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Extensive systematizations of theoretical and experimental nuclear densities and of optical potential
strengths extracted from heavy-ion elastic scattering data analyses at low and intermediate energies are pre-
sented. The energy dependence of the nuclear potential is accounted for within a model based on the nonlocal
nature of the interaction. The systematics indicates that the heavy-ion nuclear potential can be described in a
simple global way through a double-folding shape, which basically depends only on the density of nucleons of
the partners in the collision. The possibility of extracting information about the nucleon-nucleon interaction
from the heavy-ion potential is investigated.
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[. INTRODUCTION the optical potential only in a region around a particular dis-
tance[6] hereafter referred as the sensitivity radils). At

The optical potential plays a central role in the descriptionenergies close to the Coulomb barrier the sensitivity radius is
of heavy-ion collisions, since it is widely used in studies of situated in the surface region. In this energy region, the sys-
the elastic scattering process as well as in more complicate@matization [7,8] of experimental results for potential
reactions through the distorted-wave Born approximatiorstrengths at the sensitivity radii has provided a universal ex-
(DWBA) or coupled-channel formalisms. This complex andponential shape for the heavy-ion nuclear potential at the
energy-dependent potential is composed of the bare and psurface, as theoretically expected, but with a diffuseness
larization potentials, the latter containing the contributionvalue smaller than that originally proposed in the proximity
arising from nonelastic couplings. In principle, the bé&oe  potential.
nucleaj potential between two heavy ions can be associated In a recent review articlg6] the phenomenon of rainbow
with the fundamental nucleon-nucleon interaction folded intoscattering was discussed, and it was emphasized that the real
a product of the nucleon densities of the nudlE]. Apart  part of the optical potential can be unambiguously extracted
from some structure effects, the shape of the nuclear densiglso at very short distances from heavy-ion elastic scattering
along the table of stable nuclides is nearly a Fermi distribudata at intermediate energies. Such a kind of data has been
tion, with diffuseness approximately constant and radiudirst obtained fora-particle scattering from a variety of nu-
given roughly byR=r,AY%, whereA is the number of nucle- clei over a large range of energig®—11] and later for sev-
ons of the nucleus. Therefore, one could expect a simpleral heavy-ion systems. However, differently from the case
dependence of the heavy-ion nuclear potential on the numbéor the surface regioflow energy, a systematization of po-
of nucleons of the partners in the collision. In fact, analyticaltential strengths at the inner distances has not been per-
formulas have been deducg2l-4] for the folding potential, formed up to now, probably because the resulting phenom-
and simple expressions have been obtained at the surfaemological interactions have presented significant
region. A universal (system-independentshape for the dependence on the bombarding energies. Several theoretical
heavy-ion nuclear potential has been deriy8falso in the models have been developed to account for this energy de-
framework of the liquid-drop model, from the proximity pendence through realistic mean field potentials. Most of
theorem which relates the force between two nuclei to thehem are improvements of the original double-folding poten-
interaction between flat surfaces made of semi-infinitetial with the nucleon-nucleon interaction assumed to be en-
nuclear matter. The theorem leads to an expression for ergy and density dependd@]. Another recent and success-
the potential in the form of a product of a geometrical factorful model [12—14 associates the energy dependence of the
by a function of the separation between the surfaces of theeavy-ion bare potential with nonlocal quantum effects re-
nuclei. lated to the exchange of nucleons between target and projec-

The elastic scattering is the simplest process that occurs itile, resulting in a very simple expression for the energy de-
a heavy-ion collision because it involves very little rear- pendence of the nuclear potential. Using the model of Refs.
rangement of matter and energy. Therefore, this process hf$2—-14, in the present work we have realized a systemati-
been studied in a large number of experimental investigazation of potential strengths extracted from elastic scattering
tions, and a huge body of elastic cross section data is cudata analyses, considering both I¢gmear-barrier and inter-
rently available. The angular distribution for elastic scatter-mediate energies. The systematics indicates that the heavy-
ing provides unambiguous determination of the real part ofon nuclear potential can be described in a simple global way
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where X could be the number of protorid neutronsN, or
FIG. 1. Nucleon density for the’®Fe nucleus represented nucleons A=N+Z. In our theoretical calculations, the
through Dirac-Hartree-Bogoliubov calculatiof®HB) and a two-  charge distribution g.,) has been obtained by folding the
parameter Fermi distribution2pP), with a=0.5 fm and R, proton distribution of the nucleuspf) with the intrinsic
=4.17 fm. The small difference between the 2pF distribution andcharge distribution of the proton in free spagg,):
the functionpoC((r —Rgy)/a) [Egs.(12), (13), and(14)] is hardly
seen in the figure. . o
Pch(f)=fPp(f')Pchp(f—f')df', 3
through a double-folding shape, which basically depends
only on the number of nucleons of the nuclei. ) ) ) )
The paper is organized as follows. In Sec. II, as a prepa?eré pcnp is an exponential with diffusenesg.cn,
ratory step for the systematization of the potential, an exten= 0-235 fm. In an analogous way, we have defined the mat-
sive and systematic study of nuclear densities is presentetf! density by folding the nucleon distribution of the nucleus
This study is based on charge distributions extracted fronyvith the intrinsic matter distribution of the r_1uc_|eo_n, which is
electron scattering experimerts5,16 as well as on theoret- @ssumed to have the same shape of the intrinsic charge dis-
ical densities derived from the Dirac-Hartree-Bogoliubov tribution of the proton. For convenience, the charge and mat-
model[17]. In Sec. IlI, analytical expressions for the double- ter distributions are normalized to the number of protons and
folding potential are derived for the wholsurface and in- nucleons, respectively. , 3
nen interaction region, and a survey of the main character- [N order to systematize the heavy-ion nuclear densities,
istics of this potential is presented. Section IV contains theVe have calculated theoretical distributions for a large num-
nonlocal model for the heavy-ion bare interaction, including®e" ©f nuclei using the Dirac-Hartree-Bogoliubd@HB)
several details that have not been published before. Sectighodel[17]. The DHB calculations were performed using the
Vis devoted to the nuclear potential systematics. In Sec. VINL3 parameter seftl8]. This set was obtained by adjusting
we discuss the role played by the nucleon-nucleon interad® masses and the charge and neutron radii of ten nuclei in
tion, and we present, in a somewhat speculative way, aH1€ region of the valley of stability, ranging frortfO to
alternative form for the effective nucleon-nucleon interac-~ PP, using the Dirac-Hartree-BC®H-BCS) model. For
tion, which is consistent with our results for the heavy-ionthe cases in which they have been performed, calculations
nuclear potential. Finally, Sec. VI contains a brief summaryusing this parameter set and either the DFE] or the DH-

