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Toward a global description of the nucleus-nucleus interaction
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Extensive systematizations of theoretical and experimental nuclear densities and of optical potential
strengths extracted from heavy-ion elastic scattering data analyses at low and intermediate energies are pre-
sented. The energy dependence of the nuclear potential is accounted for within a model based on the nonlocal
nature of the interaction. The systematics indicates that the heavy-ion nuclear potential can be described in a
simple global way through a double-folding shape, which basically depends only on the density of nucleons of
the partners in the collision. The possibility of extracting information about the nucleon-nucleon interaction
from the heavy-ion potential is investigated.
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I. INTRODUCTION

The optical potential plays a central role in the descript
of heavy-ion collisions, since it is widely used in studies
the elastic scattering process as well as in more complic
reactions through the distorted-wave Born approximat
~DWBA! or coupled-channel formalisms. This complex a
energy-dependent potential is composed of the bare and
larization potentials, the latter containing the contributi
arising from nonelastic couplings. In principle, the bare~or
nuclear! potential between two heavy ions can be associa
with the fundamental nucleon-nucleon interaction folded i
a product of the nucleon densities of the nuclei@1#. Apart
from some structure effects, the shape of the nuclear den
along the table of stable nuclides is nearly a Fermi distri
tion, with diffuseness approximately constant and rad
given roughly byR5r 0A1/3, whereA is the number of nucle-
ons of the nucleus. Therefore, one could expect a sim
dependence of the heavy-ion nuclear potential on the num
of nucleons of the partners in the collision. In fact, analyti
formulas have been deduced@2–4# for the folding potential,
and simple expressions have been obtained at the su
region. A universal ~system-independent! shape for the
heavy-ion nuclear potential has been derived@5# also in the
framework of the liquid-drop model, from the proximit
theorem which relates the force between two nuclei to
interaction between flat surfaces made of semi-infin
nuclear matter. The theorem leads@5# to an expression for
the potential in the form of a product of a geometrical fac
by a function of the separation between the surfaces of
nuclei.

The elastic scattering is the simplest process that occu
a heavy-ion collision because it involves very little rea
rangement of matter and energy. Therefore, this process
been studied in a large number of experimental invest
tions, and a huge body of elastic cross section data is
rently available. The angular distribution for elastic scatt
ing provides unambiguous determination of the real par
0556-2813/2002/66~1!/014610~13!/$20.00 66 0146
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the optical potential only in a region around a particular d
tance@6# hereafter referred as the sensitivity radius (RS). At
energies close to the Coulomb barrier the sensitivity radiu
situated in the surface region. In this energy region, the s
tematization @7,8# of experimental results for potentia
strengths at the sensitivity radii has provided a universal
ponential shape for the heavy-ion nuclear potential at
surface, as theoretically expected, but with a diffusen
value smaller than that originally proposed in the proxim
potential.

In a recent review article@6# the phenomenon of rainbow
scattering was discussed, and it was emphasized that the
part of the optical potential can be unambiguously extrac
also at very short distances from heavy-ion elastic scatte
data at intermediate energies. Such a kind of data has b
first obtained fora-particle scattering from a variety of nu
clei over a large range of energies@9–11# and later for sev-
eral heavy-ion systems. However, differently from the ca
for the surface region~low energy!, a systematization of po
tential strengths at the inner distances has not been
formed up to now, probably because the resulting pheno
enological interactions have presented signific
dependence on the bombarding energies. Several theore
models have been developed to account for this energy
pendence through realistic mean field potentials. Most
them are improvements of the original double-folding pote
tial with the nucleon-nucleon interaction assumed to be
ergy and density dependent@6#. Another recent and succes
ful model @12–14# associates the energy dependence of
heavy-ion bare potential with nonlocal quantum effects
lated to the exchange of nucleons between target and pro
tile, resulting in a very simple expression for the energy d
pendence of the nuclear potential. Using the model of R
@12–14#, in the present work we have realized a system
zation of potential strengths extracted from elastic scatte
data analyses, considering both low~near-barrier! and inter-
mediate energies. The systematics indicates that the he
ion nuclear potential can be described in a simple global w
©2002 The American Physical Society10-1
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L. C. CHAMON et al. PHYSICAL REVIEW C 66, 014610 ~2002!
through a double-folding shape, which basically depe
only on the number of nucleons of the nuclei.

The paper is organized as follows. In Sec. II, as a pre
ratory step for the systematization of the potential, an ext
sive and systematic study of nuclear densities is presen
This study is based on charge distributions extracted fr
electron scattering experiments@15,16# as well as on theoret
ical densities derived from the Dirac-Hartree-Bogoliub
model@17#. In Sec. III, analytical expressions for the doubl
folding potential are derived for the whole~surface and in-
ner! interaction region, and a survey of the main charac
istics of this potential is presented. Section IV contains
nonlocal model for the heavy-ion bare interaction, includi
several details that have not been published before. Sec
V is devoted to the nuclear potential systematics. In Sec.
we discuss the role played by the nucleon-nucleon inte
tion, and we present, in a somewhat speculative way,
alternative form for the effective nucleon-nucleon intera
tion, which is consistent with our results for the heavy-i
nuclear potential. Finally, Sec. VII contains a brief summa
and the main conclusions.

