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Consistency of spectroscopic factors from„e,e8p… reactions at different momentum transfers
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The possibility to extract relevant information on spectroscopic factors from (e,e8p) reactions at highQ2 is
studied. Recent16O(e,e8p) data atQ250.8 (GeV/c)2 are compared to a theoretical approach that includes an
eikonal description of the final-state interaction of the proton, a microscopic nuclear matter calculation of the
damping of this proton, and high-quality quasihole wave functions forp-shell nucleons in16O. Good agree-
ment with theQ250.8 (GeV/c)2 data is obtained when spectroscopic factors are employed that are identical
to those required to describe earlier low-Q2 experiments.
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I. INTRODUCTION

During the last fifteen years a quiet revolution has tak
place in the perception of the nucleus. During this period
study of the (e,e8p) reaction has clarified the limits of va
lidity of the mean-field description of nuclei. In particula
absolute spectroscopic factors have been obtained for th
moval of protons from many nuclei@1–4#. The qualitative
features of the strength distribution suggest a consider
mixing between single-hole states and more complica
configurations, such as two-hole–one-particle states. The
sulting fragmentation pattern of the single-particle~SP!
strength exhibits a single peak carrying about 65–70 %
the strength for states in the immediate vicinity of the Fer
energy, while more deeply bound orbitals display a stron
fragmented distribution reminiscent of a complex SP ene
In addition to these fragmentation features, an import
depletion of the SP strength has been established that i
sociated with ground-state correlations induced by str
short-range and tensor correlations@5#. This leads to an over
all reduction of the SP strength for all mean-field orbits in
nuclei by 10–15 %@6,7#. This theoretical result has recent
been confirmed also for deeply bound orbits in an (e,e8p)
experiment on208Pb in a wide domain of missing energy an
momentum@8,9#.

The analysis of the (e,e8p) data has relied on the dis
torted wave impulse approximation~DWIA ! for both the
Coulomb distortion of the electron waves~in heavy nuclei!
and the outgoing proton@10–13#. The proton distortion is
described in terms of an optical potential required to desc
elastic proton scattering data at relevant energies@3#. There
is some uncertainty related to this treatment since elastic
ton scattering is considered to be a surface reaction an
detailed information is obtained related to the interior of t
nucleus. This uncertainty gives rise to an estimated erro
about 10%. Such an estimate may be inferred by conside
the difference between the relativistic and nonrelativis
0556-2813/2002/66~1!/014613~13!/$20.00 66 0146
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treatment of the proton distortion. It is shown in Ref.@14#
that this difference is essentially due to the reduction of
interior wave function in the relativistic case. This featu
can also be generated by including a reasonable amoun
nonlocality in the optical potential@14#.

A serious challenge to the interpretation of (e,e8p) ex-
periments was recently published in Refs.@15,16#. This chal-
lenge consists of questioning the validity of the constancy
the spectroscopic factor as a function of the four-moment
~squared!, Q2, transferred by the virtual photon to th
knocked-out nucleon. In Ref.@15# a conventional analysis o
the world’s data for (e,e8p) experiments on12C at low Q2

generated results consistent with previous expectations. D
at higher values ofQ2 were then analyzed within the frame
work of a theoretical model that employs Skyrme-Hartre
Fock bound-state wave functions for the initial proton,
Glauber-type description of the final-state interaction of
outgoing proton, and a factorization approximation for t
electromagnetic vertex@15,16#. Within the framework of this
theoretical description, spectroscopic factors were obtai
that increase substantially with increasingQ2 for the 12C
nucleus.

The spectroscopic factor is a many-body quantity defin
without reference to a probe. For valence hole states in
clei it simply represents the probability for the removal of
nucleon with prescribed quantum numbers from the grou
state of the target while ending up in a state of the nucl
with one particle less. In the conventional analysis of t
experimental data these quantum numbers involve the tri
values of parity and total angular momentum but also requ
the corresponding wave function to be a solution of
Woods-Saxon potential at the appropriate binding ene
This potential is adjusted to generate an optimum descrip
of the shape of the experimental cross section. The resu
theoretical representation of the cross section must then
multiplied by a constant factor to coincide with the expe
mental cross section. This constant factor is then interpre
©2002 The American Physical Society13-1
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as the spectroscopic factor. Another important ingredien
this analysis is the choice of the electron-proton cross s
tion, which must be considered off-shell@17#. This leads to a
small additional uncertainty in the analysis of lowQ2 data as
discussed recently in Ref.@18#.

Further clarification of this intriguing situation with dif
ferent spectroscopic factors at differentQ2 is urgently
needed. For this purpose we consider in this paper a stud
recently published (e,e8p) data for 16O at Q2

50.8 (GeV/c)2 @19#. An unfactorized approach is used,
it is required at lowQ2 @11# and has been recently advocat
also for highQ2 reactions in Ref.@20#. However, the higher
energy of the outgoing proton requires a description that c
tains different elements than the conventional low-Q2 analy-
sis. For the electromagnetic current operator we follow
approach of Ref.@21#, where a relativistic current operato
was used in a Schro¨dinger-based calculation, avoiding an
nonrelativistic reduction and including the effect of spin
distortion by the Dirac scalar and vector potentials~see also
Refs. @22–25,14#!. As for the final state, we employ a re
cently developed eikonal description of the final-state int
action ~FSI! of the proton with the nucleus that has be
tested against DWIA solutions of a complex spin-depend
optical potential@26,27#. The absorption of the proton is de
scribed theoretically by linking it to the corresponding a
sorption of a nucleon propagating through nuclear mat
The relevant quantity is the nucleon self-energy, which
obtained from a self-consistent calculation of nucleon sp
tral functions including the effects of realistic short-ran
and tensor correlations@28#. This description of the FSI is
combined with previous results for the bound-state wa
functions of thep-shell quasihole states in16O @29#, which
have been deduced by solving the Dyson equation wit
nucleon self-energy containing the same short-range cor
tions but in a finite volume. In Ref.@30# these wave functions
have been used to analyze low-Q2 data for the16O(e,e8p)
reaction @31#. In the present work, these very same wa
functions produce a good description of the shape of
coincidence cross section for thep-shell quasihole states a
high-Q2 @19# using the same spectroscopic factors obtain
from the low-Q2 data@31#. A preliminary result was reported
in Ref. @32#.

