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Fluctuation of gaps in hadronization at the phase transition
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Event-by-event fluctuations of hadronic patterns in heavy-ion collisions are studied in search of signatures of
quark-hadron phase transition. Attention is focused on a narrow strip in the azimuthal angle with smallDy. The
fluctuations in the gaps between particles are quantified by simple measures. A scaling exponenta is shown to
exist aroundTc . An index j is shown to characterize the critical fluctuation; it is a numerical constantj
50.0560.01. All the measures considered in this gap analysis are experimentally observable. Whether or not
the theoretical predictions, based on simulations using a two-dimensional Ising model, are realistic for heavy-
ion collisions, analysis of the experimental data suggested here should be carried out, since the existence of a
scaling behavior is of interest in its own right.
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I. INTRODUCTION

If a quark-gluon system created in a heavy-ion collision
high energy undergoes a second-order phase transitio
hadrons, one should expect large fluctuations in the had
densities from region to region. Thus in any small interval
hadronization time the particles produced on the surface
the system, where the temperatureT is at the critical tem-
peratureTc , should form patterns of clusters and voids of
sizes. The question is how such fluctuations can be dete
Since the detector integrates over the hadronization time
hadron patterns formed at different times, when added, t
toward a uniform sum. In Refs.@1,2# we have studied the
problem and found a way to overcome the difficulty. On t
one hand, one must make severe cuts in the transverse
mentumpT ~accepting particles only in a narrow window o
width DpT), while on the other hand, appropriate measu
that are insensitive to the randomization process follow
hadronization should be used to quantify the critical fluct
tions. We proposed a void analysis that identifies the sca
properties of the fluctuations. The suggested measures in
analysis are in the two-dimensional space of rapidity~y! and
azimuthal angle (f). The analysis has been applied to t
NA49 data of Pb-Pb collisions at CERN-SPS@3#, but re-
mains to be considered for the data collected at BNL-RH

In this paper we aim at simplifying the experimental pro
lem of detecting the critical fluctuation, while making one
the theoretical parameters in the void analysis experimen
more relevant. They are accomplished by reducing the t
dimensional~2D! space to 1D so that a void becomes a g
The study of gaps in rapidity was undertaken by us earlie
connection with multiparticle production in hadronic col
sions@4#. The proposed gap analysis has been applied to
NA22 data@5# and provides a way of testing the predictio
of the dynamical models on soft processes. We now ap
the gap analysis to the phase transition problem in heavy
collisions. Besides showing what can be expected theo
cally, we believe that the suggestions made here are m
amenable to the experimental situation. An important o
come of this study is the identification of a numerical co
0556-2813/2002/66~1!/014904~7!/$20.00 66 0149
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stant that characterizes the critical fluctuation. It can
checked by experiment.

Our theoretical tool, as in@1,2#, is still the simulation of
critical phenomenon on the 2D Ising lattice. Not only is t
simulation simple to execute, it is also physically releva
since the quark-hadron phase transition is very likely to be
the same universality class as the Ising system@6#. We map
the 2D Ising lattice to the surface of the quark-gluon plas
cylinder formed in a central collisions of heavy ions. W
select a row in the lattice and map that to a strip on
plasma cylinder confined to a narrow interval in rapidity. O
proposed analysis is for the experimental examination of
fluctuation of gaps between particles in the azimuthalf vari-
able.

The conceptual procedure of our mapping of the plas
surface to the 2D Ising lattice is based on the reasona
assumption that in a central collision of heavy ions at ve
high energy the quark-gluon plasma created has a temp
ture profile whose radial dependence starts from a high va
(T.Tc) in the interior and decreases toward a lower value
the surface. When the surface temperature isTc , hadrons are
formed as a manifestation of quark-hadron phase transit
The critical fluctuation is therefore a phenomenon th
should occur on the 2D surface of the plasma cylinder,
parts of which are at the same critical temperature in
ideal scenario. We do not consider here the complicati
that can be present in the radial direction perpendicular to
surface, where local fluctuations in curvature, temperatu
and pressure can lead to issues beyond the physics o
critical behavior of the Ising system. Some aspects of s
effects have been examined in the context of self-organi
criticality @7#.