II. SYSTEMATIZATION OF THE NUCLEAR DENSITIES

According to the double-folding model, the heavy-io
nuclear potential depends on the nuclear densities of the
clei in collision. Thus, a systematization of the potential
quires a previous systematization of the nuclear densities
this work, with the aim of describing the proton, neutro
nucleon~proton1neutron!, charge, and matter densities, w
adopt the two-parameter Fermi~2pF! distribution, which has
also been commonly used for charge densities extracted
electron scattering experiments@15#. The shape, Eq.~1! and
Fig. 1, of this distribution is particularly appealing for th
density description, due to the flatness of the inner reg
which is associated with the saturation of the nuclear m

FIG. 1. Nucleon density for the56Fe nucleus represente
through Dirac-Hartree-Bogoliubov calculations~DHB! and a two-
parameter Fermi distribution~2pF!, with a50.5 fm and R0

54.17 fm. The small difference between the 2pF distribution a
the functionr0C„(r 2R0 )/a… @Eqs. ~12!, ~13!, and ~14!# is hardly
seen in the figure.
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dium, and to the rapid falloff~related to the diffuseness pa
rametera) that brings out the notion of the radiusR0 of the
nucleus:

r~r !5
r0

11expS r 2R0

a D . ~1!

The r0 , a, andR0 parameters are connected by the norm
ization condition

4pE
0

`

r~r !r 2dr5X, ~2!

whereX could be the number of protonsZ, neutronsN, or
nucleons A5N1Z. In our theoretical calculations, th
charge distribution (rch) has been obtained by folding th
proton distribution of the nucleus (rp) with the intrinsic
charge distribution of the proton in free space (rchp):

rch~r !5E rp~rW8!rchp~rW2rW8!drW8, ~3!

where rchp is an exponential with diffusenessachp
50.235 fm. In an analogous way, we have defined the m
ter density by folding the nucleon distribution of the nucle
with the intrinsic matter distribution of the nucleon, which
assumed to have the same shape of the intrinsic charge
tribution of the proton. For convenience, the charge and m
ter distributions are normalized to the number of protons a
nucleons, respectively.

In order to systematize the heavy-ion nuclear densit
we have calculated theoretical distributions for a large nu
ber of nuclei using the Dirac-Hartree-Bogoliubov~DHB!
model@17#. The DHB calculations were performed using th
NL3 parameter set@18#. This set was obtained by adjustin
the masses and the charge and neutron radii of ten nucl
the region of the valley of stability, ranging from16O to
214Pb, using the Dirac-Hartree-BCS~DH-BCS! model. For
the cases in which they have been performed, calculat
using this parameter set and either the DHB@17# or the DH-
BCS @18–20# model have shown very good agreement w
experimental masses and radii. The quality of the descrip
of nuclear masses and charge radii, calculated in various
croscopic approaches, has been presented in a recent
@21#. In this work, the difference between experimental rm
charge radii of stable nuclei with the corresponding theo
ical predictions has been found to be around 0.05 fm for
models, including the DH-BCS model with the NL3 param
eter set. This precision is quite satisfactory taking into
count our purpose of systematizing the optical poten
strengths. In the present paper, we have also used the re
of previous systematics for charge distributions@15,16#, ex-
tracted from electron scattering experiments, as a furt
check of our DHB results. All the theoretical and most of t
‘‘experimental’’ densities are not exact Fermi distribution
Thus, with the aim of studying the equivalent diffuseness

d
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FIG. 2. Equivalent diffuseness values obtained for charge distributions extracted from electron scattering experiments and for t
densities obtained from Dirac-Hartree-Bogoliubov calculations.
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the densities, we have calculated the corresponding loga
mic derivatives@Eq. ~4!# at the surface region~at r'R0
12 fm):

a'2
r~r !

dr

dr

. ~4!

Figure 2~a! shows the results for the experimental char
distributions: the diffuseness values spread around an a
age diffusenessāc50.53 fm, with standard deviation
0.04 fm. Most of this dispersion arises from experimen
errors. Indeed, we have verified that different analyses~dif-
ferent electron scattering data set or different models for
charge density! for a given nucleus provide diffuseness va
ues that differ from each other by about 0.03 fm. Therefo
the experimental charge distributions are compatible, wit
the experimental precision, with a constant diffuseness va
The theoretical charge distributions present similar beha
@Fig. 2~b!#, with an average value slightly smaller than t
experimental one. In this case, the observed standard d
tion, 0.02 fm, is associated with the effects of the struct
of the nuclei. Despite the trend presented by the neutron
proton diffuseness@Fig. 2~c!#, all the nucleon distributions
result in very similar diffuseness values (āN50.48 fm),
with standard deviation 0.025 fm. As a result of the foldi
procedure, the matter distributions present diffuseness va
significantly greater (āM50.54 fm) than those for the
nucleon distributions. Taking into account that the theoret
01461
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calculations have slightly underestimated the experime
charge diffuseness, we consider that more realistic ave
values for the nucleon and matter density diffuseness
0.50 and 0.56 fm, respectively. A dispersion (sa) of about
0.025 fm around these average values is expected du
effects of the structure of the nuclei.

The rms radius of a distribution is defined by Eq.~5!:

r rms5AE r 2r~r !drW

E r~r !drW
. ~5!

We have determined the radiiR0 for the 2pF distributions
assuming that the corresponding rms radii should be equ
those of the experimental~electron scattering! and theoretical
~DHB! densities. The results forR0 from theoretical charge
distributions@Fig. 3~b!# are very similar to those from elec
tron experiments@Fig. 3~a!#. This fact indicates that the rad
obtained through the theoretical DHB calculations are qu
realistic. The nucleon and matter densities give very sim
radii @Fig. 3~d!#, which are well described by the following
linear fit:

R051.31A1/320.84 fm. ~6!