and the main conclusions. BCS[18-20 model have shown very good agreement with
experimental masses and radii. The quality of the description
Il SYSTEMATIZATION OF THE NUCLEAR DENSITIES of nuclear masses and charge radii, calculated in various mi-

croscopic approaches, has been presented in a recent paper

According to the double-folding model, the heavy-ion[21]. In this work, the difference between experimental rms
nuclear potential depends on the nuclear densities of the neharge radii of stable nuclei with the corresponding theoret-
clei in collision. Thus, a systematization of the potential re-ical predictions has been found to be around 0.05 fm for all
quires a previous systematization of the nuclear densities. Imodels, including the DH-BCS model with the NL3 param-
this work, with the aim of describing the proton, neutron, eter set. This precision is quite satisfactory taking into ac-
nucleon(proton+neutror), charge, and matter densities, we count our purpose of systematizing the optical potential
adopt the two-parameter Ferf@pF) distribution, which has strengths. In the present paper, we have also used the results
also been commonly used for charge densities extracted frowf previous systematics for charge distributigd$,16|, ex-
electron scattering experimeritss]. The shape, Eql) and tracted from electron scattering experiments, as a further
Fig. 1, of this distribution is particularly appealing for the check of our DHB results. All the theoretical and most of the
density description, due to the flatness of the inner regioniexperimental” densities are not exact Fermi distributions.
which is associated with the saturation of the nuclear meThus, with the aim of studying the equivalent diffuseness of

014610-2



TOWARD A GLOBAL DESCRIPTION OF THE NUCLEUS- . ..

PHYSICAL REVIEW 66, 014610 (2002

[+]

Qs

L o, 8
O 20905680, 88
oEeg—ecey

oY v

8

o0

o

O Experimental Charge 1 [ O  Theoretical Charge ]

. =0.53 fm Tc =0.50 fm
01 - - _
[ a) | b)

0.0 i 1 i i 1 i i 1 i 1 1 i 1 i i 1

02}

E |

E o3} - —

w | O Proton ------ ap =0.47 —0.00083Z O Nucleon —------ @y =0.48 fm
02| @ Neutron ay =0.47 +0.00046N{ @ Matter ay =0.54 fm
01} - - _

[ c) - d)
00 L L I L L L I I I L L I I L L L
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160 180 200 220

ZorN

A

FIG. 2. Equivalent diffuseness values obtained for charge distributions extracted from electron scattering experiments and for theoretical
densities obtained from Dirac-Hartree-Bogoliubov calculations.

the densities, we have calculated the corresponding logarittealculations have slightly underestimated the experimental

mic derivatives[Eq. (4)] at the surface regiofat r~R, charge diffuseness, we consider that more realistic average

+2 fm): values for the nucleon and matter density diffuseness are
0.50 and 0.56 fm, respectively. A dispersion,] of about

p(r) 0.025 fm around these average values is expected due to
==, (4 effects of the structure of the nuclei.
ar The rms radius of a distribution is defined by E§):

fer(r)dF

jp(r)dlj.

We have determined the radf, for the 2pF distributions
%ssuming that the corresponding rms radii should be equal to
those of the experimentélectron scatteringand theoretical
(DHB) densities. The results fd®, from theoretical charge

Figure Za) shows the results for the experimental charge
distributions: the diffuseness values spread around an aver-

age diffusenessa,=0.53 fm, with standard deviation
0.04 fm. Most of this dispersion arises from experimental
errors. Indeed, we have verified that different analyskfs
ferent electron scattering data set or different models for th
charge densityfor a given nucleus provide diffuseness val-
ues that differ from each other by about 0.03 fm. Therefore
the experimental charge distributions are compatible, Withirhistributions[Fig. 3(b)] are very similar to those from elec-
the experimental precision, with a constant diffuseness valueﬂ,on experiment§Fig. 3a)]. This fact indicates that the radii
The theoretiqal charge distributions present similar b(ah"’wiof)btained through the theoretical DHB calculations are quite
[Fig. 2b)], with an average value slightly smaller than the_realistic. The nucleon and matter densities give very similar

experimental one. In this case, the observed standard devig: ;. ; ; ;
tion, 0.02 fm, is associated with the effects of the Structurq?ad” [Fig. 3(d)], which are well described by the following

of the nuclei. Despite the trend presented by the neutron angwear fit
proton diffusenes$Fig. 2(c)], all the nucleon distributions

result in very similar diffuseness values\(=0.48 fm),

with standard deviation 0.025 fm. As a result of the foldingAs a result of effects of the structure of the nuclei, &g
procedure, the matter distributions present diffuseness valueslues spread around this linear fit with dispersioﬂ0
significantly greater §,,=0.54 fm) than those for the =0.07 fm, but the heavier the nucleus is, the smaller is the
nucleon distributions. Taking into account that the theoreticatleviation. In Fig. 4 are shown the theoreti€@HB) nucleon

