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Nonadiabatic corrections to elastic scattering of halo nuclei

N. C. Summers,* J. S. Al-Khalili, and R. C. Johnson
Department of Physics, School of Physics and Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

~Received 26 April 2002; published 24 July 2002!

We derive the formalism for the leading order corrections to the adiabatic approximation to the scattering of
composite projectiles. Assuming a two-body projectile of core plus loosely bound valence particle and a model
~the core recoil model! in which the interaction of the valence particle and the target can be neglected, we
derive the nonadiabatic correction terms both exactly, using a partial wave analysis, and using the eikonal
approximation. Along with the expected energy dependence of the corrections, there is also a strong depen-
dence on the valence-to-core mass ratio and on the strength of the imaginary potential for the core-target
interaction, which relates to absorption of the core in its scattering by the target. The strength and diffuseness
of the core-target potential also determine the size of the corrections. The first order nonadiabatic corrections
were found to be smaller than qualitative estimates would expect. The large absorption associated with the
core-target interaction in such halo nuclei as11Be kills off most of the nonadiabatic corrections. We give an
improved estimate for the range of validity of the adiabatic approximation when the valence-target interaction
is neglected, which includes the effect of core absorption. Some consideration was given to the validity of the
eikonal approximation in our calculations.

DOI: 10.1103/PhysRevC.66.014614 PACS number~s!: 24.10.2i, 21.45.1v, 25.60.Bx
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I. INTRODUCTION

Halo nuclei are often described by few-body mod
which recognize selected internal degrees of freedom of
nucleus. Few-body reaction models assume the proje
nucleus consists of core and valence clusters, which inte
with the target while also interacting with each other. Usi
this few-body approach, excitations of the projectile to bo
bound and continuum states may be included within the
action model; this breakup is significant for weakly bou
systems, such as halo nuclei. Further approximations
usually necessary to handle the breakup continuum.

One such approach which includes strong couplings to
continuum is the adiabatic approximation@1#, in which the
breakup continuum is collapsed onto a single channel wh
is degenerate with the ground state of the projectile. Thi
often referred to in the Coulomb excitation literature as
sudden approximation. Another approach to solving the fe
body problem, without requiring the use of the adiabatic
proximation, is the coupled discretized continuum chan
~CDCC! method. Here, convergence of the observables m
be obtained in most cases without the need for further
proximations. CDCC methods, in which the breakup co
tinuum is truncated and discretized, have been effectiv
applied to reactions involving two-body projectiles, such
deuterons and single neutron halo nuclei. However, the a
batic approach provides a simpler calculation scheme and
yet, is the only method for dealing with multichannel effec
including the continuum, for three-body projectiles. Thre
body models are frequently used for two-neutron halos s
as 6He,11Li, and 14Be.

A special case of the adiabatic model is when the inter
tion between the core and the target dominates and the i
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action between the valence particle and the target can
neglected@2#; we call this thecore recoil model, since the
only way the projectile can be excited is through recoil of t
core in its scattering by the target. This has been applie
the elastic scattering of halo nuclei, such as11Be, where the
core-to-valence mass ratio is large@2#. The core recoil model
is also particularly applicable to a Coulomb dominated p
cess when the valence particle is neutral, and has been
plied to the Coulomb breakup of high energy deuterons@3,4#
and for one and two neutron halos@5,6#.

With the current interest in radioactive nuclear beams
erating at energies in the region of tens of MeVs, the valid
of high energy models, such as the adiabatic model, at lo
energies is of importance. Comparisons of CDCC and a
batic methods for deuteron induced reactions have been
tensively studied@7#. The adiabatic model was shown to b
accurate at much lower energies than one would expect f
qualitative estimates based on the basic assumption of
adiabatic approximation—that the breakup energies of
projectile excited during the reaction are small relative to
center of mass energy of the projectile. A simple estimate
the accuracy of the adiabatic approximation for elastic sc
tering and elastic breakup is given in Ref.@8# within the core
recoil model. However, this estimate did not take into co
sideration processes such as core absorption, which has
suggested as an important factor in improving the accur
of the adiabatic approximation@7#.

The adiabatic approximation underlies many microsco
theories of nuclear reactions, such as Glauber theory@9#.
Glauber models have been extensively applied to react
involving deuterons and light halo nuclei@10,11# and have
been useful for extracting information on halo sizes due
their diffuse nature@12,13#. Much work has gone into cor
recting the eikonal assumptions made in Glauber the
@14,15#. Corrected calculations compare well to few-bo
calculations which make only the adiabatic approximatio
based on the method of Refs.@16–18#.
©2002 The American Physical Society14-1
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The formulas for the leading order nonadiabatic corr
tions in the core recoil model were given first in Ref.@19#.
This paper derived the leading order corrections using
eikonal approximation, and discussed the relevance of
terms involved. Here, we calculate these corrections for11Be
and 6He elastic scattering from a12C target at 10 MeV/
nucleon. The nonadiabatic corrections were found to be id
tically zero for a pure point Coulomb potential@19#. The
cross terms for the case of nuclear1Coulomb interactions are
also small for light ion reactions@20#. The accuracy of the
adiabatic approximation for small angle Coulomb scatter
was discussed in Ref.@8#. In this paper, all Coulomb effect
are ignored. It is felt that this provides an adequate fram
work for discussing the validity of the adiabatic approxim
tion, although no comparison with experimental data
possible. A full comparison of the adiabatic approximati
with experimental data, for the elastic scattering of a sin
neutron halo, including Coulomb effects, has been mad
Ref. @2#.

The format of the paper is as follows. In Sec. II we d
cuss the adiabatic approximation in the special case of
core recoil model, where the valence-target interaction is
glected. The validity of the adiabatic approximation in t
core recoil model is examined using qualitative argume
and comparisons with CDCC calculations are made. In S
III we rederive the formulas in Ref.@19# using an alternative
method which expresses the internal Hamiltonian oper
for the projectile as the product of two operators. We prov
an eikonal derivation as in Ref.@19# and then derive the
corrections exactly using a partial wave sum. The eiko
approximation provides useful insights into the nature of
nonadiabatic corrections while the exact calculation is u
to examine the range of validity of the eikonal approximati
to the corrections. This provides some justification for t
use of the eikonal approximation in more complete calcu
tions which include the valence-target interaction. These
be reported elsewhere@20,21#. In Sec. IV, we present calcu
lations of the nonadiabatic correction in the core rec
model for 11Be and 6He. Section V gives an improve
estimate for the range of validity for the adiabatic appro
mation. A summary and concluding remarks are given
Sec. VI.