It should be noted that our approach to critical fluctu
tions is different from most others that have been propos
in that, instead of examining the global fluctuations, such
in Refs.@8,9#, we consider fluctuations of the exclusive di
tributions in the highly localized region of the phase spa
As we have emphasized above and in Refs.@1,2#, only with
severe cuts can one expect to see the effects of critical
havior.
©2002 The American Physical Society04-1
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II. GAP ANALYSIS ON THE LATTICE
AND FOR THE EXPERIMENTS

The relationship between the Ising problem and the h
ron density problem has been discussed in detail in R
@1,2#. We summarize here only the essentials for what
needed in this paper.

We start with a 2D lattice of sizeL2, whereL5288. On
the lattice we define cells of sizee2, wheree54. The density
r i at thei th cell is defined to be

r i5lci
2u~ci !, ~1!

whereci is the net spin at celli defined to be positive along
the overall magnetization, i.e.,

ci5sgnS (
j eL2

s j D(j e i
s j , ~2!

s j being the lattice spin at sitej, andl an unspecified facto
relatingci

2 to the particle density iny-f space. NearTc , r i

fluctuates from cell to cell; however, the existence of cor
lation of all length scales leads to clusters of all sizes form
out of neighboring cells having nonvanishingr i .

In Refs.@1,2# we considered bins of sized2, with d being
integral multiples ofe. We regarded a bin to be empty if th
average bin density,r̄b , is less than a threshold densityr0.
We then defined a void to be a collection of contiguo
empty bins, connected by at least one side between ne
boring empty bins. The measure used to quantify the fluc
tion of void sizes was shown to be insensitive to the value
r0.

Without undercutting the importance of doing the vo
analysis on experimental data with high statistics, especi
at high energies, we want now to consider in this paper
possibility of doing a similar analysis in 1D, since if cluste
ing of hadrons occurs in 2D, they should also be visible
1D. Not only will the statistics improve, there will also be n
need to do binning to define voids, as we shall see.

Let us consider a row ofC cells, where we initially take
C5L/e572. We map that row to a slice of the plasma c
inder in the central region with widthDy in rapidity. What
Dy is will be discussed below. We also will limitpT to a
narrow intervalDpT , as discussed extensively in Refs.@1,2#.
Thus we have only the azimuthal anglef as our space o
variable. The row ofC cells is mapped to the interval 0
<f,2p.

We simulateNe configurations~where Ne533105) on
the Ising lattice in 2D atT5Tc , and determine the densityr i
at each cell in each configuration. The simulation cannot
done in 1D because a 1D Ising system does not exhibit c
cal behavior. From a 2D configuration we choose an a
trary row and examine the values ofr i in each cell with 1
< i<C. The value ofl in Eq. ~1! is effectively set to 1 in
what we do withr i , since we always compare it to a thres
old r0 in units ofl. We define an occupied cell to be one
which

r i.r0 , ~3!
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and we place one~and only one! particle at celli. If r i<r0,
then it is an empty cell. In mapping to thef variable, we
place a particle atf i randomly in the interval (i 21)2p/C
<f, i2p/C, when thei th cell satisfies Eq.~3!. Thus after
the whole row is mapped to thef variable, there areN
particles in thef space, whereN fluctuates from event to
event. An event corresponds to a configuration on the latt

In the void analysis in 2D space the density of particles
used both on the lattice@1,2# and in the experiment@3#. Here
in 1D gap analysis the average number of occupied cells^N&
in a row on the lattice, after averaging over all configur
tions, depends on the thresholdr0. In the experiment the
average number of particles^N& in the f space depends o
DyDpT . In our analysis we shall varyr0. The predicted
dependence of our measure onr0 is to be checked by experi
ment by varying, for example,DyDpT , although other ex-
perimental ways are also possible. In that sense the vari
r0 is not a theoretical parameter devoid of experimental
evance.

We emphasize that the densityr i is a quantity defined on
the lattice, and need not be identified directly with any va
able in the experiment. In the gap analysis there is no
quirement for the experimental determination of the dens
of particles. The relationship between lattice simulation a
experimental observation is that we associate a cell withr i
satisfying Eq.~3! to the detection of a particle at the ce
location. It is unnecessary to consider many particles in
same cell for reasons to be explained below~in the second
paragraph of the following section!—mainly because the
gaps among them would be negligible, thus making insign
cant contribution to our measure.

In an experiment of heavy-ion collisions the singl
particle inclusive distribution inf, dn/df, may not be uni-
form, because the impact parameter is not always exa
zero~even if a centrality cut is made!, or because the detecto
efficiency is not symmetric inf, most likely both. It is then
better to use the cumulative variableX @10,11#, defined in our
case by

X~f!5E
0

f dn

df8
df8Y E

0

2p dn

df8
df8. ~4!

