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The possibility to extract relevant information on spectroscopic factors fegei f) reactions at higiQ? is
studied. Recent®O(e,e’p) data atQ?=0.8 (GeVk)? are compared to a theoretical approach that includes an
eikonal description of the final-state interaction of the proton, a microscopic nuclear matter calculation of the
damping of this proton, and high-quality quasihole wave functiongfshell nucleons in®0. Good agree-
ment with theQ?=0.8 (GeVk)? data is obtained when spectroscopic factors are employed that are identical
to those required to describe earlier |6d-experiments.

DOI: 10.1103/PhysRevC.66.014613 PACS nuni)er25.30.Dh, 21.10.Jx, 24.10.Jv

I. INTRODUCTION treatment of the proton distortion. It is shown in REE4]
that this difference is essentially due to the reduction of the
During the last fifteen years a quiet revolution has takerinterior wave function in the relativistic case. This feature
place in the perception of the nucleus. During this period thean also be generated by including a reasonable amount of
study of the €,e’p) reaction has clarified the limits of va- nonlocality in the optical potentidtL4].
lidity of the mean-field description of nuclei. In particular, A serious challenge to the interpretation a,€'p) ex-
absolute spectroscopic factors have been obtained for the rperiments was recently published in R€fs5,16. This chal-
moval of protons from many nuclé¢il—4]. The qualitative lenge consists of questioning the validity of the constancy of
features of the strength distribution suggest a considerablidae spectroscopic factor as a function of the four-momentum
mixing between single-hole states and more complicatedsquared, Q?, transferred by the virtual photon to the
configurations, such as two-hole—one-particle states. The résnocked-out nucleon. In Reff15] a conventional analysis of
sulting fragmentation pattern of the single-partidl8P  the world’s data for ¢,e’p) experiments ont’C at low Q2
strength exhibits a single peak carrying about 65—70 % ofjenerated results consistent with previous expectations. Data
the strength for states in the immediate vicinity of the Fermiat higher values of)? were then analyzed within the frame-
energy, while more deeply bound orbitals display a stronglywork of a theoretical model that employs Skyrme-Hartree-
fragmented distribution reminiscent of a complex SP energyFock bound-state wave functions for the initial proton, a
In addition to these fragmentation features, an importanGlauber-type description of the final-state interaction of the
depletion of the SP strength has been established that is asdtgoing proton, and a factorization approximation for the
sociated with ground-state correlations induced by stronglectromagnetic vertedl5,16. Within the framework of this
short-range and tensor correlatidsg. This leads to an over- theoretical description, spectroscopic factors were obtained
all reduction of the SP strength for all mean-field orbits in allthat increase substantially with increasi@f for the %C
nuclei by 10—-159%6,7]. This theoretical result has recently nucleus.

been confirmed also for deeply bound orbits in &pe(p) The spectroscopic factor is a many-body quantity defined
experiment orf°®b in a wide domain of missing energy and without reference to a probe. For valence hole states in nu-
momentun8,9]. clei it simply represents the probability for the removal of a

The analysis of thed,e’p) data has relied on the dis- nucleon with prescribed quantum numbers from the ground
torted wave impulse approximatiofDWIA) for both the state of the target while ending up in a state of the nucleus
Coulomb distortion of the electron wavéis heavy nuclei ~ with one particle less. In the conventional analysis of the
and the outgoing protoh10—-13. The proton distortion is experimental data these quantum numbers involve the trivial
described in terms of an optical potential required to describ&alues of parity and total angular momentum but also require
elastic proton scattering data at relevant enerf3ésThere the corresponding wave function to be a solution of a
is some uncertainty related to this treatment since elastic prdA/oods-Saxon potential at the appropriate binding energy.
ton scattering is considered to be a surface reaction and nthis potential is adjusted to generate an optimum description
detailed information is obtained related to the interior of theof the shape of the experimental cross section. The resulting
nucleus. This uncertainty gives rise to an estimated error otheoretical representation of the cross section must then be
about 10%. Such an estimate may be inferred by consideringnultiplied by a constant factor to coincide with the experi-
the difference between the relativistic and nonrelativisticmental cross section. This constant factor is then interpreted
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as the spectroscopic factor. Another important ingredient in Il. THE MODEL
this analysis is the choice of the electron-proton cross sec-
tion, which must be considered off-shfll7]. This leads to a
small additional uncertainty in the analysis of |@% data as
discussed recently in Ref18].

Further clarification of this intriguing situation with dif- ~
ferent spectroscopic factors at differe@? is urgently Pn. reads{10-12
needed. For this purpose we consider in this paper a study of 4
recently published &e'p) data for %0 at Q2 do e 1 SOLW ., )
=0.8 (GeVk)? [19]. An unfactorized approach is used, as dpLdpl, 167 Q%peplanico.r M
it is required at lowQ? [11] and has been recently advocated
also for highQ? reactions in Ref[20]. However, the higher whereQ?=g?— w? andq=p,—p.,®=pe— p_ are the mo-
energy of the outgoing proton requires a description that conmentum and energy transferred to the target nucleus, respec-
tains different elements than the conventional IQ#-analy-  tively. The lepton tensok,, ,, and hadron tensdw, ,. are
sis. For the electromagnetic current operator we follow theconveniently expressed in the basis of unit vectors
approach of Ref[21], where a relativistic current operator 1 1
was used in a Schdinger-based calculation, avoiding any _ A \/: _ \/:
nonrelativistic reduction and including the effect of spinor €=(1,00.0, e+1—(0,+ 2’ 2"0>’ @
distortion by the Dirac scalar and vector potenti@se also
Refs.[22-25,14). As for the final state, we employ a re- which define the longitudingl0) and_transversei( 1) com- '
cently developed eikonal description of the final-state interPonents of the nuclear response with respect to the polariza-
action (FSI) of the proton with the nucleus that has beent'on_ of the exchanged virtual photon. The hadron tensor is
tested against DWIA solutions of a complex spin-dependentefined a410,11,13
optical potential[26,27. The absorption of the proton is de- _
scribed theoretically by linking it to the corresponding ab- W}\’)\,:(_l)xﬂ’exeifz $ 3,35 8(Ei—E i~ w),
sorption of a nucleon propagating through nuclear matter. [
The relevant quantity is the nucleon self-energy, which is ©)]
obtained from a self-consistent calculation of nucleon spec- . L
tral functions including the effects of realistic short-range!-€- it involves the average over initial states and the sum
and tensor correlationk28]. This description of the FSI is ©ver the final undetected statésompatible with energy-
combined with previous results for the bound-state Wavé_nomentgm conservatiorof bilinear products of the scatter-
functions of thep-shell quasihole states iHO [29], which ~ Ing amplitudeJ”. o
have been deduced by solving the Dyson equation with a Tr_us basic ingredient of the calculation is bU|It_ from the
nucleon self-energy containing the same short-range correlé’-‘atr'x element of the nuclear charge-current density operator
tions but in a finite volume. In Ref30] these wave functions J* between the initial|W3), and the final|¥{), nuclear
have been used to analyze |@# data for the'®O(e,e’p)  states. This complicated-body problem can be simplified
reaction[31]. In the present work, these very same waveby projecting out of the Hilbert space the specific channel
functions produce a good description of the shape of thé¢hat corresponds to the experimental asymptotic conditions
coincidence cross section for tipeshell quasihole states at of a knocked-out nucleon with momentuﬁ{{, and of a re-
high-Q? [19] u.:,ing the same speptroscopic factors obtaineq;q,a nucleus, recoiling with momentumﬁmzﬁ—ﬁ,’“ and
from the low-Q~ data[31]. A preliminary result was reported massMpg, in a well-defined staté\lfﬁ’l(ER)) with energy
in Ref. [32]. Er and quantum numbers The scattering amplitude can be