As a result of effects of the structure of the nuclei, theR0
values spread around this linear fit with dispersionsR0

50.07 fm, but the heavier the nucleus is, the smaller is
deviation. In Fig. 4 are shown the theoretical~DHB! nucleon
0-3
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FIG. 3. TheR0 parameter obtained for charge distributions extracted from electron scattering experiments and for theoretical
obtained from Dirac-Hartree-Bogoliubov calculations.
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densities for a few nuclei and the corresponding 2pF dis
butions witha50.50 fm andR0 values obtained from Eq
~6!.

III. ESSENTIAL FEATURES OF THE FOLDING
POTENTIAL

The double-folding potential has the form

VF~R!5E r1~r 1!r2~r 2!vNN~RW 2rW11rW2!drW1drW2 , ~7!
01461
i-whereR is the distance between the centers of the nucleir i

are the respective nucleon distributions, andvNN(rW) is the
effective nucleon-nucleon interaction. The success of
folding model can only be judged meaningfully if the effe
tive nucleon-nucleon interaction employed is truly realist
The most widely used realistic interaction is known as M3
@1,6#, which can usually assume two versions: Reid a
Paris.

For the purpose of illustrating the effects of density var
tions on the folding potential, we show in Fig. 5 the resu
-

ter
FIG. 4. Nucleon densities from Dirac
Hartree-Bogoliubov calculations~solid lines!
compared with the corresponding two-parame
Fermi distributions ~dashed lines!, with a
50.50 fm andR0 obtained through Eq.~6!.
0-4
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TOWARD A GLOBAL DESCRIPTION OF THE NUCLEUS- . . . PHYSICAL REVIEW C66, 014610 ~2002!
obtained for different sets of 2pF distributions. In Sec. II, w
have estimated the dispersions of theR0 and a parameters,
sR0

'0.07 fm andsa'0.025 fm, that arise from effects o
the structure of the nuclei. Observe that these standard
viations are one-half of the corresponding variations con
ered in the example of Fig. 5,DR050.14 fm and Da
50.05 fm. The surface region of the potential (R>R1
1R2) is much more sensitive to small changes of the den
parameters than the inner region. Our calculations indic
that, as a result of such structure effects, the strength of
nuclear potential in the region near the barrier radius m
vary by about 20%, and the major part of this variation
connected to the standard deviation of the parametea.
Therefore, concerning the nuclear potential, the effects of
structure of the nuclei are mostly present at the surface
mainly related to the diffuseness parameter.

The six-dimensional integral@Eq. ~7!# can easily be
solved by reducing it to a product of three one-dimensio
Fourier transforms@1#, but the results may only be obtaine
through numerical calculations. In order to provide analyti
expressions for the folding potential, we consider, as an
proximation, that the range of the effective nucleon-nucle
interaction is negligible in comparison with the diffusene
of the nuclear densities. In this zero-range approach,
double-folding potential can be obtained from

vNN~rW !'V0d~rW !

⇒VF~R!

5
2pV0

R E
0

`

r 1r1~r 1!F E
uR2r 1u

R1r 1
r 2r2~r 2!dr2Gdr1 .

~8!

As discussed in Sec. II, the heavy-ion densities involved
Eq. ~8! are approximately 2pF distributions, withR0@a. In
the limit a→0, the double integral results in

FIG. 5. Folding potential for different sets of 2pF densities th
may represent the16O158Ni system. The approximate position o
the s-wave barrier radius (RB) is indicated in the figure.
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VF~R<R22R1!5V0r01r02

4

3
pR1

3 , ~9!

VF~R22R1<R<R11R2!

5V0r01r02

4

3
pR 3S t2

11zt D F3

8
1

t

4
1z

t2

16G ,
~10!

VF~R>R11R2!50, ~11!

where s5R2(R11R2), R52R1R2 /(R11R2), z5R/(R1
1R2), t5s/R, and R1 and R2 are the radii of the nucle
~hereafter we considerR2>R1). We need a further approxi
mation to obtain analytical expressions for the folding pote
tial in the case of finite diffuseness value.

The Fermi distribution may be represented, with precis
better than 3% for anyr value ~see Fig. 1!, by

r0

11expS r 2R0

a D 'r0CS r 2R0

a D , ~12!

C~x<0!512
7

8
ex1

3

8
e2x, ~13!

C~x>0!5e2xS 12
7

8
e2x1

3

8
e22xD . ~14!

This approximation is particularly useful in obtaining an
lytical expressions for integrals that involve the 2pF dist
bution. If both nuclei have the same diffusenessa, the double
integral @Eq. ~8!# can be solved analytically using the a
proximation represented by Eq.~12!, and the result ex-
pressed as a sum of a large number of terms, most of t
negligible for a!R0. Rather simple expressions can b
found after an elaborate algebraic manipulation:

VF~R<R22R11a!

'V0r01r02

4

3
pR1

3H 119.7S a

R1
D 2

2F0.875S R2
3

R1
3

21D
1

a

R1
S 2.41

R2
2

R1
2D Ge2(R22R1)/aJ , ~15!

VF~R22R11a<R<R11R2!

'V0r01r02

4

3
pR 3S 1

11zt D H t2F3

8
1

t

4
1z

t2

16G
12.4h2F12

5

8
h2zt21S 5

4
h2

1

2De«

1S 11
5

8
h De2(«12R1 /a)G J , ~16!

VF~R>R11R2!'V0r01r02pa2Rg~t! f ~s/a!, ~17!

t

0-5
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with h5a/R, «5s/a. The functionsg and f are given by

g~t!5
11t1t2z/31h1~h11/2!e2«

11zt
, ~18!

f ~s/a!5~11s/a!e2s/a. ~19!

