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Nonadiabatic corrections to elastic scattering of halo nuclei
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We derive the formalism for the leading order corrections to the adiabatic approximation to the scattering of
composite projectiles. Assuming a two-body projectile of core plus loosely bound valence particle and a model
(the core recoil modglin which the interaction of the valence particle and the target can be neglected, we
derive the nonadiabatic correction terms both exactly, using a partial wave analysis, and using the eikonal
approximation. Along with the expected energy dependence of the corrections, there is also a strong depen-
dence on the valence-to-core mass ratio and on the strength of the imaginary potential for the core-target
interaction, which relates to absorption of the core in its scattering by the target. The strength and diffuseness
of the core-target potential also determine the size of the corrections. The first order nonadiabatic corrections
were found to be smaller than qualitative estimates would expect. The large absorption associated with the
core-target interaction in such halo nuclei ‘#Be kills off most of the nonadiabatic corrections. We give an
improved estimate for the range of validity of the adiabatic approximation when the valence-target interaction
is neglected, which includes the effect of core absorption. Some consideration was given to the validity of the
eikonal approximation in our calculations.
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[. INTRODUCTION action between the valence particle and the target can be
neglected 2]; we call this thecore recoil model since the
Halo nuclei are often described by few-body modelsonly way the proje_ctile can be excited i;; through recoil o_f the
which recognize selected internal degrees of freedom of th€0re in its scattering by the target. This has been applied to
nucleus. Few-body reaction models assume the projectilf1® €lastic scattering of halo nuclei, such’éBe, where the
nucleus consists of core and valence clusters, which intera€P'€-to-valence mass ratio is laigt. The core recoil model
with the target while also interacting with each other. Using'S 2/SC particularly applicable to a Coulomb dominated pro-

: o o hen the valence particle is neutral, and has been ap-
this few-body approach, excitations of the projectile to both®&SS W .
bound and continuum states may be included within the reglr']zdf(t)? ;hnee%?]lék?wrcg r?(rai?rli)unpr?eilgls?g] energy deuteridhé]
action model; this breakup is significant for weakly bound ;

¢ h hal lei. Furth imati With the current interest in radioactive nuclear beams op-
systems, such as nalo nuclel. -Further approximations argrating at energies in the region of tens of MeVs, the validity
usually necessary to handle the breakup continuum.

N . of high energy models, such as the adiabatic model, at lower
One such approach which includes strong couplings to thgpegies is of importance. Comparisons of CDCC and adia-

continuum is the adiabatic approximatipt], in which the ~ patic methods for deuteron induced reactions have been ex-
breakup continuum is collapsed onto a single channel whickensively studied7]. The adiabatic model was shown to be
is degenerate with the ground state of the projectile. This igiccurate at much lower energies than one would expect from
often referred to in the Coulomb excitation literature as thequalitative estimates based on the basic assumption of the
sudden approximation. Another approach to solving the fewadiabatic approximation—that the breakup energies of the
body problem, without requiring the use of the adiabatic approjectile excited during the reaction are small relative to the
proximation, is the coupled discretized continuum channetenter of mass energy of the projectile. A simple estimate of
(CDCQO) method. Here, convergence of the observables mashe accuracy of the adiabatic approximation for elastic scat-
be obtained in most cases without the need for further aptering and elastic breakup is given in RES] within the core
proximations. CDCC methods, in which the breakup con-ecoil model. However, this estimate did not take into con-
tinuum is truncated and discretized, have been effectivelgideration processes such as core absorption, which has been
applied to reactions involving two-body projectiles, such assuggested as an important factor in improving the accuracy
deuterons and single neutron halo nuclei. However, the adiaf the adiabatic approximatidiv].
batic approach provides a simpler calculation scheme and, as The adiabatic approximation underlies many microscopic
yet, is the only method for dealing with multichannel effects,theories of nuclear reactions, such as Glauber th¢®ty
including the continuum, for three-body projectiles. Three-Glauber models have been extensively applied to reactions
body models are frequently used for two-neutron halos suchhvolving deuterons and light halo nuclgi0,11 and have
as ®He, i, and “Be. been useful for extracting information on halo sizes due to
A special case of the adiabatic model is when the interactheir diffuse naturd12,13. Much work has gone into cor-
tion between the core and the target dominates and the intefecting the eikonal assumptions made in Glauber theory
[14,15. Corrected calculations compare well to few-body
calculations which make only the adiabatic approximation,
*Electronic address: n.summers@surrey.ac.uk based on the method of Ref4.6—18§.
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The formulas for the leading order nonadiabatic correcHere,H . is the internal Hamiltonian of the projectile which
tions in the core recoil model were given first in REE9].  has a ground state wave functiapg, satisfying
This paper derived the leading order corrections using the
e|kona_l approximation, and discussed the releyance of the (Hye+&0) po=0, (4)
terms involved. Here, we calculate these correctionsBe
and ®He elastic scattering from &°C target at 10 MeV/ . . .
9 9 whereeg is the binding energy of the projectile. The core-

nucleon. The nonadiabatic corrections were found to be ident- + and val ¢ t notentials | qv
tically zero for a pure point Coulomb potentigl9]. The arget and valence-target potentials g andv,r, respec-

cross terms for the case of nucle@oulomb interactions are tive.ly, yvhile Vi i the core-valence potentigl thf"‘t binds the

also small for light ion reactiong20]. The accuracy of the Proiectile. The reduced masses of the projectile-target and

adiabatic approximation for small angle Coulomb scattering?Oré-valence systems areand u,, respectively, while the

was discussed in Reff8]. In this paper, all Coulomb effects Mass ratiosa=m,/mp and f=—m./mp=a—1 relate to

are ignored. It is felt that this provides an adequate framethe distance of the_ core and valence clusters from the center

work for discussing the validity of the adiabatic approxima-°f mass of the projectile. _

tion, although no comparison with experimental data is 1€ €xact wave function for the few-body scattering sys-

possible. A full comparison of the adiabatic approximationt€m iS[22]

with experimental data, for the elastic scattering of a single

neutron halo, including Coulomb effects, has been made in i

Ref.[2]. W)= —
The format of the paper is as follows. In Sec. Il we dis- E

cuss the adiabatic approximation in the special case of the

core recoil model, where the valence-target interaction is ne- E*=E+ie, €e—0", (6)

glected. The validity of the adiabatic approximation in the

core recoil model is examined using qualitative argumentsyhereE s the total energy of the few-body scattering system
and comparisons with CDCC calculations are made. In Se¢nq K is the center-of-mass momentum. The adiabatic ap-