A consistent analysis of low- and high-Q2 data requires an
approach in which the same quasihole wave functions
corresponding spectroscopic factors are used in both ca
In this paper we present such an approach. In Sec. II
discuss the ingredients of the theoretical description incl
ing the structure of the electromagnetic current~Sec. II A!,
the eikonal approximation~Sec. II B!, and the final hadronic
tensor ~Sec. II C!. The many-particle ingredients are di
cussed in Sec. III, which includes a summary of the calcu
tion of the quasihole wave functions in Sec. III A, a descr
tion of the construction of the nonlocality factor required
a treatment of relativistic effects in Sec III B, and, finally, a
overview of the ingredients to describe the damping of hi
momentum protons in nuclear matter~Sec. III C!. The results
are discussed in Sec. IV while final conclusions are drawn
Sec. V.
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II. THE MODEL

In the one-photon exchange approximation, the differ
tial cross section for the scattering of an ultrarelativistic el
tron with initial ~final! momentumpW e (pW e8), off a nuclear
target from which a nucleon is ejected with final momentu
pW N8 , reads@10–12#

ds

dpW e8dpW N8
5

e4

16p2

1

Q4pepe8
(

l,l850,61

Ll,l8Wl,l8 , ~1!

whereQ25q22v2 andqW 5pW e2pW e8 ,v5pe2pe8 are the mo-
mentum and energy transferred to the target nucleus, res
tively. The lepton tensorLl,l8 and hadron tensorWl,l8 are
conveniently expressed in the basis of unit vectors

e05~1,0,0,0!, e615S 0,7A1

2
,2A1

2
i ,0D , ~2!

which define the longitudinal~0! and transverse (61) com-
ponents of the nuclear response with respect to the pola
tion of the exchanged virtual photon. The hadron tenso
defined as@10,11,13#

Wl,l85~21!l1l8el
mel8

n* (
i

—

X

f
JmJn* d~Ef2Ei2v!,

~3!

i.e., it involves the average over initial states and the s
over the final undetected states~compatible with energy-
momentum conservation! of bilinear products of the scatter
ing amplitudeJm.

This basic ingredient of the calculation is built from th
matrix element of the nuclear charge-current density oper
Ĵm between the initial,uC0

A&, and the final,uC f
A&, nuclear

states. This complicatedA-body problem can be simplified
by projecting out of the Hilbert space the specific chan
that corresponds to the experimental asymptotic conditi
of a knocked-out nucleon with momentumpW N8 and of a re-

sidual nucleus, recoiling with momentum2pW m5qW 2pW N8 and
massMR , in a well-defined stateuCn

A21(ER)& with energy
ER and quantum numbersn. The scattering amplitude can b
rewritten in a one-body representation~in momentum space
and omitting spin degrees of freedom for simplicity! as
@11,33#

Jn
m~v,qW ,pW N8 ,ER!5E dpW dpW 8xp

N8 ERn
(2)*

~pW 8!Ĵeff
m ~pW ,pW 8,qW ,v!

3fERn~pW !@Sn~ER!#1/2, ~4!

provided thatĴm is substituted by an appropriate effectiv
one-body charge-current density operatorĴeff

m , which guaran-
tees the orthogonality betweenuC0

A& and uC f
A& besides tak-

ing into account effects due to truncation of the Hilbe
space. Usually, the orthogonality defect is negligible in st
dard kinematics for (e,e8p) reactions @10,11,33#; in any
3-2
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case,Ĵeff
m is here approximated by a one-body relativistic c

rent operator including spinor distortion along the lines d
scribed in the following Sec. II A.

The functions

@Sn~ER!#1/2fERn~pW !5^Cn
A21~ER!ua~pW !uC0

A&,

xp
N8 ERn

(2)
~pW !5^Cn

A21~ER!ua~pW !uC f
A&, ~5!

describe the overlap between the residual stateuCn
A21(ER)&

and the hole produced inuC0
A& and uC f

A&, respectively, by
removing a particle with momentumpW . Both fERn and

xp
N8 ERn

(2)
are eigenfunctions of a Feshbach-like nonlo

energy-dependent Hamiltonian referred to the resid
nucleus, belonging to the eigenvaluesER and ER1v, re-
spectively@34,11#. The norm offERn is 1 andSn(ER) is the

spectroscopic factor associated with the removal proc
i.e., it is the probability that the residual nucleus can inde
be conceived as the target nucleus with a hole. The de
dence ofxp

N8 ERn
(2)

upon pN8 is hidden in the asymptotic stat

uC f
A& and the boundary conditions are those of an incom

wave.
Because of the complexity of the eigenvalue probl

in the continuum, a complex mean-field interaction w
energy-dependent parameters is usually assumed bet
the residual nucleus and the emitted nucleon. Then,xp

N8 ERn
(2)

;xp
N8

(2)
and the nonlocality of the original Feshbach Ham

tonian is taken into account by multiplying the scatteri
wave by the appropriate Perey factor@35#. Several models
for this FSI are discussed in the literature~for a review, see
Refs. @11,12#!. Here, the eikonal approximation is adopt
and is described in more detail in Sec. II B. Finally, in Se
II C we present the complete formula for the hadronic ten
used in the calculation.

A. Current operator and spinor distortion

While new data for the (e,e8p) reaction have becom
available at very high proton energies@19,36,37#, it has also
become evident that many ingredients of the theoretical
culations must be upgraded and made adequate for the
kinematical regime. In particular, a nonrelativistic reducti
of the electromagnetic current operator is no longer relia
Since all other ingredients entering the scattering amplit
will be deduced in a Schro¨dinger-like framework, we follow
the approach of Ref.@21#.

It is well known that a four-component Dirac spinorC,
with positive- and negative-energy componentsc1 andc2 ,
respectively, satisfying a Dirac equation with energy eig
value E, massm, scalar and vector potentialsS and V, re-
spectively, can be written as
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C5S c1

c2
D 5AE1m

2m S 1

sW •pŴ

E1m1S~r !2V~r !
D D1/2~r !f

[L~pŴ ,r !f, ~6!

namely, it can be represented by the action of the oper
L(pŴ ,r ) on the wave functionf, that satisfies a Schro¨dinger-
equivalent equation with centralUC and spin-orbitULS po-
tentials, which can either be expressed in terms ofSandV or
replaced by intrinsically nonrelativistic potentials. The Da
win nonlocality factor

D~r !511
S2V

E1m
~7!

is related toULS by

ULS~r !52
1

2m

1

rD

dD

dr
, ~8!

wherem;m(A21)/A is the reduced mass withA the mass
number.

In Ref. @21#, the calculations were performed in config
ration space by defining the effective current operator~omit-
ting spin indices for simplicity!

