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Fluctuation of gaps in hadronization at the phase transition
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Event-by-event fluctuations of hadronic patterns in heavy-ion collisions are studied in search of signatures of
guark-hadron phase transition. Attention is focused on a narrow strip in the azimuthal angle with gnidle
fluctuations in the gaps between particles are quantified by simple measures. A scaling expisrshtwn to
exist aroundT.. An index ¢ is shown to characterize the critical fluctuation; it is a numerical consgtant
=0.05+:0.01. All the measures considered in this gap analysis are experimentally observable. Whether or not
the theoretical predictions, based on simulations using a two-dimensional Ising model, are realistic for heavy-
ion collisions, analysis of the experimental data suggested here should be carried out, since the existence of a
scaling behavior is of interest in its own right.
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[. INTRODUCTION stant that characterizes the critical fluctuation. It can be
checked by experiment.

If a quark-gluon system created in a heavy-ion collision at  Our theoretical tool, as ifil,2], is still the simulation of
high energy undergoes a second-order phase transition twitical phenomenon on the 2D Ising lattice. Not only is the
hadrons, one should expect large fluctuations in the hadrosimulation simple to execute, it is also physically relevant,
densities from region to region. Thus in any small interval ofsince the quark-hadron phase transition is very likely to be in
hadronization time the particles produced on the surface ahe same universality class as the Ising sysfmWe map
the system, where the temperaturas at the critical tem- the 2D Ising lattice to the surface of the quark-gluon plasma
peratureT ., should form patterns of clusters and voids of all cylinder formed in a central collisions of heavy ions. We
sizes. The question is how such fluctuations can be detecteselect a row in the lattice and map that to a strip on the
Since the detector integrates over the hadronization time, thglasma cylinder confined to a narrow interval in rapidity. Our
hadron patterns formed at different times, when added, tengroposed analysis is for the experimental examination of the
toward a uniform sum. In Ref§1,2] we have studied the fluctuation of gaps between particles in the azimuthaiari-
problem and found a way to overcome the difficulty. On theable.
one hand, one must make severe cuts in the transverse mo- The conceptual procedure of our mapping of the plasma
mentumpy (accepting particles only in a narrow window of surface to the 2D Ising lattice is based on the reasonable
width Apy), while on the other hand, appropriate measuresassumption that in a central collision of heavy ions at very
that are insensitive to the randomization process followinghigh energy the quark-gluon plasma created has a tempera-
hadronization should be used to quantify the critical fluctuature profile whose radial dependence starts from a high value
tions. We proposed a void analysis that identifies the scalingT>T,) in the interior and decreases toward a lower value at
properties of the fluctuations. The suggested measures in thiee surface. When the surface temperaturg;ishadrons are
analysis are in the two-dimensional space of rapidijyand formed as a manifestation of quark-hadron phase transition.
azimuthal angle ¢). The analysis has been applied to theThe critical fluctuation is therefore a phenomenon that
NA49 data of Pb-Pb collisions at CERN-SPS], but re-  should occur on the 2D surface of the plasma cylinder, all
mains to be considered for the data collected at BNL-RHICparts of which are at the same critical temperature in the

In this paper we aim at simplifying the experimental prob-ideal scenario. We do not consider here the complications
lem of detecting the critical fluctuation, while making one of that can be present in the radial direction perpendicular to the
the theoretical parameters in the void analysis experimentallgurface, where local fluctuations in curvature, temperature,
more relevant. They are accomplished by reducing the twoand pressure can lead to issues beyond the physics of the
dimensional2D) space to 1D so that a void becomes a gapcritical behavior of the Ising system. Some aspects of such
The study of gaps in rapidity was undertaken by us earlier ireffects have been examined in the context of self-organized
connection with multiparticle production in hadronic colli- criticality [7].
sions[4]. The proposed gap analysis has been applied to the It should be noted that our approach to critical fluctua-
NA22 data[5] and provides a way of testing the predictions tions is different from most others that have been proposed,
of the dynamical models on soft processes. We now applyn that, instead of examining the global fluctuations, such as
the gap analysis to the phase transition problem in heavy-iom Refs.[8,9], we consider fluctuations of the exclusive dis-
collisions. Besides showing what can be expected theorettributions in the highly localized region of the phase space.
cally, we believe that the suggestions made here are morks we have emphasized above and in REts2], only with
amenable to the experimental situation. An important outsevere cuts can one expect to see the effects of critical be-
come of this study is the identification of a numerical con-havior.
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[l. GAP ANALYSIS ON THE LATTICE and we place onéand only ong particle at celli. If p;<p,,
AND FOR THE EXPERIMENTS then it is an empty cell. In mapping to thg variable, we