II. ADIABATIC APPROXIMATION

Here we describe the projectile using a two-body mod
The position of the valence particle (v) relative to the core
~c! is described by the vectorr. The position vector of the
center of mass of the whole projectile from the target isR.
The few-body Hamiltonian is

H5TR1VcT~R2ar!1VvT~R2br!1Hvc , ~1!

where

TR5\2KR
2/2m, iKR5“R , ~2!

Hvc5\2Kr
2/2mvc1Vvc~r!, iKr5“ r . ~3!
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Here,Hvc is the internal Hamiltonian of the projectile whic
has a ground state wave function,f0, satisfying

~Hvc1«0!f050, ~4!

where«0 is the binding energy of the projectile. The cor
target and valence-target potentials areVcT andVvT , respec-
tively, while Vvc is the core-valence potential that binds t
projectile. The reduced masses of the projectile-target
core-valence systems arem andmvc , respectively, while the
mass ratiosa5mv /mP and b52mc /mP5a21 relate to
the distance of the core and valence clusters from the ce
of mass of the projectile.

The exact wave function for the few-body scattering s
tem is @22#

uCK
(1)&5

ie

E12H
uf0 ,K&, ~5!

E15E1 ie, e→01, ~6!

whereE is the total energy of the few-body scattering syste
and K is the center-of-mass momentum. The adiabatic
proximation@1# assumes that the internal motion of the pr
jectile is frozen, and thus the internal Hamiltonian of t
projectile can be replaced by a constant. This is chosen t
the ground state energy of the projectile (2«0), because then
the incident part of the three-body wave function has u
amplitude. The adiabatic wave function is therefore

uCK
ad(1)&5

ie

E0
12TR2VcT2VvT

uf0 ,K&, ~7!

whereE05E1«0 is the center-of-mass energy of the proje
tile.

A. Core recoil model

A special case of the adiabatic model is when the scat
ing is dominated by the core-target interaction. This is
core recoil model in which the valence-target interaction
neglected. This provides a considerable simplification of
adiabatic Hamiltonian, as the only place that the vector
now appears is in the core-target potential. This depende
can be transformed away using the translation operator

UR~x!5e2 ix•KR. ~8!

We have

VcT~R2ar!5UR~ar!VcT~R!UR
†~ar!. ~9!

SinceUR commutes withTR and the valence potential ha
been neglected in Eq.~7!, the wave function in the core
recoil model can be written@2#
4-2
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^r,RuCK
ad(1)&

5^r,RuUR~ar!
ie

E0
12TR2VcT~Rop!

UR
†~ar!uf0 ,K&

5^r,RuUR~ar!
ie

E0
12TR2VcT~Rop!

eiar•Kuf0 ,K&

5f0~r!eiar•K^R2aru
ie

E0
12TR2VcT~Rop!

uK&

5f0~r!eiar•KxK
(1)~R2ar!, ~10!

where Rop is the operator corresponding to the center-
mass coordinate of the projectile.

HerexK
(1) is the two-body distorted wave for a particle

massm in the core-target potential,

^RuxK
(1)&5^Ru ieGad

(1)uK&, ~11!

andGad
(1) is the adiabatic Green’s operator with the valen

target potential switched off:

Gad
(1)5

1

E0
12TR2VcT~Rop!

. ~12!

The core recoil model wave function, when evaluated
the appropriate few-bodyT-matrix with the valence-targe
interaction neglected, allows a factorization into aT-matrix
for a point particle of massm, multiplied by a formfactor,
F00 @2#:

T00
ad~K,K8!5^K8uVcTuxK

(1)&F00~aQ!, ~13!

F00~aQ!5^f0ueiar•Quf0&. ~14!

The elastic differential cross section can then be obtai
from that of a point particle multiplied by the formfacto
squared:

S ds

dV D
el

5S ds

dV D
point

uF00~aQ!u2. ~15!

The point particle elastic cross section is that obtained fo
particle of reduced massm interacting via the core-targe
potential, with a center-of-mass energyE0. The formfactor
includes all effects of excitation and breakup of the h
structure.

B. Validity of the adiabatic approximation

The range of validity of the adiabatic approximation h
often been investigated by comparison with CDCC calcu
tions which do not make the adiabatic approximation,
instead, use a discretized continuum spectrum of brea
energies for the projectile@7#. By examining the relative ex
citation and breakup energies required to gain converge
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in the CDCC calculations it is found that the adiabatic a
proximation gives a better estimate of the elastic cross s
tion than one might expect.

Estimates of the average excitation and breakup ener
involved in the scattering of the projectile have been form
lated using the core recoil model@8#. The adiabatic approxi-
mation is expected to be valid when the collision time of t
projectile and target,tcoll , is short in comparison to the tim
associated with the core-valence internal motion,t int . In Ref.
@8#, an upper limit on the ratio of these times was given

tcoll

t int
,l, ~16!

where

l52
mv

mc

mT

~mP1mT!

R0

a2

1

K
, ~17!

andR0 defines the range of the core-target interaction ana
the diffuseness. The adiabatic approximation is then
pected to be valid when

l!1. ~18!

Note that l is strongly dependent on the valence-to-co
mass ratio, and only weakly dependent on the incident
ergy of the projectile, through the 1/K dependence. Also note
that the derivation ofl in Ref. @8# involves an estimate of the
excitation energy involved, but the projectile binding ener
does not appear.

Using values for the range and diffuseness of the co
target interaction from Table I, some typical values forl are

11Be1 12C at 10 MeV/nucleon⇒l50.14,

6He1 12C at 10 MeV/nucleon⇒l55.

These values set upper limits on the time ratio that mus
much less than unity. From these values we would exp
that when the valence-target interaction is neglected,
adiabatic approximation would give a reasonable descrip
of the exact cross section for11Be, but a poor description fo
6He, at 10 MeV/nucleon.

TABLE I. Woods-Saxon potential parameters for core-target a
core-valence interactions. Energies are in MeV and lengths in

V RV aV W RW aW

10Be1 12C 123.00 0.750 0.800 65.00 0.780 0.80
a1 12C 37.16 1.846 0.452 13.27 1.846 0.45
10Be1n 86.42 1.000 0.530
a12n 172.17 0.800 0.300 ~ground state!
a12n 134.82 0.800 0.728 (d-wave resonance!
4-3
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C. Adiabatic versus CDCC numerical calculations

Extensive studies of deuteron elastic scattering h
shown that there is more to the adiabatic approximation t
the basic assumption that the excitation energy of the pro
tile is small in comparison to the center-of-mass energy
the projectile.