Ĵeff
m 5L†~pW N8 ,r !g0GmL~pW m ,r ! ~9!

and by evaluating the operator partsW •pŴ in the effective
momentum approximation~EMA!, i.e., by replacing the op-
eratorpŴ with the momentapW N8 ,pW m determined by asymptotic
kinematics. After choosing one out of the three~on-shell!
equivalent expressions for the electromagnetic vertex fu
tion Gm @17#, the effective current operatorĴeff

m was reduced
to a simple 232 matrix acting on the nucleon spins, usin
the standard representation forg matrices as 434 operators
in terms of 232 Pauli spin matrices@38#.

Here, the scattering amplitude is worked out in mome
tum space. Therefore, the operatorsW •pŴ becomes just a mul-
tiplicative factor with a 232 matrix structure in spin spac
acting on the nucleon spins. Consequently, Eq.~4! can be
specialized to a ‘‘relativized Schro¨dinger framework’’ by
considering the following effective current operator~omit-
ting again spin indices for simplicity!,

Ĵeff
m ~pW ,pW 8,qW ,v!

5
1

~2p!3E drWei (pW 1qW 2pW 8)•rWL†~pW 8,r !g0GmL~pW ,r !, ~10!

as can be easily shown by starting from the expression of
scattering amplitude in configuration space and applying
proper Fourier transformations. The nonrelativistic limit
Eq. ~10! is recovered by settingE,E8;m, andS(r )5V(r )
50. Inspection of Eqs.~7! and~6! indicates that in this limit
the spinor-distortion operator no longer depends onr and the
3-3
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Fourier transform in Eq.~10! produces the well-known
d(pW 82pW 2qW ) accounting for momentum conservatio
@10,11#. In the following, we will keepD(r )51 for the scat-
tering state, because the distortion of a high-energy eje
will be approximated by a uniform damping in nuclear m
ter with ULS50 ~see Sec. II B!.

The electromagnetic vertex functionGm for an on-shell
nucleon can be represented through three equivalent ex
sions related by the Gordon identity@17#. Here, we choose
e
to
od

to

th
t

pi
a
e
g

as
-
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the following:

Gm5gmGM~Q2!2
Pm

2m
F2~Q2!, ~11!

where GM is the nucleon magnetic form factor,F2 is its
Pauli form factor, andPm5(E81E,pW 81pW ). By inserting Eq.
~11! in Eq. ~10!, the scattering amplitude becomes
Jn
m~v,qW ,pW N8 ,ER!5E dpW dpW 8xp

N8 ERn
(2)*

~pW 8!Ĵeff
m ~pW ,pW 8,qW ,v!fERn~pW !@Sn~ER!#1/2

5E dpW dpW 8xp
N8 ERn

(2)*
~pW 8!AE1m

2m
AE81m

2m

1

~2p!3/2H GM~Q2!Fdm0S D̂1/21
sW •pW 8

E81m

sW •pW

E1m
D̂21/2D

1dm iS sW
sW •pW

E1m
D̂21/21

sW •pW 8

E81m
sW D̂1/2D G2

Pm

2m
F2~Q2!F D̂1/22

sW •pW 8

E81m

sW •pW

E1m
D̂21/2G J fERn~pW !@Sn~ER!#1/2,

~12!
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D̂61/2[
1

~2p!3/2E drWei (pW 1qW 2pW 8)•rWD61/2~r ! ~13!

are functions ofupW 1qW 2pW 8u. The nucleon form factors ar
taken from Ref.@39#, while the Coulomb gauge is adopted
restore current conservation at the one-body level by m
fying the longitudinal component accordingly.

B. The eikonal approximation

Similar to the case of current operators, the high pro
energies that can be reached in (e,e8p) reactions at the new
experimental facilities also demand a suitable approach
the treatment of the proton scattering wave. Traditionally,
assumed mean-field interaction between the ejectile and
residual nucleus has been described by complex s
dependent optical potentials with energy-dependent par
eters constrained by fitting phase shifts and analyzing pow
of elastic~inelastic! (p,p) scatterings on the correspondin
residual nucleus. A Schro¨dinger equation with incoming
wave boundary conditions for each partial wave ofxp

N8
(2)

is

solved up to a maximum angular momentumLmax(pN8 ) sat-
isfying a convergency criterion. Typically, this method h
been successfully applied to (e,e8p) reactions at proton mo
menta below 0.5 GeV/c andLmax,50 @11,12#.
i-

n

to
e
he
n-
m-
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At higher energies, the optical analysis of proton elas
scattering is improved by the relativistic description v
Dirac phenomenology. The scattering wave is still expand
in partial waves, but each component solves the Dirac eq
tion containing the scalar and vector Dirac potentials@40#.

An alternative, simpler but powerful, method by Glaub
@41# suggests that, when the proton is highly energetic,
Schrödinger equation is reduced to a first-order different
equation along the propagation axisẑ,

S ]

]z
2 ipN8 Dx5

i

2pN8
Ux, ~14!

with boundary conditions such that asymptoticallyx→1,
i.e., corresponding to an incoming unitary flux of plan
waves. In the pure Glauber model,U(r ) is determined in a
parameter-free way starting from the elementary free prot
nucleon scattering amplitude at the considered energy
then averaging over all possible configurations of the sp
tator nucleons. ForpN8 *1 GeV/c, the scattering amplitude
is dominated by inelastic processes andU(r ) is supposed to
be mostly sensitive to its imaginary part describing the
sorption @42,43,27#. Moreover, the Glauber model predic
that the ratio between the real and imaginary parts ofU(r )
equals the ratio between the real and imaginary parts of
average proton-nucleon forward scattering amplitude, wh
is expected to be small anyway beyond the inelastic thre
old @42#. Therefore, we can safely assumeU(r ); iW(r ).
Then, the solution to Eq.~14! looks like @27#
3-4
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xp
N8

(2)
~rW !5expS ipW N8 •rW1

i

2pN8
E

z

`

U~rW' ,z8!dz8D
5expS ipW N8 •rW2

1

2pN8
E

z

`

W~rW' ,z8!dz8D
[e( ipW N8 •rW)e(2pW I•rW), ~15!

i.e., as a plane wave with a damping factor related to
absorption part of the residual interaction.