Il we rederive the formulas in Ref19] using an alternative  oyimation[1] assumes that the internal motion of the pro-
method which expresses the internal Hamiltonian operatofile is frozen, and thus the internal Hamiltonian of the
for the projectile as the product of two operators. We provide, giactile can be replaced by a constant. This is chosen to be
an eikonal derivation as in Ref19] and then derive the 4 ground state energy of the projectiled,), because then

corrections exactly using a partial wave sum. The eikonajhe incident part of the three-body wave function has unit
approximation provides useful insights into the nature of theamplitude. The adiabatic wave function is therefore
nonadiabatic corrections while the exact calculation is used

to examine the range of validity of the eikonal approximation
to the corrections. This provides some justification for the
use of the eikonal approximation in more complete calcula-
tions which include the valence-target interaction. These will
be reported elsewhef@0,21]. In Sec. IV, we present calcu-

lations of the nonadiabatic correction in the core recoi
model for *'Be and ®He. Section V gives an improved

estimate for the range of validity for the adiabatic approxi-

mation. A summary and concluding remarks are given in A. Core recoil model
Sec. VI.

C g0k ®)
Y ?0.,K),

ie

) =
Eo —Tr—Ver—Vor

| ¢0.K). )

|whereE0= E+ ¢ is the center-of-mass energy of the projec-
tile.

A special case of the adiabatic model is when the scatter-
ing is dominated by the core-target interaction. This is the
Il. ADIABATIC APPROXIMATION core recoil model in which the valence-target interaction is
neglected. This provides a considerable simplification of the
adiabatic Hamiltonian, as the only place that the vector
now appears is in the core-target potential. This dependence
can be transformed away using the translation operator

Here we describe the projectile using a two-body model
The position of the valence particle) relative to the core
(c) is described by the vectar The position vector of the
center of mass of the whole projectile from the targeRis

The few-body Hamiltonian is Ur(x)=e XKr, (8)
H=Tr+Ver(R—an+V,i(R-BN+H,e, (D) we have
where Ver(R—ar) =Ug(anVr(R)UK(ar). ©)
Tr=h%K32u, iKg=Vg, 2

Since Uz commutes withTg and the valence potential has
b2 ) been neglected in Eq.7), the wave function in the core
Ho =Ko 2y +Voe(r),  iK=V,. (3 recoil model can be writtef2]
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<r,R|\If§d(+)> TABLE |. Woods-Saxon potential parameters for core-target and
core-valence interactions. Energies are in MeV and lengths in fm.

ie
=(r,R|Ur(ar UL(ar)|¢g,K v R a W a
(r,R|Ug(ar) ES’ T Ver(Roy) r(ar)| g, K) v v Ry w

10Be+12C  123.00 0.750 0.800 65.00 0.780 0.800

ie arK a+1C 37.16 1.846 0.452 13.27 1.846 0.452
=(r,R|Ug(ar) ———— € ¢bo.K) 1%8etn 86.42 1.000 0.530
EO TR VCT(ROp)
a+2n 172.17 0.800 0.300 (ground state
- ie a+2n 134.82 0.800 0.728 d-wave resonange
= ¢o(n) € (R—ar| |K)
E(J)r_TR_VcT( Rop)
= o(NE X (R—ar), (100 in the CDCC calculations it is found that the adiabatic ap-

proximation gives a better estimate of the elastic cross sec-
where R, is the operator corresponding to the center-of-tion than one might expect.

mass coordinate of the projectile. Estimates of the average excitation and breakup energies
Herex{") is the two-body distorted wave for a particle of involved in the scattering of the projectile have been formu-
massu in the core-target potential, lated using the core recoil moded]. The adiabatic approxi-
mation is expected to be valid when the collision time of the
(RIx$™)y=(RlieG{)|K), (11)  projectile and target,,;, is short in comparison to the time

associated with the core-valence internal motigp, In Ref.
andG}’ is the adiabatic Green’s operator with the valence{8], an upper limit on the ratio of these times was given as

target potential switched off: ¢
coll

—<\, (16
1 tint
Ggg>=E+ VT, (12
o~ 'R cT( op) where
The core recoil model wave function, when evaluated in

the appropriate few-body-matrix with the valence-target m, my Ro 1

interaction neglected, allows a factorization intd-anatrix 7‘:2@ (Mp+myp) a2 K’ (17)

for a point particle of masg., multiplied by a formfactor,

Foo [2]:

andR, defines the range of the core-target interaction @and
T K, K ) =(K'|Verlx§ ) F oo @Q), (13  the diffuseness. The adiabatic approximation is then ex-
pected to be valid when
Foo @Q)=( ol €7 o). (14
A<1. (18)
The elastic differential cross section can then be obtained
from that of a point particle multiplied by the formfactor Note that\ is strongly dependent on the valence-to-core
squared: mass ratio, and only weakly dependent on the incident en-
ergy of the projectile, through theKl/dependence. Also note
d_ff _ d_(T F 2 15 that the derivation ok in Ref.[8] involves an estimate of the
dQ) eI_ dQ poim| ool @Q)[*. (19 excitation energy involved, but the projectile binding energy
does not appear.
The point particle elastic cross section is that obtained for a Using values for the range and diffuseness of the core-
particle of reduced masa interacting via the core-target targetinteraction from Table |, some typical values Xoare
potential, with a center-of-mass enerfy. The formfactor
includes all effects of excitation and breakup of the halo 1Be+ 2C at 10 MeV/nucleoss A =0.14,
structure.

