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Elliptic flow from a transversally thermalized fireball
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The agreement of elliptic flow data at RHIC at central rapidity with the hydrodynamic model has led to the
conclusion of very rapid thermalization. This conclusion is based on the intuitive argument that hydrodynam-
ics, which assumes instantaneous local thermalization, produces the largest possible elliptic flow values and
that the data seem to saturate this limit. We here investigate the question whether incompletely thermalized
viscous systems may actually produce more elliptic flow than ideal hydrodynamics. Motivated by the ex-
tremely fast primordial longitudinal expansion of the reaction zone, we investigate a toy model that exhibits
thermalization only in the transverse directions but undergoes collisionless free-streaming expansion in the
longitudinal direction. For collisions at RHIC energies, elliptic flow results from the model are compared with
those from hydrodynamics. With the final particle yield &nddistribution fixed, the transversally thermalized
model is shown not to be able to produce the measured amount of elliptic flow. This investigation provides
further support for very rapid local kinetic equilibration at RHIC. It also yields interesting novel results for the
elliptic flow of massless particles such as direct photons.
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[. INTRODUCTION transverse momentum spectra. It is, at least in principle, con-
ceivable that this could also lead, at fixed radial flow, to
Recently the STAR collaboration showgti-3] that the larger anisotropies of the transverse collective flow. If this
k, and centrality dependence of the measured elliptic flowwere indeed the case and, at fixed slope of the angle-
coefficientv, of pions and protons at the Relativistic Heavy averaged spectra, larger valuesvefcould be generated in
lon Collider (RHIC) largely agreed with those generated this way than within the usual hydrodynamic, the early ther-
from the hydrodynamic model simulation of heavy ion col- malization argument would break down since the RHIC data
lisions[4—7]. This was subsequently confirmed by data from[1—3] would no longer saturate the theoretical prediction
the PHENIX[8] and PHOBOY9] collaborationsv, is the  from such a model.
second coefficient of an azimuthal Fourier expansion of the To explore this hypothetical possibility, we study in this
transverse momentum spectrum around the beam[&Ris paper a toy model which assumes that, at high collision en-
and, for collisions between identical nuclei, is the lowestergies, during the earliest collision stages the longitudinal
nonzero anisotropic flow coefficient at midrapidity. Given momenta of the produced particles do not thermalize, but
that the main prerequisite of the hydrodynamic model isthat the strong initial longitudinal expansion is instead domi-
complete local thermal equilibrium, which requires very in- nated by collisionless free-streaming. The initial transverse
tense rescattering among the matter constituents, it was amomenta are much smaller and assumed to thermalize
gued that hydrodynamics should give the largest possiblguickly. This results in a system with local transverse, but
elliptic flow, and the observation that the data saturate theero longitudinal pressure. Due to the masslessness of the
hydrodynamic limit was taken as evidence that thermalizapartons created in the reaction zone the trace of the energy
tion must be very fast at RHIC for central and semicentralmomentum tensor vanishes; in the absence of longitudinal
collisions[6,7,11. pressureP|, the transverse pressuPe must thus be related
Elliptic flow requires reinteractions within the produced to the initial energy densitg =T by e=2P, (instead of
matter as a mechanism for transferring the initial spatial dethe usuale =3P). This results in a much stiffer equation of
formation of the reaction zone in noncentral collisions ontostate for the transverse dynamisge Sec. Il B giving more
momentum space. It is thus plausible to expect that the larglow and possibly stronger flow anisotropies. Of course, if
est elliptic flow signal is produced in the hydrodynamicthe transverse momenta thermalize, the longitudinal mo-
limit, i.e., in the limit of infinite rescattering ratd$,7,11]; menta should do so eventually, too. We assume in our model
however, a proof for this hypothesis has not yet been foundthat when this happens the flow anisotropies have already
In hydrodynamics, collective flow is generated by pressurealmost reached their asymptotic valyég).
gradients, and flow anisotropies such as elliptic flow require  Similar to the hydrodynamic simulatiorig—7], we as-
anisotropic pressure gradients in the plane transverse to tlsime that the longitudinal free-streaming dynamics is boost
beam direction. The longitudinal pressure plays a less visiblenvariant[14] and correspondingly concentrate on the central
role: the work done by the longitudinal pressure reduces theapidity region. Starting from a kinetic description of the
transverse energyE;/dy and thereby, for given initial con- longitudinally free streaming but transversally thermalized
ditions for the energy density deposited in the reaction zonegluonic system[which we call “transversally thermalized
the amount of transverse flow at freeze-out. If there were nonodel” (TTHM)], we derive a set of macroscopic evolution
longitudinal pressure, more of the initially deposited energyequationg TTHM equation$ which we solve with appropri-
would go into the transverse directions, leading to flatterate initial conditions. The impact-parameter dependence of
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the initial conditions is handled in the same way as in thQNhere the dependence Bfon on|y kL and the difference
hydrodynamic simulations. When comparing our TTHM so-,, —y results from the requirement of longitudinal boost in-

lutions to those from the ideal hydrodynamic moddDM)  yariance. We implement transverse thermalization by the an-
we retune the initial conditions in such a way that for centralggt,

collisions =0 fm) roughly the same multiplicities and
spectral slopes at midrapidity are obtained. We then compare

. . ~ 7oK 1
the momentum-space anisotropy in the two approaches, h(k, ,x, ,n—y,r)zﬁcosf( ”_V)W'
as a function of transverse momentiémand impact param- YL € -1
eterb. (2.8

where u#= vy, (coshy,v, , sinh#) is the flow vector with
Bjorken longitudinal flow velocity ,= tanh# [14] and trans-
verse flow velocity v, =v, (x, ,7) (y '=vV1-0v%). T
A. The phase-space distribution function =T(x, ,7) is the temperature characterizing the thermalized

We consider a gluon dominated system at a short timdransverse momentum spectrum. In the local rest frénsea
after nuclear contact. We assume that at that time the tranéunction of the rest frame coordinate’ and 7* =t*, which
verse gluon momenta are already thermalized but that thafter the standarfll5] successive transverse and longitudinal
system is still free streaming along the beam direction. Th&00sts to the laboratory frame, with andv,=tanhz, re-
system is required to possess longitudinal boost invarianc&pectively, are related to the laboratory variables by
reflecting a boost-invariant primary-particle production
mechanisn{14]. For the easiest implementation we assumet™ = y.(t coshp—zsinhnp—v, X, )=y, (7—V, X, )=U"X,

1. CONSTRUCTING A TRANSVERSALLY THERMALIZED
SYSTEM

that the collision energy is so high that the colliding nuclei (2.9
are Lorentz contracted to two infinitesimally thin sheetz in
direction and that all produced particles point backztet X7 = v.[X v, (tcoshy—2zsinhy)]
=0. Their longitudinal momenta and coordinates thus satisfy _ _
z=u,t or koz=k,t where u,=k,/k,. This automatically =y (Xymon=-mex, (2.10
identifies[14] the rapidity
XT =X - (2.11
1 [kot+k,
y= E'n( ko— K, (2.3) The additional| and_L subscripts denote the components of