The reliability of this eikonal approximation~EA!, which
has a long tradition of successful results in the field of hig
energy proton-nucleus elastic scattering@44#, has been tested
in the context of knockout reactions and in the moment
range of interest here (0.6&q&1 GeV/c) against solutions
of the Schro¨dinger equation with nonrelativistic complex op
tical potentials up toLmax5120 partial waves@26# ~see also
Ref. @45#!. For increasing energies, the EA is supposed
become more and more reliable, despite the actual semi
tivistic nature of the approach@41#. Moreover, for emitted
protons with outgoing energy beyond the inelastic thresh
and initially bound momentum below the Fermi surfa
(pm&pFermi!pN8 ,q, with pFermi the target Fermi momentum
the same kinematic conditions of the E89003 experimen
CEBAF @19#!, it has been shown that the proton angu
distribution can actually be reproduced by representing
scattering wave as a plane wave with an additional damp
@43,27#. After all, for a fast moving object the nuclear dens
can be considered roughly constant~but for a small portion
on the surface! and the eikonal wave of Eq.~15! simply
corresponds to the solution of a Schro¨dinger equation inside
homogeneous nuclear matter. In the next Sec. III C, a mic
scopic justification of the damping factor will be given by
detailed description of the link betweenpI and the imaginary
01461
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part of the self-energy of a nucleon moving inside nucle
matter. Here, it is sufficient to say that the main drawback
such an approach is the lack of any spin-orbit effect in F
@46# and that for sake of simplicity the damping vector w
be kept parallel to the wave vector of the scattered parti
i.e., pW IipW N8 .

The EA of Eq.~15! can be also formulated by saying th
the scattering wave is approximated by a plane wave wit
complex momentumpW f5pW N8 1 ipW I and normalized as

xp
N8

(2)
~rW !5e(2pW I•RW )e( ipW f•rW)5e(2pW I•RW )e( ipW N8 •rW2pW I•rW), ~16!

with RW a constant vector with modulus equal to the nucle
radius. In fact, for a propagation along theẑ axis, the wave
enters the nucleus atrW52RW [(0,0,2R) with unitary modu-
lus and leaves it atrW5RW [(0,0,R), damped bye22pW I•RW . In
order to consider the Fourier transform of Eq.~16!, an ex-
tended definition of the distributiond of a complex variable
is required. In the Appendix of Ref.@26#, it is actually shown
that such an extension is possible so that we can define
EA of the scattering wave in momentum space as

xp
N8

(2)
~pW 8![e2pW I•RW d~pW f2pW 8!, ~17!

where nowpW 8 is a complex vector. The extension of th
matrix element of Eq.~12! to the complex plane inpW 8 is
possible if the rest of the integrand is an analytic functi
asymptotically vanishing forupW 8u→` @26#. It is rather easy
to check that, apart from thed distribution, the integrand of
Eq. ~12! meets these requirements. Therefore, the scatte
amplitude in the EA~also with spin indices explicitly indi-
cated! becomes
e
in
~Jm!s
N8 n~v,qW ,pW N8 ,ER!;e2pW I•RW E dpW ^sN8 uĴeff

m ~pW ,pW f ,qW ,v!usn&fERn~pW !@Sn~ER!#1/2

5
e2pW I•RW

~2p!3/2
AEf1m

2m E dpWAE1m

2m
fERn~pW !@Sn~ER!#1/2H GM~Q2!Fdm0S D̂1/2ds

N8 sn

1^sN8 usW •pW f* sW •pW usn&
D̂21/2

~Ef1m!~E1m!
D 1dm i S ^sN8 usW sW •pW usn&

D̂21/2

E1m
1^sN8 usW •pW f* sW usn&

D̂1/2

Ef1m
D G

2
pf

m1pm

2m
F2~Q2!F D̂1/2ds

N8 sn
2^sN8 usW •pW f* sW •pW usn&

D̂21/2

~Ef1m!~E1m!
G J , ~18!

where pm5(E,pW ),pf
m5(Ef ,pW f), with E5AupW u21m2,Ef5AupW f u21m2, and sN8 ,sn are the projections of the spins of th

detected proton and of the residual hole with collective quantum numbersn, respectively. The Fourier transform of the Darw

nonlocality factor, in agreement with Eq.~13!, is function ofupW 1qW 2pW f u5AupW 1qW 2pW N8 u21pI
2.

C. Hadronic tensor

After summing over the undetected final states with quantum numbersn of the residual nucleus, the hadron tensorWl,l8 in
momentum space becomes
3-5
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Wl,l85~21!l1l8el
mel8

n* e22pW I•RW (
n
E dpW dkW ^sN8 u~ Ĵeff!m~pW ,pW f ,qW ,v!usn&fERn~pW !fERn* ~kW !Sn~ER!^snu~ Ĵeff!n

†~kW ,pW f ,qW ,v!usN8 &

[~21!l1l8el
mel8

n* e22pW I•RW E dpW dkW ^sN8 u~ Ĵeff!m~pW ,pW f ,qW ,v!S~pW ,kW ;ER!~ Ĵeff!n
†~kW ,pW f ,qW ,v!usN8 &, ~19!

where

S~pW ,kW ;ER!5(
n

Sn~ER!fERn~pW !usn&^snufERn* ~kW ! ~20!

is the hole spectral function discussed in Sec. III. The isospin indices have been omitted for simplicity and, as bef
summation overn runs over the undetected final states of the residual nucleus that are present at a given excitation enER .

The hole spectral function can be conveniently expanded in partial waves in a SP basis as

S~pW ,kW ;ER!5(
l j

(
ml ,ml8

(
ms ,ms8

~ l 1
2 mlmsu jm!~ l 1

2 ml8ms8u jm!Sl j ~p,k;ER!Ylml
~ p̂!ums&^ms8uYlm

l8
* ~ k̂!. ~21!

This expansion should not be confused with the sum in Eq.~20!: eachlj term contributes to the hadronic tensor and can co
either from a quasihole state or from above the Fermi surface, depending on the excitation energy.

The angular integrations in Eq.~19! can be easily performed by noting that the square root of the Darwin nonlocality fa
D61/2(r ) in Eq. ~13!, is not far from 1, which would yieldd(pW 82pW 2qW ) in momentum space~see Fig. 1 in the next Sec. III B!.
Therefore, because of Eq.~17!, we impose the constraint that the vectorpW in Eq. ~19! lies in the same direction aspW f2qW , i.e.,

pW ;p
pW f2qW

upW f2qW u
5

p

A~pW N8 2qW !21pI
2
~pW f2qW !, ~22!

and similarly forkW . This approximation is reliable for high values of the involved momenta, as is the case for the kine
of Ref. @19#. It is then easy to get rid of the angular integrations in Eq.~19! so that the hadronic tensor, with explicit sp
quantum numbers, takes the form

~Wl,l8!s
N8
5~21!l1l8el

mel8
n* e22pW I•RW (

l j
(

ml ,ml8
(

ms ,ms8
~ l 1

2 mlmsu jm!~ l 1
2 ml8ms8u jm!Ylml

~pf2q̂!Ylm
l8

* ~pf2q̂!