SHe+ °C at 10 MeV/nucleoss\ =5.
B. Validity of the adiabatic approximation

The range of validity of the adiabatic approximation hasThese values set upper limits on the time ratio that must be
often been investigated by comparison with CDCC calculaimuch less than unity. From these values we would expect
tions which do not make the adiabatic approximation, buthat when the valence-target interaction is neglected, the
instead, use a discretized continuum spectrum of breakuadiabatic approximation would give a reasonable description
energies for the projectilg7]. By examining the relative ex- of the exact cross section féfBe, but a poor description for
citation and breakup energies required to gain convergencéHe, at 10 MeV/nucleon.
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10 T T ground state wave function was assumed to have a Woods-
Saxon form(Table ).
""Be+'?C E,_,=10 MeV/nuc ;
10° | ngoo w10 MeV/nucleon 1 The a+2n continuum, due to the breakup 8He, was
. — coee modeled using 15 bins from 0 to 30 MeV for each of the
10° = — —- adiabatic 7 p-, and f-wave breakup states, using the same potential as

no excitation or breakup that used for the ground state wave function. Theave
breakup states included a resonance at 1.8 MeV above the
ground state, with a bin below the resonance and 15 bins up
to 30 MeV above the resonance. A potential which repro-
duced a 1.8 MeV resonance int+2n with a width of 113

keV, was used for thesg-wave breakup statg3able |).

The cross section in the limit of no excitation or breakup
is calculated by folding the core-target potential over the
ground state wave function to form a two-body projectile-
target interaction. This is shown by the dotted line as a ref-

107" L L erence to highlight the importance of excitation and breakup

0 20 o 40 60 channels using the different methods.
m. (d20) Figure 1 shows that the effect of the adiabatic assumption

FIG. 1. CDCC(solid) versus adiabaticdashed calculations for IS negligible for “'Be and small for®He, even though the
11Be and ®He elastic scattering from d°C target at 10 Mev/ estimate in Sec. Il B suggests otherwise. To understand why
nucleon. The valence-target interaction has been neglected as wéllis is the case, the leading order corrections to the adiabatic
as the Coulomb interaction. The cross section in the limit of noapproximation are evaluated in the following sections.
excitation or breakup is represented by the dotted line. ¥Be
cross sections are multiplied by 100. lll. FIRST ORDER NONADIABATIC CORRECTIONS

do/dQ (mb/sr)

C. Adiabatic versus CDCC numerical calculations Corrections to the adiabatic approximation arise because
Extensive studies of deuteron elastic scattering havd)e scattering process mixes in excited states of the projec-

shown that there is more to the adiabatic approximation thaH!€: for which (H,c+eo) is nonzero. Therefore, we expand
the basic assumption that the excitation energy of the projed® Wave function of Eq(S) in powers of H,.+ &), where
tile is small in comparison to the center-of-mass energy of© first order we have

the projectile.

Figure 1 compares adiabatic and CDCC calculations for
HBe and®He elastic scattering from ¥C target at 10 MeV/
nucleon. The calculations neglect the valence-target intera
tion and do not include any Coulomb potential. The adiabatic
cross section with the valence-target interaction neglected
is just the core recoil model cross section obtained from
Eq. (15). L o

The core-target potential parameters are given in Table |. 1he adiabatic wave function is
The '°Be radius parameters are to be multiplied by?30

| W) =| w2y + GUD(H, o+ £0) | T2, (19)

 he first order nonadiabatic correction to the elastic adiabatic
-matrix is then

ATEK,K) = (WO (H ot £0)[WEH)). (20)

+12% and thea by 123 VEORD=po(NERD), (21)
The ground state wave function étBe is assumed to be adle) _
a pure 2,,, neutron single particle state, with a separationVhere #" "’ is the distorted wave for the two-body

energy of 0.503 MeV, calculated in a central Woods-SaxorProjectile-target scattering system in the potentigh(R
potential (Table ). The potential depth is adjusted to obtain —af)+V,7(R—gr), with a reduced masg, and normal-
the required binding energy of th€Be+n system. Assum- ized S0 that it has an incident plane waveRnwith unit
ing a core root mean squarédns) radius of 2.28 fm, this amplitude.

generates thé'Be composite nucleus, with rms radius of ~ The operator product of the three factags(r), (H,c
2.90 fm, in agreement with a recent few-body analysis oft €o), andéo(r) which appears in Eq20) can be expressed
halo sizeq12,13. as(see the Appendix

The CDCC calculations were performed USiRBESCO

[23]. The 1p,;, bound state in'’Be, with an excitation en- 2

h
$o(N(Hycteo)bo(N == 5 —Vidg:- V. (22

ergy of 320 keV, was included. ThE€Be+ n continuum was Moc
modeled using 10 bins from 0 to 20 MeV for each of the
p-,d-, andf-wave breakup states. This result assumes thal, is ans-state and, hence, without

A two-body dineutron model was assumed for the groundoss of generality, can be assumed to be real. The result also
state wave function ofHe, with a binding energy of 0.975 assumes tha¥, is local.
MeV. The dineutron is assumed to be in s.glngle particle The expressioin22) can be conveniently evaluated by al-
state. Thea+2n potential used to generate the two-body lowing the two operators to operate in opposite directions,
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i.e., the left del on the bra and the right del on the ket. Thus, hla?
the matrix element is reduced to ATS= 7 X(K K")FoolaQ), (29)
2
ATE= > (—-D1* where
/J,:il,o vC
XVt ol b0, (Vo) D). (29) X(KK) = (x [ (Ke=K) - (Ke=K)[xK). (29

A. Nonadiabatic corrections to the core recoil model B. Evaluation of the nonadiabatic corrections

Using the analytical wave function of the core recoill using the eikonal approximation
model, the matrix element for the first order correction to the
adiabatic elastid@-matrix can be simplified significantly. By
translating the two-body distorted waves,

In Ref. [19], Eq. (28) was evaluated using the eikonal
approximation. This leads to simple formulas for the correc-
tions. Using the eikonal approximation to the distorted

X<(R—an=Ux((R), (24)  Waves,

(X% (R—ar)*=(x(R)* UL, (25) x‘;’(R):exp[lK R [? _dzVer(b+2:K) |, (30)

2E,) -

the adiabatic wave functions in the core recoil model can be
written as

(XE«)(R))*zex;{—lK’ R——f dzlch(b+le)}
(39

PEORN = K OYI(R), (26)

(WO RN =(xi (R)*er (=K (27)
and by making the small angle approximatidf,K’'=1,
The derivatives with respect to are now straightforward which is consistent with the eikonal approximation, E2p)
since ther dependence has been separated. Therefore, whe@n be written a§19]
we take the derivative followed by the inner product of Egs.