Figure 1 compares adiabatic and CDCC calculations
11Be and6He elastic scattering from a12C target at 10 MeV/
nucleon. The calculations neglect the valence-target inte
tion and do not include any Coulomb potential. The adiaba
cross section with the valence-target interaction neglec
is just the core recoil model cross section obtained fr
Eq. ~15!.

The core-target potential parameters are given in Tab
The 10Be radius parameters are to be multiplied by 101/3

1121/3 and thea by 121/3.
The ground state wave function of11Be is assumed to be

a pure 2s1/2 neutron single particle state, with a separati
energy of 0.503 MeV, calculated in a central Woods-Sax
potential~Table I!. The potential depth is adjusted to obta
the required binding energy of the10Be1n system. Assum-
ing a core root mean squared~rms! radius of 2.28 fm, this
generates the11Be composite nucleus, with rms radius
2.90 fm, in agreement with a recent few-body analysis
halo sizes@12,13#.

The CDCC calculations were performed usingFRESCO

@23#. The 1p1/2 bound state in11Be, with an excitation en-
ergy of 320 keV, was included. The10Be1n continuum was
modeled using 10 bins from 0 to 20 MeV for each of thes-,
p-,d-, andf-wave breakup states.

A two-body dineutron model was assumed for the grou
state wave function of6He, with a binding energy of 0.975
MeV. The dineutron is assumed to be in a 2s single particle
state. Thea12n potential used to generate the two-bo

FIG. 1. CDCC~solid! versus adiabatic~dashed! calculations for
11Be and 6He elastic scattering from a12C target at 10 MeV/
nucleon. The valence-target interaction has been neglected as
as the Coulomb interaction. The cross section in the limit of
excitation or breakup is represented by the dotted line. The11Be
cross sections are multiplied by 100.
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ground state wave function was assumed to have a Wo
Saxon form~Table I!.

The a12n continuum, due to the breakup of6He, was
modeled using 15 bins from 0 to 30 MeV for each of thes-,
p-, and f-wave breakup states, using the same potentia
that used for the ground state wave function. Thed-wave
breakup states included a resonance at 1.8 MeV above
ground state, with a bin below the resonance and 15 bins
to 30 MeV above the resonance. A potential which rep
duced a 1.8 MeV resonance ina12n with a width of 113
keV, was used for thesed-wave breakup states~Table I!.

The cross section in the limit of no excitation or break
is calculated by folding the core-target potential over t
ground state wave function to form a two-body projecti
target interaction. This is shown by the dotted line as a r
erence to highlight the importance of excitation and break
channels using the different methods.

Figure 1 shows that the effect of the adiabatic assump
is negligible for 11Be and small for6He, even though the
estimate in Sec. II B suggests otherwise. To understand
this is the case, the leading order corrections to the adiab
approximation are evaluated in the following sections.

III. FIRST ORDER NONADIABATIC CORRECTIONS

Corrections to the adiabatic approximation arise beca
the scattering process mixes in excited states of the pro
tile, for which (Hvc1«0) is nonzero. Therefore, we expan
the wave function of Eq.~5! in powers of (Hvc1«0), where
to first order we have

uCK
(1)&.uCK

ad(1)&1Gad
(1)~Hvc1«0!uCK

ad(1)&. ~19!

The first order nonadiabatic correction to the elastic adiab
T-matrix is then

DT00
ad~K,K8!5^CK8

ad(2)u~Hvc1«0!uCK
ad(1)&. ~20!

The adiabatic wave function is

CK
ad(1)~R,r!5f0~r!cK

ad(1)~R,r!, ~21!

where cK
ad(1) is the distorted wave for the two-bod

projectile-target scattering system in the potentialVcT(R
2ar)1VvT(R2br), with a reduced massm, and normal-
ized so that it has an incident plane wave inR with unit
amplitude.

The operator product of the three factorsf0(r), (Hvc
1«0), andf0(r) which appears in Eq.~20! can be expressed
as ~see the Appendix!

f0~r!~Hvc1«0!f0~r!52
\2

2mvc
“ rf0

2
•“ r . ~22!

This result assumes thatf0 is ans-state and, hence, withou
loss of generality, can be assumed to be real. The result
assumes thatVvc is local.

The expression~22! can be conveniently evaluated by a
lowing the two operators to operate in opposite directio

ell
o

4-4
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i.e., the left del on the bra and the right del on the ket. Th
the matrix element is reduced to

DT00
ad5 (

m561,0
~21!m

\2

2mvc

3^~“ r!mcK8
ad(2) ,f0uf0 ,~“ r!2mcK

ad(1)&. ~23!

A. Nonadiabatic corrections to the core recoil model

Using the analytical wave function of the core rec
model, the matrix element for the first order correction to
adiabatic elasticT-matrix can be simplified significantly. By
translating the two-body distorted waves,

xK
(1)~R2ar!5URxK

(1)~R!, ~24!

~xK8
(2)

~R2ar!!* 5~xK8
(2)

~R!!* UR
† , ~25!

the adiabatic wave functions in the core recoil model can
written as

cK
ad(1)~R,r!5e2 iar•(KR2K)xK

(1)~R!, ~26!

~cK8
ad(2)

~R,r!!* 5~xK8
(2)

~R!!* eiar•(KR2K8). ~27!

The derivatives with respect tor are now straightforward
since ther dependence has been separated. Therefore, w
we take the derivative followed by the inner product of Eq
~26! and ~27!, the KR operators in the exponents cancel,
lowing the formfactor of Eq.~14! to be factored out. This
leaves us with the first order correction to the adiabatic e
tic T-matrix:
r,

hi

01461
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DT00
ad5

\2a2

2mvc
X~K,K8!F00~aQ!, ~28!

where

X~K,K8!5^xK8
(2)u~KR2K8!•~KR2K!uxK

(1)&. ~29!

B. Evaluation of the nonadiabatic corrections
using the eikonal approximation

In Ref. @19#, Eq. ~28! was evaluated using the eikon
approximation. This leads to simple formulas for the corre
tions. Using the eikonal approximation to the distort
waves,

xK
(1)~R!5expF iK•R2

iK

2E0
E

2`

z

dz1VcT(b1z1K̂)G , ~30!