: . . place a particle aty; randomly in the intervali(—1)2#7/C
The relationship between the Ising problem and the hads¢<i27r/C, when theith cell satisfies Eq(3). Thus after

ron density problem has been discussed in detail in Refihe whole row is mapped to the variable, there aréN

1,2]. Wi mmarize here only th ntials for what i . ;
Eele]ded ?n Strtiis papef ere only the essentials 1o a Spartlcles in the¢ space, whereN fluctuates from event to

We iar wih 2D i of z6% whera =280, On 1 AT S reshoncs o confurein o e e
the lattice we define cells of siz#, wheree=4. The density ysl pe Ity of p
. . . used both on the lattidel,2] and in the experimeriB]. Here
p; at theith cell is defined to be . . )
in 1D gap analysis the average number of occupied ¢hl}s
pi=NC26(c;) (1) in a row on the lattice, after averaging over all configura-
' P tions, depends on the threshalg. In the experiment the
wherec; is the net spin at cell defined to be positive along average number of particlgdl) in the ¢ space depends on
the overall magnetization, i.e., AyApr. In our analysis we shall vary,. The predlcted_
dependence of our measure gis to be checked by experi-
ment by varying, for exampleAyAp+, although other ex-
)2 aj, (20  perimental ways are also possible. In that sense the variable

je

-y
jel? po is not a theoretical parameter devoid of experimental rel-
. . ) . . evance.
o being 2the lattice spin at snje_an_d)\ an unspecified factor We emphasize that the densjiyis a quantity defined on
relatingcy” to the particle density ily-¢ space. Neallc, pi  the lattice, and need not be identified directly with any vari-
fluctuates from cell to cell; however, the existence of corre-gple in the experiment. In the gap analysis there is no re-
lation of all length scales leads to clusters of all sizes formeqyirement for the experimental determination of the density
out of neighboring cells having nonvanishipg. _ of particles. The relationship between lattice simulation and
In Refs.[1,2] we considered bins of siz&, with 5 being  experimental observation is that we associate a cell with
integral multiples ofe. We regarded a bin to be empty if the gatisfying Eq.(3) to the detection of a particle at the cell
average bin densityy,, is less than a threshold densy. location. It is unnecessary to consider many particles in the
We then defined a void to be a collection of contiguoussame cell for reasons to be explained bel@athe second
empty bins, connected by at least one side between neiglparagraph of the following sectipga-mainly because the
boring empty bins. The measure used to quantify the fluctuagaps among them would be negligible, thus making insignifi-
tion of void sizes was shown to be insensitive to the value otant contribution to our measure.
Po- In an experiment of heavy-ion collisions the single-
Without undercutting the importance of doing the void particle inclusive distribution irp, dn/d¢, may not be uni-
analysis on experimental data with high statistics, especialljorm, because the impact parameter is not always exactly
at high energies, we want now to consider in this paper theero(even if a centrality cut is madleor because the detector
possibility of doing a similar analysis in 1D, since if cluster- efficiency is not symmetric irp, most likely both. It is then
ing of hadrons occurs in 2D, they should also be visible inbetter to use the cumulative variai¢10,11], defined in our
1D. Not only will the statistics improve, there will also be no case by
need to do binning to define voids, as we shall see.
Let us consider a row of cells, where we initially take ¢ dn 27 dn
C=L/e=72. We map that row to a slice of the plasma cyl- X(¢p)= fo Ed#/ Jo r&d¢,'
inder in the central region with widtAy in rapidity. What

Ay is will be discussed below. We also will limjgr to a  The range & <2 is thus mapped to €X<1, and the
narrow intervalApr, as discussed extensively in Reffs,2].  gensity of particles i, dn/dX, is uniform. The distribution
Thus we have only the azimuthal angteas our space of qp/d¢ is determined after many events, but the variable
variable. The row ofC cells is mapped to the interval 0 sed for exclusive distributions event by event. In a simula-
S¢<2m. o tion dn/de¢ is uniform, if N, is large; we nevertheless use the