(26) and (27), the Kg operators in the exponents cancel, al- - (+)
lowing the formfactor of Eq(14) to be factored out. This 0= (i 1AVerlxk”)Fod aQ), (32
leaves us with the first order correction to the adiabatic elas-
tic T-matrix: where
z R o0 R
AV‘:T:%( (VCT)Z_f dz;VpVer(b+2,K)- f dz,VpVer(b+2:K) |, (33
0 —o z
|
and y is the mass ratio For a central potential, the integral over albf AVt can be
simplified to a single integral over alt of the potential
m, my squared
=, 34 ’
4 me (mP+ mT) ( ) K
~ Y
In evaluating the matrix element in E€B2), the eikonal x(b)=— 8E2<1 b—)f dz\V2r(\b?+2?). (37)

distorted waves combine to form the eikonal phase factor,

K We can now write Eq(32) as a scattering amplitude,
Xet(b)=— 26,) szcT(b+ ZK), (35

foo= f bdbdh(Qb)S(b)x(b)FegaQ).  (38)
in which thez integration has been performed. Note that this

is possible since, for elastic scatterit,= K. Thezintegra- The eikonal scattering amplitude in the core recoil model,
tion in Eq. (32) therefore only involves\V.r, and we can including first order nonadiabatic corrections, is then
define the quantity

, K (- fe.k_in”bdeo<Qb>[1—S<b><1+i}ﬂFodan
x(b)=— 75, 7mdicT- (36) 0 (39)
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wherefSk=fek+ AfEX Here
+><R) ~ 2KR<H< J—sH{), (45)

(40)

where S, is the partial waveS-matrix, andH(f) are radial
Hankel functions, i.e., irregular solutions of the equation
is the eikonalS-matrix for }'Be as a point particle moving in

S(b)= exp{ 2”2 dzch(\/b2+z)

the core-target potential. dz  ¢(e+1) 2
get p . . & D 2ey ey —o. (46)
We see that the nonadiabatic correction tesmof Eq. dRr? R? #2
(37), is a dimensionless quantity, whose size relative to unity
determines the magnitude of the corrections. With a similar expression fop(f(T) and using a partial

The structure of the expressid@7) for the correction  wave sum forG{}’, the matrix element of Eq41) can be
factory can be traced to the physical origin of corrections toreduced td20]
the adiabatic approximation. In the few-body model used
here these corrections arise from excitation of the projectile "N v
through tidal forces generated by the interaction of the core X(KK )_4772 Pe(cos)X, “7
with the target. These forces arise because of the displace-
ment of the core from the center-of-mass of the projectilevhere we have defined
and it is therefore natural that the mass ratig/m. and
derivatives of the core-target potential should be crucial. X,=
There is a quadratic dependence\4y because a two-step
process must be involved if the projectile is to end up in the .
ground statdelastic scattering The extra 1f, factor iny, +€f R%d R(Y(KQ? 12
over and above that expected from the energy dependence of 0 o
the eikonal phasksee Eqs(35) and(36)], must be related to
the expected dependence on the collision time discussed

(€+1)f RZAR(XK ¢4 1)?

(48)

'Ehe nonadiabatic correction to the elastic scattering ampli-
{lde in the core recoil model is then

Sec. 11 B.
We note thaty is multiplied by the eikonalSmatrix ~
which will restrict the impact parameters contributing to the Afgo=— 7Foo(aQ); P¢(cosf)X,. (49

overall corrections.

In Eq. (48), wa is the solution of the inhomogeneous
C. Exact evaluation of nonadiabatic corrections equation

While the eikonal approximation provides useful insights
into the nature of the nonadiabatic corrections, the matrix (Eo—Tyr— CT)_(K;)W(R)_ ([)(R) (50)
element in Eq(29) can be evaluated exactly using a partial
wave expansion. The quantity X(K'), defined in Eq(29),

was shown in Ref[19] to have the alternative form, with asymptotic form(ignoring the Coulomb interactign

[
X(K,K') = = (xto |[Kr, VerlGS [ Kr, Verl XK).- XU (R) ~ =S, (H{D, (51)
2R
(41) R— o0
We can writey\") as a partial wave sum, and where¢’ can take two values, which leads to the two

terms in Eq.(48):

<R|x&*>>=4w;n iYVER) Y m(RXIR), (42 €'=€x1. (52

We have define®, ,, as the coefficient of the Hankel func-

wherey!{") is the solution of the radial Schdinger equation  tion in the inhomogeneous solution. It can be shown that it is
equivalent to the difference between t&enatrix for the ho-

(Eo—Te— Ve xt(R)=0, (43)  mogeneous solutions fdr and{’,

andT, is radial kinetic energy operator, Se ¢ =*(S=S¢), '=£x1 (53
521 P 52 €(€+1) The oscillatory nature oKKg .(R), for large R, means

- T R+ — (44)  that the integrals in Eq48) have to be dealt with carefully.
2uRdrR?  2n  R? The asymptotic form for the solutions to the differential

equations(43) and (50) is reached wherR is outside the
The partial distorted wave,\/(” has the asymptotic form range of the potential\(.1). The radial Hankel functions,
(ignoring the Coulomb interactign H{*), have the asymptotic form
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Hgi) ~ eti(KR—(,w/Z), (54) 1 T T T
R—o
when o8l "Be+”C  E,=110MeV |
KR>€(¢+1). (55) 06 | 1