~xK8
(2)

~R!!* 5expF2 iK8•R2
iK8

2E0
E

z8

`

dz18VcT(b1z18K̂8)G ,
~31!

and by making the small angle approximation,K̂•K̂851,
which is consistent with the eikonal approximation, Eq.~28!
can be written as@19#

DT00
ad5^xK8

(2)uDVcTuxK
(1)&F00~aQ!, ~32!

where
DVcT5
g

4E0
S ~VcT!22E

2`

z

dz1“bVcT~b1z1K̂!•E
z

`

dz2“bVcT~b1z2K̂! D , ~33!
el,
andg is the mass ratio

g5
mv

mc

mT

~mP1mT!
. ~34!

In evaluating the matrix element in Eq.~32!, the eikonal
distorted waves combine to form the eikonal phase facto

xcT~b!52
K

2E0
E

2`

`

dzVcT~b1zK̂!, ~35!

in which thez integration has been performed. Note that t
is possible since, for elastic scattering,K85K. Thez integra-
tion in Eq. ~32! therefore only involvesDVcT , and we can
define the quantity

x̃~b!52
K

2E0
E

2`

`

dzDVcT . ~36!
s

For a central potential, the integral over allz of DVcT can be
simplified to a single integral over allz of the potential
squared,

x̃~b!52
gK

8E0
2 S 11b

d

dbD E
2`

`

dzVcT
2 ~Ab21z2!. ~37!

We can now write Eq.~32! as a scattering amplitude,

D f 00
eik5KE

0

`

bdbJ0~Qb!S~b!x̃~b!F00~aQ!. ~38!

The eikonal scattering amplitude in the core recoil mod
including first order nonadiabatic corrections, is then

f̄ 00
eik5 iKE

0

`

bdbJ0~Qb!@12S~b!~11 ix̃ !#F00~aQ!,

~39!
4-5
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where f̄ 00
eik5 f 00

eik1D f 00
eik . Here

S~b!5expF2
iK

2E0
E

2`

`

dzVcT~Ab21z2!G ~40!

is the eikonalS-matrix for 11Be as a point particle moving in
the core-target potential.

We see that the nonadiabatic correction term,x̃ of Eq.
~37!, is a dimensionless quantity, whose size relative to un
determines the magnitude of the corrections.

The structure of the expression~37! for the correction
factor x̃ can be traced to the physical origin of corrections
the adiabatic approximation. In the few-body model us
here these corrections arise from excitation of the projec
through tidal forces generated by the interaction of the c
with the target. These forces arise because of the displ
ment of the core from the center-of-mass of the projec
and it is therefore natural that the mass ratiomv /mc and
derivatives of the core-target potential should be cruc
There is a quadratic dependence onVcT because a two-ste
process must be involved if the projectile is to end up in
ground state~elastic scattering!. The extra 1/E0 factor in x̃,
over and above that expected from the energy dependen
the eikonal phase@see Eqs.~35! and~36!#, must be related to
the expected dependence on the collision time discusse
Sec. II B.

We note thatx̃ is multiplied by the eikonalS-matrix
which will restrict the impact parameters contributing to t
overall corrections.

C. Exact evaluation of nonadiabatic corrections

While the eikonal approximation provides useful insigh
into the nature of the nonadiabatic corrections, the ma
element in Eq.~29! can be evaluated exactly using a part
wave expansion. The quantity X(K,K8), defined in Eq.~29!,
was shown in Ref.@19# to have the alternative form,

X~K,K8!52^xK8
(2)u@KR ,VcT#Gad

(1)2@KR ,VcT#uxK
(1)&.

~41!

We can writexK
(1) as a partial wave sum,

^RuxK
(1)&54p(

,m
i ,Y,m* ~K̂!Y,m~R̂!x,

(1)~R!, ~42!

wherex,
(1) is the solution of the radial Schro¨dinger equation

~E02T,2VcT!x,
(1)~R!50, ~43!

andT, is radial kinetic energy operator,

T,52
\2

2m

1

R

d2

dR2
R1

\2

2m

,~,11!

R2
. ~44!

The partial distorted wave,x,
(1) , has the asymptotic form

~ignoring the Coulomb interaction!
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x,
(1)~R! ;

R→`

i

2KR
~H,

(2)2S,H,
(1)!, ~45!

whereS, is the partial waveS-matrix, andH,
(6) are radial

Hankel functions, i.e., irregular solutions of the equation

F d2

dR2
2

,~,11!

R2
2

2m

\2
V1K2Gy,50. ~46!

With a similar expression forxK8
(2) and using a partial

wave sum forGad
(1) , the matrix element of Eq.~41! can be

reduced to@20#

X~K,K8!54p(
,

P,~cosu!X̃, , ~47!

where we have defined

X̃,5F ~,11!E
0

`

R2dR~X̄K,,,,11
(1) !2

1,E
0

`

R2dR~X̄K,,,,21
(1) !2G . ~48!

The nonadiabatic correction to the elastic scattering am
tude in the core recoil model is then

D f 0052gF00~aQ!(
,

P,~cosu!X̃, . ~49!

In Eq. ~48!, X̄K,,8
(1) is the solution of the inhomogeneou

equation

~E02T,82VcT!X̄K,,8
(1)

~R!5
dVcT

dR
x,

(1)~R!, ~50!

with asymptotic form~ignoring the Coulomb interaction!

X̄K, ,8
(1)

~R! ;
R→`

i

2R
S, ,8H,8

(1) , ~51!

and where,8 can take two values, which leads to the tw
terms in Eq.~48!:

,85,61. ~52!

We have definedS, ,8 as the coefficient of the Hankel func
tion in the inhomogeneous solution. It can be shown that i
equivalent to the difference between theS-matrix for the ho-
mogeneous solutions for, and,8,

S, ,856~S,2S,8!, ,85,61. ~53!

The oscillatory nature ofX̄K, ,8
(1) (R), for large R, means

that the integrals in Eq.~48! have to be dealt with carefully
The asymptotic form for the solutions to the differenti
equations~43! and ~50! is reached whenR is outside the
range of the potential (VcT). The radial Hankel functions
H,

(6) , have the asymptotic form
4-6
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H,
(6) ;

R→`

e6 i (KR2,p/2), ~54!

when

KR@,~,11!. ~55!

The solutions of the differential equations were compu
out to a radiusR5R0, which is outside the range of th
potential. Then, the integrals fromR0 to R, , whereR, is
chosen so that the asymptotic condition~55! is met, are per-
formed using the explicit form of the Hankel function@24#,

H,
(1)5eiKR(

s50

,
i s2,

2ss!

~,1s!!

~,2s!!
~KR!2s. ~56!