We simulateN, configurations(where Ne=3x10°) on X variable between 0 and 1 just so that our proposed gap
the Ising lattice in 2D aT =T, and determine the density  analysis corresponds to what is to be done with experimental
at each cell in each configuration. The simulation cannot bgatg

done in 1D because a 1D Ising system does not exhibit criti- - consider an event witN particles in our window, labeled
cal behavior. From a 2D configuration we choose an arbipy j=1, ... N, located in theX space atX;, ordered in

trary row and examine the values pf in each cell with 1 accordance with; <X, ;. Now define the distance between
<i=<C. The value ofx in Eqg. (1) is effectively set to 1 in  nejghboring particles by

what we do withp;, since we always compare it to a thresh-

old pg in units of \. We define an occupied cell to be one in Xi=Xiy1—Xi, i=0,... N, (5)
which

4

with Xo=0 and Xy, =1 being the boundaries of th¥
pi>po, (3 space. We call theseg’s gaps, which clearly satisfy
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N measures considered in Ré4] we chooseS, for our con-
E X;=1. (6) sideration here, since it has the simplest behavior. Starting
1=0 with the definition

Let us define for each event the moments sq=(G¢In Gy, (10)
1 X where the averagg - -) is performed over all event§, is
=11 2 X (1) defined by

=s4/s5 11
which, for positiveq, puts more emphasis on the large gaps Sa=Sa/Sq s (D

than the small ones. The sgBq} with 2<g=<Q, Q being ¥vheres'f]t is as defined in Eq(10) but with the statistical

some number less than 10, say, will be our quantification Ogontribution 10G, only. Thus the deviation o, from 1 is a

the event structure. The set fluctuates from event to even . )
rmeasure of how strong the dynamical fluctuations are rela-

especially at the critical point. Our method is to Y&k} as tive to the statistical fluctuations. In our simulation we gen-

Eell?l?jllif)rto construct a measure that can reveal the crltlcaélrateN random numbers between 0 and 1 to populatexthe

Before proceeding, we should point out ti@y requires space fprthg cglculation @32‘. In an experiment one can do
the knowledge of the momenta of all the particles detected iﬁomethlng similar to generate a random event. .
the acceptance windoW, characterized bAyAp+. Thus it We shall study the dgpendence S‘I on q for various
is defined in terms of an exclusive distribution Wi, but Va'PeS of po, USIng conflguratlons_5|mulated on the Ising
inclusive in the sense that it does not care about what th&tCe: The same can be done with the experimental data

other momenta are outsidfé If we defineg(x) to be the gap rom heavy-ion collisions. All the quantlt!es discussed in the
distribution, i.e., above three paragraphs refer to experimentally measurable

quantities. In particulaiG, is a measure of the fluctuation of
gaps among the detected particles within an event. The fluc-

N
1 . . .
- tuation of G, from event to event is quantified b§,. If
X)= ——F S(X—X;), 8 a - . g q
9t N+1 igo ( ) ® hadrons formed in heavy-ion collisions are due to a second-
order phase transition, then the experime8alshould re-
thenG,, can alternatively be written as veal some features that are similar to our theoretgzab be

presented below.
1 Before we proceed to discuss the results of our simulation
quf dxxdg(x). 9 on the lattice in the following section, let us summarize and
0 state explicitly what we suggest as a possible way to test
experimentally the properties of the critical fluctuations. In a
The point of exhibiting this expression @ is to show its  heavy-ion experiment at high energy, go to the central rapid-
explicit relationship to a distribution, and to discuss the in-ity region of a central collision. Select a narrow interval in
direct connection that it has to two-particle correlation. Sincep, | such as 10 MeV at, sapr~200 MeV. Furthermore,
X; is the distance between two neighboring particlesNin  select a narrow interval in rapidity, such Ay~0.1. These
one may think thag(x) is in some way related to the two- numbers can be varied to achieve a net multiplicity of par-
particle distributionp(X;,X;). However, such a relation is ticles inAp;Ay to be between 10 and 40, say. Then examine
very indirect, sincep(X;,X;) is defined for any two particles how these particles are distributed in the azimuthaari-
at X; and X; without any other stipulation, whilg(x) is  able. Determine the gaps between neighboring particles. Call
nonvanishing only ak;, which by definition in Eq.(5) re-  themx; in the X variable defined in Eq4), and determine
quires thatX;=X;. 1, i.e., X; is the momentum of the next the momentss,, for each event. Do this for many events and
neighboring particle down the chain with no particle in be-determinesq after averagingIn G, over all events as de-
tween. To make such a restriction p(X;,X;) is extremely  fined in Eq.(10). Finally, calculate the properties &; ac-
cumbersome, and destroys the usual application(¥{,X;)  cording to what we now describe in the following section.
in terms of either momentum correlation by means ofdhe
measurd 12], or the charge fluctuation by means of the
measurd 13], when the momentum variable is replaced by
the charge variable. Thus we believe that it would be an Using No=3x 10 configurations simulated on the Ising
unfruitful path to attempt to relat€, to either thed or the lattice atT=T,=2.315 in units ofJ/kg [1], whereJ is the
D measures of fluctuations. They all probe different aspectaear neighbor coupling ank; the Boltzmann constant, we
of the event-by-event fluctuations, but need not have simpléave determine, for a range ofp,. For pg= 20 the depen-
relationships among them. dence ofS; on g is shown in a log-log plot in Fig. 1. The
The G, moments defined in either E(f) or Eq.(9) areto  solid line is a straight-line fit of the calculated result, giving
be determined for each event and fluctuate from event tgtrong evidence for the power-law behavior
event. We now discuss a measure that summarizes the event-
by-event fluctuations of5,. Among the various erraticity Sq*q“. (12