The solutions of the differential equations were computed
out to a radiusR=R,, which is outside the range of the
potential. Then, the integrals froR, to R,, whereR, is
chosen so that the asymptotic conditi@®) is met, are per- 0.2
formed using the explicit form of the Hankel functi¢d4],

S(b)
o
S

— S

R S(b)[1+ix] Imag

€

is=C (€+s)! 0

(+)_ KR -s
Hii=e §=0 251 (£—9)! (KR 6

The integral of the asymptotic form of the Hankel function,
H((T), from R, —o can be performed analytically by mak-
ing the substitutionR=iy+R,,, and integrating over the
complex plane,

* dReZi(KR*('ﬂ'/Z):ifmdy672Ky+2iKR417i€’w
Ry 0

i . ] 10
— _ a2iKRy =it b (f
2Ke . (57) (fm)

_ _ . FIG. 2. Eikonal Smatrix and nonadiabatic corrections for
It is well known that a partial wave sum can be written 11ge+ 12 in the core recoil model. In the top figure, the solid line

gxactly asan integral over impact parame{@5]. By mak- represents the two-bodmatrix for 1'Be as a point particle inter-
ing the semiclassical correspondente; bK, and assuming acting with the!?C target via the core-target interaction. The dotted
the scattering angle is small, the sum over partial waves caline includes the first order nonadiabatic corrections through muilti-

be written ag26] plying the Smatrix by the factor (¥i%), while the correction
term,, is plotted in the bottom figure on the same impact param-
* le.
S P,(cosf)—K f dbJ,(Qb). (5g ~ Sterscale
? 0

The eikonal equivalent ok, [Eq. (48)] can then be found by neutron-target interaction. The core recoil model was applied
substituting this relation into E¢49) and comparing it with  to the elastic scattering of'Be+ %C at 49.3 MeV/nucleon
Eq. (39) to obtain in Ref. [2]. At this energy we expect the adiabatic approxi-
B 3 mation to be good, and we therefore calculate the nonadia-
yX,=bSb)x(b), (59 batic corrections at 10 MeV/nucleon, where we have calcu-
lated the qualitative estimates for the validity of the
wherey is the mass ratio of Eq34), which also appears on approximation earlier.
the rhs within the correction termy. It is then understood The potentials and wave functions were discussed in Sec.
that it is the magnitude of either side of E¢9) which 1l C. The potential used for thé’Be core in Ref[2] was
determines the overall size of the nonadiabatic corrections: ibbtained from elastic scattering data at 59.4 MeV/nucleon.
contains the overlap of the correction term with the elastidDue to the absence of data at lower energies, the same po-
scatteringS-matrix, which determines which impact param- tential will be used at 10 MeV/nucleon, but as the corrections

eters contribute to the cross section. are dependent on the potential geometry, ideally the potential
should be fixed by elastic scattering 6fBe at 10 MeV/
IV. NUMERICAL RESULTS nucleon.

In Fig. 2 (bottom), the correction termy, is plotted
against impact parameter fotBe+ °C at 10 MeV/nucleon.

Here we examine the nonadiabatic corrections in the corét has a maximum value of approximately 0.6, which is a
recoil model for'!Be scattering from &%C target.'Be is a  significant correction as it is added to unity, but it is then
good example of a single neutron halo nucleus to which thenultiplied by the eikonalS:matrix, which is plotted on the
core recoil model can be applied. The interaction betweesame impact parameter scale in Figi@o). We see that the
the 1%Be core and the target dominates the elastic scatteringonadiabatic corrections are largest for small impact param-
and it is thus a reasonable first approximation to neglect theters, but theSmatrix is zero in this region, due to a large

A. Application to ''Be+ '°C elastic scattering
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FIG. 3. Overlap ofSmatrix and nonadiabatic corrections for b (fm)
1Be+ '2C. The dashed line is the magnitude of the correction term

~ s L FIG. 4. Exact and eikonal calculations of nonadiabatic correc-
x plotted against impact parameter. The dotted-dashed line is thﬁons for UBe+
magnitude of theéS-matrix. The solid line is the magnitude of the

12C at 10 MeV/nucleon. The solid line represents
. . ~ A the eikonal approximation to the nonadiabatic corrections plotted
product of theS-matrix and the correction termp multiplied by 10. P P

against impact parameter along the bottom axis. It is the overlap of
) ) . ) .. the correction term and ti&matrix weighted by the corresponding
imaginary component in the core-target potential. This Killsinpact parameter. The circles represent the exact nonadiabatic cor-
off most of the correction term, with only large impact pa- yections for each partial wave, which are labeled along the top axis

rameters, corresponding to grazing collisions, contributing tand scaled to match the corresponding impact parameter via the
the cross section. The large impact parameters correspond iglation ¢ =bK, whereK=3.97 fm 1. The exact correction term,
forward scattering angles where there is little momentuny,  is scaled by the mass ratia

transferred to the projectile during the scattering, and there-

fore only small corrections to the adiabatic approximation.
This can be seen more clearly in Fig. 3, where the magnitud
of the Smatrix and correction termy, is plotted along with

the overlap of the two functionsnultiplied by 10. It is the gives a reasonable representation of the nonadiabatic correc-
maximum size of this overlapS| in combarison to tions. The corrections are slightly overestimated by the eiko-
max:

unity, which determines the overall size of the nonadiabatid2 @Pproximation, especially for the smaller impact param-
corrections. We see that for this system, the maximum valu

gters, but the larger impact parameters are well reproduced.
is 0.015, so the nonadiabatic corrections are small. This is where we expect the eikonal approximation to do
better as this corresponds to smaller scattering angles.
In Fig. 5 (top), the differential cross section in the core