If the nuclei have slightly~about 10%! different diffuseness,
the formulas are still valid witha'(a11a2)/2. As an ex-
ample of the precision of the analytical expressions abo
we exhibit in Fig. 6 the results of numerical calculations@Eq.
~8!# and compare them with those from Eqs.~15!, ~16!, and
~17! and also with the exact expressions fora50, Eqs.~9!,
~10!, and~11!.

Equation~17! presents some similarity with the proximit
potential@5#:

VP52pGRdF~s/d!, ~20!

where d is the ‘‘surface width’’ andF is an universal
~system-independent! function. For a 2pF distribution, the
surface width is related to the diffuseness parameter thro
d'(p/A3)a @22#. The theoretical value adopted ford is
1 fm @5#, which corresponds to a diffusenessa'0.55 fm.
Taking into account that theG value is rather system inde
pendent @5#, systematizations of heavy-ion potenti
strengths extracted from elastic scattering data analyses
been performed by using the following expression, wh
should be valid for surface distances:

VP~s@0!

R 5V0e2s/a. ~21!

FIG. 6. Folding potential in the zero-range approach calcula
from numerical integration of Eq.~8! ~solid line!, for 2pF densities
that may represent the16O158Ni system. The dashed line repre
sents the approximate analytical expressions, Eqs.~15!, ~16!, and
~17!, while the dotted line concerns the exact result fora50, Eqs.
~9!, ~10!, and~11!. The approximate positions of thes-wave barrier
radius (RB) and of the distanceR5R11R2 (s50) are indicated in
the figure.
01461
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The resulting experimentala values are quite similar,a
'0.62 fm @7,8#, but smaller than the theoretical predictio
of the proximity potential,a'0.75 fm@5#. Such systematics
have included only experimental potential strengths in
surface region, in contrast to the case of the proximity p
tential whereV/R should be a universal function ofs also
for inner distances. The proximity potential does not fu
agree with our results for the double-folding potential in t
zero-range approach~see Fig. 7!. In fact, Eq.~17! indicates
that a better choice for a universal quantity at the surf
region would be

Vred~s>0!5
VF

r01r02pa2Rg~t!
, ~22!

which results@from Eqs.~17!, ~19!, and~22!# in the system-
independent expression

Vred~s>0!'V0~11s/a!e2s/a. ~23!

However, it is not clear that one can find a simple form f
such a universal quantity at inner distances from Eqs.~15!
and ~16!. In Sec. V, the reduced potentialVred is useful for
addressing the potential strength systematization. Thus
defineVred for s<0 through the following trivial form:

Vred~s<0!5V0 . ~24!

The end of this section is devoted to the study of t
effect on the folding potential of a finite range for the effe
tive nucleon-nucleon interaction. The tridimensional de
function V0d(rW) can be represented through the limits→0
applied to the finite-range Yukawa function

Ys~r !5V0

e2r /s

4prs2
. ~25!

d FIG. 7. Normalized folding potentialVF /(V0R) in the zero-
range approach@Eq. ~8!# as a function of the distances5R2(R1

1R2), for several sets of 2pF distributions~with a50.50 fm) that
may represent the systems indicated in the figure. The proxim
universal functionF is also presented in arbitrary units.
0-6
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Figure 8 shows a comparison of folding potentials in t
zero-range approach@Eq. ~8!# with the result obtained@from
Eq. ~7!# using an Yukawa function for the effective nucleo
nucleon interaction. The finite range is not truly significant
small distances and can be accurately simulated at the
face, within the zero-range approach, just by slightly incre
ing the diffuseness of the nuclear densities.

IV. NONLOCAL DESCRIPTION OF THE NUCLEUS-
NUCLEUS INTERACTION

Before proceeding with the systematization of the pot
tial, we first set the stage for the model of the heavy-
nuclear interaction@12–14#. When dealing with nonlocal in-
teractions, one is required to solve the following integ
differential equation:

2
\2

2m
¹2C~RW !1@VC~R!1Vpol~R,E!1ıWpol~R,E!#C~RW !

1E U~RW ,RW 8!C~RW 8!dRW 85EC~RW !. ~26!

VC is the Coulomb interaction assumed to be local.Vpol and
Wpol are the real and imaginary parts of the polarizat
potential, and contain the contribution arising from nonel
tic channel couplings. The corresponding nonlocality, cal
the Feshbach nonlocality, is implicit through the energy
pendence of these terms, consistent with the dispersion
tion @23#. U(RW ,RW 8) is the bare interaction, and the nonloca
ity here, the Pauli nonlocality, is solely due to the Pa
exclusion principle and involves the exchange of nucle
between target and projectile.

Guided by the microscopic treatment of the nucleo
nucleus scattering@24–28#, the following ansatz is assume
for the heavy-ion bare interaction@13#:

FIG. 8. Double-folding potentials for 2pF distributions with di
ferent diffuseness values~a! that may represent the16O158Ni sys-
tem. The potentials have been calculated in the zero-range app
~ZR! or with a finite-range~FR! Yukawa function for the effective
nucleon-nucleon interaction.
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U~RW ,RW 8!5VNLS R1R8

2 D 1

p3/2b3
e2(uRW 1RW 8u/b)2

, ~27!

whereb is the range of the Pauli nonlocality. Introduced
this way, the nonlocality is a correction to the local mod
and in theb→0 limit, Eq. ~26!, reduces to the usual Schro¨-
dinger differential equation. The range of the nonlocality c
be found throughb'b0m0 /m @29#, whereb050.85 fm is
the nucleon-nucleus nonlocality parameter@24#, m0 is the
nucleon mass, andm is the reduced mass of the nucleu
nucleus system. This type of very mild nonlocality in th
nucleon-nucleus and nucleus-nucleus interaction is to
contrasted with the very strong nonlocality found in the pio
nucleus interaction in theD region@30#. In such cases, eve
the concept of an optical potential becomes dubious. In
case, however, we are on very safe ground.