. . _ i (2 i ! . .
A consistent analysis of low- and higb< data requires an written in a one-body representatiéin momentum space

X . : ) r
approach in which the same quasihole wave functions angend omitting spin degrees of freedom for simpligitss
corresponding spectroscopic factors are used in both casii1 33

In this paper we present such an approach. In Sec. Il we ™’

discuss the ingredients of the theoretical description includ-

In the one-photon exchange approximation, the differen-
tial cross section for the scattering of an ultrarelativistic elec-
tron with initial (final) momentump, (p.), off a nuclear

target from which a nucleon is ejected with final momentum

ing the structure of the electromagnetic currédec. Il A), J“(,q,Pp ,ER)=f dpd f)’XéT)E* (P 3(p.p’ .0, w)
the eikonal approximatiofSec. Il B), and the final hadronic NTR
tensor (Sec. 11 Q. The many-particle ingredients are dis- X¢ERn(5)[Sn(ER)]1/21 (4

cussed in Sec. lll, which includes a summary of the calcula-
tion of the quasihole wave functions in Sec. Il A, a descrip- ) A ) ) ,
tion of the construction of the nonlocality factor required by Provided thatJ* is substituted by an appropriate effective
a treatment of relativistic effects in Sec Ill B, and, finally, an One-body charge-current density operalgy, which guaran-
overview of the ingredients to describe the damping of hightees the orthogonality betwedW ) and|¥?$) besides tak-
momentum protons in nuclear matt&ec. Ill C. The results ing into account effects due to truncation of the Hilbert
are discussed in Sec. IV while final conclusions are drawn irspace. Usually, the orthogonality defect is negligible in stan-
Sec. V. dard kinematics for €,e’p) reactions[10,11,33; in any
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casef]f;ff is here approximated by a one-body relativistic cur- 1
; ; i i ; i 3 Uy E+m R
rent operator including spinor distortion along the lines de- y, _ _ -2 DY(r)¢
scribed in the following Sec. Il A. U 2m g
The functions E+m+S(r)—V(r)
=A(m,r)¢, (6)
[Sn(ER)]"*de n(P) = (Y5~ (Er)|a(p)|¥5), namely, it can be represented by the action of the operator

A(m,r) on the wave functionp, that satisfies a Schdinger-
equivalent equation with centrél. and spin-orbitU, g po-
) By (wA-1 Sy [ A tentials, which can either be expressed in termSandV or
) =(¥ Er)la(p)|¥5), 5 ’ LT SO :
XPNER“(p) (¥n (Enla(p)¥r) ® replaced by intrinsically nonrelativistic potentials. The Dar-
win nonlocality factor

describe the overlap between the residual gtte *(Eg)) S-V

and the hole produced ihFg) and|W{), respectively, by D=1+ @)
removing a particle with momenturp Both ¢¢ an and

X; )E . are eigenfunctions of a Feshbach- like nonlocaliS related toU s by

energy-dependent Hamiltonian referred to the residual 1 1 dD

nucleus, belonging to the eigenvaluBg and Ex+ w, re- Ups(r)=— 247D dr’ 8

spectively[34,11]. The norm ofpgn is 1 andS,(Eg) is the

spectroscopic factor associated with the removal processvhereu~m(A—1)/A is the reduced mass with the mass
i.e., it is the probability that the residual nucleus can indeechumber.
be conceived as the target nucleus with a hole. The depen- In Ref.[21], the calculations were performed in configu-

dence opr . upON py is hidden in the asymptotic state ration space by defining the effective current operébonit-
N

| w4 and the boundary conditions are those of an mcomlngIng spin indices for simplicity

wave. Ju=AT(p! OT“A (D
Because of the complexity of the eigenvalue problem Jei (Pn.1)Y (Pm. 1) ©

in the continuum, a complex mean-field interaction with db | h h
energy-dependent parameters is usually assumed betweBRd Py evaluating the operator part 7 in the effective

momentum approximatiofEMA), i.e., by replacing the op-
the residual nucleus and the emitted nucleon. Thén PP EMA), y rep 9 b
(-) erators with the momentapN ,Pm determined by asymptotic

~Xp . and the nonlocality of the original Feshbach HamiI kinematics. After choosing one out of the thrémn-shel)

tonlan is taken into account by multiplying the scattering€quivalent expressions for the electromagnetic vertex func-

wave by the appropriate Perey fac{®5]. Several models tion I'* [17], the effective current operatdfgﬁ was reduced

for this FSI are discussed in the literatufer a review, see to a simple 2<2 matrix acting on the nucleon spins, using

Refs.[11,12). Here, the eikonal approximation is adopted the standard representation fpimatrices as X4 operators

and is described in more detail in Sec. Il B. Finally, in Sec.in terms of 2<x2 Pauli spin matrice38].