®)

Mrms™

Ro=1.31AY%-0.84 fm. (6)
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FIG. 3. TheR, parameter obtained for charge distributions extracted from electron scattering experiments and for theoretical densities
obtained from Dirac-Hartree-Bogoliubov calculations.

densities for a few nuclei and the corresponding 2pF distriwhereR is the distance between the centers of the nuglei,

butions witha=0.50 fm andR, values obtained from Eq. gre the respective nucleon distributions, m(() is the
(6). effective nucleon-nucleon interaction. The success of the
folding model can only be judged meaningfully if the effec-
tive nucleon-nucleon interaction employed is truly realistic.
The most widely used realistic interaction is known as M3Y
[1,6], which can usually assume two versions: Reid and
Paris.

For the purpose of illustrating the effects of density varia-
tions on the folding potential, we show in Fig. 5 the results

IIl. ESSENTIAL FEATURES OF THE FOLDING
POTENTIAL

The double-folding potential has the form

vF(R>:fp1<r1>p2(r2>vNN<F3—F1+F2>dr1dr}, (7)

FIG. 4. Nucleon densities from Dirac-
Hartree-Bogoliubov calculations(solid lineg
compared with the corresponding two-parameter
Fermi distributions (dashed linegs with a
=0.50 fm andR, obtained through Eq6).

p (%)

r (fm)
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f coooo R=2.64 fm, R,=4.20fm .
: ...... R1=2.50 fm, R2=4.20 fm - a1=a2=0.55 fm ) Where S= R_ (R1+ RZ)y R: 2R1R2/(R1+ Rz), é’: R/(Rl
B e +R,), 7=s/R, andR; and R, are the radii of the nuclei
10 0 2 4 6 8 10 (hereafter we considéR,=R;). We need a further approxi-
R (fm) mation to obtain analytical expressions for the folding poten-

tial in the case of finite diffuseness value.
FIG. 5. Folding potential for different sets of 2pF densities that ~ The Fermi distribution may be represented, with precision
may represent thé®0O+ 5&Ni system. The approximate position of better than 3% for any value (see Fig. 1, by
the sswave barrier radiusRg) is indicated in the figure.

L% C r—Ro (12
obtained for different sets of 2pF distributions. In Sec. II, we r-Ry po a |’
have estimated the dispersions of fRg and a parameters, 1+ex;{ —)
or,~0.07 fm ando,~0.025 fm, that arise from effects of
the structure of the nuclei. Observe that these standard de- T3,
viations are one-half of the corresponding variations consid- C(x<0)=1-ge'+ge”, (13
ered in the example of Fig. 5AR;=0.14 fm andAa
=0.05 fm. The surface region of the potentiaR*R; 7 3
+R,) is much more sensitive to small changes of the density C(x=0)=e"*| 1 ge "+ gezx) : (14

parameters than the inner region. Our calculations indicate

that, as a result of such structure effects, the strength of thehis approximation is particularly useful in obtaining ana-
nuclear potential in the region near the barrier radius mayytical expressions for integrals that involve the 2pF distri-
vary by about 20%, and the major part of this variation ispytion. If both nuclei have the same diffusenasthe double
connected to the standard deviation of the paramater integral [Eq. (8)] can be solved analytically using the ap-
Therefore, concerning the nuclear potential, the effects of thgroximation represented by Edq12), and the result ex-
structure of the nuclei are mostly present at the surface angressed as a sum of a large number of terms, most of them
mainly related to the diffuseness parameter. negligible for a<R,. Rather simple expressions can be

The six-dimensional integralEqg. (7)] can easily be found after an elaborate algebraic manipulation:
solved by reducing it to a product of three one-dimensional
R
0873 —-1
R1

Fourier transform$1], but the results may only be obtained Vg(R<R,—R;+a)

through numerical calculations. In order to provide analytical

expressions for the folding potential, we consider, as an ap- 4 . 2
proximation, that the range of the effective nucleon-nucleon %V0p01p02§7TR1 1+9. R,
interaction is negligible in comparison with the diffuseness

of the nuclear densities. In this zero-range approach, the a R'ﬁ
double-folding potential can be obtained from + = 2'4+? e (Re~Ry/a} (15
1 1
onn(r)~Vod(r) Ve(R,—R;+a<R<R;+R,)
2
=SVe(R) Nopoportard (A2 T
Vopoworz TR T )| T8 27416
27V, foo R+ 5 5 1
= ripa(ry) J' rsz(rz)drz}drl- 21— 2| 2= et
R Jo o] +2.49% 1 877 ™+ 7 > e
8 c
e —(e+2R; /a)
As discussed in Sec. Il, the heavy-ion densities involved in * 1Jr8 Uk ' ] (16
Eq. (8) are approximately 2pF distributions, wily>a. In
the limit a— 0, the double integral results in Ve(R=R;+Ry)~Vopoiporma®Ry(n)f(sla), (17)
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FIG. 6. Folding potential in the zero-range approach calculate

from numerical integration of E(8) (solid line), for 2pF densities
that may represent th&0+ %Ni system. The dashed line repre-
sents the approximate analytical expressions, Etf, (16), and
(17), while the dotted line concerns the exact resultder0, Eqgs.
(9), (10), and(11). The approximate positions of tleawvave barrier
radius Rg) and of the distancR=R;+ R, (s=0) are indicated in
the figure.

with »=al/R, e=s/a. The functionsg andf are given by

1+ 74 723+ p+(p+1/2e®
1+¢7 ’

(18

9(n)=

f(sla)=(1+sla)e %2 (19

If the nuclei have slightlyabout 10% different diffuseness,
the formulas are still valid witha~(a;+a,)/2. As an ex-

ample of the precision of the analytical expressions above,

we exhibit in Fig. 6 the results of numerical calculati§&s|.
(8)] and compare them with those from E@$5), (16), and
(17) and also with the exact expressions &t 0, Egs.(9),
(10), and(11).

