughly the same magnitude a
that obtained for pions in Ref.@6# using a more realistic
equation of state. Given the good agreement of those H
calulations with the data@6#, we can thus pretend to be com
paring directly to data when comparing the TTHM results
our HDM reference.

With this freeze-out energy density, our HDM referen
gives the gluonk' ~or m') spectrum shown in Fig. 4, which

-
-

l

FIG. 4. The gluonk' distribution from hydrodynamics~dashed
line, with the parameters as given in the text! and TTHM ~other
lines!. The TTHM curves correspond to the following sets of p
rameters. Dotted line:t056 fm/c, «05e0/15. Dot-dashed line:
t057 fm/c, «05e0/18. Solid line: t057.8 fm/c, «05e0/20.
Heree0523.0 GeV/fm3 is the initial central energy density forb
50 Au1Au collisions in the HDM.
7-7
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integrates to a gluon rapidity density aty50 of dN/dy
.942. Given the large difference between the HDM a
TTHM spectra for identical initial conditions shown in Fig
2, it is perhaps not surprising that we found it rather diffic
to reproduce the HDM spectrum within the TTHM: on
needs to find a way to considerably lower the radial fl
~since the freeze-out temperature is fixed by« f and is much
higher in TTHM than in HDM! and at the same time increas
the normalization of the spectrum in order to raisedN/dy.

There are essentially only three parameters in TTHM t
we can play with:«0 , t0 and« f . Examples of the effects o
varying them are shown in Fig. 5. The lines from Fig.
corresponding to« f50.6 GeV/fm3 are repeated here fo
comparison. From Fig. 2 and Table I we learned already
changing« f has no influence ondN/dy and little effect on
dN/dyk'dk' . This leaves us only with changes of the initi
conditions«0 andt0. The dot-dashed curve in Fig. 5 show
that decreasingt0 from 0.6 to 0.1 fm/c goes in the wrong
direction, by reducingdN/dy without having much effect on
the slope of thek' spectrum. Reducing the initial energ
density«0 by a factor of 4 produces the long-dashed line
the figure. Due to the lower initial energy density there is le
time until freeze-out to produce radial flow, and the result
spectrum is steeper, as desired; unfortunately, its norma
tion dN/dy decreases, too. Combining the insights fro
these two trial runs, we see that making the TTHM spectr
sufficiently steep requires still much smaller initial ener
densities«0, combined with much larger starting timest0 for
the TTHM transverse dynamical evolution, in order to i
creasedN/dy. This implies a long transverse thermalizatio
time, which poses intrinsic consistency problems to be
dressed later.

Following this route, we find that the HDM gluon spe
trum can be roughly reproduced with either one of the f
lowing three sets of parameters:t056 fm/c with «0
5e0/15, t057 fm/c and «05e0/18, or t057.8 fm/c and
«05e0/20. The corresponding spectra are shown in Fig
These parameter sets are not unique and the agreemen
the HDM spectra is not perfect, but what is clear is tha

FIG. 5. Variation of the gluonk' distribution with various
TTHM model parameters. The solid and dashed lines repeat t
from Fig. 2 for « f50.6 GeV/fm3 for comparison. The dot-dashe
line is obtained by starting the system earlier att050.1 fm/c. The
long-dashed line has a lower initial energy density« i5«0/4. In each
case the remaining parameters are held fixed at the values us
Fig. 2.
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large reduction of«0 by at least 1/15 is essential in TTHM t
obtain the much deeper HDM slope.

D. Elliptic flow from TTHM with retuned initial conditions

Figure 6 again shows the impact-parameter dependenc
v2, but now with retuned TTHM initial conditions as de
scribed in the preceding section. With the much lower«0
forced upon us by the given slope of the finalk' spectrum,
there is much less time to generate transverse flow. Figu
shows that this leads not only to reduced radial flow, as
flected in the steeper single-particle spectrum for central
lisions ~see Fig. 4!, but also cuts down on the elliptic flowv2
which now remains significantly below the HDM level. A
the latter is representative of the data@3,11#, we conclude
that a model with only transversally thermalized momenta
the early collision stages cannot produce as much elli
flow as required by experiment.