X, parallel and perpendicular te, , respectively, and the
of the produced particles with their space-time rapidity vectorm* is defined in Eq(2.195 below. The sequence of
boosts described here agrees with the standard chbie

1 [t+z and gives the simplest structure for the set of four-vectors
= Eln t—z/) (22 heeded for the decomposition of the energy momentum ten-
sor (see Sec. Il B As one can see from Eq&.9—-(2.11),
We thus make the ansatz the dependence of on x¥ andt* in the local rest frame
_ translates into a dependence xn and 7 in the laboratory
f(Kk,Xx,t)=d(koz— Kk t)h(k,x,t). (2.3 frame.

o o - By virtue of the factors( »—Yy), the argument of the Bose
Longitudinal free streaming is implemented by the conditiongistripbution in Eq.(2.8) reduces in the local rest frame ko
-u=k, , showing explicitly that the system is only transver-
(koi_i_kzi)f(kyx,t)zo. (2.4) sally thermalized. Combining Eq$2.7) and (2.8) and ex-
ot Iz ploiting the & function, the distribution function simplifies to

Since thes-function factor solves this equation trivially, this 7o

implies a constraint foh. The latter is most conveniently f(kox,t)=—o(n=y)h(k, %, 1),
expressed by using an alternate coordinate systesrhere-

after make explicit use of the masslessness of the produced

gluon degrees of freedom, by setting = \m?+ kl2—>kl), h(k, X, ,t)= i
! ! b2 ek-u/T_l :

(2.12

t=rcoshy, z=r7sinhy, (2.5
. In the new coordinated, satisfies the relativistic transport
ko=k, coshy, k,=k, sinhy. (2.6)  equation

In these coordinates the ansatz E2}3) becomes

o(n—y) -
mh(kj_ WXL aﬂ_y,T), (27)

J k. d
k, cosr(r;—y)z_—7S|nr(77—y)0—77+kl-vl f(k,x,t)

f(k,x,t)= =C(k,x,t), (2.13
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where the collision ternC is responsible for keeping the ergy and momentum. In terms of the distribution functfpn
transverse momenta thermalized while not changing any ahe energy-momentum tensor is given by

the longitudinal momenta. Due to the implemented free-
streaming properties we have d®k  k*K”

TMV(x,t)=ng —(277)3 0

f(k,xt), (218

d 19\7
—Yy)-——si -y)——||—38(n—y)|=0
(cosf{n y) ar sinh(z =) T (977> ( To (7 y)) wherevy=2X8=16 is the degeneracy factor for color and
) o ~helicity of the gluons. From the preceding section we know
such that Eq(2.13 reduces to the following kinetic equation that f(k,x,t) depends on the three four-vectaré, n“, and

for the transverse distribution function: m“. The most general form of the tensbt” thus reads

T#’=Au*u’+Bn*n”+ Cm*m”+ D (u#n”+n*u”)

kiaikaJVL)h(kL X, 1) =Ck,xt). (2.19
T +F(u*m’+m*u”)+ G(n*m”+m*n”)+Hg*".
The space-time evolution df(k, ,x, ,7) is entirely due to (2.19
the collisions and collective transverse expansion, but decou-

pled from the boost invariant longitudinal expansion. TheSince the gluons are massless, the trac&“dfvanishes,
collisions must be sufficiently dominant over the transverse

expansion to maintain the equilibrium form btk, ,x, ,7) T,=A-B-C+4H=0. (220

given above.. . . - In the local rest frame we have
We are aiming at a macroscopic description on the basis
of the differential conservation laws for energy and momen- *=A+H=s¢,
tum, similar to hydrodynamics. This requires the construc-
tion of T#” from the distribution functions. Due to the dif- Th=T}=—-H=P,,
ferent microscopic physics in the longitudinal and transverse
directions implemented in our model, there are now more T =B-H=P,, (2.21)

vectors required to construct a complete set of tensors with
respect to whiciT#” should be decomposed. The set of four-wheree is the energy density ané, and P, are the trans-

vector fields that we need are verse and longitudinal pressures, respectively. In a general
frame, all the Lorentz scalar coefficients in £g8.19 can be
u*(x, ,m,7)= vy, (coshnp,v, , sinhzy), found by contractingr” with all pairwise combinations of
) the four-vectorau#, n#, andm*. We will denote these con-
n“(x, ,»,7)=(sinh»,0,0, coshy), tractions by (Tn)=u,T#"n,,, etc. The details of this calcu-

A lation are given in Appendix A where we find
m*(x, ,n,7)=7,(v, coshp,v, ,v, sinhy). (2.19H

214
T wT
They arise from the following local rest frame vectors by (UTW=A+H= T YeTe0 " E (2.22
successive boosts with andv, as described above:
To T4 v,
u*(x, ,n,7)=(1,0,0,0, (uTm=—-F=-— e, (2.23

T 2

n“(x, ,7,7)=(0,00,3, o T 1

(MTM=C-H=—vy—5==5¢, (2.29
m(X, ,7,7)=(0V,,0). (2.16 T 120 2
One is timelike,u?=1, while the other two are spacelike, (uTn=-D=0, (229
n2=m2:—1._They are mutually orthogonals-n=u-m (NTM)=B—-H=0=P,, (2.26
=n-m=0. With these vectors, the distribution can be ex-
pressed in a form that is explicitly boost invariant under (NTm)=G=0. (2.27)
longitudinal boosts,
From this and Eq(2.21) we see that
79 O(k-n)(k-u—v k-m)
f(k,x,t)=7 : (2.17 B=H=-P,, A=¢+P, (2.28

ek-u/T_ 1
and the tracelessness condition gives
B. Energy-momentum tensor and conservation laws

1
Based on the structure of E(R.17) for the phase-space etP,+P, T &7 3P, 5 &7 P,=0. (229
distribution function we want to derive a macroscopic set of
dynamical equations based on the conservation laws for erfFherefore the equation of state is
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e=2P, . (2.30

Combining this with the expression fom(Tm) one findsC

=0. The expression for the energy momentum tensor is then

T#=(e+P,)uku’—P, n“n"—P, g

+P v, (U*m”+m“u”).

(2.31

For completeness and later use we also give the expressiq;nl andv,

for the gluon density in the local comoving frame,

10 LT
ng—u.]_ Tvg 2772 , (2.32
wherej#(x) is the gluon number current,
j“(Xx,t) J dk I(Mf(k t) (2.33
X,)y=v, | ——= —=f(k,xt). .
: ) 2m?d ke
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gTo T
_(?T +T+VLTJ :0, (24@
gTo T
St —+viTi=0. (2.4)

Using the equation of stai@.30 to eliminatee, these three
equations completely determine the three unknown functions
Since gluons possess no conserved charges, no
further current conservation laws need to be considered.