Equation(17) presents some similarity with the proximity
potential[5]:

Vp=27I"Rdd(s/d), (20

where d is the “surface width” and® is an universal
(system-independenfunction. For a 2pF distribution, the

PHYSICAL REVIEW C 66, 014610 (2002
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d FIG. 7. Normalized folding potentiaV//(VoR) in the zero-

range approachEq. (8)] as a function of the distance=R—(R;
+R,), for several sets of 2pF distributiofwith a=0.50 fm) that
may represent the systems indicated in the figure. The proximity
universal functiond is also presented in arbitrary units.

The resulting experimentak values are quite similare
~0.62 fm[7,8], but smaller than the theoretical prediction
of the proximity potentialo~0.75 fm[5]. Such systematics
have included only experimental potential strengths in the
surface region, in contrast to the case of the proximity po-
tential whereV/R should be a universal function afalso

for inner distances. The proximity potential does not fully
agree with our results for the double-folding potential in the
zero-range approadisee Fig. 7. In fact, Eq.(17) indicates
that a better choice for a universal quantity at the surface
region would be

Ve

Vied(s=0)= —————,
* Popozma*RY(7)

(22

which resultdfrom Egs.(17), (19), and(22)] in the system-
independent expression
V/ed(5=0)=~V,(1+s/a)e 52, (23
However, it is not clear that one can find a simple form for
such a universal quantity at inner distances from EdS)
and (16). In Sec. V, the reduced potenti¥}.q is useful for
addressing the potential strength systematization. Thus we
defineV,.q4 for s<0 through the following trivial form:

surface width is related to the diffuseness parameter through

d~(m/\3)a [22]. The theoretical value adopted fak is
1 fm [5], which corresponds to a diffuseness-0.55 fm.
Taking into account that thE value is rather system inde-
pendent [5],

systematizations of heavy-ion potential
strengths extracted from elastic scattering data analyses ha

Vieq(s<0)=V,. (24
The end of this section is devoted to the study of the

effect on the folding potential of a finite range for the effec-

Uge nucleon-nucleon interaction. The tridimensional delta

been performed by using the following expression, whichfunctionVo(r) can be represented through the limit-0

should be valid for surface distances:

Vp(s>0)
— =

—sla

(21)

applied to the finite-range Yukawa function

—rlo

Y (r)=V
(r) 0,

(25
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R+R’
2

10°

1 e—(|§+fz’|/b)2,

U(RR)=V 2

10°
o whereb is the range of the Pauli nonlocality. Introduced in
] this way, the nonlocality is a correction to the local model,
J and in theb—0 limit, Eq. (26), reduces to the usual Schro
] dinger differential equation. The range of the nonlocality can
be found throughb~bymg/w [29], whereb,=0.85 fm is
the nucleon-nucleus nonlocality paramef@d], m, is the
nucleon mass, ang is the reduced mass of the nucleus-
i 1 nucleus system. This type of very mild nonlocality in the
10" o N nucleon-nucleus and nucleus-nucleus interaction is to be
0 2 4 6 8 10 12 contrasted with the very strong nonlocality found in the pion-
R (fm) nucleus interaction in thA region[30]. In such cases, even
the concept of an optical potential becomes dubious. In our
FIG. 8. Double-folding potentials for 2pF distributions with dif- case, however, we are on very safe ground.

ferent diffuseness valuds) that may represent th€0+ i sys- The relation between the nonlocal interaction and the
tem. The potentials have been calculated in the zero-range approafdjqding potential is obtained froril3]
(ZR) or with a finite-ranggFR) Yukawa function for the effective

- V. (MeV)

nucleon-nucleon interaction. VyL(R)=Ve(R). (28)

Figure 8 shows a comparison of folding potentials in theAs a result of the central nature of the interaction, it is con-

zero-range approadleq. (8)] with the result obtaineffrom /o iant 1o write down the usual expansion in partial waves,
Eq. (7)] using an Yukawa function for the effective nucleon-

nucleon interaction. The finite range is not truly significant at u(R)

small distances and can be accurately simulated at the sur- V(R)=>, 1'(2l +1)|_p|[cos( 01, (29)
face, within the zero-range approach, just by slightly increas- kR

ing the diffuseness of the nuclear densities.