Il C we present the complete formula for the hadronic tensor Here, the scattering amphtude is worked out in momen-

used in the calculation. tum space. Therefore, the opera.hora-r becomes just a mul-
tiplicative factor with a 2<2 matrix structure in spin space
acting on the nucleon spins. Consequently, E.can be

A. Current operator and spinor distortion specialized to a “relativized Schdinger framework” by
While new data for the €,e'p) reaction have become considering the following effective current operai@mit-

available at very high proton energigk9,36,37, it has also g @gain spin indices for simplicity

become evident that many ingredients of the theoretical cal: . . .

culations must be upgraded and made adequate for the nelis(P.P’.0, @)

kinematical regime. In particular, a nonrelativistic reduction

of the electromz_igneng current operator IS no Io_nger rellgble. _ f drel(p+q p') rAT(p ) OF“A(p r, (10

Since all other ingredients entering the scattering amplitude (2m)3

will be deduced in a Schainger-like framework, we follow

the approach of Ref21]. as can be easily shown by starting from the expression of the
It is well known that a four-component Dirac spint, scattering amplitude in configuration space and applying the

with positive- and negative-energy componegtsand ¢, proper Fourier transformations. The nonrelativistic limit of

respectively, satisfying a Dirac equation with energy eigenEq. (10) is recovered by setting,E' ~m, and S(r) =V(r)

value E, massm, scalar and vector potentiasand V, re-  =0. Inspection of Eqs.7) and(6) indicates that in this limit

spectively, can be written as the spinor-distortion operator no longer depends and the

014613-3



MARCO RADICI, W. H. DICKHOFF, AND E. ROTH STODDARD PHYSICAL REVIEW &6, 014613 (2002

Fourier transform in Eqg.(10) produces the well-known the following:
S(p’—p—q) accounting for momentum conservation
[10,11). In the following, we will keepD(r)=1 for the scat- pu
tering state, because the distortion of a high-energy ejectile [#=y*Gy(Q?) — ﬁFz(Qz), (11
will be approximated by a uniform damping in nuclear mat-
ter with U, s=0 (see Sec. I B

The electromagnetic vertex functidi* for an on-shell Where Gy is the nucleon magnetic form factdf, is its
nucleon can be represented through three equivalent expreBauli form factor, and* = (E' + E,ﬁ’ + 5). By inserting Eq.
sions related by the Gordon identit§7]. Here, we choose (11) in Eqg. (10), the scattering amplitude becomes

I(w,6,P\Er) = j dpdp’xy, b (P 3PP 6,0) b (P Sn(Er) ]

B - = (o=, [E+m [E'+m 1 )
_f dpdp Xp”\‘ERn(p ) 2m 2m (277)3/2 GM(Q )

R

S0

D124 o-p’ o-p D12
E'+mE+m

>

L O0P A o p' .. T -
D 1/2

" /
172
P _
E+m E'+m

P 2
~ 5 Fa(Q¥)| D

E'+mE+

P -2
m

+ 6,

] ben(PSH(ER]Y,

(12

where At higher energies, the optical analysis of proton elastic
scattering is improved by the relativistic description via
Dirac phenomenology. The scattering wave is still expanded
in partial waves, but each component solves the Dirac equa-
512 1 J’ dFe‘(‘hd*’;’)‘FDillz(r) (13) tion containing the scalar and vector Dirac potentjdig].
(2m)%? An alternative, simpler but powerful, method by Glauber
[41] suggests that, when the proton is highly energetic, the
Schralinger equation is reduced to a first-order differential
I equation along the propagation azis
are functions oflp+q—p’|. The nucleon form factors are
taken from Ref[39], while the Coulomb gauge is adopted to
restore current conservation at the one-body level by modi- 9 i
fying the longitudinal component accordingly. (E—ip&)XI 2—,UX, (14
N

B. The eikonal approximation ) » )
with boundary conditions such that asymptoticajy—1,

Similar to the case of current operators, the high proton ¢ - corresponding to an incoming unitary flux of plane
energies that can be reached &' p) reactions at the new \yayes. In the pure Glauber model(r) is determined in a
experimental facilities also demand a suitable approach g5 ameter-free way starting from the elementary free proton-
the treatment of the proton scattering wave. Traditionally, th&,,cleon scattering amplitude at the considered energy and
assumed mean-field interaction between the ejectile and ?htﬁen averaging over all possible configurations of the spec-

residual nucleus has been described by complex Spifgior nycleons. Fop=1 GeVlc, the scattering amplitude
dependent optical potentials with energy-dependent param

) - _ : iS dominated by inelastic processes an() is supposed to
eters constrained by fitting phase shifts and analyzing powers, mostly sensitive to its imaginary part describing the ab-
of elastic(inelastio (p,p) _scatterings on the corresponding

dual | A Schdin i i ) sorption[42,43,27. Moreover, the Glauber model predicts
residual nucleus. chamger: equation with INCOMING 4t the ratio between the real and imaginary part$ ff)

wave boundary conditions for each partial WaVGA‘éL) IS equals the ratio between the real and imaginary parts of the
solved up to a maximum angular momentilimq.(py) sat-  average proton-nucleon forward scattering amplitude, which
isfying a convergency criterion. Typically, this method hasis expected to be small anyway beyond the inelastic thresh-
been successfully applied te,g’ p) reactions at proton mo- old [42]. Therefore, we can safely assuridr)~iW(r).
menta below 0.5 GeW andL,,,<50[11,12. Then, the solution to Eq14) looks like [27]
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R N part of the self-energy of a nucleon moving inside nuclear

XéT)(r)zex ipy-r+ —,f U(r, ,z")dz matter. Here, it is sufficient to say that the main drawback of

N 2pyJz such an approach is the lack of any spin-orbit effect in FSI
[46] and that for sake of simplicity the damping vector will

:exp< e F—L,J'mw(rl ,z’)dz’) pe kgptﬁparallel to the wave vector of the scattered particle,
2py 7z i.e., pillpy -
e The EA of Eq.(15) can be also formulated by saying that
=eliPnNel=hn), (15  the scattering wave is approximated by a plane wave with a

i.e., as a plane wave with a damping factor related to thé:omplex momentunp; = py+ip; and normalized as

absorption part of the residual interaction.