The relation between the nonlocal interaction and
folding potential is obtained from@13#

VNL~R!5VF~R!. ~28!

As a result of the central nature of the interaction, it is co
venient to write down the usual expansion in partial wav

C~RW !5( ı l~2l 11!
ul~R!

kR
Pl@cos~u!#, ~29!

U~RW ,RW 8!5(
2l 11

4pRR8
Vl~R,R8!Pl@cos~f!#, ~30!

Vl~R,R8!5VNLS R1R8

2 D 1

bp1/2

3H QlS 2RR8

b2 D expF2S R2R8

b D 2G~2 ! l 11Ql

3S 22RR8

b2 D expF2S R1R8

b D 2G J , ~31!

whereQl are polynomials andf is the angle betweenRW and
RW 8 @24#. Thus, the integro-differential equation can be rec
into the following form:

\2

2m

d2ul~R!

dR2
1FE2VC~R!2Vpol~R,E!2ıWpol~R,E!

2
l ~ l 11!\2

2mR2 Gul~R!5E
0

`

Vl~R,R8!ul~R8!dR8. ~32!

When confronting theory and experiment, one usually
lies on the optical model with a local potential. This brin
into light the issue of extracting from Eq.~32! a local-
equivalent~LE! potential

ach
0-7
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VLE~R,E!1ıWLE~R,E!

5
1

ul~R!
E

0

`

Vl~R,R8!ul~R8!dR8. ~33!

The presence of the wave function in Eq.~33! indicates that
the LE potential is complex and alsol and energy dependen
Despite its complex nature, the LE potential is not abso
tive, ^CuWLEuC&50; this statement can be demonstrated
considering that the nonlocal interaction is real and sy
metrical, Vl(R,R8)5Vl(R8,R). For neutron-nucleus sys
tems, the LE potential is only weaklyl dependent, and an
approximate relation to describe its energy dependence
been obtained@24#. A generalization of this relation for the
ion-ion case is given by@12,13#

VLE~R,E!'VF~R!e2g[E2VC(R)2VLE(R,E)] , ~34!

with g5mb2/2\2. In order to provide an example of th
precision of expression~34!, in Fig. 9 the corresponding re
sult is compared to the exact LE potential@Eq. ~33!# obtained
from the numerical resolution@13# of the respective integro
differential equations@Eq. ~32!#. The local-equivalent poten
tial is quite well described by Eq.~34! for any l value, except
at very small distances (R'0), which are not probed by
heavy-ion experiments.

Expression~34! has accounted for the energy depende
of experimentally extracted potential strengths for seve
systems in a very large energy range@12–14#. At near-barrier
energiesE'VC(RB)1VLE(RB), the effect of the Pauli non
locality is negligible andVLE(R,E)'VF(R), but the higher
the energy is, the greater is the effect. At energies about
MeV/nucleon the local-equivalent potential is about one
der of magnitude less intense than the corresponding fold
potential~see examples in Refs.@12,13#!. In a classical phys-

FIG. 9. Double-folding (VF) and l-dependent local-equivalen
(VLE) potentials for thea158Ni system atELab5139 MeV. The
solid line represents the approximate expression, Eq.~34!, for the
local-equivalent potential.
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ics framework, the exponent in Eq.~34! is related to the
kinetic energy (Ek) and to the local relative speed betwe
the nuclei (v) by

v25
2

m
Ek~R!5

2

m
@E2VC~R!2VLE~R,E!#, ~35!

and Eq.~34! may be rewritten in the following form:

VLE~R,E!'VF~R!e2[m0b0v/(2\)] 2
'VF~R!e24v2/c2

,
~36!

wherec is the speed of light. Therefore, in this context t
effect of the Pauli nonlocality is equivalent to a velocit
dependent nuclear interaction@Eq. ~36!#. Another possible
interpretation is that the local-equivalent potential may
associated directly with the folding potential@Eq. ~37!#, with
an effective nucleon-nucleon interaction@Eq. ~38!# depen-
dent on the relative speed (v) between the nucleons:

VLE~R,E!5VF5E r1~r 1!r2~r 2!

3vNN~v,RW 2rW11rW2!drW1drW2 , ~37!

vNN~v,rW !5v f~rW !e24v2/c2
. ~38!

V. SYSTEMATIZATION OF THE NUCLEAR POTENTIAL

As already mentioned, the angular distribution for elas
scattering provides an unambiguous determination of the
part of the optical potential in a region around the sensitiv
radius (RS). For bombarding energies above~and near! the
barrier, the sensitivity radius is rather energy independ
and close to the barrier radius (RB), while at intermediate
energies many inner distances are probed. At subbarrier
ergies, theRS is strongly energy dependent, with its variatio
connected to the classical turning point; this fact has allow
the determination of the potential in a wide range of ne
barrier distances,RB<RS<RB12 fm. With the aim of
avoiding ambiguities in the potential systematization,
have selected ‘‘experimental’’~extracted from elastic scatter
ing data analyses! potential strengths at the correspondi
sensitivity radii, from works in which theRS has been deter
mined or at least estimated. In several articles, the auth
claim that their data analyses at intermediate energies h
unambiguously determined the nuclear potential in a qu
extensive region of interaction distances. In such cases
have considered potential strength ‘‘data’’ in steps of 1
over the whole probed region. Tables I and II provide t
systems included in the nuclear potential systematics for
subbarrier and intermediate energies, respectively. For
energy region above~and near! the barrier, the present sys
tematics contains potential strengths for a large numbe
different heavy-ion systems from the previous Christens
Winther systematization@7#. Our systematics is not even ne
to being complete, but it is rather extensive and diversifi
enough to account well for the very large number of data t
have been obtained in the last decades.

