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Compatibility of localized wave packets and unrestricted single particle dynamics
for cluster formation in nuclear collisions
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Antisymmetrized molecular dynamics with quantum branching is generalized so as to allow finite time
duration of the unrestricted coherent mean field propagation, which is followed by the decoherence into wave
packets. In this new model, the wave packet shrinking by the mean field propagation is respected as well as the
diffusion, so that it predicts a one-body dynamics similar to that in mean field models. The shrinking effect is
expected to change the diffusion property of nucleons in nuclear matter and the global one-body dynamics. The
central **Xe+ Sn collisions at 50 MeV/nucleon are calculated by the models with and without shrinking, and
it is shown that the inclusion of the wave packet shrinking has a large effect on the multifragmentation in a big
expanding system with a moderate expansion velocity.
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I. INTRODUCTION Refs.[9,10] by incorporating the wave packet diffusion ef-
fect in the mean field as a source of the fluctuation to the

In order to describe heavy ion reactions as the dynamicwave packet centroid, which causes the quantum branching
of many-nucleon systems, two different kinds of microscopicon the many-body level. Thus the single particle wave func-
approaches have been proposed and applied. One is the ni®ns are localized in each branch, which makes cluster for-
lecular dynamics modé¢ll—4] and the other is the mean field mation possible, while the single particle motion is not re-
[time-dependent-Hartree-FockTDHF-) like] model [5,6]. stricted for the averaged value over the branches. The
An advantage of the mean field models is that they do nostochastic treatment of the dynamics of the wave packet
put any restriction on the one-body motion, while their dis-width is the essential point of our approach. There is another
advantage is that they cannot properly describe the clustapproach[4,11-13 which treats the width parameters as
formation because of the lack of many-body cluster correlatime-dependent variables in molecular dynamics, though it
tions. On the other hand, usual molecular dynamics modelbas turned out that the deterministic dynamics of the width
assume a fixed Gaussian shape for single particle wave fungariables cannot explain the evolution of the density fluctua-
tions. This is an efficient way to describe the cluster correlation and the multiple cluster formatidri1,12. Ohnishi and
tion even by using a simple product wave function with orRandrup[14,15 have introduced quantum fluctuation into
without antisymmetrization. However, in another sense, thavave packet molecular dynamics based on their statistical
use of localized wave packets can be a regression, becausensideration and have shown its importance in cluster for-
the one-body dynamics is not as precisely described as imation. However the dynamical origin of the their fluctua-
mean field models. tion has not been made clear.

A unified understanding is desired on the question An unsatisfactory point of the improvement in Refs.
whether the single particle wave functions should be unref9,10] was that the stochastic fluctuation to the wave packet
stricted or localized. Unless we can solve the dynamics keepsentroids can diffuse the distribution but cannot shrink the
ing the full order of the many-body correlations, it is essen-distribution. Note that a wave packet in the mean field nor-
tial for a reasonable model to introduce the fluctuations thamally diffuses in three directions in phase space and shrinks
bring the system into many quantum branches each of whichn the other three directions. Because of this difficulty, for
corresponds to one of the reaction channels or the configiexample, the improved AMD could not be directly applied to
rations of clusterization. In mean field models, it has beeran isolated nucleon, and therefore the diffusion was switched
proposed to introduce fluctuations in the one-body distribuoff for isolated nucleons, which introduces an ambiguity to
tion function[7,8], though it should be a difficult problem to the model. To solve this kind of problems, we absolutely
determine the correlations among an infinite number of deneed a consistent understanding of both the mean field de-
grees of freedom of fluctuations. In this viewpoint, the phi-scription and the molecular dynamics description.
losophy of molecular dynamics is to introduce a special kind The first purpose of the present work is to construct a
of fluctuation by stochastically localizing the single particle general framework which contains both molecular dynamics
wave functions, which is essential for the cluster productionmodels and mean field models as specific cases. In this
The mean field equation should be interpreted as giving th&amework, the time evolution of a many-body system is
short-time evolution of the one-body distribution averagedgiven by the coherent mean field propagation and the deco-
over the stochastic branches. Based on this idea, the antisyrerence of single particle states into wave packets. It will
metrized molecular dynamidg®AMD) has been extended in have two physically essential ingredientsand 7,,,;, which
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define when decoherence and mean field branching take 2
place, respectively. The choice, ) = (,%) corresponds (ri---ra|®(2))=dey exp{ —v }Xai(j)].
to a mean field model, while the choice, ) =(0,0) cor-
responds to the version of AMD of Ref§9,10] (called @
AMD/ D in this papey. Based on this general framework, we
introduce a new model AMIS as the case of 7, 7y) The complex variableZ={Z;;i=1, ... A} represent the
= (large,0), with which we can respect not only the diffusion centroids of the wave packets. We take the width parameter
but also the shrinking of the phase space distribution prev=0.16 fm 2 and the spin isospin statas, =pT, pl, nT,
dicted by the coherent mean field propagation. or n|. Because of the antisymmetrization, the variate®