The integral of the asymptotic form of the Hankel functio
H,8

(1) , from R,8→` can be performed analytically by mak
ing the substitutionR5 iy1R,8 , and integrating over the
complex plane,

E
R,8

`

dRe2i (KR2,8p/2)5 i E
0

`

dye22Ky12iKR,82 i ,8p

5
i

2K
e2iKR,82 i ,8p. ~57!

It is well known that a partial wave sum can be writte
exactly as an integral over impact parameters@25#. By mak-
ing the semiclassical correspondence,,5bK, and assuming
the scattering angle is small, the sum over partial waves
be written as@26#

(
,

P,~cosu!→KE
0

`

dbJ0~Qb!. ~58!

The eikonal equivalent ofX̃, @Eq. ~48!# can then be found by
substituting this relation into Eq.~49! and comparing it with
Eq. ~39! to obtain

gX̃,[bS~b!x̃~b!, ~59!

whereg is the mass ratio of Eq.~34!, which also appears on
the rhs within the correction term,x̃. It is then understood
that it is the magnitude of either side of Eq.~59! which
determines the overall size of the nonadiabatic correction
contains the overlap of the correction term with the elas
scatteringS-matrix, which determines which impact param
eters contribute to the cross section.

IV. NUMERICAL RESULTS

A. Application to 11Be¿ 12C elastic scattering

Here we examine the nonadiabatic corrections in the c
recoil model for11Be scattering from a12C target.11Be is a
good example of a single neutron halo nucleus to which
core recoil model can be applied. The interaction betw
the 10Be core and the target dominates the elastic scatte
and it is thus a reasonable first approximation to neglect
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neutron-target interaction. The core recoil model was app
to the elastic scattering of11Be1 12C at 49.3 MeV/nucleon
in Ref. @2#. At this energy we expect the adiabatic appro
mation to be good, and we therefore calculate the nona
batic corrections at 10 MeV/nucleon, where we have cal
lated the qualitative estimates for the validity of th
approximation earlier.

The potentials and wave functions were discussed in S
II C. The potential used for the10Be core in Ref.@2# was
obtained from elastic scattering data at 59.4 MeV/nucle
Due to the absence of data at lower energies, the same
tential will be used at 10 MeV/nucleon, but as the correctio
are dependent on the potential geometry, ideally the poten
should be fixed by elastic scattering of10Be at 10 MeV/
nucleon.

In Fig. 2 ~bottom!, the correction term,x̃, is plotted
against impact parameter for11Be1 12C at 10 MeV/nucleon.
It has a maximum value of approximately 0.6, which is
significant correction as it is added to unity, but it is th
multiplied by the eikonalS-matrix, which is plotted on the
same impact parameter scale in Fig. 2~top!. We see that the
nonadiabatic corrections are largest for small impact par
eters, but theS-matrix is zero in this region, due to a larg

FIG. 2. Eikonal S-matrix and nonadiabatic corrections fo
11Be1 12C in the core recoil model. In the top figure, the solid lin
represents the two-bodyS-matrix for 11Be as a point particle inter-
acting with the12C target via the core-target interaction. The dott
line includes the first order nonadiabatic corrections through mu
plying the S-matrix by the factor (11 i x̃), while the correction
term, x̃, is plotted in the bottom figure on the same impact para
eter scale.
4-7
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imaginary component in the core-target potential. This k
off most of the correction term, with only large impact p
rameters, corresponding to grazing collisions, contributing
the cross section. The large impact parameters correspo
forward scattering angles where there is little moment
transferred to the projectile during the scattering, and the
fore only small corrections to the adiabatic approximatio
This can be seen more clearly in Fig. 3, where the magnit
of the S-matrix and correction term,x̃, is plotted along with
the overlap of the two functions~multiplied by 10!. It is the
maximum size of this overlap,uSx̃umax, in comparison to
unity, which determines the overall size of the nonadiaba
corrections. We see that for this system, the maximum va
is 0.015, so the nonadiabatic corrections are small.

B. Accuracy of eikonal calculations

The eikonal approximation provides us with an und
standing of the nature of the nonadiabatic corrections, but
use of the eikonal approximation must be validated, as in
energy region we are considering, we would expect sign
cant noneikonal corrections.

The nonadiabatic corrections were formulated exactly
Sec. III C; by comparison of the exact nonadiabatic corr
tions with those calculated in the eikonal approximation,
validity of the eikonal approximation for these calculatio
can be assessed.

Equation ~59! shows thatgX̃, can be compared to th
overlap of the correction term and theS-matrix in the eikonal
approximation, as shown in Fig. 3, multiplied byb.

Each side of Eq.~59! is plotted in Fig. 4, with the exac
calculation@lhs of Eq. ~59!# represented by the circles, an
the eikonal calculation@rhs of Eq.~59!# represented by the
line. The exact calculation is plotted for each partial wa
and scaled to match the corresponding impact paramete

FIG. 3. Overlap ofS-matrix and nonadiabatic corrections fo
11Be1 12C. The dashed line is the magnitude of the correction te
x̃ plotted against impact parameter. The dotted-dashed line is
magnitude of theS-matrix. The solid line is the magnitude of th
product of theS-matrix and the correction termx̃ multiplied by 10.
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the eikonal calculations. This comparison shows that
overlap of the eikonalS-matrix and the correction term,x̃,
gives a reasonable representation of the nonadiabatic co
tions. The corrections are slightly overestimated by the ei
nal approximation, especially for the smaller impact para
eters, but the larger impact parameters are well reprodu
This is where we expect the eikonal approximation to
better as this corresponds to smaller scattering angles.

In Fig. 5 ~top!, the differential cross section in the cor
recoil model is plotted. The two curves represent the diff
ent methods of calculating the two-body cross section in
core recoil model. The solid line uses an exact partial wa
analysis while the dashed line uses the eikonal approxi
tion; the formfactor is the same in both cases. In the bott
of Fig. 5 the first order nonadiabatic correction is plotted a
fraction of the core recoil cross section. We see that the fr
tional correction to the adiabatic approximation is well r
produced by the eikonal approximation, even though the
konal cross section differs significantly from the exact cro
section in the core recoil model. The eikonal approximat
overestimates the cross section at this energy, but we
from Fig. 4 that it also overestimates the magnitude of
corrections. As a fraction of the cross section, however,
nonadiabatic corrections are well reproduced. The large c
absorption, which kills off most of the corrections, mea
that only large impact parameters contribute to the cross
tion, and, therefore, the eikonal approximation gives a r
sonable description of the nonadiabatic corrections.