3E
0

`

dp p2E
0

`

dk k2^sN8 u~ Ĵeff!m~p,pW f ,qW ,v!ums&Sl j ~p,k;ER!^ms8u~ Ĵeff!n
†~k,pW f ,qW ,v!usN8 &, ~23!
n

a

n

rin

l

a
-
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whereĴeff
m (p,pW f ,qW ,v) is defined by inserting approximatio

~22! into Eq. ~18!.
Since the missing energy of the reaction is defined

@11,13#

Em5v2Tp
N8
2TR , ~24!

whereTp
N8

is the kinetic energy of the detected nucleon a

TR5@pm
2 1~MR1ER!2#1/22MR2ER ~25!

is the kinetic energy of the residual nucleus, the scatte
amplitudeJs8 n

m
(v,qW ,pW N8 ,ER) of Eq. ~18! can be conveniently
N

01461
s

d

g

made to depend on (v,qW ,pW m ,Em). Therefore, the differentia
cross section~and other related observables! for a given ki-
nematics (v,qW ) and a knockout proton corresponding to
missing energyEm will be plotted as a function of the miss
ing momentumpW m . Older experimental (e,e8p) data at low
proton energy were usually collected in the form of the s
called reduced cross section@10,11#

n~pW m ,Em![
ds

dpW e8dpW N8

1

KseN
, ~26!

whereK is a suitable kinematic factor andseN is the elemen-
tary ~half off-shell! electron-nucleon cross section, in ord
to reduce the information contained in a fivefold different
3-6
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cross section to a twofold function ofpW m andEm . Whenever
needed, theoretical results will also be presented as red
cross sections using the CC1 prescription@17# for seN and
the corresponding extrapolationv̄5EN8 2Ē ~with Ē
5Apm

2 1m2) for the off-shell nucleon. The electron disto

tion is included in the EMA by replacingqW with an effective
qW eff @47# for the acceleration by the Coulomb field~in the
following, for sake of simplicity the subscript eff will be
omitted!.

III. QUASIHOLE AND QUASIPARTICLE PROPERTIES

The calculation of the (e,e8p) cross section is most easil
performed by employing the quasihole wave function of E
~5!. By considering Eq.~21! in a SP basis with orbital angu
lar momentuml, total angular momentumj, and momentum
p, we can relate the spectroscopic amplitude to the spe
function in the following way:

Sl j ~p,k;E!5(
n

^C0
Auakl j

† uCn
A21&^Cn

A21uapl j uC0
A&

3d„E2~E0
A2En

A21!…, ~27!

where apl j (akl j
† ) denotes the removal~addition! operator

for a nucleon. The spectral functionSl j (p,k;E) can be ob-
tained from the imaginary part of the corresponding
propagatorgl j (p,k;E). This Green’s function solves th
Dyson equation

gl j ~p,k;E!5gl j
(0)~p,k;E!1E dp1p1

2E dp2p2
2gl j

(0)~p,p1 ;E!

3DS l j ~p1 ,p2 ;E!gl j ~p2 ,k;E!, ~28!

where g(0) refers to a Hartree-Fock propagator andDS l j
represents contributions to the real and imaginary parts of
irreducible self-energy, which go beyond the Hartree-Fo
approximation of the nucleon self-energy used to deriveg(0)

~see below!. A brief summary of the calculation of the sel
energy and the solution of the Dyson equation are inclu
below. More details can be found in Refs.@29,48#.

A. Quasihole properties

The self-energy is constructed by a two-step appro
employing the boson-exchange potential B as defined
Machleidt in Ref.@49#. The treatment of short-range correl
tions is taken into account by solving the Bethe-Goldsto
equation. In the first step this equation is solved in nucl
matter at a certain density with a reasonable choice for
starting energy. Employing a vector bracket transformat
@50#, the corresponding ‘‘Hartree-Fock’’ self-energy cont
bution in momentum space is calculated for16O using har-
monic oscillator wave functions for the occupied states w
oscillator lengtha51.72 fm21. Since this ‘‘Hartree-Fock’’
self-energy is obtained from nuclear matter, corrections n
to be applied to reinstate the properties of the16O Fermi
surface. In addition, higher-order self-energy contributio
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are included. This procedure involves the calculation of
imaginary part of the self-energy for two-particle–one-ho
~2p1h! and two-hole–one-particle~2h1p! intermediate states
reached by theG-matrix interaction and calculated in16O.
The intermediate particle states correspond to plane wa
and must be orthogonalized to the bound SP states@51#. Pure
kinetic energies are assumed for these particle states. W
this assumption is not very realistic for the description of t
coupling to low-lying states, it is quite adequate for the tre
ment of tensor and short-range correlations. From th
imaginary contributions to the self-energy one can obtain
corresponding real parts by employing the appropriate
persion relations. Since the ‘‘Hartree-Fock’’ part was calc
lated in terms of aG matrix, it already contains the 2p1
contribution mentioned above but generated in nuclear m
ter. The corresponding real part of the self-energy as ca
lated in nuclear matter is then subtracted to eliminate
double counting terms. This procedure is quite insensitive
the original choice of density and starting energy for t
nuclear matterG matrix @29,48#. For the determination of the
p-shell quasihole wave functions only the real part of t
self-energy is relevant. Collecting all the contributions to th
self-energy one has

ReS l j ~p,k;E!5S l j
HF~p,k!1ReS l j

2p1h~p,k;E!

2ReS l j
c ~p,k;E!1ReS l j

2h1p~p,k;E!

5S l j
HF~p,k!1ReDS l j ~p,k;E!, ~29!

with obvious notation. In the last line of Eq.~29! we have
included ~the real part of! DS l j , which was anticipated in
Eq. ~28!. This self-energy yields a complete treatment of t
effect of short-range and tensor correlations for a fin
nucleus@52#. The resulting wave functions forp-shell nucle-
ons also yield an excellent description of the shape of
experimental (e,e8p) cross section@30#. The self-energy in
Eq. ~29! does not include an adequate description of the c
pling of the nucleon to low-lying collective excitations th
strongly influence the spectroscopic factors@53–55#. This
deficiency is not important for the present paper since we
addressing the question of the reliable extraction of spec
scopic factors from (e,e8p) data. It is therefore of great im
portance that the theoretical wave functions generated by
~29! are of equivalent quality to the empirical ones used
the analysis of the data@31#. Indeed, when these wave func
tions are used to fit the data@30#, they yield spectroscopic
factors that are essentially identical to the ones from the
pirical analysis.