In order to further strengthen this argument let us look
the k' dependence ofv2 and study~see Fig. 7!

v2~k' ;b!5

E df cos~2f!
dN~b!

dyk'dk'df

E df
dN~b!

dyk'dk'df

~5.6!

as well as its impact-parameter-averaged~minimum bias@1#!
value ~see Fig. 8!

se

in

FIG. 6. v2 as a function of impact parameter from TTHM~solid!
and HDM ~dashed! simulations tuned to produce identical angl
averaged spectradN/dyk'dk' . The parameters and notations us
here are the same as those in Fig. 4.

FIG. 7. v2 as a function ofk' for two impact parameters~as
indicated! from TTHM ~solid! and HDM ~dashed! simulations giv-
ing identical angle-averaged spectradN/dyk'dk' .
7-8
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ELLIPTIC FLOW FROM A TRANSVERSALLY . . . PHYSICAL REVIEW C66, 014907 ~2002!
v2~k'!5

E bdbE df cos~2f!
dN~b!

dyk'dk'df

E bdbE df
dN~b!

dyk'dk'df

. ~5.7!

We here select for our comparison with HDM one of t
above three sets of initial parameters for TTHM, name
t057 fm/c and«05e0/18, corresponding to the dot-dashe
line in Fig. 4.

Figures 7 and 8 show that thek' slope of v2 is much
lower than in the HDM. This is true not only for the impac
parameter-averaged elliptic flow shown in Fig. 8, but ho
universally also for all impact parameters; two examples
plotted in Fig. 7. Forv2(k') from minimum bias events
accurate data were published in Refs.@1–3#, which follow
essentially the dashed HDM line in Fig. 8 and definite
exclude our TTHM.

In Fig. 9 we show the time evolution of the momentu
anisotropy@5#

«p5
^Txx2Tyy&

^Txx1Tyy&
, ~5.8!

where the angular brackets indicate an average over
transverse plane. At freeze-out, this momentum anisotrop
translated into elliptic flowv2, where the coefficient betwee
the two variables depends on the particle rest mass@5#. Fig-

FIG. 8. Impact-parameter-averagedv2 as a function ofk' from
the two models. The dashed line is from HDM, the solid line fro
TTHM with initial conditions tuned to produce the same ang
averaged transverse momentum spectrum at the same value o« f .

FIG. 9. Asymmetry measure«p as a function of the duration o
the time evolution atb57 fm with similar final particle spectra
from both models. Again the solid line is from TTHM and th
dashed line from HDM.
01490
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ure 9 shows that with the hard equation of state for non
teracting massless gluons and RHIC-type initial conditio
freeze-out actually happens before the momentum anisot
saturates@17# ~and before the initial spatial anisotropy ha
fully disappeared!. This is even more true for the TTHM
~with its even stiffer EOS ofP'5 1

2 «) than for the HDM
~whereP5 1

3 «): the TTHM freezes out significantly earlie
even though about the same amount of transverse flow
generated.

E. The low-k� limit of v2„k�… for massless particles

A careful inspection of Figs. 7 and 8 shows that at sm
transverse momenta the shape of thek'-differential elliptic
flow v2(k') is different for TTHM and HDM. Figure 10
further shows that the small-k' behavior of the elliptic flow
coefficient differs for massive and massless bosons. In
pendix B we present a detailed analytical treatment of
limiting behavior ofv2(k') for small transverse momenta
For massive particles, the elliptic flow vanishes quadratica
at k'→0,

v2~k'!5O~k'
2 ! ~massive particles!, ~5.9!

going over to an almost linear rise at higherk' ~which even-
tually turns over to saturate atv251 as k'→` @7#!. The
transition from the quadratic rise at lowk' to the quasilinear
behavior at intermediatek' occurs aroundk';m. In detail
the transition between these regimes is complex and dep
on the ratiom/T of the rest mass to the freeze-out tempe
ture ~see Fig. 10!: for particles withm/T,1 the elliptic ap-
proaches the curve for massless particles while the elli
flow of heavier particles withm/T@1 remains always sig-
nificantly below that of massless particles.