The range 0<f<2p is thus mapped to 0<X<1, and the
density of particles inX, dn/dX, is uniform. The distribution
dn/df is determined after many events, but the variableX is
used for exclusive distributions event by event. In a simu
tion dn/df is uniform, if Ne is large; we nevertheless use th
X variable between 0 and 1 just so that our proposed
analysis corresponds to what is to be done with experime
data.

Consider an event withN particles in our window, labeled
by i 51, . . . ,N, located in theX space atXi , ordered in
accordance withXi,Xi 11. Now define the distance betwee
neighboring particles by

xi5Xi 112Xi , i 50, . . . ,N, ~5!

with X050 and XN1151 being the boundaries of theX
space. We call thesexi ’s gaps, which clearly satisfy
4-2
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(
i 50

N

xi51. ~6!

Let us define for each event the moments

Gq5
1

N11 (
i 50

N

xi
q , ~7!

which, for positiveq, puts more emphasis on the large ga
than the small ones. The set$Gq% with 2<q<Q, Q being
some number less than 10, say, will be our quantification
the event structure. The set fluctuates from event to ev
especially at the critical point. Our method is to use$Gq% as
a basis to construct a measure that can reveal the cri
behavior.

Before proceeding, we should point out thatGq requires
the knowledge of the momenta of all the particles detecte
the acceptance windowW, characterized byDyDpT . Thus it
is defined in terms of an exclusive distribution inW, but
inclusive in the sense that it does not care about what
other momenta are outsideW. If we defineg(x) to be the gap
distribution, i.e.,

g~x!5
1

N11 (
i 50

N

d~x2xi !, ~8!

thenGq can alternatively be written as

Gq5E
0

1

dxxqg~x!. ~9!

The point of exhibiting this expression ofGq is to show its
explicit relationship to a distribution, and to discuss the
direct connection that it has to two-particle correlation. Sin
xi is the distance between two neighboring particles inW,
one may think thatg(x) is in some way related to the two
particle distributionr(Xi ,Xj ). However, such a relation i
very indirect, sincer(Xi ,Xj ) is defined for any two particles
at Xi and Xj without any other stipulation, whileg(x) is
nonvanishing only atxi , which by definition in Eq.~5! re-
quires thatXj5Xi 11, i.e., Xj is the momentum of the nex
neighboring particle down the chain with no particle in b
tween. To make such a restriction onr(Xi ,Xj ) is extremely
cumbersome, and destroys the usual application ofr(Xi ,Xj )
in terms of either momentum correlation by means of theF
measure@12#, or the charge fluctuation by means of theD
measure@13#, when the momentum variable is replaced
the charge variable. Thus we believe that it would be
unfruitful path to attempt to relateGq to either theF or the
D measures of fluctuations. They all probe different aspe
of the event-by-event fluctuations, but need not have sim
relationships among them.

TheGq moments defined in either Eq.~7! or Eq.~9! are to
be determined for each event and fluctuate from even
event. We now discuss a measure that summarizes the e
by-event fluctuations ofGq . Among the various erraticity
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measures considered in Ref.@4# we chooseSq for our con-
sideration here, since it has the simplest behavior. Star
with the definition

sq5^Gqln Gq&, ~10!

where the averagê•••& is performed over all events,Sq is
defined by

Sq5sq /sq
st , ~11!

where sq
st is as defined in Eq.~10! but with the statistical

contribution toGq only. Thus the deviation ofSq from 1 is a
measure of how strong the dynamical fluctuations are r
tive to the statistical fluctuations. In our simulation we ge
erateN random numbers between 0 and 1 to populate thX
space for the calculation ofGq

st . In an experiment one can d
something similar to generate a random event.

We shall study the dependence ofSq on q for various
values of r0, using configurations simulated on the Isin
lattice. The same can be done with the experimental d
from heavy-ion collisions. All the quantities discussed in t
above three paragraphs refer to experimentally measur
quantities. In particular,Gq is a measure of the fluctuation o
gaps among the detected particles within an event. The fl
tuation of Gq from event to event is quantified bySq . If
hadrons formed in heavy-ion collisions are due to a seco
order phase transition, then the experimentalSq should re-
veal some features that are similar to our theoreticalSq to be
presented below.