The solution of the Dyson equation was previously o
tained in a basis generated by enclosing the system
spherical box@29,48#. For the present paper the Dyson equ
tion has been solved directly in momentum space by p
forming the discretization for the relevant eigenvalue pro
lem. For discrete solutions such as the quasihole state
16O, the Dyson equation yields the following eigenval
equation:
3-7
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p2

2m
^Cn

A21uapl j uC0
A&1E

0

`

dkk2ReS l j ~p,k;En!

3^Cn
A21uakl j uC0

A&5En^Cn
A21uapl j uC0

A&. ~30!

Discretizing the integration in Eq.~30! yields a straightfor-
ward diagonalization problem. The resulting quasihole wa
functions for thep1/2 andp3/2 states are used for the analys
presented in Sec. IV. We have checked that the present s
tion method yields identical results as compared to th
from the ‘‘box method.’’

B. Darwin nonlocality factor

As discussed in Sec. II A, the Darwin nonlocality fact
given by Eq.~7! is required for a proper treatment of th
current operator at high proton energies. It is clear from
~8! that this nonlocality factor is related to the spin-orb
potential. This relation can therefore be used to derive
nonlocality factor from the nucleon self-energy discussed
Sec. III A. A complication in deriving this result is that th
self-energies constructed for16O are inherently nonlocal in
coordinate space. This many-body nonlocality is alrea
present when Fock terms to the self-energy are conside
Additional contributions are generated when higher-or
terms are included as in Eq.~29!. The terminology here may
be confusing so it is useful to point out that the Darw
nonlocality factor refers to the nonrelativistic reduction
the Dirac equation, which yields a nonlocal term in t
Schrödinger equation when starting from a local Dirac equ
tion.

Since Eq.~8! requires a local spin-orbit potential we wi
construct local potentials from the nonlocal self-energies.
shown in Ref.@51#, it is possible to construct local potentia
from the nonlocal self-energy by using the following expre
sion:

ReS l j
local~r !5E

0

`

dr8r 82ReS l j ~r ,r 8;E!, ~31!

FIG. 1. The Darwin nonlocality factorD(r ) obtained by invert-
ing Eq. ~8!. Dashed and dot-dashed lines showD1/2(r ) and
D21/2(r ) entering Eq.~13!, respectively.
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where the nonlocal self-energy in coordinate space is
tained from the one in momentum space by a double Four
Bessel transformation given by

ReS l j ~r ,r 8;E!5
2

pE0

`

dpp2E
0

`

dp8p82 j l~pr !

3ReS l j ~p,p8;E! j l~p8r 8!. ~32!

As shown in Ref.@51#, a good representation to local pote
tials given by Eq.~31! is generated by a Woods-Saxon form
Following this procedure we have obtained two local Woo
Saxon potentialsVp1/2

(r ) andVp3/2
(r ) for the relevantp-shell

quasihole states in16O, respectively. Since the goal of th
present work is to study the possibility to extract spect
scopic factors at differentQ2, we have adjusted these pote
tials slightly to generate the correct experimental spin-o
splitting. In addition, we have ensured that the correspond
wave functions in momentum space have the maxim
overlap with those of the nonlocal self-energies. These o
laps are given by 99.97% for thep1/2 and 99.99% for thep3/2
wave functions, respectively. It is now possible to deco
pose the local potentialsVp1/2

andVp3/2
in central and spin-

orbit potentials in the following way:

V5U01ULSLW •SW . ~33!

For p states this implies that

ULS~r !5
2

3
@Vp3/2

~r !2Vp1/2
~r !#. ~34!

This potential can then be used to construct the Darwin n
locality factor by inverting Eq.~8!. The latter is displayed in
Fig. 1 together with the functionsD61/2(r ) used in Eq.~13!.
The observed small deviation from unity of the latter fun
tions is the basis for the approximation introduced in E
~22! leading to the hadron tensor~23!.

C. Damping of a quasiparticle

As discussed in Sec. II B, we will assume that the dam
ing of the nucleon on its way out of the nucleus is describ
by a corresponding process taking place in nuclear ma
Since the SP momentum is conserved in nuclear matter,
propagation of a nucleon through nuclear matter is diago
in the SP momentum and can be represented by

g~p;E!5E
eF

`

dv
Sp~p;v!

E2v1 ih
1E

2`

eF
dv

Sh~p;v!

E2v2 ih
,

~35!

whereSp andSh ~particle and hole spectral function! describe
the strength distribution above and below the Fermi ene
for a nucleon with SP momentump. These spectral function
have recently been determined self-consistently by includ
the effects of short-range and tensor correlations in the s
energy@28#. For this purpose the effective interaction is re
resented by the equivalent of theT matrix in the medium
@56,57#. The propagation of the nucleons determining th
in-medium interaction is also described by Eq.~35!, which
3-8
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includes full off-shell effects. The resulting interaction is em
ployed to construct the nucleon self-energy. This self-ene
is then used to solve the Dyson equation for nuclear ma

g~p;E!5g(0)~p;E!1g(0)~p;E!SNM~p;E!g~p;E!,
~36!

where the unperturbed propagator is given by

g(0)~p;E!5
u~p2pF!

E2p2/2m1 ih
1

u~pF2p!

E2p2/2m2 ih
. ~37!

The solution procedure for this problem involves several
eration steps that are required because the solution to
Dyson equation already appears in the determination of
effective interaction and the self-energy, illustrating the no
linearity of this problem. The solution of Eq.~36! can be
written as

g~p;E!5
1

E2p2/2m2S~p;E!
. ~38!

Taking advantage of the slow variation of the imaginary p
of the self-energy as a function ofp, one can expand the
self-energy at the momentump0 for which

E[
p0

2

2m
1ReSNM~p0 ;E!. ~39!

Performing the expansion in the square of this momen
and keeping both real and imaginary parts of the self-ene
at p0 plus the first derivative of the real part, one obtains
so-called complex pole approximation~CPA! @56# for the
propagator, which gives a very accurate representation of
quantity when transformed to coordinate space. For m
menta above the Fermi momentum one has

gCPA~p;E!5
cp0

p0
22p21 ig

, ~40!

where

cp0
5S 1

2m
1

] ReSNM

]p2 U
p

0
2
D 21

~41!

and

g5uIm SNM~p0 ;E!uS 1

2m
1

] ReSNM

]p2 U
p

0
2
D 21

. ~42!