For massless bosons, the singularity of the Bose distr
tion at zero momentum leads to a qualitative change in
low-momentum limit of the elliptic flow. For the TTHM,

-

FIG. 10. v2 as a function ofk' for massless and massive boso
from the two models. The solid lines are for massless bosons w
the dashed and dot-dashed lines are for bosons withm
5100 MeV andm51 GeV, respectively.
7-9



ta

ng

o-
th

de
n

le
uc
m
m

te
ic
n

in

-
th

ed

i
e
m
iz
n

n
to

on
ca
ia
e
ta

at
n
n

o
d

e
sy

ce
ics
s-
shift

is
ic-
-
on-
M
o-
re-
t
sly
t
ery

ly
is
ves
o-
pid

ize
e
2-

q.
to

n

-

U. HEINZ AND S. M. H. WONG PHYSICAL REVIEW C66, 014907 ~2002!
which lacks a thermal spread of the longitudinal momen
the elliptic flow of massless bosons~gluons or photons! ap-
proaches a positive constant with finite positive slope,

v2~k'!5a1bk'1O~k'
2 ! ~TTHM, massless bosons!.

~5.10!

In the HDM, the longitudinal thermal momentum smeari
weakens the Bose singularity and causesv2 to still vanish at
zero transverse momentum, albeit just barely so: ask'→0,
v2(k') vanishes with infinite slope,

v2~k'!5
const

ln
T

k'

~HDM, massless bosons!. ~5.11!

It would be interesting to verify this prediction of the hydr
dynamic model for photons that are directly emitted from
expanding fireball.

VI. CONCLUSIONS

We have tried to construct a macroscopic dynamical
scription of the fireball expansion in relativistic heavy-io
collisions, which relaxes the usual assumption of comp
local thermal equilibrium that underlies the popular and s
cessful hydrodynamical approach. This addresses, on a
roscopic level, the observation that existing parton-based
croscopic kinetic models@20–22# seem unable to genera
sufficiently fast thermalization to reach the hydrodynam
limit. We have tested a toy model where transverse mome
are thermalized very quickly while the system is stream
freely in the longitudinal direction~i.e., without longitudinal
momentum transfer!. The initial longitudinal motion was as
sumed to be boost invariant, and the model preserves
property dynamically at later times.

Starting from the kinetic transport equation, we deriv
the corresponding macroscopic equations of motion~TTHM!
and solved them in parallel with the usual hydrodynam
~HDM! equations. Since our TTHM model is parton bas
and lacks a description of hadronization, we decided to co
pare the two approaches just before the onset of hadron
tion. To make phenomenologically meaningful compariso
we used a HDM reference that had previously been show
yield a good description of RHIC data when allowed
evolve until hadron freeze-out.

The TTHM turns out to have an extremely stiff equati
of state, P'5 1

2 «, which causes severe phenomenologi
problems: in order to avoid the creation of too much rad
transverse flow, which would render the single-particle sp
tra much flatter than observed, while preserving the to
multiplicity, we had to start the TTHM evolution very late,
already quite low energy densities. This implies a very lo
transverse thermalization time scale~and, of course, an eve
longer longitudinal one!. While this cannota priori be ex-
cluded theoretically, it causes consistency problems with
implementation which assumes that transverse collective
namics sets in only after we start the TTHM evolution~i.e.,
only after thermalization!. This is not realistic: even befor
complete thermalization of the transverse momenta the
01490
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tem will start to evolve in the transverse directions, sin
nothing confines it. This preequilibrium transverse dynam
will likely have a collective component affecting the tran
verse momentum spectra, necessitating an even further
of the starting point for TTHM evolution.

We have not followed this issue any further, since there
also a severe problem when comparing the TTHM pred
tions with the elliptic flow data, which in our opinion elimi
nates it as a viable model. For the same radial flow, c
strained by the slope of the single-particle spectra, TTH
provides only about half as much elliptic flow as the hydr
dynamical model and thus significantly less than that
quired by the RHIC data@1–3,8#. This is the central resul
from the present study, and it strengthens the previou
made argument@6,11# that the large elliptic flow measured a
RHIC can only be reproduced by models that assume v
rapid thermalization of the momentum spectrain all three
dimensions. Partial thermalization, such as the effective
only two-dimensional thermalization in the TTHM model,
not enough to generate the observed elliptic flow. This lea
us with the continued challenge of identifying the micr
scopic mechanisms within QCD which can cause such ra
three-dimensional thermalization.