The reliability of this eikonal approximatiofEA), which
has a long tradition of successful results in the field of high-
energy proton-nucleus elastic scatteriag], has been tested it R a constant vector with modulus equal to the nuclear
in the context of knockout reactions and in the momentum__ . . S
range of interest here (s60<1 GeV/c) against solutions radius. In fact, for aﬁpropﬁagatmn along .theam.s, the wave
of the Schidinger equation with nonrelativistic complex op- €nters the nucleus at= —R=(0,0,~R) with unitary modu-
tical potentials up td. .= 120 partial wave$26] (see also lus and leaves it at=R=(0,0R), damped bye ?"'R. In
Ref. [45]). For increasing energies, the EA is supposed torder to consider the Fourier transform of H@6), an ex-
become more and more reliable, despite the actual semireléended definition of the distributios of a complex variable
tivistic nature of the approacf41]. Moreover, for emitted is required. In the Appendix of Reff26], it is actually shown
protons with outgoing energy beyond the inelastic thresholdhat such an extension is possible so that we can define the
and initially bound momentum below the Fermi surfaceEA of the scattering wave in momentum space as
(Pm=Prermi <Py 4, With Prermi the target Fermi momentum: _ -
the same kinematic conditions of the E89003 experiment at X;T)(p’)ze‘ PrRS(ps—p'), (17)
CEBAF [19]), it has been shown that the proton angular N
distribution can actually be reproduced by representing the h >, .
scattering wave as a plane wave with an additional damping’ er.e nowp’ is a complex vector. The extensu?rl OT the
[43,27). After all, for a fast moving object the nuclear density Matrix element of Eq(12) to the complex plane ip’ is
can be considered roughly constahtit for a small portion possible if the rest of the |nfegrand is an analytic function
on the surfaceand the eikonal wave of Eq15) simply  asymptotically vanishing fofp’|—o [26]. It is rather easy
corresponds to the solution of a Schimger equation inside to check that, apart from thé distribution, the integrand of
homogeneous nuclear matter. In the next Sec. Il C, a microEg. (12) meets these requirements. Therefore, the scattering
scopic justification of the damping factor will be given by a amplitude in the EAlalso with spin indices explicitly indi-
detailed description of the link betwe@nand the imaginary cated becomes

XE)T)(F) — e(fﬁl'ﬁ)e(iﬁf'F): e(iﬁl'é)e(ipg{\“raiﬁl'rﬁ)y (16)
N

(39)5t ol 0,1, Py Er) ~& P f dP(SI IL4(P. Pt 101, 0)[$0) P (P Sol(ER) ]V

— e ™R Egtmp - JE+m 5 12 2 312
_(ZT)WVWI dp\ S q Pean(PISH(ER) ]| Gm(Q%)| S0 D5,
B~ 12 5172 B2

+(s\lo-py + 6,

g ’ ""_ g ’ —’_ %
p|sn>(Ef+m)(E+ m) <SN|0-O- p|sr‘|> E+m+<SN|O- pf U|Sn> Ef+m

671/2

pé’d—’_pﬂ 2\ R1/2 oSk T
- F2(Q%)| D055, = (snlopr o Plsw) (g BT m)

2m

] , (18

where p“= (E,p),p#=(E;,ps), with E=/|p|2+m2E;=/|p|>+m2, ands},s, are the projections of the spins of the
detected proton and of the residual hole with collective quantum numbegspectively. The Fourier transform of the Darwin

nonlocality factor, in agreement with E€L3), is function of|p+q—ps|=V|p+q—py|?+ pZ.

C. Hadronic tensor

After summing over the undetected final states with quantum nunmbefrghe residual nucleus, the hadron tengdyr . in
momentum space becomes
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Wyn=(= DM NefeTe 2R j dpdk(s{|(Jem) u(P, P16, @)[Sn) b n(P) DE n(K)Sh(ER)(Sul (Jer) LK, Py .0, @) [S3)

=(—1) " NeleTe 2R f dpdk(sy|(Jer) u(P.Ps .0, ®)S(P,K; Er) (Jer) LK, Pr .G, @) [SL,), (19)

where

S(P.KiER) = 2 Su(ER) Pen( P)[Sn) (ol b a(K) (20

is the hole spectral function discussed in Sec. lll. The isospin indices have been omitted for simplicity and, as before, the
summation oven runs over the undetected final states of the residual nucleus that are present at a given excitatiderenergy
The hole spectral function can be conveniently expanded in partial waves in a SP basis as

S(pKER=2 X 2 (Izmmdim)(l 3 m{mglim)S;(p,k;Er) Yim (D) mo)(mg| YT, (k). (21)

I m.m| mg,m.

This expansion should not be confused with the sum in(#@): eachlj term contributes to the hadronic tensor and can come
either from a quasihole state or from above the Fermi surface, depending on the excitation energy.
The angular integrations in E(L9) can be easily performed by noting that the square root of the Darwin nonlocality factor,

D*Y%(r) in Eq.(13), is not far from 1, which would yield(p’' — p—q) in momentum spacésee Fig. 1 in the next Sec. I1)B
Therefore, because of E€L7), we impose the constraint that the vegtoin Eq. (19) lies in the same direction as—q, i.e.,

-

. P p L
P~P == =F7— Z(Df—OI),
IPi=dl \(p{—a)2+pj
and similarly fork. This approximation is reliable for high values of the involved momenta, as is the case for the kinematics

of Ref.[19]. It is then easy to get rid of the angular integrations in @@) so that the hadronic tensor, with explicit spin
guantum numbers, takes the form

(22

(Wan)s = (=DM NefelTe 2 3 3 (1 mmyjm) (13 mm[jm) Yim (Br—0) Yy, (Br— Q)

] ! ’
mp,m/ mg,mg

% | “ap 7 | a1 (0,516, M S, (9B (] e .y G 1), 23

whereJ%(p,p; g, ) is defined by inserting approximation Made to depend onu,q,pm,En). Therefore, the differential

(22) into Eq. (18). cross sectiorfand other related observablder a given ki-
Since the missing energy of the reaction is defined asiematics (u,ﬁ) and a knockout proton corresponding to a
[11,13 missing energye,, will be plotted as a function of the miss-
ing momenturrﬁm. Older experimentald,e’p) data at low
E —o—Tu—T 24 proton energy were usual_ly collected in the form of the so-
m= @7 oy TR @49 called reduced cross sectiph0,11]

WhereTp& is the kinetic energy of the detected nucleon and q 1
- g

n En=——7 ,

(pm m) dpédp,'\l KO-eN

(26)
Tr=[pj+ (Mg+Eg)?]*?~Mg—Eg (25)

. o _ _ whereK is a suitable kinematic factor ang, is the elemen-

is the kinetic energy of the residual nucleus, the scatteringary (half off-shel) electron-nucleon cross section, in order

amplitudeJé’“, n(w,q,p,’\, ,ERr) of Eg. (18) can be conveniently to reduce the information contained in a fivefold differential
N

014613-6



CONSISTENCY OF SPECTROSCOPIC FACTORS FROM . .. PHYSICAL REVIEW C 66, 014613 (2002

cross section to a twofold function 6f_n and Em . Whenever are included. This procedure involves the calculation of the
needed, theoretical results will also be presented as reducé®aginary part of the self-energy for two-particle—one-hole
cross sections using the CC1 prescriptjdd] for 0.y and  (2p1h and two-hole—one-particl2hlp intermediate states
the corresponding extrapolatorw=E{—E (with E  réached by thé&-matrix interaction and calculated itfO.