Ill. RESULTS ON CRITICAL FLUCTUATIONS
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FIG. 1. S; vs g in log-log plot for T=T; andpo=20. FIG. 2. The average number of gafid) vs py at T.

The value of the exponent ig=1.67+0.02. The fact that points (?f.po where the.calculatlon has been made' With such
. : _ . a definitive relationship at hand, any quantity that depends
In §, deviates unambiguously from zero implies ti&gtis a N : :
1 - e - ] on po Wwill, in the following, be shown as a function ¢M),
statistically significant measure of nontrivial dynamical fluc- . . e Vo
S0 as to render it amenable to experimental verification.

tuation. The power-law behavior is not necessarily a conse- . .

. o . . For each of the higher values pf, examined, we have
guence of the dynamics of critical phenomenon, since Slm”afound ower-law behavior o8 as in Fig. 1. Thus the ex-
behavior has been found before in the case of hadronic col- P - 9- =
lisions[4]. However, the exponent is indicative of critical
fluctuations; it is an order of magnitude larger than the valu
of «=0.156 obtained fopp collisions atys=20 GeV.

To_hgve one exponent for aII.q is a very economical . a=ag+ EM), (13)
description of the critical fluctuations. We can then investi-
gate the dependence afon py. Before doing so, let us first e obtain
find a replacement op, by some quantity that is directly
measurable. In the preceding section we have relaget ap=—0.258, £=0.055. (14
the intervalsAyA pt as the variable under experimental con-
trol that can be used to tune the average multiplicty) ~ The nature of critical fluctuation is now seen to be reduced to
accepted in the window. Thus(N) is a quantity that is both @ simple formula, Eq(13), when the moments of gaps are
experimentally observable and theoretically computable omsed to describe the event structure. If we further put empha-
the lattice. It is therefore a suitable replacementdgrNev-  Sis on the property that is independent bf), then the slope
ertheless, we prefer to use an even better one that is th&in Eq.(14) emerges as a numerical output of the theory that
average number of gag/), which is also observable. On relies on no numerical input. This is perhaps the most suc-
the lattice in accordance with our convention of CountingCinCt characterization of the critical phenomenon, beside the
gaps in Eqs(5) and (6), we have simplyM =N+1. How-
ever, it should be recalled that in our simulation we have 2 ' '
adopted the rule that, when exceeds, only one particle
is placed in a cell, not more, no matter how higihis. That c
procedure makes sense in view of our measbgeof the 15 8
event structure, since a tightly packed cell with many par-
ticles in it would have very small gaps that make negligible
contribution in Eq.(7). Experimentally, if there are particles
whose momenta are indistinguishable, or nearly so, whether
they are separately counted or not also makes no significant
difference in the calculation dB,. Thus to allow for such
possibilities it is better to count the number of distinguish- 05 1
able gaps, rather than the number of particles.