he
FIG. 4. Exact and eikonal calculations of nonadiabatic corr

tions for 11Be1 12C at 10 MeV/nucleon. The solid line represen
the eikonal approximation to the nonadiabatic corrections plo
against impact parameter along the bottom axis. It is the overla
the correction term and theS-matrix weighted by the correspondin
impact parameter. The circles represent the exact nonadiabatic
rections for each partial wave, which are labeled along the top
and scaled to match the corresponding impact parameter via
relation ,5bK, whereK53.97 fm21. The exact correction term

X̃, , is scaled by the mass ratiog.
4-8
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We note that the fractional corrections to the adiaba
approximation do not depend on the formfactor, and the
fore do not depend on the internal structure of the projec

In Sec. II B, an estimate on the accuracy of the adiab
approximation was given as an upper limit on a time ra
which had to be much less than one. This upper limit w
calculated to be 0.14 for11Be1 12C at 10 MeV/nucleon: we
then would expect the adiabatic approximation to be goo
this energy from this estimate. From the calculations of
first order corrections, the adiabatic approximation is
tremely accurate for this system, going beyond the range
the estimate of Sec. II B suggests. This is due to the key
of the strong absorption associated with the scattering
small impact parameters. The maximum overlap funct
had a value of 0.015 at the peak, which suggests that
adiabatic approximation is approximately ten times be
than the estimate of Sec. II B.

C. Application to 6He¿ 12C elastic scattering

In the previous section, the11Be1 12C system was studied
because it was a reasonable approximation to use the
recoil model, as the ratio of the valence-to-core masses
1

10 . This small ratio also meant that the corrections in t
model were small. The large absorption in the10Be1 12C
potential also played an important role in accuracy of

FIG. 5. Angular distribution of the elastic differential cross se
tion for 11Be1 12C in the core recoil model with no Coulomb inte
action. The upper figure compares the cross sections in the
recoil model, using exact~solid! and eikonal~dashed! calculations
of the two-body cross section. The lower figure shows the nona
batic correction as a fraction of the cross section, with the li
corresponding to exact~solid! and eikonal~dashed! calculations.
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adiabatic approximation for elastic scattering. To exam
the role of the mass ratio and core absorption, the core re
model was applied to6He1 12C elastic scattering.

The 6He nucleus has a two-neutron halo with ana core,
so the ratio of valence-to-core masses is1

2. The a core is
light and will appear slightly transparent to the12C target, so
corrections at small impact parameters will contribute. El
tic scattering cross sections are available over a wide ra
of energies fora1 12C, so a more realistic potential can b
used. The potentials and wave functions were discusse
Sec. II C.

The magnitude of the nonadiabatic correction term,x̃, is
plotted in Fig. 6~dashed line!. We see that theb50 value is
approximately the same as for11Be at the same energy. De
spite the valence-to-core mass ratio being five times lar
for 6He, the smallera112C potential largely cancels this
leaving a correction term similar to that for11Be. The mag-
nitude of the peak at the potential surface forx̃ is larger than
its b50 value; for 11Be it was smaller. This is because th
a112C potential has a sharper potential surface, increas
the derivative of the potential at the surface, thus increas
the correction term@see Eq.~37!#. By comparison with the
S-matrix ~dotted-dashed line!, we see that the peak in th
correction term now appears in a region of theS-matrix
which is nonzero; therefore, the overlap with theS-matrix is
more significant. It has a maximum overlap of around 0
compared to 0.015 in the11Be case. This factor of 20 differ
ence between the two cases arises even though the m
tude of x̃ at b50 is of the same order in both cases.

The overlap between the correction term,x̃, and the
S-matrix is increased in the6He case because the core-targ
potential has a weaker absorption associated with it. T
increases the magnitude of theS-matrix in the region of
maximum corrections, thus increasing the overlap. Even
theS-matrix is still relatively small at the peak of the corre

-

re

a-
s

FIG. 6. Overlap ofS-matrix and nonadiabatic corrections fo
6He1 12C. The dashed line is the magnitude of the correction te
x̃ plotted against impact parameter. The dotted-dashed line is
magnitude of theS-matrix. The solid line is the magnitude of th
product of theS-matrix and the correction termx̃.
4-9
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tion term, x̃, and so the maximum overlap is still muc
smaller than the maximum size of the correction term. T
maximum overlap of 0.3 is small in comparison to unity. T
corrections to the adiabatic approximation are thus s
small, even though the estimate in Sec. II B suggested
the approximation would be poor at this energy.

The accuracy of eikonal calculations for the6He case is
shown in Fig. 7. We see, as in the11Be case, that the non
adiabatic corrections are overestimated by the eikonal
proximation, with the worst agreement for smaller impa
parameters. We see in Fig. 8 that this difference is m
evident in the fractional correction to the cross section. T
S-matrix is not as strongly absorbing as for11Be, so these
small impact parameters are contributing to the cross sec
at large scattering angles. For the largest scattering an
~above 25°), the eikonal approximation to the first ord
nonadiabatic corrections reduces the cross section, whil
exact evaluation shows an increase in the cross section.
eikonal approximation was good for11Be because the larg
core absorption meant that only large impact parameters
tributed. This is not the case for6He scattering and so th
eikonal approximation is not as accurate.

D. Dependence on core absorption

In the previous section, we see that the nonadiabatic
rections 6He1 12C at 10 MeV/nucleon are larger than fo
11Be1 12C at the same energy. The reasons for this are t
fold: first, the core-to-valence mass ratio is much larger

FIG. 7. Exact and eikonal calculations of nonadiabatic corr
tions for 6He1 12C at 10 MeV/nucleon. The solid line represen
the eikonal approximation to the nonadiabatic corrections plo
against impact parameter along the bottom axis. It is the overla
the correction term and theS-matrix weighted by the correspondin
impact parameter. The circles represent the exact nonadiabatic
rections for each partial wave, which are labeled along the top
and scaled to match the corresponding impact parameter via
relation ,5bK, whereK52.77 fm21. The exact correction term

X̃, , is scaled by the mass ratiog.
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the former; second, the core-target potential has a sma
imaginary component for the former, due to less absorpt
of the core. The second effect is examined in more de
here.

The potential we have used for the10Be1 12C interaction
was obtained at 59.4 MeV/nucleon. As the nonadiabatic c
rections have been calculated at the energy of 10 M
nucleon, we would expect that the imaginary potent
strength to be reduced, but without any experimental dat
this energy, its precise value cannot be fixed.