_ o _ _ recoil model is plotted. The two curves represent the differ-
The eikonal approximation provides us with an under-ent methods of calculating the two-body cross section in the

standing of the nature of the nonadiabatic corrections, but thgore recoil model. The solid line uses an exact partial wave

use of the eikonal approximation must be validated, as in thenalysis while the dashed line uses the eikonal approxima-
energy region we are considering, we would expect signifition; the formfactor is the same in both cases. In the bottom
cant noneikonal corrections.

the eikonal calculations. This comparison shows that the
overlap of the eikonaE-matrix and the correction terny;,

B. Accuracy of eikonal calculations

_ _ _ ~of Fig. 5 the first order nonadiabatic correction is plotted as a
The nonadiabatic corrections were formulated exactly infraction of the core recoil cross section. We see that the frac-

Sec. Il C; by comparison of the exact nonadiabatic correctional correction to the adiabatic approximation is well re-
tions with those calculated in the eikonal approximation, thegroduced by the eikonal approximation, even though the ei-
validity of the eikonal approximation for these calculationskonal cross section differs significantly from the exact cross
can be assessed. section in the core recoil model. The eikonal approximation
Equation (59) shows thatyX, can be compared to the overestimates the cross section at this energy, but we saw
overlap of the correction term and tBamatrix in the eikonal  from Fig. 4 that it also overestimates the magnitude of the
approximation, as shown in Fig. 3, multiplied by

corrections. As a fraction of the cross section, however, the
Each side of Eq(59) is plotted in Fig. 4, with the exact nonadiabatic corrections are well reproduced. The large core

calculation[lhs of Eq.(59)] represented by the circles, and absorption, which kills off most of the corrections, means

the eikonal calculatiofirhs of Eq.(59)] represented by the that only large impact parameters contribute to the cross sec-
line. The exact calculation is plotted for each partial wavetion, and, therefore, the eikonal approximation gives a rea-
and scaled to match the corresponding impact parameter feonable description of the nonadiabatic corrections.
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adiabatic approximation for elastic scattering. To examine

ec.m. (deg)
the role of the mass ratio and core absorption, the core recoil

FIG. 5. Angular distribution of the elastic differential cross sec- model was app“ed t&He+ 12C elastic Scattering_
tion for MBe+ 12C in the core recoil model with no Coulomb inter- The ®He nucleus has a two-neutron halo with @rcore

action. The upper figure compares the cross sections in the CO&, the ratio of valence-to-core masseé.isThe a core is
light and will appear slightly transparent to theéC target, so

recoil model, using exadsolid) and eikonal(dashedl calculations
of t.he two'bo.dy cross section. The lower figure S.hows .the nonad'a(:orrections at small impact parameters will contribute. Elas-
batic correction as a fraction of the cross section, with the lines. . . . .
; ; . . ic scattering cross sections are available over a wide range
corresponding to exadsolid) and eikonalldashed calculations. : 1 . .
of energies fora+ '%C, so a more realistic potential can be
used. The potentials and wave functions were discussed in

We note that the fractional corrections to the adiabaticSeC e
The magnitude of the nonadiabatic correction tegmis

approximation do not depend on the formfactor, and there-
lotted in Fig. 6(dashed ling We see that thb=0 value is

fore do not depend on the internal structure of the projectile,
pproximately the same as fétBe at the same energy. De-

In Sec. Il B, an estimate on the accuracy of the adiabati(g
spite the valence-to-core mass ratio being five times larger

approximation was given as an upper limit on a time ratio,

which had to be much less than one. This upper limit wa . ;

calculated to be 0.14 fol'Be+ 1%C at 10 MeV/nFiJFéleon: we For ‘?He, the smgllera+12C. potential largely cancels this,
then would expect the adiabatic approximation to be good alﬁavmg a correction term S'm"aff to that féi‘B_e. The mag-
éutude of the peak at the potential surface Fois larger than

1Be it was smaller. This is because the

this energy from this estimate. From the calculations of th s b=0 value: f
first order corrections, the adiabatic approximation is ex' 12, value, for . ; )
+12C potential has a sharper potential surface, increasing

tremely accurate for this system, going beyond the range th N . . X
the es%i/mate of Sec. Il B sﬁggestsg Th?s is%ue to the kgy roldhe derivative of the potential at the surface, thus increasing
of the strong absorption associated with the scattering € c:nrrec(:jncg ée(rjn[sr?e dEIqri(sm' By C%mf?;'son W;th trlﬁ
small impact parameters. The maximum overlap function ma r;x( ? ed-gashed linewe see tha ef Ff{gzn Itn' €
had a value of 0.015 at the peak, which suggests that th orrection term now appears in a region o atrnx
hich is nonzero; therefore, the overlap with tBenatrix is

;d;ﬁaigceiﬁr%rggrg?goenc_ITI gPprOX|mately ten times bette},r;gore significant. It has a maximum overlap of around 0.3,
compared to 0.015 in th&'Be case. This factor of 20 differ-
N . . ence between the two cases arises even though the magni-
C. Application to °He+ *C elastic scattering tude ofy atb=0 is of the same order in both cgses. ’
In the previous section, thEBe+ 1%C system was studied ~ The overlap between the correction terp, and the
because it was a reasonable approximation to use the co8matrix is increased in théHe case because the core-target
recoil model, as the ratio of the valence-to-core masses wasotential has a weaker absorption associated with it. This