- /_Z_pm+m2) for the off-shell nucleon. The electron distor- 'N€ intermediate partlc!e states correspond to plane waves
tion is included in the EMA b lacing with Hacti and must be orthogonalized to the bound SP s{&#s Pure
lon IS included in the y repiacing with an eiectiveinatic energies are assumed for these particle states. While

Qerr [47] for the acceleration by the Coulomb fielth the 5 assumption is not very realistic for the description of the
following, for sake of simplicity the subscript eff will be .4 njing to low-lying states, it is quite adequate for the treat-
omitted. ment of tensor and short-range correlations. From these
imaginary contributions to the self-energy one can obtain the

IIl. QUASIHOLE AND QUASIPARTICLE PROPERTIES corresponding real parts by employing the appropriate dis-

The calculation of thed, e’ p) cross section is most easily persio.n relations. Since the “'Hartree-Fock” pgrt was calcu-
performed by employing the quasihole wave function of Eqlated in terms of & matrix, it already contains the 2plh
(5). By considering Eq(21) in a SP basis with orbital angu- Ccontribution mentioned above but generated in nuclear mat-
lar momentum, total angular momenturjy and momentum ter. The corresponding real part of the self-energy as calcu-
p, we can relate the spectroscopic amplitude to the spectrdﬁted in nuclear matter is then subtracted to eliminate the
function in the following way: double counting terms. This procedure is quite insensitive to
the original choice of density and starting energy for the
nuclear matteG matrix[29,48. For the determination of the
p-shell quasihole wave functions only the real part of the
self-energy is relevant. Collecting all the contributions to this

Sj(p,k;E)= ; (Wolal;[Wa~H(wn ay | ¥e)

X S(E—(EG—Ep™H), (27 self-energy one has
where a; (al,j) denotes the removdladdition operator ReE“—(p,k;E):EHF(p,k)wLReEﬁp“Kp,k;E)
for a nucleon. The spectral functid; (p,k;E) can be ob- . oh1 _
tained from the imaginary part of the corresponding SP —ReXji(p,k;E)+ReX " p,k;E)

propagatorg;;(p,k;E). This Green’s function solves the

Dyson equation =31/F(p,k) +ReAS ;(p,k E), (29

9 (p.k;E)=9{"(p,k;E) + f dpip3 f dp.p3g{”(p.p1;E)  with obvious notation. In the last line of EQ9) we have
included (the real part of AX;;, which was anticipated in

XA2(P1,P2;E) g1 (P2, K E), (28)  Eq.(29). This self-energy yields a complete treatment of the
effect of short-range and tensor correlations for a finite
where g(? refers to a Hartree-Fock propagator aéd|;  nucleug52]. The resulting wave functions fgrshell nucle-

represents contributions to the real and imaginary parts of thgns also yield an excellent description of the shape of the
irreducible self-energy, which go beyond the Hartree-Fockaynerimental ¢,e’p) cross sectioi30]. The self-energy in

approximation of the nucleon self-energy used to degite Eq. (29) does not include an adequate description of the cou-
(see below A brief summary of the calculation of the self- ing of the nucleon to low-lying collective excitations that

energy and the solution of the Dyson equation are include trongly influence the spectroscopic factéBS—55. This

below. More details can be found in Ref29,4§. deficiency is not important for the present paper since we are
addressing the question of the reliable extraction of spectro-
A. Quasihole properties scopic factors fromé,e’p) data. It is therefore of great im-
The self-energy is constructed by a two-step approaciportance that the theoretical wave functions generated by Eq.
employing the boson-exchange potential B as defined by29) are of equivalent quality to the empirical ones used in
Machleidt in Ref[49]. The treatment of short-range correla- the analysis of the da{@1]. Indeed, when these wave func-
tions is taken into account by solving the Bethe-Goldstondions are used to fit the daf80], they yield spectroscopic
equation. In the first step this equation is solved in nucleafactors that are essentially identical to the ones from the em-
matter at a certain density with a reasonable choice for theirical analysis.
starting energy. Employing a vector bracket transformation The solution of the Dyson equation was previously ob-
[50], the corresponding “Hartree-Fock” self-energy contri- tained in a basis generated by enclosing the system in a
bution in momentum space is calculated f80 using har-  spherical boX29,48. For the present paper the Dyson equa-
monic oscillator wave functions for the occupied states withtion has been solved directly in momentum space by per-
oscillator lengtha=1.72 fm 1. Since this “Hartree-Fock” forming the discretization for the relevant eigenvalue prob-
self-energy is obtained from nuclear matter, corrections neelm. For discrete solutions such as the quasihole states in
to be applied to reinstate the properties of tH#® Fermi 60, the Dyson equation yields the following eigenvalue
surface. In addition, higher-order self-energy contributionsequation:
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p? A1 A o where the nonlocal self-energy in coordinate space is ob-

om{¥n |ap|j|‘1’o>+f dkk’ReX j(p,k;En) tained from the one in momentum space by a double Fourier-
0 Bessel transformation given by

X(Wh™ ay | WE) =En(Wh ™ ap;¥e). (30

2 (= o .