This form of the propagator at a fixed energy has a sim
pole structure in the complex momentum plane. The loca
of the relevant pole is given by

k05~p0
41g2!1/4e( i /2)arctan(g/p0

2). ~43!

The imaginary part of this momentum is then used
describe the damping in the eikonal approximation descri
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in Sec. II B, i.e., Imk0[pI , with pI from Eq.~15!. To clarify
the physics further one may obtain the propagator in coo
nate space using

gCPA~rW,rW8;E!5
1

~2p!3E d3peipW •(rW2rW8)gCPA~p;E!

52
cp0

4p

eik0urW2rW8u

urW2rW8u
. ~44!

From this result it is clear that the damping of the nucle
propagating through nuclear matter is determined by
imaginary part ofk0, which in turn is determined by the
imaginary part of the self-energy at this energy. In Fig. 2
quantity g of Eq. ~42!, related to the imaginary part of th
self-energy, is shown as a function ofp0;Rek0[pN8 . It is
remarkable that atpN8 ;7 fm21, i.e., at the same proton ki
nematics of the NE18 experiment@36#, g is such that
Im k0[pI;50 MeV/c gives the proper damping necessa
to describe the observed absorption. In fact, in the contex
the pure Glauber approximation (W}pN8 ) one would expect
a higher proportionality factor, thus overestimating t
quenching due to FSI~see Ref.@27# and references therein!.
The outlined derivation ofg gives a microscopic explanatio
for reducing this proportionality factor when embedding t
traveling proton in nuclear matter.

This absorption effect of the medium is obtained for
realistic nucleon-nucleon interaction@58#. Since this interac-
tion is fitted to low-energy data, it is used in the Lippman
Schwinger equation to describe these data. As a result,
coupling to intermediate states at higher energy is c
strained by the fit to these low-energy data. Whether
description of these intermediate states as nonrelativ
two-nucleon states is accurate is then less relevant. One
also interpret the coupling to these intermediate~nonrelativ-
istic two-nucleon! states as a phenomenological way to
clude the coupling to inelastic channels, quark effects,
For this reason we expect the present microscopic desc

FIG. 2. The quantityg of Eq. ~42!, related to the imaginary par
of the nucleon self-energy, as function ofp0;pN8 , the nucleon mo-
mentum.
3-9
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tion of nucleon absorption in the medium to be fully releva
for the (e,e8p) reactions studied in this paper. Since qu
different nucleon-nucleon interactions are capable of fitt
the low-energy data, it may be instructive to explore t
dependence of the imaginary part of the self-energy in
relevant energy and momentum domain on the chosen in
action. At this time we have only self-consistent calculatio
for the Reid potential available. We certainly plan to exte
our self-consistent calculations to other interactions in or
to study this issue in more detail in the future~see also Ref.
@59#!. One may then employ a possible sensitivity to t
chosen interaction as a means to identify those interact
that have the proper behavior when in-medium properties
considered.

IV. RESULTS

In this section we will discuss the results for the cro
section of the16O(e,e8p) reaction leading to the groun
state and the first32

2 excited state of the residual15N
nucleus. The main theoretical ingredient is the hadronic t
sor of Eq.~23!, which describes the electromagnetic intera
tion assuming a relativistic one-body current operator incl
ing spinor distortion in the initial state only. This i
consistent with the spin-orbit effects associated with
quasihole states in the residual nucleus@see Eq.~8!#. The
proton scattering wave is described in the eikonal appro
mation ~EA!, assuming a uniform and constant damping
nuclear matter through a nucleon self-energy containing
same short-range correlations used to generate the prop
of the quasihole in the bound state. The electron wave
described through the EMA, which incorporates the accele
tion due to the Coulomb field.

We first reconsider this reaction at lowQ2 using the con-
ventional optical potential analysis for FSI@30#. In Fig. 3 the
data from Ref.@31# have been collected at a constant prot
energy of 90 MeV in the center-of-mass system. They re
to the reduced cross section, defined by Eq.~26!, as a func-
tion of the missing momentumpm in parallel kinematics, i.e.
for pW N8 iqW . Therefore, thepm distribution can be obtained b
increasing the momentum transferq from positive to nega-
tive values ofpm . Two transitions were considered, leadin
to the ground statep1/2 and to the first excited statep3/2 at
Em56.32 MeV of 15N. The data for the transition to thep1/2
ground state have been multiplied by 20. The solid lines
the result of the calculation employing the quasihole par
the spectral function of Eq.~21! for the p1/2 andp3/2 partial
waves, respectively. The normalization of the curves is
justed to fit the data, indicating that the intrinsic normaliz
tion of the quasihole, 0.89 for thep1/2 and 0.914 for thep3/2,
must be significantly reduced toZ0p1/2

50.644 andZ0p3/2

50.537, respectively, because only the depletion due
short-range correlations has been taken into account@30#.
Incidentally, long-range correlations spread the total3

2
2

strength over three states in the discrete spectrum, so tha
p3/2 data account for 86% of the strength only; by rescal
the spectroscopic factor by this fraction we getZ0p3/2

50.624, in close agreement with the corresponding grou
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state value@30#. The dashed lines in Fig. 3 refer to the ca
culation including the same spectroscopic factors but rep
ing the quasihole bound state by the wave function of R
@60#, which is obtained by a Skyrme-Hartree-Fock meth
for 16O. Both descriptions are in very good agreement w
the data, with a slight preference for the quasihole result
negativepm .

In Fig. 4 the same reaction is considered in a very diff
ent kinematical regime, namely at constant (qW ,v) with Q2

50.8 (GeV/c)2 @19#. The data here refer to a fivefold dif
ferential cross section, avoiding any ambiguity in modeli
the half off-shell elementary cross sectionsep of Eq. ~26!.
Again, results for the transition to the ground statep1/2 have
been multiplied by 20. The theoretical calculations are d
played with the same notation as in Fig. 3, i.e., solid lines
the results with the quasihole bound state and dashed
by employing the wave function of Ref.@60#. The preference
for the first choice is here more evident. In any case, it
remarkable that the calculations reproduce the data by u
the same spectroscopic factors as in the previous kinema
i.e., Z0p1/2

50.644 andZ0p3/2
50.537. Therefore, contrary to

the findings of Ref.@16#, we do not find any need for aQ2

dependence of the spectroscopic factors over a wide k
matical range, in agreement also with the results obtained
a mean-field description in the context of relativistic DWI
@61#. This outcome is particularly welcome, since by defin
tion these factors describe a spectroscopic nuclear prop
that must be independent of the probe scaleQ2. Finally, we
conclude that the treatment of the bound-state wave func
is not responsible for theQ2 dependence found in Ref.@16#.
From this observation one may infer that it is useful to e
tend the analysis of the high-Q2 data to other nuclei using
the eikonal description supplemented with the nuclear ma