IIl. HYDRODYNAMICS

For later comparison we here shortly review the parallel
procedure for ideal hydrodynamics based on a locally fully
thermalized phase-space distribution function

f(k,x,t)= (3.9
e

k-u/T_ 1 '

We now proceed to derive the macroscopic evolution equa-

tions. We first rewrite the conservation laws

In this case the energy-momentum tensor has the ideal fluid
decomposition

a,T*=0 (2.39
. ) TH'=(e+P)u*u’—Pg*’, (3.2
in (n,7) coordinates
JTOh 1 g7 ST 1 4Tk and for a Iongi_tudinally boost-invariqnt systeuwt hasf the_
coshy += )—sinhn( 4= +Vil-|-m same form as in Eq2.15. The equation of state is in this
aT T Jn aT T dn case
=0, (2.39 72T
' o s=3P=ng, (3.3
where the sum ovdrgoes over the two transverse directions.
When writing these out explicitly in terms &f, P, , and the T ,
longitudinal and transverse flow velocities, using E@s31) and the gluon density in the local rest frame is
and (2.16), one finds that all explicit dependence gndis- 3
; ) _— " : (3T
appears. Boost-invariant initial conditions (i.e. Ng=vg ) (3.9
n-independent initial expressions ferandP, and the struc- w?
ture (2.16 for the vectorau®,n*, andm*) are thus preserved ]
by the macroscopic evolution equations. Note that the energy per particle
For the further analysis we can thus concentrate on the 4
dynamics in the central transverse planeaty=0. There £ W_T~2.7-|- (3.5
we have ng 304(3)
Jut agrees exactly with the corresponding expression in the
u* =y, (1v.,0, ——=7.(0,00.3, (239  TTHM, see Eqs(2.22 and(2.32.
7 The pressure is now locally isotropic. With longitudinally
ne boost-invariant g-independentinitial conditions fore and
n*#=(0,0,0,2, —=(1,0,0,0, (2.37 P the ansatz Eq¢(2.16) for the flow velocity is preserved in
a7 time by the equations of motiof, T#”=0 [14], and the lat-
“ ter become
p= v O)alz (Ov,,v,). (2.39
me=y, (v vy, oy YOV ,0,). . gTo  TO0O . p
P +T+VLTJ === (3.6
Using the# independence of andP; we find
gT~ . &Toi TOi o
=yf(8+pl)(§0M+vL5|#)_pL50M+yfpi(sz&u0 W+T+VJ‘TJ =0. (3.7

an
+(1+vd)o} 8#) =T u+TOsH=T%  (2.39

and the equations of motiaf2.35 atz= »=0 reduce to

The main difference between these hydrodynamical equa-
tions and our TTHM toy model equatio®.40 and(2.41) is
the pressure term on the right hand side of @) which is
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absent in Eq(2.40. It indicates the longitudinal work done (U8 V2N o o B L B
by the isotropic pressure in hydrodynamics; in the TTHM e ~0.6 GeV/fm’® 4
model there is no longitudinal pressure that could do work in 0.08 | )
the longitudinal direction. =
\;N - TTHM/ .~
IV. INITIAL CONDITIONS 0.04 = B
We consider Ad-Au collisions at RHIC energies. The 'f/ IHDI\;I L
initial energy density distribution in the transverse plane as a 0.12 —
function of impact parametdr is taken to be proportional to " e=0.8 GeV/fm’ .
the density of binary nucleon collisions in the transverse 0.08 -
plane, calculated from the normalized nuclear thickness ° |
function, 5
0.04 —
TA(XL)=f pa(X, ,2)dz, deXLTA(XL)=A. (4.9 AN
0.000 2 4 6 8 10 12
For the nuclear number density we took the Woods-Saxon b (fm)
parametrization
FIG. 1. v, as a function of impact parameter at two freeze-out
Po energy densitieg;,. The solid lines are from our TTHM model
Pa(X )= m (4.2 while the dashed lines are from hydrodynamic simulations with

identical initial conditions.

with Ro=1.14A" fm and £=0.54 fm. For collisions be- . .

tween the nuclei of masses and B the number of binary 9”2 ,(X) is the four-vector integral measure normal to the

nucleon collisions per unit area in the transverse plane is hypersurface, and in the TTHM cabgx, k) is a transversally
thermalized distribution function of the forrt2.12, with

dN(x, ,b) flow velocity u* evaluated along the freeze-out hypersurface
5 =ooTa(X ) Ta(b=X%,), (4.3 3 and temperaturd@ calculated via Eq(2.22 from the en-
d*x, ergy density onX. Longitudinal boost invariance dictates
freeze-out along a surface of fixed longitudinal proper time

where 0o=40 mb is the total inelastic nucleon-nucleon .
{x,), and we can write

cross section. We assume that the generated energy density’f
proportional to this density. We performed two classes of

calculations: in the first class we used the same maximum
initial energy density as the authors of Relf§,7] [eo=€y  This gives

=23.0 GeV/int for central =0 fm)] collisions at an ini-

tial time 7=0.6 fm/c) in order to compare the HDM and k-d®%=(k, cosy—»)—k, -V, r)rdnd?x, . (5.3
TTHM results for similar initial conditions. In the second

class of simulations we retuned the initial conditions inOf course, thex integration is trivial due to the facta#( 7
TTHM such that the same multiplicity densigN/dy and ~ —Y) in the distribution function in Eq(2.12).

the same slope for the transverse momentum spectrum at

midrapidity as in HDM is obtained. Both sets of results will B. TTHM vs HDM for identical initial conditions

be discussed in the following section.

3, (X)=(7¢(x, )coshzy,x, ,7¢(x,)sinh7). (5.2

In Fig. 1 we compare results for the elliptic flow from the
TTHM and HDM models for identical initial conditions,

V. ELLIPTIC FLOW IN A TRANSVERSALLY taken from[6,7]. Since the temperature paramefehas a
THERMALIZED SYSTEM different meaning in our model than usuahnly the trans-
A. Freeze-out prescription verse momenta are thermalizedve enforce “freeze-out”

h | , he 1 (i.e., we stop the dynamical evolution and calculate the spec-
Just as the HDM, our TTHM model describes the timey, 5ng momentum space anisotropiatong a surface of
evolution of macroscopic thermodynamic quantities thatyqneran energy densit;. We show results for two values
must be converted to particle spectra before one can compayg ;e parameter both of which lie in the quark-hadron tran-

with experiments. In order to do so we use the well-knowng;iiq, region. Since hadronization certainly involves longitu-
Cooper-Frye prescriptioflL6] that gives the particle SPec- gina| momentum exchange, it will violate our assumption of

trum in terms of an integral over the phase-space d'St”bunorlbngitudinal free-streaming, and we should definitely not fol-
function along a so-called freeze-out hypersurfa¢g), low the TTHM dynamics beyond the hadronization point. Of
course, by truncating the dynamics at such high freeze-out
Ed_N= dN __ Y J k-d33 (x)F(x,k). energy densities we forfeit the possibility of comparing our
dk dykdk dé (24)%)s ' results directly with experiment. However, a large fraction of
(5.2  the elliptic flow should already have developed at this point
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10* s~ T T T T ] TABLE |. Rapidity densities ay=0 and final timesr; for cen-
. &06GeV/m 3 tral collisions with identical initial conditiongsee text in the
10° - - TTHM and HDM simulations.