The experimental potential strengths represent the
0-8
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part of the optical potential, which corresponds to the ad
tion of the bare and polarization potentials. The contribut
of the polarization to the optical potential depends on
particular features of the reaction channels involved in
collision and is therefore quite system dependent. If this c
tribution were very significant, it would be too difficult fo
one to set a global description of the heavy-ion nuclear
teraction. In the present work, we neglect the real part of
polarization potential and associate the experimental po
tial strengths (Vexpt) with the bare interaction (VLE). The
success of our findings seems to support such a hypoth

In analyzing experimental potential results for such
wide energy range and large number of different systems
consider quite appropriate the use of system- and energ
dependent quantities. We have removed the ene
dependence from the experimental potential streng
through the calculation of the corresponding folding pote
tial strengths,VF-expt, based on Eq.~34!. The system depen
dence of the potential data set has then been removed
the use of the experimental reduced potential,Vred-expt. For

TABLE I. Systems, sub-barrier bombarding energies, and co
sponding references that have been included in the nuclear pote
systematics.

System ELab ~MeV! Reference

16O158Ni 35, 35.5, 36, 36.5, 37, 38 @8,32#
16O160Ni 35, 35.5, 36, 37, 38 @31,32#
16O162,64Ni 34, 35, 36 @32#
16O188Sr 43, 44, 45 @33#
16O190Zr 46, 47, 48 @33#
16O192Zr 45, 46, 47, 48 @8,33#
16O192Mo 48, 48.5, 49 @33#
16O1120Sn 53, 54, 55 @8#
16O1138Ba 54, 55, 56, 57 @8#
16O1208Pb 74, 75, 76, 77, 78 @8#
18O158Ni 35.1, 35.5, 37.1, 38 @34#
18O160Ni 34.5, 35.5, 37.1, 38 @34#
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s>0 this quantity was calculated from Eq.~22!, and for
inner s values we have adopted the following simp
definition:

Vred-expt5V0

VF-expt

VF-theo
, ~39!

with VF-theo calculated through Eq.~8!. The other useful
quantity is the distance between surfaces:s5RS2(R1
1R2), whereRS is associated with the sensitivity radius an
the radii of the nuclei have been obtained from Eq.~6!.

In Fig. 10 ~top!, the experimental reduced potenti
strengths are confronted with the theoretical prediction@Eqs.
~23! and ~24!# for different diffuseness values. The fit to th

-
tial

FIG. 10. Experimental and theoretical reduced potentials in
context of the zero-range approach, with~top! or without ~bottom!
considering in the calculations the energy dependence of the lo
equivalent potential@Eq. ~34!# that arises from the Pauli nonlocality
TABLE II. The same as Table I, but for intermediate energies.

System ELab ~MeV! Reference

p140Ca, 208Pb 30.3 @35#

d140Ca, 208Pb 52 @35#
4He140Ca, 208Pb 104 @35#
6Li112C, 28Si 210, 318 @36,37#
6Li140Ca, 58Ni, 90Zr, 208Pb 210 @38#
7Li 1 12C, 28Si 350 @39#
12C112C 300, 360, 1016, 1440, 2400 @40–42#
12C1208Pb 1440 @42#
13C1208Pb 390 @41#
16O116O 250, 350, 480, 704, 1120 @44,45#
16O112C, 28Si, 40Ca, 90Zr, 208Pb 1504 @43#
40Ar 1 60Ni, 120Sn, 208Pb 1760 @46#
0-9
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data in the inner region (s<0) results unambiguously in th
value V052456 MeV fm3 and is quite insensitive to th
diffuseness parameter, in agreement with the discus
about the folding features of Sec. III. The fit fors>0 is
sensitive to both:V0 and a, and the corresponding best fi
values area50.56 fm and the sameV0 found for the inner
region. The standard deviation of the data set around the
fit ~solid line in Fig. 10, top! is 25%, a value somewha
greater than the dispersion~20%! expected to arise from ef
fects of the structure of the nuclei~as discussed in Sec. III!.
We believe that the remaining difference comes from t
sources: uncertainties of the experimentally extracted po
tial strengths and the contribution of the polarization pot
tial that we have neglected in our analysis. We point out t
the best fit diffuseness valuea50.56 fm is equal to the av
erage diffuseness found~Sec. II! for the matter distributions
and greater than the average value (a50.50 fm) of the
nucleon distributions. This is a consistent result because
have calculated the reduced potential strengths based o
zero-range approach~through Eqs.~8!, ~22!, ~23!, and~24!#.
As discussed in Sec. III, the effect of a finite range for t
effective nucleon-nucleon interaction can be simulat
within the zero-range approach, by increasing the diffusen
of the ~nucleon! densities of the nuclei. This subject is dea
with more deeply in the next section.