ACKNOWLEDGMENTS

S.W. thanks Peter Kolb for theFORTRAN code for calcu-
lating the nuclear overlap function that was used to initial
the TTHM time evolution. This work was supported by th
U.S. Department of Energy under Contract No. DE-FG0
01ER41190.

APPENDIX A:
DECOMPOSING THE ENERGY-MOMENTUM TENSOR

To calculate the coefficients in the decomposition in E
~2.19! of the energy-momentum tensor we find it easiest
use the form of Eq.~2.12! for the distribution function in Eq.
~2.18!. Assuming massless particles~gluons!, we write the
four-vectorkm as

km5k'~coshy, cosf, sinf, sinhy!. ~A1!

We integrate overd3k/k05dyk'dk'df in Eq. ~2.18! by first
doing the trivialh integration and then integrating overk' .
After integration overh the exponent of the Bose factor i
Eq. ~2.12! reduces to

k•u

T
5

g'k'

T
~12 k̂'•v'!5

g'k'

T
@12v' cos~f2fs!#,

~A2!

wheref2fs is the angle betweenk' ~azimuthal anglef)
andv' ~azimuthal anglefs). Thek' integration is then eas
ily done using
7-10
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E
0

` k'
n dk'

eak'21
5

n! z~n11!

an11
. ~A3!

In our casea5g'@12v' cos(f2fs)#/T and n53, and the
relevant zeta function isz(4)5p4/90. In this way we arrive
at
he

e

01490
Tmn5
t0

t

n

g'
5

p2T4

60 E
2p

p df

2p

Mmn

@12v' cos~f2fs!#
4

~A4!

with
Mmn5S cosh2h cosf coshh sinf coshh coshh sinhh

cosf coshh cos2f cosf sinf cosf sinhh

sinf coshh cosf sinf sin2f sinf sinhh

coshh sinhh cosf sinhh sinf sinhh sinh2h

D . ~A5!
ing

gy-
The remaining azimuthal integration is done by shifting t
integration variable tou5f2fs , using

cosf5cosu cosfs2sinu sinfs ,

sinf5sinu cosfs1cosu sinfs ~A6!

in the numeratorMmn, and exploiting the formula

E
2p

p du

2p

1

~12v' cosu!n
5

1

~12v'
2 !n/2

Pn21S 1

A12v'
2 D

5g'
n Pn21~g'!, ~A7!

where thePn are Legendre polynomials. We need

g'
2 P1~g'!5g'

3 , g'
3 P2~g'!5g'

5 ~11 1
2 v'

2 !,

g'
4 P3~g'!5g'

7 ~11 3
2 v'

2 !. ~A8!

M00, M035M30, and M33 have nof dependence and th
corresponding angular integrals thus give
E
2p

p df

2p

1

@12v' cos~f2fs!#
4

5E
2p

p du

2p

1

@12v' cosu#4
5g'

4 P3~g'!5g'
7 S 11

3

2
v'

2 D .

~A9!

For M015M10 andM135M31 we need

E
2p

p df

2p

cosf

@12v' cos~f2fs!#
4

5E
2p

p du

2p

cosu cosfs2sinu sinfs

~12v' cosu!4

5
cosfs

v'
E

2p

p du

2p

12~12v' cosu!

~12v' cosu!4

5
vx

v'
2 @g'

4 P3~g'!2g'
3 P2~g'!#5

1

2
g'

7 vx~41v'
2 !.

~A10!

In the last step on the first line we dropped the vanish
term;sinu and also added and subtracted a term 1/v' in the
numerator. In the second line we used cosfs5vx /v' . For the
remaining components we proceed similarly. The ener
momentum tensor thus takes the form
Tmn5
t0

t
ng

p2T4

60
g'

2S ~11 3
2 v'

2 !cosh2h 1
2 vx~41v'

2 !coshh 1
2 vy~41v'

2 !coshh ~11 3
2 v'

2 !coshh sinhh

1
2 vx~41v'

2 !coshh 1
2 ~114vx

22vy
2! 5

2 vxvy
1
2 vx~41v'

2 !sinhh

1
2 vy~41v'

2 !coshh 5
2 vxvy

1
2 ~12vx

214vy
2! 1

2 vy~41v'
2 !sinhh

~11 3
2 v'

2 !coshh sinhh 1
2 vx~41v'

2 !coshh 1
2 vy~41v'

2 !sinhh ~11 3
2 v'

2 !sinh2h

D .
7-11
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Contracting this result once with each of the vectorsum,nm,
andmm we obtain

Tmnun5
t0

t
ng

p2T4

60
g'

3S ~12 1
2 v'

2 2 1
2 v'

4 !coshh

3
2 vx~12v'

2 !