Before we proceed to discuss the results of our simula
on the lattice in the following section, let us summarize a
state explicitly what we suggest as a possible way to
experimentally the properties of the critical fluctuations. In
heavy-ion experiment at high energy, go to the central rap
ity region of a central collision. Select a narrow interval
pT , such as 10 MeV at, say,pT'200 MeV. Furthermore,
select a narrow interval in rapidity, such asDy'0.1. These
numbers can be varied to achieve a net multiplicity of p
ticles inDpTDy to be between 10 and 40, say. Then exam
how these particles are distributed in the azimuthalf vari-
able. Determine the gaps between neighboring particles.
them xi in the X variable defined in Eq.~4!, and determine
the momentsGq for each event. Do this for many events an
determineSq after averagingGqln Gq over all events as de
fined in Eq.~10!. Finally, calculate the properties ofSq ac-
cording to what we now describe in the following section

III. RESULTS ON CRITICAL FLUCTUATIONS

Using Ne533105 configurations simulated on the Isin
lattice atT5Tc52.315 in units ofJ/kB @1#, whereJ is the
near neighbor coupling andkB the Boltzmann constant, we
have determinedSq for a range ofr0. For r0520 the depen-
dence ofSq on q is shown in a log-log plot in Fig. 1. The
solid line is a straight-line fit of the calculated result, givin
strong evidence for the power-law behavior

Sq}qa. ~12!
4-3
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The value of the exponent isa51.6760.02. The fact that
ln Sq deviates unambiguously from zero implies thatSq is a
statistically significant measure of nontrivial dynamical flu
tuation. The power-law behavior is not necessarily a con
quence of the dynamics of critical phenomenon, since sim
behavior has been found before in the case of hadronic
lisions @4#. However, the exponenta is indicative of critical
fluctuations; it is an order of magnitude larger than the va
of a50.156 obtained forpp collisions atAs520 GeV.

To have one exponenta for all q is a very economica
description of the critical fluctuations. We can then inves
gate the dependence ofa on r0. Before doing so, let us firs
find a replacement ofr0 by some quantity that is directly
measurable. In the preceding section we have relatedr0 to
the intervalsDyDpT as the variable under experimental co
trol that can be used to tune the average multiplicity^N&
accepted in thef window. Thuŝ N& is a quantity that is both
experimentally observable and theoretically computable
the lattice. It is therefore a suitable replacement forr0. Nev-
ertheless, we prefer to use an even better one that is
average number of gaps^M &, which is also observable. O
the lattice in accordance with our convention of counti
gaps in Eqs.~5! and ~6!, we have simplyM5N11. How-
ever, it should be recalled that in our simulation we ha
adopted the rule that, whenr i exceedsr0, only one particle
is placed in a cell, not more, no matter how highr i is. That
procedure makes sense in view of our measureGq of the
event structure, since a tightly packed cell with many p
ticles in it would have very small gaps that make negligib
contribution in Eq.~7!. Experimentally, if there are particle
whose momenta are indistinguishable, or nearly so, whe
they are separately counted or not also makes no signifi
difference in the calculation ofGq . Thus to allow for such
possibilities it is better to count the number of distinguis
able gaps, rather than the number of particles.

On the lattice we have simulated the configurations fo
range ofr0 from 20 to 200. For every value ofr0 we can
calculate the average number of gaps,^M &. Figure 2 shows
the dependence of̂M & on r0 at Tc . The straight-line seg-
ments are just the linear interpolations between neighbo

FIG. 1. Sq vs q in log-log plot for T5Tc andr0520.
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points ofr0 where the calculation has been made. With su
a definitive relationship at hand, any quantity that depe
on r0 will, in the following, be shown as a function of^M &,
so as to render it amenable to experimental verification.

For each of the higher values ofr0 examined, we have
found power-law behavior ofSq , as in Fig. 1. Thus the ex
ponenta can be determined in each case. In Fig. 3 we sh
the dependence ofa on ^M &. Remarkably, the dependence
very linear. If we parametrize it as

a5a01j^M &, ~13!

we obtain

a0520.258, j50.055. ~14!

The nature of critical fluctuation is now seen to be reduced
a simple formula, Eq.~13!, when the moments of gaps ar
used to describe the event structure. If we further put emp
sis on the property that is independent of^M &, then the slope
j in Eq. ~14! emerges as a numerical output of the theory t
relies on no numerical input. This is perhaps the most s
cinct characterization of the critical phenomenon, beside

FIG. 2. The average number of gaps^M & vs r0 at Tc .