;f dpp2f dp'p’?,(pr)
0 0

><Re2|j(p,p':E)J'|(p'f')-

As shown in Ref[51], a good representation to local poten-
fals given by Eq(31) is generated by a Woods-Saxon form.
Following this procedure we have obtained two local Woods-
Saxon potentialy/, (r) andV,,_(r) for the relevanp-shell

quasihole states in°0, respectively. Since the goal of the
As discussed in Sec. Il A, the Darwin nonlocality factor present work is to study the possibility to extract spectro-
given by Eq.(7) is required for a proper treatment of the scopic factors at differer®?, we have adjusted these poten-
current operator at high proton energies. It is clear from Egtials slightly to generate the correct experimental spin-orbit
(8) that this nonlocality factor is related to the spin-orbit splitting. In addition, we have ensured that the corresponding
potential. This relation can therefore be used to derive thgvave functions in momentum space have the maximum
nonlocality factor from the nucleon self-energy discussed iroverlap with those of the nonlocal self-energies. These over-
Sec. Il A. A complication in deriving this result is that the |aps are given by 99.97% for thi,, and 99.99% for th@,,
self-energies constructed fdfO are inherently nonlocal in  wave functions, respectively. It is now possible to decom-
coordinate space. This many-body nonlocality is alreadyose the local potentiargpllz and Vo, in central and spin-
present when Fock terms to the self-energy are considereg,p;t potentials in the following way:
Additional contributions are generated when higher-order

ReZ,i(r,r'";E
Discretizing the integration in Eq30) yields a straightfor- il )

ward diagonalization problem. The resulting quasihole wave
functions for thep,,, andp;, states are used for the analysis
presented in Sec. IV. We have checked that the present sol
tion method vyields identical results as compared to thos
from the “box method.”

(32

B. Darwin nonlocality factor

terms are included as in ER9). The terminology here may

be confusing so it is useful to point out that the Darwin
nonlocality factor refers to the nonrelativistic reduction of
the Dirac equation, which yields a nonlocal term in the

Schralinger equation when starting from a local Dirac equa-

tion.

Since Eq.(8) requires a local spin-orbit potential we will
construct local potentials from the nonlocal self-energies. A
shown in Ref[51], it is possible to construct local potentials
from the nonlocal self-energy by using the following expres-
sion:

ReEl}’ca'(r)zfo dr'r'?Re3;(r,r';E), (32)

13

12 |

1.1 ¢

D—functions

0.6

0.5

3 4
rifm]
FIG. 1. The Darwin nonlocality factdd(r) obtained by invert-
ing Eq. (8). Dashed and dot-dashed lines shd#%r) and
D~ Y4r) entering Eq(13), respectively.

V=Uy+U oL S (33
For p states this implies that
2
ULs(r) = 5[V, (N =V (D] (34)

This potential can then be used to construct the Darwin non-

?ocality factor by inverting Eq(8). The latter is displayed in

Fig. 1 together with the functior®~(r) used in Eq(13).
The observed small deviation from unity of the latter func-
tions is the basis for the approximation introduced in Eq.
(22) leading to the hadron tens@23).

C. Damping of a quasiparticle

As discussed in Sec. Il B, we will assume that the damp-
ing of the nucleon on its way out of the nucleus is described
by a corresponding process taking place in nuclear matter.
Since the SP momentum is conserved in nuclear matter, the
propagation of a nucleon through nuclear matter is diagonal
in the SP momentum and can be represented by

Sy(p;w) F Sh(p;w)

E—w+i77+ffocdwE—w—i7]’
(35

g(p;E>=£:dw

whereS, andS; (particle and hole spectral functipdescribe

the strength distribution above and below the Fermi energy
for a nucleon with SP momentum These spectral functions
have recently been determined self-consistently by including
the effects of short-range and tensor correlations in the self-
energy[28]. For this purpose the effective interaction is rep-
resented by the equivalent of tAematrix in the medium
[56,57. The propagation of the nucleons determining this
in-medium interaction is also described by Eg5), which
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includes full off-shell effects. The resulting interaction isem- 35 |
ployed to construct the nucleon self-energy. This self-energy
is then used to solve the Dyson equation for nuclear matter

9(p;E)=g(p;E)+ g (p;E)="M(p;E)g(p;E),
(36)

where the unperturbed propagator is given by

0(p— Pr) 0(Pe—p)
E-p?2m+in E—p22m—in

99(p;E)= 37

The solution procedure for this problem involves several it-
eration steps that are required because the solution to th , ‘ ‘ ‘ ‘ ,
Dyson equation already appears in the determination of the 0 1 5 3 4 5 6 7
effective interaction and the self-energy, illustrating the non-
linearity of this problem. The solution of Eq36) can be
written as

nucleon momentum [ fm™ 1

FIG. 2. The quantityy of Eq. (42), related to the imaginary part
of the nucleon self-energy, as functionmf~ py, , the nucleon mo-
1 mentum.
(38)

9(pE)= > —.
E—p®/2m—2(p;E) in Sec. Il B, i.e., Imkg=p,, with p, from Eq.(15). To clarify
Taking advantage of the slow variation of the imaginary partIhe physics further one may obtain the propagator in coordi-

of the self-energy as a function gf one can expand the "at€ Space using
self-energy at the momentupy, for which

pg ngA(F,F’;E)= (277)3f d3pelp~(r—r’)gCPA(p;E)
EsﬁﬂLReENM(pO;E). (39 o
Cpo eiK0|r—r'\
Performing the expansion in the square of this momentum =- Em (44)

and keeping both real and imaginary parts of the self-energy

atpo plus the first derivative of the real part, one obtains thegom this result it is clear that the damping of the nucleon

so-called complex pole approximatid®PA) [56] for the  hohagating through nuclear matter is determined by the

propagator, which gives a very accurat.e representation of thﬁ?naginary part ofic, which in turn is determined by the

quantity when transformed to coordinate space. FOr MOjnaginary part of the self-energy at this energy. In Fig. 2 the

menta above the Fermi momentum one has quantity y of Eq. (42), related to the imaginary part of the
self-energy, is shown as a function pf~Rexo=py. It is

Po (40) remarkable that apy,~7 fm~%, i.e., at the same proton ki-

p—p?+iy’ nematics of the NE18 experimeii86], y is such that

c
gcpa(PE)=

where

JRe3 M

Im kg=p,~50 MeV/c gives the proper damping necessary
L, -
Cop.=| 5=t —-5—
Po 2m 5p2 pg

and

9 ReS\M

2

(41)

to describe the observed absorption. In fact, in the context of
the pure Glauber approximatio\ex py) one would expect
a higher proportionality factor, thus overestimating the
guenching due to FSkee Ref[27] and references thergin
The outlined derivation of gives a microscopic explanation
for reducing this proportionality factor when embedding the
traveling proton in nuclear matter.