In order to characterize the importance of the Pauli n
locality, in Fig. 10 ~bottom! are shown the results for th
reduced potential through calculations performed without
correction@Eq. ~34!# due to the energy dependence of the
potential, i.e., associating the experimental poten
strengths directly with the folding potential. The quality
the corresponding fit~Fig. 10, bottom! is similar to that ob-
tained with the nonlocality~Fig. 10, top!, but theV0 and a
parameters are significantly different. In the next section,
show that the values found without considering the nonloc
ity, a50.61 fm andV052274 MeV fm3, seem to result in
an unrealistic nucleon-nucleon interaction.

VI. EFFECTIVE NUCLEON-NUCLEON INTERACTION

After removing the energy dependence of the experim
tal potential strengths, the corresponding results are com
ible with the double-folding potential in the zero-range a
proach @Eq. ~8!#, provided that the matter densities of th
nuclei be adopted in the folding procedure instead of
nucleon densities. In this section, we study the consistenc
our results for the nuclear potential in the case that
double-folding model is treated in the more common int
pretation: the nucleon distributions and a finite-ran
nucleon-nucleon interaction are assumed in Eq.~7!. With the
purpose of keeping the comparison between experime
and theoretical results through the use of system-indepen
quantities, it is necessary to change the definition of the
perimental reduced potential:

Vred-expt5Vred-theo

VF-expt

VF-theo
, ~40!
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whereVF-theo is now calculated through Eq.~7!. Vred-theo is
still obtained from Eqs.~23! and~24!, with theV0 parameter
being associated with the volume integral of the effect
nucleon-nucleon interaction~actually, this same procedur
has also been adopted in the zero-range case!:

V054pE vNN~r !r 2dr. ~41!

The effective nucleon-nucleon interaction should be ba
upon a realistic nucleon-nucleon force, since our goal is
obtain a unified description of the nucleon-nucleon, nucle
nucleus, and nucleus-nucleus scattering~a discussion abou
the ‘‘realism’’ of the interaction is found in Refs.@1,6#!. For
instance, a realistic interaction should match the empir
values for the volume integral and root-mean-square rad
of the nucleon-nucleon interaction,V0'2430 MeV fm3

and r rms'1.5 fm, which were extrapolated from the ma
features of the optical potential for the nucleon-nucleus s
tering at Enucleon510 MeV @1,47–49#. The M3Y interac-
tion has been derived@1# with its basis on theG matrix for
two nucleons bound near the Fermi surface and certainl
representative of realistic interactions. In Table III are p
sented the volume integral and root-mean-square radius
several nucleon-nucleon interactions used in this work,
cluding the M3Y at 10 MeV/nucleon.

The M3Y interaction is not truly appropriate for use in th
context of the nonlocal model, because it already contain
simulation of the exchange effects included in its knock-
term. Furthermore, according to the nonlocal model the
ergy dependence of the local-equivalent potential should
related only to the finite range of the Pauli nonlocality, b
the knock-on exchange term in the M3Y interaction is a
energy dependent. Therefore, the use of the M3Y in the n
local model would imply a double counting of the ener
dependence that arises from exchange effects. In Sec. IV
have demonstrated that the LE potential is identical with
double-folding potential for energies near the barrier, wh
are in a region around 10 MeV/nucleon. In this same ene
range, the folding potential with the M3Y interaction ha
provided a very good description of elastic scattering data
several heavy-ion systems@1#. Thus, we believe that an ap
propriate nucleon-nucleon interaction for the nonlocal mo
could be the M3Y ‘‘frozen’’ at 10 MeV/nucleon@13#, i.e.,
considering the parameters of the Reid and Paris version
energy-independent values. Figure 11~top! shows a compari-

TABLE III. The width, volume integral, and root-mean-squa
radius for several effective nucleon-nucleon interactions conside
in this work.

Interaction s or am (fm) V0 (MeV fm3) r rms (fm)

M3Y-Reid - 2408 1.62
M3Y-Paris - 2447 1.60
Yukawa 0.58 2439 1.42
Gaussian 0.90 2448 1.56
Exponential 0.43 2443 1.49
Folding-type 0.30 2456 1.47
0-10
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son between experimental and theoretical heavy-ion redu
potentials, in which the ‘‘frozen’’ M3Y-Reid was considere
for the nucleon-nucleon interaction. We emphasize that
adjustable parameter has been used in these calculation
even so good agreement between the data and theore
predictions has been obtained. The ‘‘frozen’’ M3Y-Paris pr
vides similar results.

With the aim of investigating how much informatio
about the effective nucleon-nucleon interaction can be
tracted from our heavy-ion potential systematics, we h
considered other possible functional forms for this effect
interaction. Besides the Yukawa function@Eq. ~25!#, we have
also used the Gaussian@Eq. ~42!# and the exponential@Eq.
~43!#, which reduce to the tridimensional delta function
the limit s→0,

Gs~r !5V0

e2r 2/2s2

~2p!3/2s3
, ~42!

Es~r !5V0

e2r /s

8ps3
. ~43!

The fits obtained with all these functions are of similar qu
ity and comparable with that for the M3Y interaction~Fig.
11, top!. The resulting best fit widths (s), volume integrals,
and corresponding root-mean-square radii are found in T
III. All the V0 and r rms values, including those of the M3Y
are quite similar. Also the ‘‘experimentally’’ extracted inten
sity of the nucleon-nucleon interaction in the region 1<r
<3 fm seems to be rather independent of the model
sumed for this interaction~see Fig. 12!.