" 10’ - : TTHM HDM

@ 10 HDM\“\; g (GeV/fm®)  dNidy = (fm/c)  dN/dy = (fm/c)
4 3

% g 1 | 1 | 1 | L] 0.6 780 6.95 944 5.97

{ 18 S =08 GeV/m’ 0.8 780 6.48 940 5.36

=

=]

’
Lol 1l

the 7¢ values given in Table I, the TTHM freeze-out tempera-

10 ture is about a factor 2 higher than the HDM one. However,
10" HDM " the inverse slopes of the spectra shown in Fig. 2 differ by
oF Ll a1 3 more than this factor 2the difference is closer to a factor
10" 05 1 15 2 2.5-2.6. This implies that TTHM also creates somewhat
k, (GeV) stronger radial flow than HDM which, in view of its harder
equation of state, is not unexpected.
FIG. 2. Gluonk, distribution for central collisionsi(=0 fm) The initial conditions for the hydrodynamic modéh

and two different values for the freeze-out energy density, for idenfarticular, the initial energy densityvere tuned6] to repro-
tical initial conditions. The solid lines are for our model while the duce the measured final multiplicity densitiésl.,/dy and
dashed lines are for hydrodynamics. spectral slopes in central AuAu collisions at RHIC; clearly,
with these same initial conditions, the transversally thermal-
[5,17], and we can still make a meaningful comparison be-ized model TTHM will no longer be anywhere close to these
tween the hydrodynamic evolution of a fully thermalized data. The larger, values from TTHM in Fig. 1 therefore
quark-gluon plasma and that of a longitudinally free-cannot be compared with the RHIC data, and the comparison
streaming gluonic system with only transverse thermalizawith HDM in Fig. 1 is misleading. For a meaningful com-
tion, by comparing the gluon spectra at this common “final” parison the initial conditions for TTHM should first be ad-
energy density;. justed in such a way that at least the multiplicity densities
Figure 1 shows , as a function of the impact parameter and spectral slopes for central collisions are similar in both
b. v,(b) =(cos(2))(b) is computed from thdk, -integrated models. This will be our next step.
gluon spectrum at freeze-out as Before doing so, let us shortly comment on the rapidity
densitiesdN/dy and collision durations listed in Table I. For

identical initial conditions, the TTHM gives considerably
J k.dk, d¢ coq2¢) dykldkld¢(b) lower multiplicity densities. This is mostly due to the higher
va(b)= aN freeze-out temperature in the TTHM, which implies that
f kﬂkﬂd)m(b) each gluon carries more energgee Eq(3.5)], so the same
yk dk, dé freeze-out energy density; translates into fewer gluons.
dN This argument overestimates the difference between the
f do cos(2¢)w(b) models, though; the actual difference is smaller since in the

- i (5.4  HDM the calculation ofdN/dy involves an integration over

J' dé dN (b) space-time rapidityy which can be interpreted as taking an
dydg average over fireballs with different flow rapidities#y and
correspondingly reduce@tedshifted effective temperatures
Figure 2 shows thatfor identical initial conditions the  T.4=T;/cosh@—y).
TTHM dynamics generateslarger momentum-space asym- Longitudinal boost invariance implies that the total trans-
metry v, than hydrodynamics. We also see thathas not verse energy per unit rapiditdE+/dy, is independent of.
yet fully saturated at these values &f; the reason for this Due to the absence of longitudinal pressure, no longitudinal
can be found in Table | which shows that, with the very hardwork is done in the TTHM andlE;/dy is a constant of
equation of state and initial conditions used here, the aboveotion. This is different from the HDM where work done by
values ofe¢ are reached quite early, before the initial spatialthe longitudinal pressure reducd&/dy with time. (Both
deformation has been fully eliminatésiee also Fig. 1 in Ref. statements were checked numericallfable | shows that,
[18]). within numerical accuracy, the gluon multiplicity per unit
The larger values of , from TTHM, however, come also rapidity, dN/dy, is also constant in time. While in ideal hy-
with much flatter transverse momentum spectra, as shown idrodynamic§HDM) this is a simple consequence of entropy
Fig. 2. Part of this flattening is due to a higher freeze-outconservation(for boost-invariant systemdS/dy is a con-
temperature in the TTHM. By comparing Eq®.22 and  stant of motion[14], and for massless particles the entropy
(3.3) one sees at the same energy densjtthe temperatures per particle is independent of temperajyiere is no such
in the two models are related B’va=(27f/ro)1’4Tf,H. With  simple reason for this observation in the TTHM which is far
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—_
Su
.

LPNRILY ~ 100 Y T

6 £70.6 GeV/fm’ ] VBN,
5 8 3[
o 2 0F
g4 2 F
= T o B
~ 3 M_'Z
[ r %IOE
2F T E
1f Z ot
o 1
L 10 E

0 0 05 1 1.5 2

k, (GeV)

FIG. 4. The gluork, distribution from hydrodynamic&dashed
line, with the parameters as given in the jeahd TTHM (other
lines). The TTHM curves correspond to the following sets of pa-
rameters. Dotted linerg=6 fm/c, g,=ey/15. Dot-dashed line:
T9=7 fmlc, e9=¢y/18. Solid line: 7=7.8 fmlc, eq=ey/20.
Heree,=23.0 GeV/fni is the initial central energy density far
=0 Au-+Au collisions in the HDM.

FIG. 3. The freeze-out timey(x,y) as a function of the trans-
verse coordinates andy, respectively, for a freeze-out energy den-
sity £,=0.6 GeV/fni. The solid (dashedl lines are for TTHM
(HDM), respectively. The upper set of curves is for central colli-
sions p=0 fm) where the freeze-out surface is azimuthally sym-
metric. The lower set of curves correspondbte7 fm where we
present cuts along theandy axes, as indicated, to show the spatial
azimuthal anisotropy at freeze-out. The impact parantetgoints
in x direction. tion of the reaction zone thus has not yet fully disappeared

when the dynamical evolution was stopped. This explains

from local equilibrium. Detailed checks revealed that, withinwhy the elliptic flow had not yet saturated, see Fig. 1 and
numerical accuracy, in the TTHM not only the transverseFig. 9 below.
energy per particleds+/N=(dE;/dy)/(dN/dy), but, in fact,
also the entird;, spectrum of the gluons is completely time-
independent.