On the lattice we have simulated the configurations for a
range ofp, from 20 to 200. For every value gf, we can 0 s s
calculate the average number of gafid,). Figure 2 shows 10 20 39 40

A <M>
the dependence dM) on pg at T.. The straight-line seg-
ments are just the linear interpolations between neighboring FIG. 3. The exponent vs (M) at T,..

ponenta can be determined in each case. In Fig. 3 we show
E§he dependence af on{M). Remarkably, the dependence is
very linear. If we parametrize it as
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FIG. 4. S, vs g in log-log plot for a range off at po= 20. FIG. 6. £ vs T at po=20.

critical exponents. The latter depend on the temperature of @ @(T) would be an excellent way to determine the critical
critical system neall,. In heavy-ion collisionsT is not di-  €mperature of the quark-gluon system. This being not the

rectly observable, so the corresponding critical exponent§aSe in reality, we can only learn from Figs. 4 and 5 that, if
cannot be measured experimentallyee, however, Ref. e system hadronizes in a rangeToaroundT,, the most
[14]). Here we have an indekthat is eminently measurable Significant portion of the contribution t&, would come
and is the only numerical constant that can be meaningfully®m the immediate neighborhood a%=T,, and that only
associated with critical fluctuation. the « value aroundT . is experimentally relevant.

So far our study has been done onlyTat T... To see how The above ana[y5|s is done fpg=20. We can, of course,
the results change whehdeviates fromT,,, we repeat the repeat the analysis for other values @f. In each case we
above analysis for a range f Figure 4 showsS; vs g in find the peak value oi atT.. At eachT wherea can be
log-log plot for 2.2&T<2.80 in units ofJ/ks. Note that meaningfully determined, we can investigate its dependence
linearity is quickly lost wherl goes belowT.=2.315. For ON{M), just as we have done in Fig. 3'8¢. In each case a
T>T, the linearity persists for a limited range 2.34% linearity is found that allows us to determine the slope index
<3.1, but the slope is reduced. For>3.2 the dependence ¢ N EQ. (13). The resultis shown in Fig. 6, whetgT) also
bends over at highy and the linearity is lost. For the range of €xhibits a peak af;. We can now conclude that if hadroni-

T where a can be determined from linear fits, we show in zation is to occur around, , we expect the measurable value
Fig. 5 a(T) up to T=2.8. The sharp peak that occursTat ©f ¢ to be around 0.05. _

=T, is a remarkable manifestation of the critical behavior. Having established the properties of the observables as
For T less tharT,, so many hadrons are produced that thefunctlpns of_T due to the dynam|cs of th(_a.crmc.al system, we
gap distribution rapidly tends toward the statistical. For NOW investigate the question of stability with respect to
larger thanT,, fewer hadrons are produced, and it takesCNanges in the size of the detector window, which is kine-
moreT — T, difference for the statistical fluctuation to domi- Matical. We have so far considered a lattice of size&72

nate. IfT were experimentally controllable, the measurement€!lS; from which we choose one row &f=72 cells from
each configuration. We now want to vary the length and

2 , , , , width of the row. We shall do so by settiigat T... First, we
consider a row ofC=54 cells from each configuration, and
later a row of C=36 cells. In each case it does not matter
whether the row is mapped to a correspondingly shorter
range in¢, sincedn/d¢ is converted todn/dX in the X
space before the gap analysis is performed. However, the
average number of gag#1) does change, so the simulation
1} 1 with shorter rows does correspond to a shorter rangesiof

the experiment. In Fig. 7 we show the resulte@ws (M) for

the C=72,54, and 36 cells. The straight lines are linear fits,
which are evidently very good. The values of the sl@pre

0.5 i
0.055+0.005, C=72
o . . , , ¢={ 0.057+0.005, C=54 (15)
2.1 23 2.5 2.7T 2.9 3.1 004&0007’ C=36.

FIG. 5. a vs T at py=20. The case ofC=36 cells yields a slightly lower value and
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FIG. 7. @ vs(M) at T, for various number of cells in a row. FIG. 8. a vs (M) at T, after averaging over various number of
rows.
relatively larger errors, as is reasonable, since there are fewer
points in a shorter range. Nevertheless, all three valugs of £=0.055-0.005, r=1,
agree within errors. We therefore conclude tais stable £=0.044+0.003, r=2
against variations in the length of thg window. ' R '
Next, we consider variations in the width of tlye win- £=0.045+0.003, r=3. (17)