FIG. 3. The exponenta vs ^M & at Tc .
4-4
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FLUCTUATION OF GAPS IN HADRONIZATION AT THE . . . PHYSICAL REVIEW C 66, 014904 ~2002!
critical exponents. The latter depend on the temperature
critical system nearTc . In heavy-ion collisionsT is not di-
rectly observable, so the corresponding critical expone
cannot be measured experimentally~see, however, Ref
@14#!. Here we have an indexj that is eminently measurabl
and is the only numerical constant that can be meaningf
associated with critical fluctuation.

So far our study has been done only atT5Tc . To see how
the results change whenT deviates fromTc , we repeat the
above analysis for a range ofT. Figure 4 showsSq vs q in
log-log plot for 2.27,T,2.80 in units ofJ/kB . Note that
linearity is quickly lost whenT goes belowTc52.315. For
T.Tc the linearity persists for a limited range 2.315,T
,3.1, but the slope is reduced. ForT.3.2 the dependenc
bends over at highq and the linearity is lost. For the range o
T wherea can be determined from linear fits, we show
Fig. 5 a(T) up to T52.8. The sharp peak that occurs atT
5Tc is a remarkable manifestation of the critical behavi
For T less thanTc , so many hadrons are produced that t
gap distribution rapidly tends toward the statistical. ForT
larger thanTc , fewer hadrons are produced, and it tak
moreT2Tc difference for the statistical fluctuation to dom
nate. IfT were experimentally controllable, the measurem

FIG. 4. Sq vs q in log-log plot for a range ofT at r0520.

FIG. 5. a vs T at r0520.
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a

ts

ly

.
e

s

t

of a(T) would be an excellent way to determine the critic
temperature of the quark-gluon system. This being not
case in reality, we can only learn from Figs. 4 and 5 that
the system hadronizes in a range ofT aroundTc , the most
significant portion of the contribution toSq would come
from the immediate neighborhood ofT5Tc , and that only
the a value aroundTc is experimentally relevant.

The above analysis is done forr0520. We can, of course
repeat the analysis for other values ofr0. In each case we
find the peak value ofa at Tc . At eachT wherea can be
meaningfully determined, we can investigate its depende
on ^M &, just as we have done in Fig. 3 atTc . In each case a
linearity is found that allows us to determine the slope ind
j in Eq. ~13!. The result is shown in Fig. 6, wherej(T) also
exhibits a peak atTc . We can now conclude that if hadron
zation is to occur aroundTc , we expect the measurable valu
of j to be around 0.05.

Having established the properties of the observables
functions ofT due to the dynamics of the critical system, w
now investigate the question of stability with respect
changes in the size of the detector window, which is kin
matical. We have so far considered a lattice of size 72372
cells, from which we choose one row ofC572 cells from
each configuration. We now want to vary the length a
width of the row. We shall do so by settingT at Tc . First, we
consider a row ofC554 cells from each configuration, an
later a row ofC536 cells. In each case it does not matt
whether the row is mapped to a correspondingly sho
range inf, since dn/df is converted todn/dX in the X
space before the gap analysis is performed. However,
average number of gaps^M & does change, so the simulatio
with shorter rows does correspond to a shorter ranges off in
the experiment. In Fig. 7 we show the result ona vs ^M & for
the C572,54, and 36 cells. The straight lines are linear fi
which are evidently very good. The values of the slopej are

j5H 0.05560.005, C572

0.05760.005, C554

0.04860.007, C536.

~15!

The case ofC536 cells yields a slightly lower value an

FIG. 6. j vs T at r0520.
4-5
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RUDOLPH C. HWA AND QING-HUI ZHANG PHYSICAL REVIEW C66, 014904 ~2002!
relatively larger errors, as is reasonable, since there are fe
points in a shorter range. Nevertheless, all three valuesj
agree within errors. We therefore conclude thatj is stable
against variations in the length of thef window.

Next, we consider variations in the width of thef win-
dow. In our simulation so far we have used only rows w
1-cell width. In an experiment the widthDy of a window in
f will have to be adjusted in order to vary^M &. To check the
stability of our result against variations in the width of o
strip on the Ising lattice, we consider combinations of tw
and three rows. Letk be the row index, andi the cell index in
the row, as before. Thus the location of a cell on the lattic
now denoted byki. We taker adjacent rows and combin
them by performing vertical average ofr cells at each hori-
zontal positioni, i.e., we define

r i5
1

r (
k51

r

rki ~16!

and then proceed in the gap analysis usingr i as in the pre-
ceding section. It is important that ther rows be adjacent so
that the short-range vertical correlation of the cells can in
ence the value ofr i so as to reflect its dynamical conten
otherwise, if ther rows are randomly chosen, the averagi
in Eq. ~16! tends to renderr i more statistical and its distri
bution in i more uniform. In short, takingr adjacent rows
corresponds to wideningDy in the experiment. In our calcu
lation we consider only the caser 52 and 3. Note that we
take the average in Eq.~16! and then varyr0 to changê M &.
We could have addedrki ~without dividing by r ) and not
vary r0; that is equivalent to averagingrki and dividingr0
by r. Our chosen procedure allows more continuous cha
in r0.