If the system were transversally homogeneous and ex- Our TTHM model does not include the hadronization of
panded only longitudinally, this would not be surprising: in gluons and hence does not allow us to compute hadron spec-
the absence of transverse gradients the conservation law Eitig; hence we cannot directly compare the gluon multiplicity

C. Retuning the initial conditions for TTHM

(2.40 for T simplifies to densitydN/dy and theirk, distribution from TTHM ate; to
any data. However, the relation of these quantities to the
a(7T9O) observable hadron spectra after hadronization is not expected
E =0 5.9 o depend on their dynamical history prior to reaching the

freeze-out poink;. Thus, if we want to create TTHM solu-

with T%=¢ cost#. In TTHM a constant productr implies  tions which are likely to lead, after hadronization, to hadron
a constant temperatufsee Eq.(2.22], which, in the ab- spectra with similar normalization and shape as the data, we
sence of transverse flow, then leads to a time-independesan use the gluon rapidity densities akd spectra from
transverse momentum spectrum. In our case, however, thexisting hydrodynamic calculations with initial conditions
system expands in the transverse direction and cools. Ouhatweretuned to real data if6], evaluate them at the same
studies show that, in the longitudinal rest frame, the resultingyalue ofe¢ where we stop the TTHM evolution, and retune
loss in thermal transverse energy per particle is exactly conthe TTHM initial conditions such that they reproduce these
pensated by the gain in transverse collective motion energy; DM gluon spectra. With the TTHM spectra thus tied down
in a way that exactly preserves the shape of the transverge the final state in centralb&=0 fm) collisions from the
momentum distribution. Although one should think that thereHDM, we can then repeat our comparison of elliptic flow in
must be a simple reason for this intriguing behavior, we havéhe two models under more realistic boundary conditions.
not been able to find a simple analytical proof and can thus For the common decoupling point we chose in both
only present the numerical evidence. TTHM and HDM the values;=0.35 GeV/nt. This may

The longer freeze-out times in the TTHM simulatidssee  appear somewhat low for still using only gluon degrees of
Table ) are a reflection of the lack of longitudinal pressure.freedom[with an ideal gas equation of sta(EOS in the
In the HDM the pressure performs longitudinal work andHDM casd, but it has the advantage that then the hydrody-
thus causes a more rapid decrease of the energy density wittamic model with the ideal massless EOS used here pro-
time than in the TTHM. This is further elucidated in Fig. 3 duces an elliptic flow, of roughly the same magnitude as
where we show the freeze-out timgx,y) as a function of that obtained for pions in Ref6] using a more realistic
position in the transverse plane. One sees that, for identicalquation of state. Given the good agreement of those HDM
initial conditions, the HDM simulations lead to universally calulations with the datg6], we can thus pretend to be com-
earlier freeze-out. This figure also shows that for noncentrgbaring directly to data when comparing the TTHM results to
Pb+Pb collisions b=7 fm) the source at freeze-out is still our HDM reference.
larger in they direction perpendicular to the reaction plane  With this freeze-out energy density, our HDM reference
than in the reaction plane; the initial out-of-plane deforma-gives the gluork, (or m,) spectrum shown in Fig. 4, which
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o o . . FIG. 6. v, as a function of impact parameter from TTHiDIid)
FIG. 5. Variation of the gluork, distribution with various  anq HDM (dashedl simulations tuned to produce identical angle-

TTHM model parameters. The solid and dashed lines repeat thosg eraged spect@dN/dyk, dk, . The parameters and notations used
from Fig. 2 fore;=0.6 GeV/fnt for comparison. The dot-dashed here are the same as those in Fig. 4.

line is obtained by starting the system earlietat 0.1 fm/c. The
long-dashed line has a lower initial energy density £y/4. In each
case the remaining parameters are held fixed at the values used
Fig. 2.

I%rge reduction of by at least 1/15 is essential in TTHM to
obtain the much deeper HDM slope.

. . . D. Elliptic flow from TTHM with retuned initial conditions
integrates to a gluon rapidity density gt=0 of dN/dy ] . .

~942. Given the large difference between the HDM and Figure 6 again shows the impact-parameter dependence of
TTHM spectra for identical initial conditions shown in Fig. V2: Put now with retuned TTHM initial conditions as de-

2, it is perhaps not surprising that we found it rather difficult SCrioed in the preceding section. With the much lowgr
to reproduce the HDM spectrum within the TTHM: one forced upon us by the given slope of the filkal spectrum,

needs to find a way to considerably lower the radial fIOWthere is much less time to generate transverse flow. Figure 6

. o . shows that this leads not only to reduced radial flow, as re-
(since the freeze-out temperature is fixedapyand is much flected in the steeper single-particle spectrum for central col-
higher in TTHM than in HDM and at the same time increase b gle-p P

L . . lisions (see Fig. 4, but also cuts down on the elliptic flow,
the normalization of the spectrum in order to raibi/dy. which now remains significantly below the HDM level. As

There are e_ssentially only three parameters in TTHM tha{he latter is representative of the dd@11], we conclude
we can play withsq, 7o ande;. Examples of the effects of ha1 a model with only transversally thermalized momenta in
varying them are shown in Fig. 5. The lines from Fig. 2the early collision stages cannot produce as much elliptic
corresponding toe;=0.6 GeV/fn? are repeated here for fiow as required by experiment.
comparison. From Fig. 2 and Table | we learned already that |n order to further strengthen this argument let us look at
changinge; has no influence odN/dy and little effect on  thek, dependence af, and study(see Fig. 7
dN/dyk, dk, . This leaves us only with changes of the initial

conditionse, and 7. The dot-dashed curve in Fig. 5 shows f d cog2) dN(b)
that decreasing from 0.6 to 0.1 fm¢ goes in the wrong dyk dk, d¢
direction, by reducingiN/dy without having much effect on vo(k, ;h)= dN(D) (5.6)
the slope of thek, spectrum. Reducing the initial energy fd(ﬁ—

dyk, dk, d¢

densitye, by a factor of 4 produces the long-dashed line in
the figure. Due to the lower initial energy density there is less
time until freeze-out to produce radial flow, and the resultingas well as its impact-parameter-averagedhimum biag 1])
spectrum is steeper, as desired; unfortunately, its normalizasalue (see Fig. 8

tion dN/dy decreases, too. Combining the insights from

these two trial runs, we see that making the TTHM spectrum 0255 T T T T =
sufficiently steep requires still much smaller initial energy - ----HDM T
densities 5, combined with much larger starting timegfor 020 —THM T
the TTHM transverse dynamical evolution, in order to in- “loask S
creasedN/dy. This implies a long transverse thermalization ) - L]
time, which poses intrinsic consistency problems to be ad- e Pete
dressed later. 005k . = 7

Following this route, we find that the HDM gluon spec- e | p=4fmd
trum can be roughly reproduced with either one of the fol- 0 05 1 15 2
lowing three sets of parameters ;=6 fm/c with &g kL (GeV)

=gy/15, 7o=7 fm/c andeg=¢€y/18, or 1o=7.8 fm/c and

£0=60/20. The corresponding spectra are shown in Fig. 4. FIG. 7. v, as a function ofk, for two impact parameter@s
These parameter sets are not unique and the agreement witldicated from TTHM (solid) and HDM (dashedl simulations giv-
the HDM spectra is not perfect, but what is clear is that aing identical angle-averaged specttil/dyk, dk; .
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1.0
k, (GeV)

FIG. 8. Impact-parameter-averageslas a function ok, from
the two models. The dashed line is from HDM, the solid line from

TTHM with initial conditions tuned to produce the same angle-
averaged transverse momentum spectrum at the same vadye of

debf

dN(b)
fbdbjd"’dyk dk, dg

)
de cod24) ol dk dg d(k do

(5.7
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0.15

~20.10

> '0.05

0.00

FIG. 10.v, as a function ok, for massless and massive bosons
from the two models. The solid lines are for massless bosons while
the dashed and dot-dashed lines are for bosons with
=100 MeV andm=1 GeV, respectively.