- o 1
UR,R")= VI(R,R")P|[co , (30
IV. NONLOCAL DESCRIPTION OF THE NUCLEUS- ( ) 2 A47RR | JPilcod )] (30
NUCLEUS INTERACTION
Before proceeding with the systematization of the poten- ) R+R"} 1
tial, we first set the stage for the model of the heavy-ion ViI(RR)=Vy|—— T,
nuclear interactiofil2—14. When dealing with nonlocal in- &
teractions, one is required to solve the following integro- )RR R—R’\2
differential equation: X{Q, o7 ex;{—(T) }(_)H—lQI
o - —2RR R+R'|?2
_ Zvap(R)Jr[vC(R)Jrvpol(R,E)Jr|Wp0,(R,E)]\If(R) x| = exp[_ . H (31)
+J URRHT(R)HAR'=ET(R). (26) whereQ, are polynomials and is the angle betweeR and

R’ [24]. Thus, the integro-differential equation can be recast
V¢ is the Coulomb interaction assumed to be lob&l, and  into the following form:
W, are the real and imaginary parts of the polarization
potential, and contain the contribution arising from nonelas- 42 ¢2y (R)

tic channel couplings. The corresponding nonlocality, called > T E=Ve(R) = Vpo(R,E) = 1W0 (R, E)
the Feshbach nonlocality, is implicit through the energy de- modR

pendence of these terms, consistent with the dispersion rela- (14 1)%2 .

tion [23]. U(R,R’) is the bare interaction, and the nonlocal- - ul(R)=j V,(R,R)u(R)AR’. (32
ity here, the Pauli nonlocality, is solely due to the Pauli 2uR 0

exclusion principle and involves the exchange of nucleons

between target and projectile. When confronting theory and experiment, one usually re-
Guided by the microscopic treatment of the nucleon-lies on the optical model with a local potential. This brings

nucleus scatterinfe4—2§, the following ansatz is assumed into light the issue of extracting from Ed32) a local-

for the heavy-ion bare interactidd3]: equivalent(LE) potential
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300 ics framework, the exponent in E@34) is related to the
. kinetic energy E,) and to the local relative speed between
250 J the nuclei ¢) by
] , 2 2
200 . v°=—E(R)=—[E—-V:(R) -V, g(RE)], (35
s | M e
§ 150 —— - and Eq.(34) may be rewritten in the following form:
100 ] V0e(RE)=Vg(R)e  [Mbor/2M1*< v (R)e~ 47,
(36)
50 . wherec is the speed of light. Therefore, in this context the
effect of the Pauli nonlocality is equivalent to a velocity-
0 dependent nuclear interactidizq. (36)]. Another possible
8 interpretation is that the local-equivalent potential may be
R (fm) associated directly with the folding potentj&q. (37)], with

an effective nucleon-nucleon interactipgq. (38)] depen-
FIG. 9. Double-folding ¥¢) and I-dependent local-equivalent dent on the relative speed) between the nucleons:
(V_ g) potentials for thew+58Ni system atE| ,,=139 MeV. The

solid line represents the approximate expression,(84), for the _ :f
local-equivalent potential. Vie(RE)=Ve Pa(r1)pa(ra)

5¢ 2 = N s>
VLE(R,E)+|WLE(R,E) UNN(U,R rl+r2)drldr2! (37)

1 F d 33 on(v,1)=vr(Ne 47, (39)
=———- V(RR)Hy(R")AR'.
U|(R) 0 I( ) |( ) ( )
V. SYSTEMATIZATION OF THE NUCLEAR POTENTIAL
The presence of the wave function in E§3) indicates that As already mentioned, the angular distribution for elastic

the LE potential is complex and alé@and energy dependent. scattering provides an unambiguous determination of the real
Despite its complex nature, the LE potential is not absorppart of the optical potential in a region around the sensitivity
tive, (W|W_g| W) =0; this statement can be demonstrated byradius Rs). For bombarding energies abot@nd near the
considering that the nonlocal interaction is real and symdbarrier, the sensitivity radius is rather energy independent
metrical, V|(R,R’)=V,(R’,R). For neutron-nucleus sys- and close to the barrier radiu®k{), while at intermediate
tems, the LE potential is only weaklydependent, and an energies many inner distances are probed. At subbarrier en-
approximate relation to describe its energy dependence hasgies, theRg is strongly energy dependent, with its variation
been obtainedi24]. A generalization of this relation for the connected to the classical turning point; this fact has allowed
ion-ion case is given by12,13 the determination of the potential in a wide range of near-
barrier distancesRg<Rs<=Rg+2 fm. With the aim of
avoiding ambiguities in the potential systematization, we
have selected “experimentaléxtracted from elastic scatter-
ing data analys@spotential strengths at the corresponding
with y=ub?/242. In order to provide an example of the sensitivity radii, from works in which th&g has been deter-
precision of expressiofB84), in Fig. 9 the corresponding re- mined or at least estimated. In several articles, the authors
sult is compared to the exact LE potenfigh. (33)] obtained  claim that their data analyses at intermediate energies have
from the numerical resolutiofiL3] of the respective integro- unambiguously determined the nuclear potential in a quite
differential equation$Eq. (32)]. The local-equivalent poten- extensive region of interaction distances. In such cases, we
tial is quite well described by E34) for any| value, except have considered potential strength “data” in steps of 1 fm
at very small distancesR~0), which are not probed by over the whole probed region. Tables | and Il provide the
heavy-ion experiments. systems included in the nuclear potential systematics for the
Expression(34) has accounted for the energy dependencesubbarrier and intermediate energies, respectively. For the
of experimentally extracted potential strengths for severaknergy region abovéand near the barrier, the present sys-
systems in a very large energy rarjd@—14. At near-barrier tematics contains potential strengths for a large number of
energieE~V(Rg) +V e(Rg), the effect of the Pauli non- different heavy-ion systems from the previous Christensen-
locality is negligible andV, g(R,E)~Vg(R), but the higher  Winther systematizatiof7]. Our systematics is not even near
the energy is, the greater is the effect. At energies about 20@ being complete, but it is rather extensive and diversified
MeV/nucleon the local-equivalent potential is about one or-enough to account well for the very large number of data that
der of magnitude less intense than the corresponding foldingave been obtained in the last decades.
potential(see examples in Refgl2,13). In a classical phys- The experimental potential strengths represent the real

V| e(R,E)~Vg(R)e ME-Ve(R~VLeRE] (34)
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TABLE I. Systems, sub-barrier bombarding energies, and corre-

sponding references that have been included in the nuclear potential

systematics.