FIG. 3. Cross section for the16O(e,e8p)15N reaction atEp

590 MeV constant proton energy in the center-of-mass system
parallel kinematics@31#. Data for thep1/2 state have been multiplied
by 20. Solid line is the result of Ref.@30# using quasihole states
dashed line represents the same result but replacing the quas
spectral function with the bound state from Ref.@60#. All curves
have been rescaled by the spectroscopic factorsZ50.644 andZ
50.537 for thep1/2 andp3/2 states, respectively.
3-10
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damping description while foregoing the use of microsco
quasihole wave functions. Clearly an analysis of the d
considered in Refs.@15,16# will further clarify the validity of
the present analysis. It is already encouraging to note tha
damping obtained in our calculations is adequate to desc
the observed absorption in the NE18 experiment@36# as dis-
cussed in Sec. III C.

In Fig. 5 we show the results for the structure functio

FIG. 4. Cross section for the16O(e,e8p)15N reaction atQ2

50.8 (GeV/c)2 in perpendicular kinematics@19#. Data for thep1/2

state have been multiplied by 20. The solid lines represent the re
of the present calculation. The dashed lines are obtained by re
ing the quasihole states with the bound-state wave functions of
@60#. In all cases, the results have been rescaled by the same
troscopic factors as in Fig. 3, namelyZ50.644 andZ50.537 for
the p1/2 andp3/2 states, respectively.

FIG. 5. Structure functions for the16O(e,e8p)15N reaction at
Q250.8 (GeV/c)2 in perpendicular kinematics@19#. The same no-
tation and scaling of curves are used as in Fig. 4.
01461
c
ta
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s

f l,l8 in the same kinematics and with the same notation a
Fig. 4. They are defined by

f 005W008 ,

f 115W118 1W21218 ,

f 0152 Re@W018 2W0218 #,

f 12152 Re@W1218 #, ~45!

with Wl,l8
8 the hadronic tensor in the proton center-of-ma

system. It is related toWl,l8 in the laboratory frame by the
transformationWl,l85eia(l2l8)Wl,l8

8 , i.e., by a rotation

around theqW direction of the anglea between the lepton
scattering plane and the plane formed byqW and pW N8 . The
rotation affects only the interference components, so that
cross section~1! becomes@10,11#

ds

dpW e8dpW N8
5

e4

16p2

1

Q4pepe8
$L00f 001L11f 11

1L01f 01cosa1L121f 121cos 2a%, ~46!

i.e., it becomes parametrized in terms of the different co
ponents of the nuclear responsef l,l8 to the virtual photon
probe in the spherical basis. The agreement with data is
good for both transitions over the wholepm range, except for
f 01, the interference between the longitudinal and transve
responses, which is known to be particularly sensitive
relativistic effects@21,62,63#.

Correspondingly, the left-right asymmetry

ult
c-
f.
ec-

FIG. 6. Left-right asymmetry for the16O(e,e8p)15N reaction at
Q250.8 (GeV/c)2 in perpendicular kinematics@19#. The same no-
tation is used as in Fig. 4.
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ALT5
ds~a50°!2ds~a5180°!

ds~a50°!1ds~a5180°!
~47!

is displayed in Fig. 6 under the same conditions and with
same notation as in Fig. 4. The discrepancy previously no
for f 01 is amplified here, particularly for the results with th
bound state of Ref.@60#. A possible explanation is that onl
a full account of relativistic effects, specifically of spino
distortion in both bound and scattering states, is neede
reproduce the data@19,21,62#. In the present calculation thi
effect is included only for the bound state, while the Darw
nonlocality factor for the scattering state turns out to be
because the homogeneous damping in nuclear matter
not include spin-orbit contributions.

V. CONCLUSIONS

We have developed a model for describing the (e,e8p)
reaction at highQ2 while linking it to nonrelativistic micro-
scopic many-body ingredients such as the quasihole spe
function. The goal is to critically consider the issue raised
Refs. @15,16# about a possible dependence of the spec
scopic factors uponQ2.

We use an unfactorized approach where, following R
@21#, a relativistic one-body electromagnetic current opera
is adopted in a Schro¨dinger-based framework avoiding an
nonrelativistic reduction. The effect of spinor distortion b
the Dirac scalar and vector potentials is consistently inclu
only for the bound state by evaluating the Darwin nonloc
ity factor through the spin-orbit potential generated by
self-energy of the quasihole spectral functions. The pro
scattering wave is described in an eikonal approximat
~tested against DWIA solutions of a complex spin-depend
optical potential@26#!. The absorption is calculated by usin
a spectral function for nucleons in nuclear matter includ
the same short-range and tensor correlations adopted in
v.

rt.

ev

s,

n
,

01

01461
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to
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es
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f.
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-
e
n
n
nt

g
the

calculation of the nucleon self-energy in a finite volume f
the p-shell quasihole states of16O.

In Ref. @30# these bound-state wave functions have be
used to analyze the data for16O(e,e8p) at low Q2 @31#,
yielding a very good description of the reduced cross s
tions. In the present work, we have considered the rec
data for the same reaction at higherQ2 @19# and we have
performed the analysis using the same bound-state w
functions and the same spectroscopic factors extracted f
the low-Q2 analysis. The description of the data at higherQ2

is still very good regarding both the fivefold differentia
cross section and the structure functions. Only the inter
ence f 01 structure function, and the related left-right asym
metry ALT , show a visible discrepancy, particularly for th
p1/2 state. A possible explanation could be related to o
incomplete treatment of the relativistic effects because
spinor distortion of the final state is not considered.

However, we emphasize that our consistent analysis
low- and high-Q2 data using the same microscopic man
body ingredients for the quasihole states and the dampin
the proton scattering wave allow us to conclude that we
not observe anyQ2 dependence of the spectroscopic facto
over the considered wide range 0.02<Q2<0.8 (GeV/c)2.
This outcome is most welcome, since by definition the
factors describe a spectroscopic nuclear property that m
be independent of the probe scaleQ2. Finally, since we get a
very good description of the high-Q2 data replacing our
quasihole states with the bound states of Ref.@60#, we can
also conclude that the quality of the wave functions is n
responsible for the unexpectedQ2 dependence of the spec
troscopic factors observed in Ref.@16#.
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