The result of our analysis forr 51,2, and 3, andC572,
are shown in Fig. 8. Roughly speaking, the slopes are es
tially the same within errors, soj may be regarded as inde
pendent ofr. More precisely, we find

FIG. 7. a vs ^M & at Tc for various number of cells in a row.
01490
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j50.05560.005, r 51,

j50.04460.003, r 52,

j50.04560.003, r 53. ~17!

The slight decrease inj, asr increases, is not unreasonab
since averaging overr rows tends to suppress dynamic
fluctuations. In the limitr becoming very large, clearly only
statistical fluctuations remain. We may summarize Eqs.~15!,
~17!, and Fig. 6 by the grand average

j50.0560.01. ~18!

If this can be verified by experiments, then one should
able to claim that a signature of critical transition has be
observed. If the value ofj is not confirmed, yet the power
law behavior of Eq.~12! is shown to exist in the data, with o
without the linear dependence ofa on ^M & in Eq. ~13!,
which would still be an exciting experimental finding, su
gestive of dynamical fluctuations.

There is the usual question about final-state interac
and the dilution of the dynamical signature due to rando
ization. The answer depends on the type of measure for
signature. The issue has been addressed in Ref.@14#, where
the dependence on the number of steps of final-state sca
ings is examined, in Ref.@1# where configuration mixing is
considered, and in Ref.@2# where different options in simu
lating time evolution are investigated. What one learns fr
all those studies is that the measures considered are
strongly affected by the final-state randomization. Since
gap analysis is a derivative of the void analysis@1,2#, the
same conclusion follows here. The one reminder that
should emphasize is that the windowDpT in the transverse
momentum should be kept as small as possible to minim
the overlap of particles emitted at different times.

IV. CONCLUSION

We have studied the problem of even-to-event fluctuati
of the hadronic patterns in phase space in heavy-ion c

FIG. 8. a vs ^M & at Tc after averaging over various number o
rows.
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sions in search of detectable signatures of second-o
quark-hadron phase transition. We have reduced the com
cation of voids in two dimensions to the simpler problem
gaps in one dimension. Using the moments of gaps to c
struct an entropylike measureSq , we have found a power
law dependence onq with an exponenta. It is the depen-
dence ofa on the average number of gaps that yields
index j, which serves to characterize critical fluctuation. W
have found the stability ofj50.0560.01 against variations
in the length and width of the detector window inf. When
the temperature of the system is moved away fromTc , the
power-law behavior ofSq on q persists in a narrow range o
T aroundTc , and the values ofa andj show strong peaks a
Tc . Thus j is a measure of the critical behavior and is
number that arises out of the study of fluctuations with
any numerical input. It is highly significant thatj can be
checked by experiments, since all measures leading to
determination are designed to be observable.

In heavy-ion experiments it is not difficult to make cuts
DpT and Dy to limit the average number of particles in
narrow strip inf to the range from 10 to 40. If those pa
ticles are found to be nonuniformly distributed for eve
event, the gap analysis proposed here is a way to qua
those fluctuations. When the exponenta and the indexj are
01490
er
li-
f
n-

e

t

its

ify

found to exist, there are numerous variables under the c
trol of the experiments to vary. We can mention, for examp
the position of they slice, the value ofpT , the centrality of
collisions, the nuclei sizes, and the c.m. energy. It would
very interesting to see the dependence ofj on the total trans-
verse energyET , since it can provide us with some idea
when the critical behavior is lost as the nuclei overlap b
comes too small to create a quark-gluon plasma. Also,
nonzero impact parameter, even if critical fluctuations ex
the indexj may depend on which sector of thef space the
analysis is performed, since there is nof invariance in el-
liptic flow. One can envision a rich variety of phenomen
logical studies once the exponenta and indexj are found in
the experimental data. They can provide valuable inform
tion about the quark-gluon system. The application of
gap analysis to the data is therefore strongly urged.
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