System ELap (MeV) Reference

160+ 58N 35, 35.5, 36, 36.5, 37, 38 (8,32

160+ 60N 35, 35.5, 36, 37, 38 [31,32

160+ 6264\ 34, 35, 36 [32]

160+ 88gy 43, 44, 45 [33]

160+ 997¢ 46, 47, 48 [33]

160+ 927¢ 45, 46, 47, 48 (8,33

180+ 22Mo 48, 48.5, 49 [33]

160+ 1203 53, 54, 55 (8]

160+ 1384 54, 55, 56, 57 (8] V =-274 MeV fm’

160+208Pb 74,75,76, 77,78 [8] E o A Sub-barrier energies

180+ 58N 35.1, 35.5, 37.1, 38 [34] » 10°F o Above- and near-barrier

180+60Ni 34,5, 35.5, 37.1, 38 [34] ¢ Intermediate energies
1-1 N 1 N P | M| N 1 N L
0-8-6-4-20246

s (fm)

part of the optical potential, which corresponds to the addi-
tion of the bare and polarization potentials. The contribution  FG. 10. Experimental and theoretical reduced potentials in the
of the polarization to the optical potential depends on thesontext of the zero-range approach, witbp) or without (bottorm
particular features of the reaction channels involved in th&onsidering in the calculations the energy dependence of the local-
collision and is therefore quite system dependent. If this conequivalent potentiglEq. (34)] that arises from the Pauli nonlocality.
tribution were very significant, it would be too difficult for
one to set a global description of the heavy-ion nuclear ins=0 this quantity was calculated from E2), and for
teraction. In the present work, we neglect the real part of thénner s values we have adopted the following simple
polarization potential and associate the experimental potergefinition:
tial strengths Ve, with the bare interaction\( g). The
success of our findings seems to support such a hypothesis. Vv _v VE expt (39)

In analyzing experimental potential results for such a red-expt™ TO\/_
wide energy range and large number of different systems, we
consider quite appropriate the use of system- and energy imwith V_4,, Calculated through Eq(8). The other useful
dependent quantities. We have removed the energyguantity is the distance between surfaces:Rg—(R;
dependence from the experimental potential strengths-R,), whereRg is associated with the sensitivity radius and
through the calculation of the corresponding folding poten-the radii of the nuclei have been obtained from ).
tial strengthsVe oy, based on Eq34). The system depen- In Fig. 10 (top), the experimental reduced potential
dence of the potential data set has then been removed wistrengths are confronted with the theoretical predickiegs.
the use of the experimental reduced potent@lg e FOr  (23) and(24)] for different diffuseness values. The fit to the

TABLE Il. The same as Table I, but for intermediate energies.

System E_ap (MeV) Reference
p+4Ca, ?°Pb 30.3 [35]
d+4Ca, 2%pb 52 [35]
4He+*Ca, 2°%b 104 [35]
6j+12C, %&gj 210, 318 [36,37
61i+40Ca, %&Ni, °0zr, 2%%pp 210 [38]
Li + %C, %8sj 350 [39]
c+1c 300, 360, 1016, 1440, 2400 [40—42
12C+20%pp 1440 [42]
13C 4 208pp 390 [41]
160+ 160 250, 350, 480, 704, 1120 [44,45
160+ 12C, 28gj, 40Ca, %zr, 2%%pp 1504 [43]
“OAr + 60Njj, 295, 20%pp 1760 [46]
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data in the inner regions& 0) results unambiguously in the TABLE lIl. The width, volume integral, and root-mean-square
value Vo= —456 MeVfnt and is quite insensitive to the radius for several effective nucleon-nucleon interactions considered

diffuseness parameter, in agreement with the discussioi this work.

about the folding features of Sec. lll. The fit fs=0 is : s

sensitive to bothV, and a, and the corresponding best fit nteraction ooray (fm) Vo (MeVIm®)  rypy (fm)
values area=0.56 fm and the sam¥, found for the inner  \13v.Reid . —408 1.62
region. The standard deviation of the data set around the beglsy.paris ) —a47 1.60
fit (solid line in Fig. 10, top is 25%, a value somewhat y,a 0.58 439 1.42
greater than the dispersigd0%) expected to arise from ef- Gaussian 0.90 448 156
fects of the structure of the nucl@s discussed in Sec. )ll Exponential 0.43 443 1.49

We bellgve that .th.e remaining dlfference comes from tWOFoIding-type 0.30 _456 147
sources: uncertainties of the experimentally extracted poten-

tial strengths and the contribution of the polarization poten-

tial that we have neglected in our analysis. We point out tha%hereVF_theo is now calculated through Eq7). V,eq.neo iS
the best fit diffuseness value=0.56 fm is equal to the av-  g4j| ohtained from Eqs(23) and(24), with theV, parameter
erage diffuseness foun@ec. 1) for the matter distributions being associated with the volume integral of the effective

and greater than the average valug=0.50 fm) of the  ,cleon-nucleon interactiofactually, this same procedure
nucleon distributions. This is a consistent result because Wgas aiso been adopted in the zero-range)case

have calculated the reduced potential strengths based on the

zero-range approadithrough Eqgs(8), (22), (23), and(24)].