We here select for our comparison with HDM one of the
above three sets of initial parameters for TTHM, namely,uyre 9 shows that with the hard equation of state for nonin-
To=7 fm/c andeo=e,/18, corresponding to the dot-dashed teracting massless gluons and RHIC-type initial conditions
line in Fig. 4. freeze-out actually happens before the momentum anisotropy
Figures 7 and 8 show that the slope ofv, is much  saturated17] (and before the initial spatial anisotropy has
lower than in the HDM. This is true not only for the impact- fully disappearefd This is even more true for the TTHM
parameter-averaged elliptic flow shown in Fig. 8, but holds(with its even stiffer EOS ofP, =1¢) than for the HDM
universally also for all impact parameters; two examples ar¢where P=1¢): the TTHM freezes out significantly earlier,

plotted in Fig. 7. Forvy(k,) from minimum bias events even though about the same amount of transverse flow is
accurate data were published in Refs—3], which follow  generated.

essentially the dashed HDM line in Fig. 8 and definitely
exclude our TTHM.

In Fig. 9 we show the time evolution of the momentum E. The low-k, limit of v,(k ) for massless particles

anisotropy{ 5] A careful inspection of Figs. 7 and 8 shows that at small
L
- transverse momenta the shape of khedifferential elliptic
(T 5.9 flow v,(k,) is different for TTHM and HDM. Figure 10
(T TV ' further shows that the small- behavior of the elliptic flow

coefficient differs for massive and massless bosons. In Ap-
where the angular brackets indicate an average over thgendix B we present a detailed analytical treatment of the
transverse plane. At freeze-out, this momentum anisotropy iémiting behavior ofv,(k,) for small transverse momenta.
translated into elliptic flovw ,, where the coefficient between For massive particles, the elliptic flow vanishes quadratically
the two variables depends on the particle rest mapsFig-  atk, —0,

vo(k,)=0(k?) (massive particles (5.9

0.16

0.12 going over to an almost linear rise at higher (which even-
tually turns over to saturate at,=1 ask, —o [7]). The
transition from the quadratic rise at lowy to the quasilinear
behavior at intermediatk, occurs aroundk, ~m. In detail

the transition between these regimes is complex and depends
on the ratiom/T of the rest mass to the freeze-out tempera-
ture (see Fig. 10 for particles withm/T<1 the elliptic ap-
proaches the curve for massless particles while the elliptic

flow of heavier particles withm/T>1 remains always sig-

w™0.08

0.04

0.00

T-1, (fm/c)

FIG. 9. Asymmetry measure, as a function of the duration of
the time evolution ab=7 fm with similar final particle spectra
from both models. Again the solid line is from TTHM and the
dashed line from HDM.

nificantly below that of massless particles.

For massless bosons, the singularity of the Bose distribu-
tion at zero momentum leads to a qualitative change in the
low-momentum limit of the elliptic flow. For the TTHM,
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which lacks a thermal spread of the longitudinal momentatem will start to evolve in the transverse directions, since
the elliptic flow of massless bosofigluons or photonsap-  nothing confines it. This preequilibrium transverse dynamics
proaches a positive constant with finite positive slope, will likely have a collective component affecting the trans-
verse momentum spectra, necessitating an even further shift
va(k,)=a+bk, +0O(k?) (TTHM, massless bosohs of the starting point for TTHM evolution.

(5.10 We have not followed this issue any further, since there is
also a severe problem when comparing the TTHM predic-
tions with the elliptic flow data, which in our opinion elimi-
nates it as a viable model. For the same radial flow, con-
strained by the slope of the single-particle spectra, TTHM
provides only about half as much elliptic flow as the hydro-

In the HDM, the longitudinal thermal momentum smearing
weakens the Bose singularity and causgso still vanish at
zero transverse momentum, albeit just barely sk as 0,
v,(k, ) vanishes with infinite slope,

const dynamical model and thus significantly less than that re-

vo(k, )= — (HDM, massless bosops (5.11) quired by the RHIC datf1-3,§. This is the central result
In— from the present study, and it strengthens the previously

k. made argumen6,11] that the large elliptic flow measured at

RHIC can only be reproduced by models that assume very
rapid thermalization of the momentum specinaall three

€dimensions Partial thermalization, such as the effectively
only two-dimensional thermalization in the TTHM model, is

not enough to generate the observed elliptic flow. This leaves
VI. CONCLUSIONS us with the continued challenge of identifying the micro-

We have tried to construct a macroscopic dynamical deSCOPIC mechanisms within QCD which can cause such rapid

scription of the fireball expansion in relativistic heavy-ion three-dimensional thermalization.

collisions, which relaxes the usual assumption of complete
local thermal equilibrium that underlies the popular and suc-

cessful hydrodynamical approach. This addresses, on a mac-

roscopic level, the observation that existing parton-based mi- g \W. thanks Peter Kolb for theoRTRAN code for calcu-
croscopic kinetic model§20—-22 seem unable to generate |ating the nuclear overlap function that was used to initialize
sufficiently fast thermalization to reach the hydrodynamicthe TTHM time evolution. This work was supported by the

limit. We have tested a toy model where transverse momentg s. Department of Energy under Contract No. DE-FG02-
are thermalized very quickly while the system is streamingy1ER41190.

freely in the longitudinal directiofi.e., without longitudinal
momentum transfér The initial longitudinal motion was as-

It would be interesting to verify this prediction of the hydro-
dynamic model for photons that are directly emitted from th
expanding fireball.
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sumed to be boost invariant, and the model preserves this APPENDIX A:

property dynamically at later times. DECOMPOSING THE ENERGY-MOMENTUM TENSOR
Starting from the kinetic transport equation, we derived - , .

the corresponding macroscopic equations of motioFHM ) To calculate the coefficients in the decomposition in Eq.

and solved them in parallel with the usual hydrodynamic(2-19 of the energy-momentum tensor we find it easiest to
(HDM) equations. Since our TTHM model is parton baseduSe the form qf Eq(2.12 for the cﬁstnbuuon functlon in Eq.
and lacks a description of hadronization, we decided to com(2-18. Assuming massless particlégluons, we write the
pare the two approaches just before the onset of hadronizRur-vectork” as

tion. To make phenomenologically meaningful comparisons
we used a HDM reference that had previously been shown to
yield a good description of RHIC data when allowed to
evolve until hadron freeze-out.