The dependence of the corrections on the imaginary
tential strength,W0, is shown in Fig. 9. The nonadiabati
corrections are plotted for a range of imaginary poten
strengths for the11Be1 12C reaction at 10 MeV/nucleon
Figure 9 contains three graphs: the top graph plots the mo
lus of the correction term,x̃; the middle figure is the modu
lus of theS-matrix; and the bottom figure is the overlap
the two. The dependence of the corrections on the imagin
potential is shown for various imaginary potential strengt
the solid line represents the 65 MeV imaginary potential t
was obtained from the elastic scattering of10Be1 12C at 59.4
MeV/nucleon, the dashed line corresponds to a 40 M
imaginary potential, the dotted line is forW0520 MeV, and
the dotted-dashed line representsW0510 MeV.

-

d
of

or-
is
he FIG. 8. Angular distribution of the elastic differential cross se
tion for 6He1 12C in the core recoil model with no Coulomb inte
action. The upper figure compares the cross sections in the
recoil model, using exact~solid! and eikonal~dashed! calculations
of the two-body cross section. The lower figure shows the nona
batic correction as a fraction of the cross section, with the lin
corresponding to exact~solid! and eikonal~dashed! calculations.
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We see that different imaginary potential strengths do
affect the correction termx̃ significantly, but the effect on
the S-matrix is large. As the imaginary potential strength
reduced, the correction term,x̃, is reduced slightly; but, the
target appears more transparent and so theS-matrix is in-
creased significantly for the small impact parameters. T
overlap of the correction term with theS-matrix is then
significantly increased, as shown in the bottom figure, a
it is this overlap which determines the overall size of t
corrections.

The accuracy of the eikonal approximation for evaluat
the nonadiabatic corrections was shown to be suspect
6He, which was said to be due to the weak imaginary pot
tial. To see this effect for the11Be case, the 20 MeV imagi
nary potential was used to compare the exact and eik
calculations of the nonadiabatic corrections. The fractio
non-adiabatic corrections are shown in Fig. 10. We see h
that the eikonal approximation reproduces the exact cor
tions poorly for large scattering angles~above 20°), as in the
6He case. The eikonal approximation fails to predict the
crease in the cross section for large scattering angles that

FIG. 9. Nonadiabatic correction term for11Be1 12C at 10 MeV/
nucleon for varying imaginary potential depths. The top figure pl
the modulus of the correction term,x̃, versus impact paramete
while the middle figure shows the modulus of theS-matrix on the
same impact parameter scale. The bottom figure is the overla
the S-matrix and x̃. The imaginary potential depths for the cor
target potential are given in the legend.
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seen when the exact nonadiabatic corrections were inclu
The nonadiabatic corrections for11Be are still small com-
pared to the6He calculations, even when the imaginary p
tential depth is reduced, due to the smaller valence-to-c
mass ratio.

V. IMPROVED ESTIMATE FOR VALIDITY
OF ADIABATIC APPROXIMATION

We have shown in our numerical evaluation of the non
diabatic corrections that strong core absorption improves
accuracy of the adiabatic approximation, going beyond t
expected from the estimates of Sec. II B.

The key point is that when strong absorption is presen
is the value of the correction term,x̃ @Eq. ~37!#, in the region
near the strong absorption radius which is of importance. T
size of the nonadiabatic correction is determined by
maximum overlap ofx̃ and theS-matrix. If x̃ is modeled by
an exponential and theS-matrix by a Woods–Saxon, then
good estimate for the size of the nonadiabatic correction
x̃, evaluated at the strong absorption radius, multiplied b1

2

~the value of theS-matrix at the strong absorption radius!.
We can estimate the value ofx̃ @Eq. ~37!# at the strong

absorption radius as the potential in this region has the fo
of a simple exponential, so that

E
2`

`

dzVcT
2 ~Ab21z2!5E

2`

`

dzV0
2e22Ab21z2/a, ~60!

where a is the diffuseness of the core-target interactio
Since the most important values in thez integral are those
aroundz50, the square root can be expanded in powers
z/b:

E
2`

`

dzV0
2e22Ab21z2/a'E

2`

`

dzV0
2e22b(11z2/2b2)/a.

~61!

The integral of the square of the potential can therefore
written

s

of

FIG. 10. Angular distribution of the elastic differential cros
section for 11Be1 12C in the core recoil model with the imaginar
potential depth reduced to 20 MeV. The nonadiabatic correcti
are plotted as a fraction of the cross section, with the lines co
sponding to exact~solid! and eikonal~dashed! calculations.
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E
2`

`

dzVcT
2 ~Ab21z2!'AbapVcT

2 ~b!, ~62!

and an estimate ofx̃, near the strong absorption radius, is

x̃~b!'
gK

8E0
2
Aap

d

db
b3/2VcT

2 ~b!. ~63!

The derivative of the potential dominates
(d/db)b3/2VcT

2 (b), and as the potential only depends onb,
the overlap of the correction term and theS-matrix at the
strong absorption radius can be written

uSx̃umax'
gK

16E0
2
ApaRs

3/2 d

dR
VcT

2 ~R!U
R5Rs

, ~64!

whereRs is the strong absorption radius, andg is the mass
ratio in Eq.~34!. The adiabatic approximation, for scatterin
systems with strong core absorption, is then valid when

uSx̃umax!1. ~65!

For strong absorbing systems, this criterion replaces co
tion ~18!.

Equation ~64! gives approximate values foruSx̃umax of
0.01 and 0.2 for11Be and 6He, respectively. This compare
well with calculated values of 0.015 and 0.3 from Figs. 3 a
6. These values greatly improve on the estimates give
Sec. II B, and give the maximum overlap to the correct or
of magnitude for scattering systems with core absorption

VI. SUMMARY

We have calculated first order nonadiabatic corrections
the first time using the core recoil model, in which th
valence-target interaction is neglected. Two reactions w
studied: the elastic scattering of11Be and 6He from a 12C
target at 10 MeV/nucleon. The nonadiabatic corrections w
compared to previous qualitative estimates of the validity
the adiabatic approximation.

The eikonal approximation was used to gain insights i
the nature of the nonadiabatic corrections. They were fo
to be dependent on the overlap of a correction term@Eq.
~37!# and theS-matrix. The correction term was found to b
strongly dependent on the ratio of the valence mass to tha
the core, as with the qualitative estimates. Along with
expected energy dependence, there was also a dependen
the strength and diffuseness of the core-target interact
The overlap of the correction term with theS-matrix was
strongly dependent on the strength of the imaginary poten
for the core-target interaction. Strong core absorption kills
most of the nonadiabatic corrections as the maximum of
correction term lies in a region where theS-matrix is zero,
while smaller imaginary potentials increase the overlap
the of theS-matrix with the correction term producing large
nonadiabatic corrections. The corrections calculated
much smaller than what is expected from qualitative e
mates due to the key role that core absorption plays.