5. This small ratio also meant that the corrections in thisincreases the magnitude of ttfmatrix in the region of
maximum corrections, thus increasing the overlap. Even so,

model were small. The large absorption in thBe+ '°C
potential also played an important role in accuracy of thethe Smatrix is still relatively small at the peak of the correc-
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FIG. 7. Exact and eikonal calculations of nonadiabatic correc-
tions for ®He+ *2C at 10 MeV/nucleon. The solid line represents
the eikonal approximation to the nonadiabatic corrections plotted
against impact parameter along the bottom axis. It is the overlap of
the correction term and tH@matrix weighted by the corresponding “o 10 20 30 40
impact parameter. The circles represent the exact nonadiabatic cor 0,,, (deg)
rections for each partial wave, which are labeled along the top axis h
and scaled to match the corresponding impact parameter via the FIG. 8. Angular distribution of the elastic differential cross sec-
relation ¢ =bK, whereK=2.77 fni L. The exact correction term, tion for 8He+ °C in the core recoil model with no Coulomb inter-
X, , is scaled by the mass ratig action. The upper figure compares the cross sections in the core

recoil model, using exadsolid) and eikonal(dashedl calculations
tion term,y, and so the maximum overlap is still much of the two-body cross section. The lower figure shows the nonadia-
smaller than the maximum size of the correction term. Thebatic correction as a fraction of the cross section, with the lines
maximum overlap of 0.3 is small in comparison to unity. Thecorresponding to exagsolid) and eikonaldashed calculations.
corrections to the adiabatic approximation are thus still

small, even though the estimate in Sec. Il B suggested thafe former; second, the core-target potential has a smaller

the approximation would be poor at this energy. imaginary component for the former, due to less absorption

The accuracy of eikonal cglculaﬂons for tAele case is of the core. The second effect is examined in more detail
shown in Fig. 7. We see, as in théBe case, that the non-

adiabatic corrections are overestimated by the eikonal ap- Tf.1e potential we have used for tHéBe+ 12C interaction

proximation, with the _Wor_st agreemen.t fo'f smaller .'mpathas obtained at 59.4 MeV/nucleon. As the nonadiabatic cor-
parameters. We see in Fig. 8 that this difference is more .

. . . . . fections have been calculated at the energy of 10 MeV/
evident in the fractional correction to the cross section. The

o : hucleon, we would expect that the imaginary potential
Smatrix is not as strongly absorbing as féiBe, so these strength to be reduced, but without any experimental data at

small impact parameters are contributing to the cross sectioj) . . ; .
this energy, its precise value cannot be fixed.

at large scattering angles. For the largest scattering angles The dependence of the corrections on the imaginary po-

(abovg 25 .)' the e|I_<onaI approximation to the_ﬂrst Ordertentlal strength W, is shown in Fig. 9. The nonadiabatic
nonadiabatic corrections reduces the cross section, while an ; . : ;

. . ; . corrections are plotted for a range of imaginary potential
exact evaluation shows an increase in the cross section. Th

eikonal approximation was good fdfBe because the large Strengths for the'Be+ °C reaction at 10 MeVinucleon.
ppr¢ 9 . 9 Figure 9 contains three graphs: the top graph plots the modu-
core absorption meant that only large impact parameters co

n- . ~ . . .
tributed. This is not the case fdiHe scattering and so the lus of the COI’I’EC_tIC.Jn termy; the mldd!e f|gu_re Is the modu

. NI lus of the Smatrix; and the bottom figure is the overlap of
eikonal approximation is not as accurate.

the two. The dependence of the corrections on the imaginary
potential is shown for various imaginary potential strengths:
the solid line represents the 65 MeV imaginary potential that

In the previous section, we see that the nonadiabatic cowas obtained from the elastic scattering'88e+ *°C at 59.4
rections ®He+ '%C at 10 MeV/nucleon are larger than for MeV/nucleon, the dashed line corresponds to a 40 MeV
Be+ '2C at the same energy. The reasons for this are twoimaginary potential, the dotted line is f#vy=20 MeV, and
fold: first, the core-to-valence mass ratio is much larger fothe dotted-dashed line represeig=10 MeV.

D. Dependence on core absorption
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— FIG. 10. Angular distribution of the elastic differential cross
g section for''Be+ ¥°C in the core recoil model with the imaginary
— potential depth reduced to 20 MeV. The nonadiabatic corrections
are plotted as a fraction of the cross section, with the lines corre-
sponding to exactsolid) and eikonalldashed calculations.

0.15 seen when the exact nonadiabatic corrections were included.
The nonadiabatic corrections fdfBe are still small com-
pared to the®He calculations, even when the imaginary po-

= 01 tential depth is reduced, due to the smaller valence-to-core
] mass ratio.
? 0.05 F°~ A |
- = \ / R V. IMPROVED ESTIMATE FOR VALIDITY
Ny /—\"{\.\ OF ADIABATIC APPROXIMATION
S 7 2,
0 5 *2( = . é é 0 We have shown in our numerical evaluation of the nona-
b (fm) diabatic corrections that strong core absorption improves the

accuracy of the adiabatic approximation, going beyond that
FIG. 9. Nonadiabatic correction term fdBe+ 12C at 10 MeV/  expected from the estimates of Sec. Il B.

nucleon for varying imaginary potential depths. The top figure plots ~ The key point is that when strong absorption is present, it

the modulus of the correction terry, versus impact parameter is the value of the correction terng,[Eq. (37)], in the region

while the middle figure shows the modulus of tBenatrix on the  near the strong absorption radius which is of importance. The

same impact parameter scale. The bottom figure is the overlap afize of the nonadiabatic correction is determined by the

the Smatrix andy. The imaginary potential depths for the core- maximum overlap OK/ and theS-matrix. |f} is modeled by

target potential are given in the legend. an exponential and th&-matrix by a Woods—Saxon, then a

good estimate for the size of the nonadiabatic corrections is

We see that different imaginary potential strengths do nok, evaluated at the strong absorption radius, multiplied by

affect the correction terny significantly, but the effect on (the value of théSmatrix at the strong absorption radjus

the Smatrix is large. As the imaginary potential strength is We can estimate the value gf [Eq. (37)] at the strong

reduced, the correction terng, is reduced slightly; but, the absorption radius as the potential in this region has the form

target appears more transparent and soSimeatrix is in-  of a simple exponential, so that

creased significantly for the small impact parameters. The

overlap of the correction term with th&matrix is then o ® P

significantly increased, as shown in the bottom figure, and fﬁdeVgT(\/szLZz):ﬁdeV(Z)e 2\bTrea(60)

it is this overlap which determines the overall size of the

corrections. . . . .
, N . where a is the diffuseness of the core-target interaction.
The accuracy of the eikonal approximation for evaluating.. ; . .
Since the most important values in théntegral are those

the nonadiabatic corrections was shown to be suspect for - :
®He, which was said to be due to the weak imaginary poten‘:iroyndz_o’ the square root can be expanded in powers of
tial. To see this effect for thé'Be case, the 20 MeV imagi- 2lb:

nary potential was used to compare the exact and eikonal . .