As discussed in Sec. lll, the effect of a finite range for the V0=477J vn(r)rédr. (41)
effective nucleon-nucleon interaction can be simulated,

within the zero-range approach, by increasing the diffuseness The effective nucleon-nucleon interaction should be based
of the (nucleon densities of the nuclei. This subject is dealt upon a realistic nucleon-nucleon force, since our goal is to
with more deeply in the next section. obtain a unified description of the nucleon-nucleon, nucleon-
In order to characterize the importance of the Pauli nonnycleus, and nucleus-nucleus scatterfagdiscussion about
locality, in Fig. 10 (bottom) are shown the results for the the “realism” of the interaction is found in Ref§1,6]). For
reduced potential through calculations performed without thenstance, a realistic interaction should match the empirical
correction[Eq. (34)] due to the energy dependence of the LEvalues for the volume integral and root-mean-square radius
potential, i.e., associating the experimental potentiabf the nucleon-nucleon interaction/o~—430 MeV fn?
strengths directly with the folding potential. The quality of andr,,,.~1.5 fm, which were extrapolated from the main
the corresponding fitFig. 10, bottom is similar to that ob-  features of the optical potential for the nucleon-nucleus scat-
tained with the nonlocalityFig. 10, top, but theV, anda  tering atE, ¢jeo=10 MeV [1,47—49. The M3Y interac-
parameters are significantly different. In the next section, w&ion has been derivefl] with its basis on theS matrix for
show that the values found without considering the nonlocaltwo nucleons bound near the Fermi surface and certainly is
ity, a=0.61 fm andVy=—274 MeV i, seem to result in  representative of realistic interactions. In Table Il are pre-
an unrealistic nucleon-nucleon interaction. sented the volume integral and root-mean-square radius for
several nucleon-nucleon interactions used in this work, in-
cluding the M3Y at 10 MeV/nucleon.
VI. EFFECTIVE NUCLEON-NUCLEON INTERACTION The M3Y interaction is not truly appropriate for use in the

After removing the enerav dependence of the ex erimenc_:ontext of the nonlocal model, because it already contains a
9 gy dep P imulation of the exchange effects included in its knock-on

tal potential strengths, the corresponding results are comp srm. Furthermore, according to the nonlocal model the en-

ible with the double-folding potential in the zero-range ap- : :
) . ergy dependence of the local-equivalent potential should be
proach[Eq. (8)], provided that the matter densities of the related only to the finite range of the Pauli nonlocality, but

nuclei be ad(_)pted in t_he fol_ding procedure i”Steﬁ!d of thef e knock-on exchange term in the M3Y interaction is also
nucleon densities. In this section, we study the consistency of

our results for the nuclear potential in the case that thqe nergy dependent. Therefore, the use of the M3Y in the non-

double-foldi del is treated in th int ocal model would imply a double counting of the energy
ouble-loiding model IS treated in the more common in er'dependence that arises from exchange effects. In Sec. IV, we
pretation: the nucleon distributions and a finite-rang

e . . .
nucleon-nucleon interaction are assumed in(@y. With the have demonstrated that the LE potential is identical with the

. ; . qouble-folding potential for energies near the barrier, which
purpose of keeping the comparison between expenment%

. ; in a region around 10 MeV/nucleon. In thi me ener
and theoretical results through the use of system-independe € in a region around 10 MeV/nucleo this same energy

tities. it i t0 ch the definiti f th nge, the folding potential with the M3Y interaction has
quantiies, 1t 1s necessary 1o change the detfinition ot the exf)rovided a very good description of elastic scattering data for
perimental reduced potential:

several heavy-ion systeniig]. Thus, we believe that an ap-
propriate nucleon-nucleon interaction for the nonlocal model
could be the M3Y “frozen” at 10 MeV/nucleofl3], i.e.,
considering the parameters of the Reid and Paris versions as
energy-independent values. Figure(fidp) shows a compari-

VF ex|

— -expt

Vred—expt_ Vred—theov ’ (40)
F-theo
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103 . o N v T T
E T T T T 102 E_. : o‘;
[ teq.
= 107k BV
g § ! 235 "
% ] 101 L ',‘ .8 g:\
E 101 ; M3Y - Reid < ! N P‘.%;“‘A
3 [ TN,
>§ of § IR
F 0y 3z 10°F —— M3Y-Reid
R S M3Y - Paris
} } f [ e Yukawa
10" s Gaussian 8o
. -1
102k > Exponential Res.,
c:g 3 *  Folding-type * N
%.) 1] 10'2 1 1 4
= 10 1 >
% [ & Sub-barier energies r(fm)
v 10°E o Above- and near-barrier 3
f ¢ [Intermediate energies FIG. 12. The complete set of effective nucleon-nucleon interac-
10 e tions considered in this work.

8 6 -4 2 0 2 4 6

s (fm) In Sec. V, we have demonstrated that the major part of the

FIG. 11. Comparison between experimental and theoretical re-flnlte range” of the heavy-ion nuclear potential is related

duced potentials in the context of the finite-range approach, with é)n_ly to the spatial exftenthof t.he nucl.el. in .fact, even Cr?nSId'
M3Y-Reid (top) or folding-type(bottom) effective nucleon-nucleon ering a zero range tor the |n.teract|®|l\|N in Eq. (8)',t e
interaction. shape of the heavy-ion potential could be well described just

by folding the matter densities of the two nuclei. One would

son between experimental and theoretical heavy-ion reduce%SK whef[her the_ finite-range s_hape_ of the _effectlve nucleon-
potentials, in which the “frozen” M3Y-Reid was considered nucleon intéraction can be derived in a similar way. Thus, we
for the nucleon-nucleon interaction. We emphasize that ngiave considered a folding-type effective nucleon-nucleon in-
adjustable parameter has been used in these calculations, pggaction built from

even so good agreement between the data and theoretical
predictions has been obtained. The “frozen” M3Y-Paris pro-
vides similar results.