The TTHM 1turns out to have an extremely stiff equation e integrate oved3k/k,=dyk, dk, d¢ in Eq. (2.18 by first
of state, P, =3¢, which causes severe phenomenologicalysing the trivial  integration and then integrating ovier .

problems: in order to avoid the creation (_)f too mu_ch radialpfer integration overy the exponent of the Bose factor in
transverse flow, which would render the single-particle SPECE(. (2.12 reduces to

tra much flatter than observed, while preserving the total
multiplicity, we had to start the TTHM evolution very late, at

k*=k, (coshy, cos¢, sing, sinhy). (A1)

already quite low energy densities. This implies a very long k-u v k; N v K,
transverse thermalization time scénd, of course, aneven 7 — 7 (1=Ki-v)=—=—[1-v, cosé—¢y],
longer longitudinal ong While this cannota priori be ex- (A2)

cluded theoretically, it causes consistency problems with our

implementation which assumes that transverse collective dy-

namics sets in only after we start the TTHM evolutid®., where ¢— ¢ is the angle betweek, (azimuthal anglep)
only after thermalization This is not realistic: even before andv, (azimuthal angleps). Thek, integration is then eas-
complete thermalization of the transverse momenta the sysly done using
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J‘oo k?_dkL n'g(n'l' 1) (A3) Tar— To V 77'2T4 T dqs M~V
oeki—1 "1 T 9y 60 J-a27[1-v, cogp— o)l
(Ad)
In our casea=vy, [1—v, cos(—¢y /T andn=3, and the
relevant zeta function i§(4)= 7*/90. In this way we arrive
at with
costty cos¢ coshy  sing coshy  coshy sinhy
cos¢ coshy cos¢ cos¢sing  cose sinhy
M#Y = . . . . . . (A5)
sing coshy  cos¢ sing sirf¢ sing sinhy
coshysinhn  cos¢ sinhy  sing sinhy sintt
|
The remaining azimuthal integration is done by shifting the . do 1
integration variable t@= ¢— ¢, using f — 2
~72T [1-v, cod ¢~ ¢bs)]
COS¢p=C0SH COSps— Sin b sin ¢, = fﬂ % ;: Y Pa(y)=7! 1+§Ui) ]
_ _ . ~m2T [1—v, cosf]* 2
Sin¢=sin 6 coS¢+ cosH Sin ¢ (AB) A9)

For M%=M1% and M= M3 we need
fw do¢ cos¢
~#27 [1—v, co d—b)]*
7 df Cc0oSH coSps— Sin O SiN ¢
:JWE (1-v, cos)*

in the numeratoM#”, and exploiting the formula

F do 1 g 1
—x27 (1—v, cos®)"  (1—v2)"2 " 1—02

=¥ Pa-1(y.), (A7)
_ CoS¢ps (7 d# 1—(1—v, cosb)

v, Jon2m (1-v, cosh)*

where theP,, are Legendre polynomials. We need

v 1
= SVIPs(y) =72 Py )1 =57 o4+ 0D).
€
YiPuy) =7, ¥iPay) =7 (1+30vD), (AL0)
4 _ 7 3.2
YiPa(y) =71 (1+301). (A8) " In the last step on the first line we dropped the vanishing
term~sin 6 and also added and subtracted a term 1h the
numerator. In the second line we used ¢gsuv,/v, . For the

M%, M%=M3° and M*3 have no¢ dependence and the remaining components we proceed similarly. The energy-

corresponding angular integrals thus give momentum tensor thus takes the form
(1+ £ v?)costty 3ux(4+v?)coshy  juy(4+0v?)coshy (1+ 3v?)coshysinhy
T o T4 5 %vx(4+vf)cosh77 %(1+4v§—v§) %vxvy %vx(4+vf)sinh77
:—V _’y .
T 960 3uy(4+v?)coshy 3 uyvy F(1-vi+4v) 3uy(4+v?)sinhy
(1+ $v®)coshysinhy v, (4+v2)coshy  Fuy(4+v?)sinhy (1+ 3v?)sintfy
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Contracting this result once with each of the vectafsn”, Ny

andm* we obtain [j\q f d?x, Tff dn[ ] (B5)
D] (2m)?

(1=3v?—3v})coshy _— _ -
The main differencdexcept for the different weighting of

Tuny 2T ﬂf’ 2u,(1-0v?%) the integration over the transverse pladfe; =rdrd ¢) is
v Ve e0 L 3 vy(l—vf) the nontrivial » integration in the HDM case.
(1-3v 2vl)SII’lhn
1. Massive particles

(1-v?)v, coshy For nonzero rest massn#0, we can expand in both

o Ey ﬂyg vx(l—vf)/ZvL ::(??ifssttg\r%ﬁelrnitﬁkgravcg ffi(;rdsmalkl . Keeping only terms up
o0 M oy (1-vtyie, | *
(1-v?)v, sinhy
Ny m coshy = d¢ [ cOg24¢)

T#n,=0. (A12) {DJ*WJE[ 1 ]

A second contraction then yields the coefficieAthiroughH
in Eq. (2.19 as given in Eqs(2.22—(2.27). ( k -V, Tf)( K, -v, v,

T 1_efylmcoshr;/T '

mcoshy
APPENDIX B: THE SMALL TRANSVERSE MOMENTUM

LIMIT OF ELLIPTIC FLOW
(B6)

In this appendix we derive the smll- limit of the ellip-
tic flow coefficientv, for TTHM and HDM, for massive and
massless particles. Suppressing the impact-parameter depedigher orders ok, come with higher inverse powers ofor
dence which is irrelevant here, we write £§.6) in the form  m coshy; the correspondingy integrals thus are all finite
(trivially so in the TTHM), and thek, expansion is well
k )= /l/ B1 behaved.
va(k)= =, (B1) ; . .
D As in Appendix A we writek, -v, =K, v, COS(— )

) ) =k, v, cosf and use—w=<6<m as integration variable.
where the numerato and denominato® are obtained Then, using Eq(A6)

from the Cooper-Frye formula Ed5.1). For massive par-
ticles we must generalize E(.3) by writing the first term
asm, coshy—») and use

k-u=y,(m, costty—7)—k,-v,). (B2) k, -V, 7=(d,7)cos0+ (d,m)sing, (B7)

For the TTHM the distribution function is given by Eq.
(2.12, and we obtain for particles at midrapidigy=0 where g, 7=V, -V, 7 and d,7=2- (v, XV 7). Herez is

the unit vector along the beam direction, and coincides
{N] vy j dZXLJx . ){Nqs} . with the radial unit vectory, = (cosds, sing.). We also need
D} (2m)?) v )= nen Dy ,

cog2¢) =09 2¢s)(coS 0—sirt ) — 2 sin2¢s) Sin 0 cose.

where (B8)
Ny = d¢ [ cog2¢)| m, coshp—k, -V, 7 After these manipulations the angular integrations in Eq.
Dy = f_ Wﬂ 1 71 (m, coshn—k, v, )IT_ 1" (B6) are easily performed. Due to symmetric integration over

(B4) the full circle, only terms containing even powers of @os
and/or sing survive. We find
Herey, andr; are functions of the position in the transverse

plane,y, = v, (X,) and 7= 7¢(X, ). For the HDM we instead
use Eq.(3.1) and get Ny=0(k}), Dy=a+bk, +0(k?), (B9)
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wherea and b are integrable functions of, and . As a
result,for massive particlesz(kl)=0(kf), i.e., the elliptic
flow coefficient vanishes with zero slope wh&n—0, as
first observed by DanielewidzZ9].