3
2 vy~12v'

2 !

~12 1
2 v'

2 2 1
2 v'

4 !sinhh

D ,

Tmnmn52
t0

t
ng

p2T4

60
g'

3 S ~12v'
2 !v' coshh

vx~12v'
4 !/2v'

vy~12v'
4 !/2v'

~12v'
2 !v' sinhh

D ,

Tmnnn50. ~A12!

A second contraction then yields the coefficientsA throughH
in Eq. ~2.19! as given in Eqs.~2.22!–~2.27!.

APPENDIX B: THE SMALL TRANSVERSE MOMENTUM
LIMIT OF ELLIPTIC FLOW

In this appendix we derive the small-k' limit of the ellip-
tic flow coefficientv2 for TTHM and HDM, for massive and
massless particles. Suppressing the impact-parameter de
dence which is irrelevant here, we write Eq.~5.6! in the form

v2~k'!5
N
D , ~B1!

where the numeratorN and denominatorD are obtained
from the Cooper-Frye formula Eq.~5.1!. For massive par-
ticles we must generalize Eq.~5.3! by writing the first term
asm' cosh(y2h) and use

k•u5g'„m' cosh~y2h!2k'•v'…. ~B2!

For the TTHM the distribution function is given by Eq
~2.12!, and we obtain for particles at midrapidityy50

HN
DJ 5

ngt0

~2p!2E d2x'

g'
E

2`

`

dhd~h!HNf

Df
J , ~B3!

where

HNf

Df
J 5E

2p

p df

2p H cos~2f!

1 J m' coshh2k'•“'t f

eg'(m' coshh2k'•v')/T21
.

~B4!

Hereg' andt f are functions of the position in the transver
plane,g'5g'(x') andt f5t f(x'). For the HDM we instead
use Eq.~3.1! and get
01490
en-

HN
DJ 5

ng

~2p!2E d2x't fE
2`

`

dhHNf

Df
J . ~B5!

The main difference~except for the different weighting o
the integration over the transverse planed2x'5rdrdfs) is
the nontrivialh integration in the HDM case.

1. Massive particles

For nonzero rest mass,mÞ0, we can expand in both
cases thef integrand for smallk' . Keeping only terms up
to first order ink' we find

HNf

Df
J '

m coshh

eg'm coshh/T21
E

2p

p df

2p H cos~2f!

1 J
3S 12

k'•“'t f

m coshh D S 11
k'•v'

T

g'

12e2g'm coshh/TD .

~B6!

Higher orders ofk' come with higher inverse powers ofT or
m coshh; the correspondingh integrals thus are all finite
~trivially so in the TTHM!, and thek' expansion is well
behaved.

As in Appendix A we write k'•v'5k'v' cos(f2fs)
[k'v' cosu and use2p<u<p as integration variable
Then, using Eq.~A6!,

k̂'•“'t f5~] rt f!cosu1~]ft f!sinu, ~B7!

where ] rt f5 v̂'•“'t f and ]ft f5 ẑ•( v̂'3“'t f). Here ẑ is

the unit vector along the beam direction, andv̂' coincides

with the radial unit vector,v̂'5(cosfs, sinfs). We also need

cos~2f!5cos~2fs!~cos2u2sin2u!22 sin~2fs!sinu cosu.
~B8!

After these manipulations the angular integrations in E
~B6! are easily performed. Due to symmetric integration ov
the full circle, only terms containing even powers of cosu
and/or sinu survive. We find

Nf5O~k'
2 !, Df5a1bk'1O~k'

2 !, ~B9!
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wherea and b are integrable functions ofx' and h. As a
result,for massive particlesv2(k')5O(k'

2 ), i.e., the elliptic
flow coefficient vanishes with zero slope whenk'→0, as
first observed by Danielewicz@19#.