This absorption effect of the medium is obtained for a
realistic nucleon-nucleon interacti¢f8]. Since this interac-
tion is fitted to low-energy data, it is used in the Lippmann-

1
— NM .

-1
) o
Schwinger equation to describe these data. As a result, the

This form of the propagator at a fixed energy has a simpl€oupling to intermediate states at higher energy is con-
pole structure in the complex momentum plane. The locatiorstrained by the fit to these low-energy data. Whether the
of the relevant pole is given by description of these intermediate states as nonrelativistic
two-nucleon states is accurate is then less relevant. One may
also interpret the coupling to these intermediatenrelativ-
istic two-nucleon states as a phenomenological way to in-
The imaginary part of this momentum is then used toclude the coupling to inelastic channels, quark effects, etc.
describe the damping in the eikonal approximation describe&or this reason we expect the present microscopic descrip-

Po

: 2
Ko= ( pg_l_ ,}/2) l/4e(|/2) arctan(y/po)_ (43)
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tion of nucleon absorption in the medium to be fully relevant 193
for the (e,e’p) reactions studied in this paper. Since quite ~
different nucleon-nucleon interactions are capable of fitting7-
the low-energy data, it may be instructive to explore the <.

. . . >
dependence of the imaginary part of the self-energy in theg 102}
relevant energy and momentum domain on the chosen inter—
action. At this time we have only self-consistent calculations g
for the Reid potential available. We certainly plan to extend
our self-consistent calculations to other interactions in order § 10 |
to study this issue in more detail in the futusee also Ref.
[59]). One may then employ a possible sensitivity to the
chosen interaction as a means to identify those interaction:4
that have the proper behavior when in-medium properties are® 1 |
considered.

(924
(94
o]
“
[&]

200 -150 -100 -50 O 50 100 150 200 250 300
missing momentum [ MeV/c ]
IV. RESULTS
) . o FIG. 3. Cross section for thé®O(e,e’p)**N reaction atE,

In this section we will discuss the results for the cross—gg MeV constant proton energy in the center-of-mass system in
section of the®O(e,e’p) reaction leading to the ground parallel kinematic§31]. Data for thep,, state have been multiplied
state and the firs§ ~ excited state of the residual®N by 20. Solid line is the result of Ref30] using quasihole states;
nucleus. The main theoretical ingredient is the hadronic tendashed line represents the same result but replacing the quasihole
sor of Eq.(23), which describes the electromagnetic interac-spectral function with the bound state from RES0]. All curves
tion assuming a relativistic one-body current operator includhave been rescaled by the spectroscopic fader®.644 andZ
ing spinor distortion in the initial state only. This is =0.537 for thep;,, and ps, states, respectively.
consistent with the spin-orbit effects associated with the

quasihole states in the residual nucl¢sse Eq.(8)]. The  giate valug30]. The dashed lines in Fig. 3 refer to the cal-
proton scattering wave is described in the eikonal approXizyjation including the same spectroscopic factors but replac-
mation (EA), assuming a uniform and constant damping byjng the quasihole bound state by the wave function of Ref.
nuclear matter through a nucleon self-energy containing thPGO], which is obtained by a Skyrme-Hartree-Fock method
same short-_range_correlatlons used to generate the propertigs 160 Both descriptions are in very good agreement with
of the quasihole in the bound state. The electron wave ige gata, with a slight preference for the quasihole results at
described through the EMA, which incorporates the acceleraﬁegativepm.
tion due to the Coulomb field. , In Fig. 4 the same reaction is considered in a very differ-
We first re_con5|der thls reaction at lo@” using _the con- -+ kinematical regime, namely at constadid) with Q2
ventional Op“fc[a' ?‘ﬁe”t"ﬂ analysss for B0l In Fig. Sthe  _ 5 ¢" 5evik)2 [19]. The data here refer to a fivefold dif-
ata from Ref[31] have been collected at a constant proton, ~" " . . - R .
. ferential cross section, avoiding any ambiguity in modelin
energy of 90 MeV in the center-of-mass system. They refe{he half off-shell elementary cr%ss éectiogg onyq 26) 9
) . : b . .
fo the reduced cross section, defined by E4), as a func Again, results for the transition to the ground stpig have

tlonsf tpe missing momentu.rpm. n parallel kmematps, € been multiplied by 20. The theoretical calculations are dis-
for pyl|g. Therefore, thep, distribution can be obtained by pjayeq with the same notation as in Fig. 3, i.e., solid lines for
increasing the momentum transfgifrom positive 10 néga- the results with the quasihole bound state and dashed lines
tive values ofp,,. Two transitions were considered, leading j,y employing the wave function of R€B0]. The preference

to the ground stat@,, and to the first excited stay, at  for the first choice is here more evident. In any case, it is
Em=6.32 MeV of ™N. The data for the transitionto >, remarkable that the calculations reproduce the data by using
ground state have been multiplied by 20. The solid lines argne same spectroscopic factors as in the previous kinematics,
the result of the calculation employing the quasihole part of o Zyp,,=0.644 andZ,, =0.537. Therefore, contrary to

! 2 " 32 ’ !

the spectral function of Eq21) for the p,,, and pg, partial the findings of Ref[16], we do not find any need for @

waves, respectively. The normalization of the curves is ad- : . .
justed to fit the data, indicating that the intrinsic normaliza-dependence of the spectroscopic factors over a wide kine

. . matical range, in agreement also with the results obtained by
tion of the quasihole, 0.89 for thwy, and 0.914 for @z, ;e field description in the context of relativistic DWIA
must be significantly reduced t#o, ,=0.644 andZopm

. ) [61]. This outcome is particularly welcome, since by defini-
=0.537, respectively, because only the depletion due tgon these factors describe a spectroscopic nuclear property
short-range correlations has been taken into accP8®  that must be independent of the probe s@fe Finally, we
Incidentally, long-range correlations spread the tofal  conclude that the treatment of the bound-state wave function
strength over three states in the discrete spectrum, so that thenet responsible for th©? dependence found in RefL6].