An improved estimate for the validity of the adiabat
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approximation, when the valence-target interaction is
glected, is given in Sec. V, which includes the role of co
absorption. This new estimate recognizes that when the c
target absorption is strong, it is the size of the correction te
in the region near the strong absorption radius which is
importance in determining the size of the nonadiabatic c
rections. Equation~64! gives a value which is of the correc
order of magnitude for the size of the nonadiabatic corr
tions when core absorption is present.

In the core recoil model we have used here, nonadiab
corrections can only arise through projectile excitations
curring from recoil of the core in its scattering by the targ
If the valence-target interaction were included, correctio
could also arise through recoil of the valence particle. T
strong dependence on the valence-to-core mass ratio is
expected to be of great importance in the contribution fr
these different processes. The corrections for11Be, although
being very small partly due to the small valence-to-core m
ratio, could be much larger when valence particle recoi
included. This will be dealt with elsewhere@20,21#.
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APPENDIX: OPERATOR IDENTITY

We are interested in the operator product of the three
tors c* (r), (H2«), andf(r). Our result is that this can be
reexpressed as

c* ~H2«!f~r!52
\2

2m
“ rc* f•“ r

1
\2

2m
@~“ rc* !f2c* ~“ rf!#•“ r .

~A1!

The result assumes thatf is an eigenstate ofH5
2(\2/2m)¹ r

21V with eigenvalue«, but c can be arbitrary.
V must be a local operator.f andc do not have to be bound
states.

For ans-wave statef in a real potential,f can be as-
sumed to be real and the last term in Eq.~A1! vanishes if
c5f:

f~r !~H2«!f~r !52
\2

2m
“ r~f!2

•“ r . ~A2!

In proving Eq. ~A1!, we use round brackets to indica
when the“ operator acts only locally on the functions insid
the brackets. We have
4-12
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“ rc* f•“ r5~“ rc* f!•“ r1~c* f!¹ r
2 . ~A3!

By considering the operation of¹ r
2 on the product off and

an arbitrary functionx,

~¹ r
2fx!5~¹ r

2f!x1f~¹ r
2x!12~“ rf!•~“ rx!, ~A4!

Eq. ~A3! can be rewritten as

“ rc* f•“ r5~“ rc* f!•“ r

1c* @¹ r
2f2~¹ r

2f!22~“ rf!•“ r#

5@~“ rc* !f2c* ~“ rf!#•“ r

1c* ¹ r
2f2c* ~¹ r

2f!

5@~“ rc* !f2c* ~“ rf!#•“ r

1c* ¹ r
2f2c*

2m

\2
~~V2«!f!, ~A5!

where we have put double brackets around the last facto
emphasize thatV acts onf only. We can drop these bracke
if V is a local operator.

The last line in Eq.~A5! can now be reexpressed in term
of H and we obtain
ev

v.

v.

.

on

E

s.

. C
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to

“ rc* f•“ r5@~“ rc* !f2c* ~“ rf!#•“ r

2
2m

\2
c* F2

\2

2m
¹ r

21V2«Gf
5@~“ rc* !f2c* ~“ rf!#•“ r

2
2m

\2
c* ~H2«!f. ~A6!

This is equivalent to the identity given in Eq.~A1!.
The identity ~A2! is frequently seen in a form which i

equivalent to it whenf(r ) is nodeless:

H2«52
\2

2m
f21

“ rf
2
•“ rf

215
A(1).A(2)

2m
, ~A7!

where

A(1)5f21pf, ~A8!

A(2)5fpf21, ~A9!

and p52 i\“ r is the momentum operator. The factorize
form ~A7! is used in one-dimension in the formulation
super-symmetric quantum mechanics@27#.
C

C

t.

n,

r

.

@1# R.C. Johnson and P.J.R. Soper, Phys. Rev. C1, 976 ~1970!.
@2# R.C. Johnson, J.S. Al-Khalili, and J.A. Tostevin, Phys. R

Lett. 79, 2771~1997!.
@3# J.A. Tostevinet al., Phys. Lett. B424, 219 ~1998!.
@4# J.A. Tostevin, S. Rugmai, and R.C. Johnson, Phys. Rev. C57,

3225 ~1998!.
@5# P. Banerjee, I.J. Thompson, and J.A. Tostevin, Phys. Re

58, 1042~1998!.
@6# P. Banerjee, J.A. Tostevin, and I.J. Thompson, Phys. Re

58, 1337~1998!.
@7# M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, and M

Kawai, Prog. Theor. Phys. Suppl.89, 32 ~1986!.
@8# R. C. Johnson, inProceedings of the European Conference

Advances in Nuclear Physics and Related Areas, Thessaloniki,
Greece, 1997, edited by D. M. Brink, M. E. Grypeos, and S.
Massen~Giahoudi-Giapouli, Thessaloniki, 1999!, p. 297.

@9# R. J. Glauber, inLectures in Theoretical Physics, edited by W.
E. Brittin ~Interscience, New York, 1959!, Vol. 1, p. 315.

@10# J.S. Al-Khalili and R.C. Johnson, Nucl. Phys.A546, 622
~1992!.

@11# J.S. Al-Khalili, I.J. Thompson, and J.A. Tostevin, Nucl. Phy
A581, 331 ~1995!.

@12# J.S. Al-Khalili, J.A. Tostevin, and I.J. Thompson, Phys. Rev
54, 1843~1996!.
.

C

C

.

@13# J.S. Al-Khalili and J.A. Tostevin, Phys. Rev. Lett.76, 3903
~1996!.

@14# J.S. Al-Khalili, J.A. Tostevin, and J.M. Brooke, Phys. Rev.
55, R1018~1997!.

@15# J.M. Brooke, J.S. Al-Khalili, and J.A. Tostevin, Phys. Rev.
59, 1560~1999!.

@16# H. Amakawa, S. Yamaji, A. Mori, and K. Yazaki, Phys. Let
82B, 13 ~1979!.

@17# I. J. Thompson, computer programADIA , Daresbury Labora-
tory Report, 1984~unpublished!.

@18# J.A. Christley, J.S. Al-Khalili, J.A. Tostevin, and R.C. Johnso
Nucl. Phys.A624, 275 ~1997!.

@19# R.C. Johnson, J. Phys. G24, 1583~1998!.
@20# N. C. Summers, Ph.D. thesis, University of Surrey, 2001.
@21# N. C. Summers, R. C. Johnson, and J. S. Al-Khalili~to be

submitted!.
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