FIG. 11. Comparison between experimental and theoretica
duced potentials in the context of the finite-range approach, wi
M3Y-Reid ~top! or folding-type~bottom! effective nucleon-nucleon
interaction.
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In Sec. V, we have demonstrated that the major part of
‘‘finite range’’ of the heavy-ion nuclear potential is relate
only to the spatial extent of the nuclei. In fact, even cons
ering a zero range for the interactionvNN in Eq. ~8!, the
shape of the heavy-ion potential could be well described
by folding the matter densities of the two nuclei. One wou
ask whether the finite-range shape of the effective nucle
nucleon interaction can be derived in a similar way. Thus,
have considered a folding-type effective nucleon-nucleon
teraction built from

vNN~rW !'v f~r !

5E rm~r 1!rm~r 2!V0d~RW 2rW11rW2!drW1drW2

5
2pV0

r E
0

`

r 1rm~r 1!F E
ur 2r 1u

r 1r 1
r 2rm~r 2!dr2Gdr1 ,

~44!

whereV052456 MeV fm3 as determined by the heavy-io
potential analysis andrm is the matter density of the
nucleon. Based on the intrinsic charge distribution of t
proton in free space, which has been determined by elec
scattering experiments, we have assumed an expone
shape for the matter density of the nucleon:

rm~r !5r0e2r /am. ~45!

Of course,r0 and am are connected by the normalizatio
condition, Eq.~2!. The integration of Eq.~44! results in

v f~r !5
V0

64pam
3

e2r /amS 11
r

am
1

r 2

3am
2 D . ~46!

With this finite-range folding-type effective nucleon-nucleo
interaction, a good fit of the reduced heavy-ion poten
strengths is obtained~see Fig. 11, bottom!, with realistic vol-
ume integral and root-mean-square radius~see Table III!.

e-
a

FIG. 12. The complete set of effective nucleon-nucleon inter
tions considered in this work.
0-11



ns

a
th
d
t

ro

d

ith
-

i-
ow

he

ce
on
d
th
n

th
r
th

re
av

the
ding
e-

e of
ent
ex-

cal
as
the
%,
m
nu-
ion
s of
in-

dent

his
ng
uch
case
rs
ths.
ac-
a

am-
nifi-
lo-
re
ext
ter-

de

l

L. C. CHAMON et al. PHYSICAL REVIEW C 66, 014610 ~2002!
The folding-type interaction is quite similar to both versio
of the M3Y interaction in the surface region~see Fig. 12!.

The folding-type interaction in the context of the nonloc
model provides a very interesting unification between
descriptions of the nucleus-nucleus, nucleon-nucleus, an
fective nucleon-nucleon interactions. This can be apprecia
through the comparison between Eqs.~36! and~38!, with the
subtle detail thatVF @in Eq. ~36!# and v f @in Eq. ~38!# can
both be calculated by folding the matter densities in the ze
range approach and with the sameV0 value. Therefore, the
interaction between two nuclei~or nucleons! can be obtained
from

VLE~R!5E r1~r 1!r2~r 2!V0d~RW 2rW11rW2!e24v2/c2
drW1drW2 ,

~47!

whereV052456 MeV fm3, r i are the matter densities, an
v is the relative speed between the nuclei~or nucleons!. An
alternative way to calculate the heavy-ion interaction is w
Eq. ~37! @and Eq.~38!#, but in this case the nucleon distribu
tions must be used@in Eq. ~37!# instead of the matter dens
ties. All these findings seems to be quite consistent. H
ever, the best fit value obtained for the diffuseness (am
50.30 fm) of the matter density of the nucleon inside t
nucleus is considerable greater than that (achp50.235 fm)
found for the charge distribution of the proton in free spa
This finding is consistent with the swelling of the nucle
observed in the EMC effect@50#, but should be contraste
with the opposite picture of a smaller nucleon inside
nucleus as advanced within the concept of color transpare
@51#.

Finally, we mention that, if the energy dependence of
Pauli nonlocality is not taken into account and the expe
mental potential strengths are associated directly with
folding potential, our calculations indicate that the cor
sponding effective nucleon-nucleon interaction should h
the following unrealistic values:V0'2270 MeV fm3 and
r rms'1.9 fm.
nn

.
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S
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VII. CONCLUSION

The experimental potential strengths considered in
present systematics have been obtained at the correspon
sensitivity radii, a region where the nuclear potential is d
termined from the data analyses with the smallest degre
ambiguity. The Fermi distribution was assumed to repres
the nuclear densities, with parameters consistent with an
tensive amount of theoretical~DHB calculations! and experi-
mental~electron scattering experiments! results. The poten-
tial data set is well described in the context of the nonlo
model by the double-folding potential in the zero-range
well as in the finite-range approaches. The dispersion of
potential data around the theoretical prediction is 25
which is compatible with the expected effects arising fro
the variation of the densities due to the structure of the
clei. If the nonlocal interaction is assumed, the heavy-
potential data set seems to determine a few characteristic
the effective nucleon-nucleon interaction, such as volume
tegral and root-mean-square radius, in a model-indepen
way.

The description of the bare potential presented in t
work is based only on two fundamental ideas: the foldi
model and the Pauli nonlocality. We have avoided as m
as possible the use of adjustable parameters, and in the
of the ‘‘frozen’’ M3Y interaction no adjustable paramete
were necessary to fit the experimental potential streng
Nowadays, the other important part of the heavy-ion inter
tion, the polarization potential, is commonly treated within
phenomenological approach, with several adjustable par
eters which usually are energy dependent and vary sig
cantly from system to system. The association of the non
cal bare potential presented in this work with a mo
fundamental treatment of the polarization should be the n
step toward a global description of the nucleus-nucleus in
action.
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