With the aim of investigating how much information
about the effective nucleon-nucleon interaction can be ex-
tracted from our heavy-ion potential systematics, we have
considered other possible functional forms for this effective
interaction. Besides the Yukawa functiffaqg. (25)], we have
also used the Gaussigkqg. (42)] and the exponentidlEq. (44
(43)], which reduce to the tridimensional delta function in
the limit 0—0,

UNN(F)*Uf(r)

= [ ontrpn(ro VSR + )0 e,

27TVO *
= r f r1pm(r1)
0

r+rq
fl rsz(rz)drz}drly

r—rq]

whereV,=—456 MeV fnT as determined by the heavy-ion
potential analysis and,, is the matter density of the

1292 nucleon. Based on the intrinsic charge distribution of the
G (r)=V, € , (42) proton in free space, which has been determined by electron
7 (2m)%720° scattering experiments, we have assumed an exponential
shape for the matter density of the nucleon:
e "o — —rlay
Ea(r):VOS . (43 Pm(F)=poe”""m. (45
mTo

Of course,py and a,,, are connected by the normalization

The fits obtained with all these functions are of similar quaI—Condition’ Eq.(2). The integration of Eq(44) results in

ity and comparable with that for the M3Y interactidRig. 2
11, top. The resulting best fit widthss), volume integrals, pe(r)= Vo e aml 14—y | (46)
and corresponding root-mean-square radii are found in Table 6447a;°‘n am 3 fn

[ll. All the Vqy andr,,s values, including those of the M3Y,
are quite similar. Also the “experimentally” extracted inten- With this finite-range folding-type effective nucleon-nucleon
sity of the nucleon-nucleon interaction in the regiossl  interaction, a good fit of the reduced heavy-ion potential
<3 fm seems to be rather independent of the model asstrengths is obtaine@ee Fig. 11, bottomwith realistic vol-
sumed for this interactiofsee Fig. 12 ume integral and root-mean-square radigee Table II).
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The folding-type interaction is quite similar to both versions VII. CONCLUSION
of the M3Y interaction in the surface regigsee Fig. 12

The folding-type interaction in the context of the nonlocal The experimental potential strengths considered in the
g-yp §resent systematics have been obtained at the corresponding

model provides a very interesting unification between th ensitivity radii, a region where the nuclear potential is de-

descriptions of the nucleus-nucleus, nucleon-nucleus, and &farmined from the data analyses with the smallest degree of
fective nucleon-nucl_eon interactions. This can be a_lppreuategmbiguity_ The Fermi distribution was assumed to represent
through the comparison between E(6) and(38), with the  the nuclear densities, with parameters consistent with an ex-
subtle detail thaw [in Eq. (36)] and vy [in Eq. (38)] can  tensive amount of theoreticdDHB calculation$ and experi-
both be calculated by folding the matter densities in the zeromental (electron scattering experimentesults. The poten-
range approach and with the saMg value. Therefore, the tial data set is well described in the context of the nonlocal
interaction between two nuclér nucleongcan be obtained model by the double-folding potential in the zero-range as
from well as in the finite-range approaches. The dispersion of the
potential data around the theoretical prediction is 25%,
which is compatible with the expected effects arising from
B T U e S the variation of the densities due to the structure of the nu-
VLE(R)_j p1(r1)pa(ra)Vod(R—ry+ry)e dridra,  clei. If the nonlocal interaction is assumed, the heavy-ion
(47  potential data set seems to determine a few characteristics of
the effective nucleon-nucleon interaction, such as volume in-
tegral and root-mean-square radius, in a model-independent

whereV,=—456 MeV fn?, p; are the matter densities, and Way-

v is the relative speed between the nudtei nucleons An Thg description of the bare potential .presented in Fhis
alternative way to calculate the heavy-ion interaction is withWork is based only on two fundamental ideas: the folding

Eq. (37) [and Eq.(38)], but in this case the nucleon distribu- model a_nd the Pauli nonl_ocahty. We have avoided as much
tions must be usefin Eq. (37)] instead of the matter densi- 25 pos§|ble th? use o_f adjust_able parameters, and in the case
ties. All these findings seems to be quite consistent. How? the “frozen” M3Y interaction no adjustable parameters
ever, the best fit value obtained for the diffuseneas, ( Were necessary to f|_t the experimental potent|a_l strengths.
=0.30 fm) of the matter density of the nucleon inside the’Nowadays, the other important part of the heavy-ion interac-
nucleus is considerable greater than theag,(=0.235 fm) tion, the polar|z_at|0n potential, is commonly tr_eated within a
found for the charge distribution of the proton in free spacePenomenological approach, with several adjustable param-
This finding is consistent with the swelling of the nucleon €1€'S Which usually are energy dependent and vary signifi-

observed in the EMC effed0], but should be contrasted cantly from system to system. The association of the nonlo-

with the opposite picture of a smaller nucleon inside thec@ bare potential presented in this work with a more

nucleus as advanced within the concept of color transparend‘ynd""mentaI treatment of t_he_ polarization should be the_ next
[51] tep toward a global description of the nucleus-nucleus inter-

Finally, we mention that, if the energy dependence of the?Ction-
Pauli nonlocality is not taken into account and the experi-
mental potential strengths are associated directly with the
folding potential, our calculations indicate that the corre- This work was partially supported by Financiadora de
sponding effective nucleon-nucleon interaction should havé&studos e Projetd$INEP), Funda@o de Amparo @esquisa
the following unrealistic valuesvVo~—270 MeVfn? and do Estado de ®aPaulo(FAPESR, and Conselho Nacional
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