P32 data account for 86% of the strength only; by rescalingrrom this observation one may infer that it is useful to ex-
the spectroscopic factor by this fraction we g&, =~ tend the analysis of the high? data to other nuclei using
=0.624, in close agreement with the corresponding groundthe eikonal description supplemented with the nuclear matter
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FIG. 4. Cross section for thé®O(e,e’p)*°N reaction atQ?
=0.8 (GeVk)? in perpendicular kinematid4.9]. Data for thepy, 08 ¢
state have been multiplied by 20. The solid lines represent the resul : : ' : : : :
of the present calculation. The dashed lines are obtained by replac 0 50100 150 200 250 300 350 400
ing the quasihole states with the bound-state wave functions of Ref missing momentum [ MeV/c ]
[60]. In all cases, the results have been rescaled by the same spec- ) . \15 )
troscopic factors as in Fig. 3, namele=0.644 andZ=0.537 for FIG. 6. Left-right asymmetry for tH8O(e,e’ p)°N reaction at
the py, and py, States, respectively. Q?=0.8 (GeVk)? in perpendicular kinematid4.9]. The same no-

tation is used as in Fig. 4.
damping description while foregoing the use of microscopic ) . ) ) . .
quasihole wave functions. Clearly an analysis of the datd.n In the same kinematics and with the same notation as in
considered in Ref§15,16 will further clarify the validity of ~ F19- 4. They are defined by
the present analysis. It is already encouraging to note that the

damping obtained in our calculations is adequate to describe fo0=Woo.
the observed absorption in the NE18 experini&6{ as dis- ) ,
cussed in Sec. Il C. f1=Wpt Wiy g,

In Fig. 5 we show the results for the structure functions
fo1=2 Re{Wél_ Wcl)fl]’

P12 P3/2
,,',;' 6 | f1,1:2 Rq:Wi*l]’ (45)
T4 . with W;\,w the hadronic tensor in the proton center-of-mass
ol ) o system. It is related t&V, ,. in the laboratory frame by the
g [ (N . Py ’ . .

8 >~ | \ transformationW, ,,=e'“®~"*W |, i.e., by a rotation

g o ' : ' ‘ e around theﬁ direction of the anglex between the lepton

M * scattering plane and the plane formed dyand pj,. The
o 2 = ¥ *x rotation affects only the interference components, so that the
£ 4l - - cross sectiorfl) becomeg10,11]
T 6l H do et 1 (Lot Lot
L L L L . . = +
20 | > - 2 00' 00 11711
dpedpy 167" Q*pepe

~— 15 L
é 10 L +LOlfOlCOSCY+ Ll,lfl,lcOS 2“}, (46)
<5t N i.e., it becomes parametrized in terms of the different com-

0 ponents of the nuclear responfg, . to the virtual photon

0 100 200 300 400 100 200 300 400 probe in the spherical basis. The agreement with data is still

good for both transitions over the whabe, range, except for

fo1, the interference between the longitudinal and transverse
FIG. 5. Structure functions for thé°O(e,e’'p)**N reaction at  responses, which is known to be particularly sensitive to

Q%=0.8 (GeVk)? in perpendicular kinematid49]. The same no- relativistic effectd21,62,63.

tation and scaling of curves are used as in Fig. 4. Correspondingly, the left-right asymmetry

missing momentum [ MeV/c ]
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do(a=0°)—do(a=180° calculation of the nucleon self-energy in a finite volume for
L= (47)  thep-shell quasihole states dfO.
do(a=0°)+do(a=180° In Ref. [30] these bound-state wave functions have been

. - » , used to analyze the data fdfO(e,e’p) at low Q? [31],
is displayed in Fig. 6 under the same conditions and with th‘i’/ielding a very good description of the reduced cross sec-

same notation as in Fig. 4. The discrepancy previously noteflons. In the present work, we have considered the recent
for f01 is ampllfled here, particularly for the results with the data for the same reaction at h|g|’@? [19] and we have
bound state of Ref60]. A possible explanation is that only performed the analysis using the same bound-state wave
a full account of relativistic effects, specifically of spinor functions and the same spectroscopic factors extracted from
distortion in both bound and scattering states, is needed tthe low-Q? analysis. The description of the data at hig&r
reproduce the datd9,21,62. In the present calculation this is still very good regarding both the fivefold differential
effect is included only for the bound state, while the Darwincross section and the structure functions. Only the interfer-
nonlocality factor for the scattering state turns out to be lencefg, structure function, and the related left-right asym-
because the homogeneous damping in nuclear matter dog®etry A 1, show a visible discrepancy, particularly for the

not include spin-orbit contributions. py, State. A possible explanation could be related to our
incomplete treatment of the relativistic effects because the
V. CONCLUSIONS spinor distortion of the final state is not considered.

However, we emphasize that our consistent analysis of

We have developed a model for describing tleee(p) low- and highQ? data using the same microscopic many-
reaction at highQ? while linking it to nonrelativistic micro-  body ingredients for the quasihole states and the damping of
scopic many-body ingredients such as the quasihole spectréile proton scattering wave allow us to conclude that we do
function. The goal is to critically consider the issue raised innot observe anQ* dependence of the spectroscopic factors
Refs.[15,16 about a possible dependence of the spectroover the considered wide range 00Q°<0.8 (GeVk)?.
scopic factors upoi@?. This outcome is most welcomg, since by definition these

We use an unfactorized approach where, following Ref_fact_ors describe a spectroscopic nu_clear pr_operty that must
[21], a relativistic one-body electromagnetic current operatoP® independent of the probe sceé. Finally, since we get a
is adopted in a Schdinger-based framework avoiding any Very good description of the higQ” data replacing our
nonrelativistic reduction. The effect of spinor distortion by duasihole states with the bound states of R&@], we can
the Dirac scalar and vector potentials is consistently includealISO coqclude that the quality of the wave functions is not
only for the bound state by evaluating the Darwin nonlocal-reSponS_Ible for the unexpe;t@? dependence of the spec-
ity factor through the spin-orbit potential generated by the'roscopic factors observed in R¢16]
self-energy of the quasihole spectral functions. The proton
scattering wave is described in an eikonal approximation
(tested against DWIA solutions of a complex spin-dependent This work is supported by the U.S. National Science
optical potential26]). The absorption is calculated by using Foundation under Grant No. PHY-9900713. We acknowl-
a spectral function for nucleons in nuclear matter includingedge the hospitality of the Laboratory of Theoretical Physics
the same short-range and tensor correlations adopted in tla University of Gent, where part of this work was done.
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