dow. In our simulation so far we have used only rows with
1-cell width. In an experiment the widthy of a window in ~ The slight decrease i8, asr increases, is not unreasonable,
¢ will have to be adjusted in order to va¢i). To check the ~ since averaging over rows tends to suppress dynamical
stability of our result against variations in the width of our fluctuations. In the limit becoming very large, clearly only
strip on the Ising lattice, we consider combinations of twostatistical fluctuations remain. We may summarize E#S),
and three rows. Lek be the row index, anithe cell indexin (17, and Fig. 6 by the grand average
the row, as beforg. Thus the Ioca_tion of a cell on the Iattipe is £=0.05+0.01. (18)
now denoted byki. We taker adjacent rows and combine
them by performing vertical average oicells at each hori-  |f this can be verified by experiments, then one should be
zontal positioni, i.e., we define able to claim that a signature of critical transition has been
observed. If the value of is not confirmed, yet the power-
law behavior of Eq(12) is shown to exist in the data, with or
10 without the linear dependence of on (M) in Eq. (13),
Pi=r kzl Pi (16 which would still be an exciting experimental finding, sug-
B gestive of dynamical fluctuations.
There is the usual question about final-state interaction
. . . . and the dilution of the dynamical signature due to random-
and then proceed in the gap analysis usin@s in the pre- i, 4ii0n The answer depends on the type of measure for that
ceding section. It is important that theows be adjacent so signature. The issue has been addressed in[R&f. where

that the short-range vertical correlation of the cells can influy, o dependence on the number of steps of final-state scatter-
ence the value op; so as to reflect its dynamical content; ings is examined, in Ref1] where configuration mixing is

otherwise, if ther rows are randomly chosen, the averagingcqnsidered, and in Ref2] where different options in simu-
in Eq. (16) tends to rendep; more statistical and its distri- |54ing time evolution are investigated. What one learns from
bution ini more uniform. In short, taking adjacent rows g those studies is that the measures considered are not
corresponds to wideningy in the experiment. In our calcu-  grongly affected by the final-state randomization. Since the
lation we conS|dgr only the cage=2 and 3. Note that we gap analysis is a derivative of the void analyEls?], the
take the average in E¢L6) and then vary, to changgM).  same conclusion follows here. The one reminder that we
We could have addeg,; (without dividing byr) and not  ghoyld emphasize is that the windawp; in the transverse
vary po; that is equivalent to averaging,; and dividingpo  momentum should be kept as small as possible to minimize
by r. Our chosen procedure allows more continuous changg,e overlap of particles emitted at different times.
n Po-

The result of our analysis far=1,2, and 3, an€C=72,
are shown in Fig. 8. Roughly speaking, the slopes are essen-
tially the same within errors, sé may be regarded as inde-  We have studied the problem of even-to-event fluctuations
pendent ofr. More precisely, we find of the hadronic patterns in phase space in heavy-ion colli-

IV. CONCLUSION
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sions in search of detectable signatures of second-orddéound to exist, there are numerous variables under the con-
quark-hadron phase transition. We have reduced the complirol of the experiments to vary. We can mention, for example,
cation of voids in two dimensions to the simpler problem ofthe position of they slice, the value opy, the centrality of
gaps in one dimension. Using the moments of gaps to corcollisions, the nuclei sizes, and the c.m. energy. It would be
struct an entropylike measu®,, we have found a power- very interesting to see the dependencé oh the total trans-
law dependence og with an exponent. It is the depen-  yerse energf+, since it can provide us with some idea of
dence ofa on the average number of gaps that yields theynen the critical behavior is lost as the nuclei overlap be-
index &, which serves to characterize critical fluctuation. We comes too small to create a quark-gluon plasma. Also, for
have found the stability of=0.05+0.01 against variations nonzero impact parameter, even if critical fluctuations exist,
in the length and width of the d_etector window ¢n When e indexé may depend on which sector of tiespace the
the temperature of the system is moved away flim the  analysis is performed, since there is goinvariance in el-
power-law behavior 08, on g persists in a narrow range of |iptic flow. One can envision a rich variety of phenomeno-
TaroundT, and the values ok and¢ show strong peaks at |ggjcal studies once the exponemtand indexé are found in

Tc. Thus ¢ is a measure of the critical behavior and is athe experimental data. They can provide valuable informa-
number that arises out of the study of fluctuations withoutjon about the quark-gluon system. The application of the

any numerical input. It is highly significant thadt can be gap analysis to the data is therefore strongly urged.
checked by experiments, since all measures leading to its

determination are designed to be observable.
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