2. Massless bosons in the TTHM

For massless bosons aty50 the angular integralsNf ,
Df in Eq. ~B4! reduce to

HNf

Df
J 5

T

g'
E

2p

p df

2p H cos~2f!

1 J 12
k̂'•“'t f

coshh

12
k̂'•v'

coshh

3

g'k'

T
~coshh2 k̂'•v'!

eg'k' /T(coshh2 k̂'•v')21
. ~B10!

We can try to expand the last factor for smallk' by using

x

ex21
512

x

2
1O~x2!. ~B11!

However, since in this expression the expansion paramet
x5g'k' /T(coshh2k̂'•v'), each additional power ofk'

brings in another factor coshh. This is no problem for the
TTHM with its factor d(h) under theh integral, but for the
HDM the h integrals of the expansion coefficients diverg
rendering the expansion meaningless. For the HDM thus
h integration must be performedbeforewe expand for small
k' ~see the following section!.

For the TTHM, on the other hand, we can continue alo
this direction. Using the same manipulations as in the p
ceding section, we find up to linear order ink'

HNf

Df
J '

T

g'
E

2p

p du

2p H cos~2fs!cos~2u!2sin~2fs!sin~2u!

1 J
3

12~] rt f!cosu2~]ft f!sinu

12v' cosu

3S 12
g'k'

2T
~12v' cosu! D . ~B12!

We use Eq.~A7! to derive the following table of integrals:

E
2p

p du

2p

1

12v' cosu
5g' ,

E
2p

p du

2p

cosu

12v' cosu
5

g'21

v'

,

E
2p

p du

2p

cos2u

12v' cosu
5

g'21

v'
2

,

01490
is

,
e

g
-

E
2p

p du

2p

sin2u

12v' cosu
5

g'21

g'v'
2

,

E
2p

p du

2p

cos~2u!

12v' cosu
5

1

g'
S g'21

v'
D 2

,

E
2p

p du

2p

sin2u cosu

12v' cosu
5

1

2v'
S g'21

g'v'
D 2

,

E
2p

p du

2p

cos~2u!cosu

12v' cosu
5

1

g'v'
S g'21

v'
D 2

, ~B13!

and find

Nf5TS g'21

g'v'
D 2Fcos~2fs!S 12

] rt f

v'
D1sin~2fs!

]ft f

g'v'
G

1O~k'
2 !,

Df5TS 12
g'21

g'v'

~] rt f! D2
k'

2
1O~k'

2 !. ~B14!

Now both the numerator and denominator approach nonz
constants ask'→0. Since the fireball center freezes out lat
than its edge, the term;(] rt f), after integration over the
transverse plane, contributes with a negative sign, and
k'-independent first terms inNf and Df are correspond-
ingly positive. As a result, the small-k' expansion of the
elliptic flow coefficient takes the form

v2~k'!5
N
D 5

a

12bk'

1O~k'
2 !5a1abk'1O~k'

2 !,

~B15!

wherea and b are positive constants arising from the int
gration over the transverse profiles of the freeze-out time
flow velocity. Thus, ask'→0, v2 approaches a positive con
stant value with nonzero positive slope, as confirmed
Figs. 7–9.

3. Massless bosons from the HDM

In the last step we discuss the corresponding limit
massless bosons from the HDM, in order to understand
surprising behavior shown in the upper part of Fig. 9.
already mentioned, in this case theh integration must be
performedbefore expanding ink' . Doing this integration
first, we rewrite Eq.~B5! as
7-13



rm

nd

n

g
-

a-

-

he
tor
. 1

-

one

it

-

he
ep-

U. HEINZ AND S. M. H. WONG PHYSICAL REVIEW C66, 014907 ~2002!
HN
DJ 5

ng

~2p!2E rdrdfs

t f~r ,fs!

g'~r ,fs!

3E
2p

p du

2p H cos~2fs!cos~2u!2sin~2fs!sin~2u!

1 J
3E

2`

`

dh
j~coshh2 k̂'•“'t f!

ej(coshh2 k̂'•v')21
, ~B16!

where all the dependence on the magnitude ofk' is hidden
in the variable

j5
g'k'

T
. ~B17!