calculations of the nonadiabatic corrections. The fractional J dz\%e—zv’m/a%f sz(’Z)e—Zb(1+22/2b2)/a_
non-adiabatic corrections are shown in Fig. 10. We see here — —

that the eikonal approximation reproduces the exact correc- (61
tions poorly for large scattering anglébove 20°), as in the

®He case. The eikonal approximation fails to predict the in-The integral of the square of the potential can therefore be

crease in the cross section for large scattering angles that wasitten
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% approximation, when the valence-target interaction is ne-
J dzVi(Vb?+2%) ~ VbamVi(b), (62 gloee:ted, is given in Sec. V, which inclgdes the role of core
o absorption. This new estimate recognizes that when the core-
and an estimate G}, near the strong absorption radius, is {arget absorption is strong, it is the size of the correction term
in the region near the strong absorption radius which is of
N YK d importance in determining the size of the nonadiabatic cor-
X(b)~-—=\anm %bm\/gT(b). (63)  rections. Equatiori64) gives a value which is of the correct
8Eo order of magnitude for the size of the nonadiabatic correc-
tions when core absorption is present.

In the core recoil model we have used here, nonadiabatic
corrections can only arise through projectile excitations oc-
curring from recoil of the core in its scattering by the target.

If the valence-target interaction were included, corrections

WK d could also arise through recoil of the valence partic.le.. The

|S¥ e —ZER?Z@%T(R) , (64)  strong dependence on the valence-to-core mass ratio is then
o R=R expected to be of great importance in the contribution from

S

The derivative of the potential dominates in
(d/db)b*¥A/2.(b), and as the potential only depends lan
the overlap of the correction term and tBamatrix at the
strong absorption radius can be written

these different processes. The correctionsf@@e, although
whereRq is the strong absorption radius, ands the mass being very small partly due to the small valence-to-core mass
ratio in Eqg.(34). The adiabatic approximation, for scattering ratio, could be much larger when valence particle recoil is
systems with strong core absorption, is then valid when included. This will be dealt with elsewhef20,21.

Sx <1. 65
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VI. SUMMARY APPENDIX: OPERATOR IDENTITY

We have calculated first order nonadiabatic corrections for Ve are interested in the operator product of the three fac-
the first time using the core recoil model, in which the ('S #*(r), (H—¢), and$(r). Our result is that this can be
valence-target interaction is neglected. Two reactions werkeexpressed as
studied: the elastic scattering étBe and ®He from a *°C 5
target at 10 MeV/nucleon. The nonadiabatic corrections were J* (H—g)(r)=— ﬁ_V WbV
compared to previous qualitative estimates of the validity of 2u " '

the adiabatic approximation. 2

The eikonal approximation was used to gain insights into +—[(V, ") p— o (V,$)]-V, .
the nature of the nonadiabatic corrections. They were found 2u ' ' '
to be dependent on the overlap of a correction t¢Eq. (A1)

(37)] and theS-matrix. The correction term was found to be

strongly dependent on the ratio of the valence mass to that 6f},o

the core, as with the qualitative estimates. Along with the

expected energy dependence, there was also a dependenc

the strength and diffuseness of the core-target interactiogtat

The overlap of the correction term with tf&matrix was

strongly dependent on the strength of the imaginary potenti?

for the core-target interaction. Strong core absorption kills of, ",

most of the nonadiabatic corrections as the maximum of thé”_ ¢:

correction term lies in a region where tiamatrix is zero, 9

while smaller imaginary potentials increase the overlap of H(r)(H—g)p(r)=— h—Vr(¢)2-V,. (A2)

the of theS-matrix with the correction term producing larger 2p

nonadiabatic corrections. The corrections calculated are

much smaller than what is expected from qualitative esti- In proving Eq.(Al), we use round brackets to indicate

mates due to the key role that core absorption plays. when theV operator acts only locally on the functions inside
An improved estimate for the validity of the adiabatic the brackets. We have

result assumes tha#h is an eigenstate ofH=
ﬁ2/2,u)V,2+V with eigenvalues, but ¢ can be arbitrary.
ust be a local operatog: and s do not have to be bound
es.

For ans-wave stateg in a real potentialg can be as-
umed to be real and the last term in E41) vanishes if
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Vi -V =(Vip* §)-Vi+(* $)VE.  (A3) Vit - V=[(V ") p—4*(V$)]-V,
By considering the operation &ff on the product ok and 2u 72 )
an arbitrary functiory, 52 *[_ Zvr +tV-e\o
(Vi) =(Vig)x+ (Vi) +2(V,$)-(Vox), (Ad) LV i (V. )]V,
Eqg. (A3) can be rewritten as 2u
VbV, =(V,4* b)-V, e *(H=¢e)¢. (A6)
+yYF[Vip— (Vi) —2(V,)- V] This is equivalent to the identity given in ECAL).

The identity (A2) is frequently seen in a form which is
equivalent to it whenp(r) is nodeless:

:[(Vr¢*)¢_ lﬂ*(vrd’)]’vr
+yrVip—y* (Vi)

h? L AD.AC)
H-e=—5—¢ 'V, ¢* Vi '=—F—, (A7
=V )= 9* (V)] o= ® Vi Ve 2n 0 AD
.2 L 2u where
FAVIO— gt S (V=2)d),  (AD) o
A= ¢ 1pg, (A8)
where we have put double brackets around the last factor to A =gpgt (A9)
emphasize tha¥ acts on¢ only. We can drop these brackets ’
if Vis a local operator. and p=—isV, is the momentum operator. The factorized
The last line in Eq(A5) can now be reexpressed in terms form (A7) is used in one-dimension in the formulation of
of H and we obtain super-symmetric quantum mechanjes].
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