2. Massless bosons in the TTHM

For massless bosons wt=0 the angular integraldV,,
Dy in Eq. (B4) reduce to

lzl-Vle
(Nd,}_ T [ d¢(0012¢)]1_m
D, _yjq,zw 1 K, v,
~ coshy

yike
T

X .
enki IT(coshp—k, -v;)__ 1

(coshy—K, -v,)

(B10)

We can try to expand the last factor for smiall by using

(B11)

PHYSICAL REVIEW C66, 014907 (2002

7do sl oy -1
_.2m1—v, cosf yv2 '

fw d6 cog26) 1 [y —1 2
_.2m1—v, cosh vy, ’

Uy

Jw dé sirf6cosd 1yl 2
2w 1l-v,cos6 2v, \ yuv,

fw do cog26)cosd 1 ('yl—l

2
.27 1-v,cos  yv, ) (B3

Uy

However, since in this expression the expansion parameter is

x=1v,k, /T(coshy—k, -v,), each additional power ok,

brings in another factor coshp This is no problem for the
TTHM with its factor 6( %) under they integral, but for the
HDM the 7 integrals of the expansion coefficients diverge,

and find
No=T h_l)z 5{2¢)(l I T N .n(2¢)‘9¢7'f
= CcoO - S
¢ PR S vy S YU,
+0(k?),
y.—1 k_L

(w)— > TO(kf). (B14)

pARSES

rendering the expansion meaningless. For the HDM thus thBlow both the numerator and denominator approach nonzero

7 integration must be performdzeforewe expand for small

k, (see the following sectign

constants ak, — 0. Since the fireball center freezes out later
than its edge, the term-(d,7;), after integration over the

For the TTHM, on the other hand, we can continue alongransverse plane, contributes with a negative sign, and the
this direction. Using the same manipulations as in the prek, -independent first terms i, and D, are correspond-

ceding section, we find up to linear orderkn

[Mﬁ] T fﬁ ﬁ[C°“2¢s>cos<20>—sin<2¢s>8i”<29>

Dy v ) n2m 1

1—(d,7r)cosf—(d47¢)SIiNG
1-v, cosé

v K,

X 2T

1—

(1-v, cosoh) |. (B12

We use Eq(A7) to derive the following table of integrals:

fw o 1
_.2m1—v, cosd T-’

J’w de cosé v, —1
2w 1l-v,cosb v, '

7mdf cosh  y -1
_.27m1—v, cosb b2

ingly positive. As a result, the smaitl- expansion of the
elliptic flow coefficient takes the form

a
valk )= 5= 1—bk,

+0(k?)=a+abk, +0O(k?),
(B15)

wherea andb are positive constants arising from the inte-
gration over the transverse profiles of the freeze-out time and
flow velocity. Thus, ak, —0, v, approaches a positive con-
stant value with nonzero positive slope, as confirmed by
Figs. 7-9.

3. Massless bosons from the HDM

In the last step we discuss the corresponding limit for
massless bosons from the HDM, in order to understand the
surprising behavior shown in the upper part of Fig. 9. As
already mentioned, in this case theintegration must be
performedbefore expanding ink, . Doing this integration
first, we rewrite Eq(B5) as
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vy N Dy=£lo(nv, §)K(nE) = (d, 1) €l 1 (v, E)Ko(NE).
= 2f rdrdgps———— (B21)
D] (2m) YL(r )
: ; These expressions generalize the result givefi7into the
™ 2 20)— 2 260 . -
f %{COS{ $s)COL20) = SiN(2¢5)SIN(26) general case of a freeze-out timg which depends on the
— 72T 1 transverse position; .
N We can now study the small-momentum limit @ by
% f” . ¢(coshy—k, -V, 79) (B16) letting é— 0. Let us first consider the Boltzmann approxima-
—o gé(coshn—k, -v;) _q ' tion that corresponds to keeping only the tetisandD; in

Eqg. (B20). Using the smalk expansions of the Bessel func-
where all the dependence on the magnitudé ofs hidden  tions one finds that in this approximation
in the variable
2
. 1
K lim v5°"%(k,)~—1In
=T (B17) 0 7T

Ky

(B22)

. ) For massless Boltzmann particles, the elliptic flow from the
Let us denote the result of the integral by, . Expanding L5\ thus goes to zero with zero slope, but by a factor

Fhe Bose—'Einsteir.l distribution in a power series and performm(kl /T) more slowly than for massive particles, see Sec. 1
ing the » integration term by term we find of Appendix B.
- For bosons we must sum over alin Eq. (B20). Fork,
| =& envﬁcosoJ'w d e Né coshy —0, i.e,, -0, the sum oven becomes the discrete repre-
K e sentation of an integral: defining

X [coshy—(d,7r)cosd— (d,75)Sin o] f, (O=1,(v DKL), (B23)
- 2521 e £ 99K, (n§) —[cosh(d, ) we have
+sin6(d,71) [Ko(né)}, (B1y)

€2, 1(nv, OK, () =¢2, f, (n)— L/Zf,,gz)dg.

where theK, are modified Bessel functions of the second (B24)
kind. The integration over the momentum-space arigban

now be performed, too, yielding modified Bessel functionspy expanding the Bessel functions for large arguments one
of the first kindl ,,, sees that for largé

JW —dacos( 0)e?esf=1 (z) (B19) 1
14 =1y ’ f ~ 7(17UL)§1
*‘"'277 UL(g) 2 /—nge

such that the integral in EqB24) clearly converges at the
upper end. Th&, dependence af, can now be extracted by

(B25)

where z=nv , £&. After some simple manipulations using
trigonometric identities we find for the elliptic flow coeffi-

cient studying the dependence of this integral on its lower limit
0 &2=1y k I2T. To do so we employ the following trick: We
D f rdrd ¢ 71, ¢s) N1 bek,) split the integral at an arbitrary intermediate scale
=1 Yi(r,s) Y
UZ(kL): % T(r ¢s) ) Joc £ ®
A . f, dzjfv d+jfu d
Eljrdrd‘f’sn(r—,q;s)pn“*‘ﬁs'kﬂ ol (D46= | T, (DAL | £ (g
(B20) A
=f f, (Od{+F(Nv),  (B26)
where &2

T whereF(\;v ) is a finite number whose dependenceon
5 ¢llh(nv, §) cancels against the dependence of the first integral, irre-
spective of how we choose. By taking £/2<\ <1 we can

1%

Nn200€(2¢s)( &la(nv, HK4(né) —

_ Ay evaluate the first integral analytically by making use of the
+1a(nv, §)1Ko(ng) [ +siN(2¢g)—— &l 11 (nv, ) expansion of the Bessel functions for small arguments, keep-
ing only the leading terms. In the limg—0 we find in this
—l3(nv §)]Ke(NE), way
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A )\va
L/zlz(ULg)Kl(g)dfﬂl—B,

A
| . oxe@rae S inag + o),
&2

A
j I3(v, Ko(£)d{—0,
177

N

J

2\
/ZIO(ULé/)Kl(é’)dg_ﬂn

z +C’'(N),

(B27)
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wherea is a A -independent constant whife,C’ depend on

\ but combine with the corresponding constaR{a ;v ) to
finite, A-independent constants. Inserting these results into
Egs.(B20) and(B21) we finally obtain

const
| T
n_

Ky

lim va(k, )= (B29)

k, /T—0

which approaches zero with infinite slope. This is exactly the
behavior seen in the upper panel of Fig. 9 for massless
bosons.
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