Let us denote the result of theh integral byI h . Expanding
the Bose-Einstein distribution in a power series and perfo
ing theh integration term by term we find

I h5j (
n51

`

env'j cosuE
2`

`

dhe2nj coshh

3@coshh2~] rt f!cosu2~]ft f!sinu#

52j (
n51

`

env'j cosu$K1~nj!2@cosu~] rt f!

1sinu~]ft f!#K0~nj!%, ~B18!

where theKn are modified Bessel functions of the seco
kind. The integration over the momentum-space angleu can
now be performed, too, yielding modified Bessel functio
of the first kindI n ,

E
2p

p du

2p
cos~nu!ez cosu5I n~z!, ~B19!

where z5nv'j. After some simple manipulations usin
trigonometric identities we find for the elliptic flow coeffi
cient

v2~k'!5

(
n51

` E rdrdfs

t f~r ,fs!

g'~r ,fs!
Nn~r ,fs ;k'!

(
n51

` E rdrdfs

t f~r ,fs!

g'~r ,fs!
Dn~r ,fs ;k'!

,

~B20!

where

Nn5cos~2fs!H jI 2~nv'j!K1~nj!2
] rt f

2
j@ I 1~nv'j!

1I 3~nv'j!#K0~nj!J 1sin~2fs!
]ft f

2
j@ I 1~nv'j!

2I 3~nv'j!#K0~nj!,
01490
-

s

Dn5jI 0~nv'j!K1~nj!2~] rt f!jI 1~nv'j!K0~nj!.
~B21!

These expressions generalize the result given in@7# to the
general case of a freeze-out timet f , which depends on the
transverse positionx' .

We can now study the small-momentum limit ofv2 by
letting j→0. Let us first consider the Boltzmann approxim
tion that corresponds to keeping only the termsN1 andD1 in
Eq. ~B20!. Using the small-j expansions of the Bessel func
tions one finds that in this approximation

lim
k'→0

v2
Boltz~k'!;

k'
2

T2
ln

k'

T
. ~B22!

For massless Boltzmann particles, the elliptic flow from t
HDM thus goes to zero with zero slope, but by a fac
ln(k' /T) more slowly than for massive particles, see Sec
of Appendix B.

For bosons we must sum over alln in Eq. ~B20!. For k'

→0, i.e.,j→0, the sum overn becomes the discrete repre
sentation of an integral: defining

f v'
~z![I n~v'z!Km~z!, ~B23!

we have

j (
n51

`

I n~nv'z!Km~nz!5j (
n51

`

f v'
~nz!→E

j/2

`

f v'
~z!dz.

~B24!

By expanding the Bessel functions for large arguments
sees that for largez

f v'
~z!'

1

2Av'z
e2(12v')z, ~B25!

such that the integral in Eq.~B24! clearly converges at the
upper end. Thek' dependence ofv2 can now be extracted by
studying the dependence of this integral on its lower lim
j/25g'k'/2T. To do so we employ the following trick: We
split the integral at an arbitrary intermediate scalel,

E
j/2

`

f v'
~z!dz5E

j/2

l

f v'
~z!dz1E

l

`

f v'
~z!dz

5E
j/2

l

f v'
~z!dz1F~l;v'!, ~B26!

whereF(l;v') is a finite number whose dependence onl
cancels against thel dependence of the first integral, irre
spective of how we choosel. By taking j/2,l!1 we can
evaluate the first integral analytically by making use of t
expansion of the Bessel functions for small arguments, ke
ing only the leading terms. In the limitj→0 we find in this
way
7-14
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E
j/2

l

I 2~v'z!K1~z!dz→
l2v'

2

16
,

E
j/2

l

I 1~v'z!K0~z!dz→ v'

16
j2 ln~aj!1C~l!,

E
j/2

l

I 3~v'z!K0~z!dz→0,

E
j/2

l

I 0~v'z!K1~z!dz→ ln
2l

j
1C8~l!, ~B27!
ys
.

A

p
t a

01490
wherea is a l-independent constant whileC,C8 depend on
l but combine with the corresponding constantsF(l;v') to
finite, l-independent constants. Inserting these results
Eqs.~B20! and ~B21! we finally obtain

lim
k' /T→0

v2~k'!5
const

ln
T

k'

, ~B28!

which approaches zero with infinite slope. This is exactly
behavior seen in the upper panel of Fig. 9 for massl
bosons.
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