The second purpose of the present work is to demonstraigot necessarily have a direct physical meaning as nucleon
the effect of the wave packet shrinking. The difference bepositions and momenta. The AMD wave functipi(Z))
tween AMD/D and AMDDS is expected to result in the contains many quantum features in it and has been applied to
different diffusion properties of nucleons in nuclear matterthe study of nuclear structure problems with some extensions
and the different global one-body dynamics. We perform thesuch as the parity and angular momentum projectjd
AMD/D and AMDMDS calculations for the centr&fXe The time-dependent many-body wave functjgr(t)) de-
+Sn collisions at 50 MeV/nucleon and compare the resultsscribing a complicated nuclear collision is, in an intermediate
The velocity of the expansion strongly depends on thed' final state, a superposition of a huge number of channels
model. The different expansion velocity results in the differ-€ach of which corresponds to a different clusterization con-
ent cluster size distribution. It is shown, by comparison withfiguration. We do not try to directly treat such a complicated
INDRA experimental data, that AMI) had problems of the Many-body statg¥ (t)) nor do we approximatgl (t)) by a
overestimation oZ=4,5,6 clusters and the underestimationSin9/é AMD wave function®(Z)). We rather approximate

of Z=15 clusters and these problems are solved by AMD/the many-body density mgtrixl’(t))(\lf(t)| by an ensemble
of many AMD wave functions,

_ T
r

N

DS
This paper is organized as follows. In Sec. Il, the formu-
lation is presented. The physical principle of the general |D(Z)){(D(Z)]
framework is given in Sec. Il A, and then the concrete for- (WO} ()]~ (®(2)[®(2)) w(z,dz.  (2)

mulas are given in Sec. Il B, which includes all the details. In

Sec. II C, we introduce specific models such as AMdCAnd . . .
AMD/DS and give simple examples to show how our for-A pure many-body state is approximated by a mixed state.
mulation works for AMDD and AMDDS. In Sec. Ill, the  This approximation itself will not be a serious drawback

results of the calculations with AM and AMDDS are  Practically because the nuclear collision dynamics is so com-

compared to each other and to the INDRA data for centraPlicated that one cannot observe full many-body correlations

129e 1 Sn collisions at 50 MeV/nucleon, so as to demon-t© distinguish a pure state from a mixed state. The benefit of

strate the important effect of the wave packet shrinking inthis approximation is that the right hand side of &2). still

AMD/DS in multifragmentation. Section IV is devoted to a contains nontrivial many-body correlations required in mul-
tiple cluster formation, even though an ensemble of AMD

summary. wave functions is sufficiently simple to be tractable numeri-
cally. We should, of course, define a reasonable time evolu-
tion of the weightw(Z,t) or, alternatively, stochastic trajec-
Il. MEAN FIELD PROPAGATION FOLLOWED tories of the variable&(t).
BY DECOHERENCE What is the physical idea when we use AMD wave func-
A. Principle tions |®(2Z)) in Eqg. (2)? When multiple cluster formation

) ] o takes place,|W(t)) is composed of a huge number of

First we give a general framework which includes bothyranches. The decomposition into branches should be done
mean field models and molecular dynamics models as limitsg that, in each branch, the one-body distribution of each
ing cases of model parameters. Originally we have reacheflycleon is localized in one of the clusters. Namely, a nucleon
this framework in the course of an extension of AMD by the should not belong to many clusters at the same time, to avoid
incorporation of the good points of mean field models. How-noninteger mass numbers of clustefBhe width of wave
ever, the framework is given here from a more general poinpacketsy has been chosen in such a waw turn, if nucle-
of view as an approximation of quantum many-body dynam-ons are localized in each branch, the clusters are naturally
ics. bound due to the mean field among localized nucleons. This

In what follows, the two-nucleon collision effect is not idea exists behind the molecular dynamics models which re-
shown explicitly for the brevity of presentation, but it is al- strict each single particle wave function in each branch to a
ways considered in all the practical calculations as a stochagvave packet.
tic procesd3,16)]. The time evolution in our model is determined by two

In this model, we will usgwithout specifying yet how to  factors, the mean field propagation and the decomposition
use ih the AMD wave function, which is a Slater determinant into branches. At a timé,, let us take one of the branches
of Gaussian wave packefi3], |P(2)){(D(Z)| from Eq. (2). This is justified because the

014603-2



COMPATIBILITY OF LOCALIZED WAVE PACKETS AND . . . PHYSICAL REVIEW C66, 014603 (2002

time evolution of a branch is independent of the others due tave ignore the antisymmetrization for the simplicity of the
linear quantum mechanics. We consider the mean fieldiscussion here, the one-body density matrix of a nucleon

propagation fromntg to tg+ 7, will be given as
|D(2)NP(D)| =¥ (7, 2){(¥(7.2)], 3 p=w'le )¢’ [+ W e )¢+ -, ®)
where|¥(7,Z)) is the solution of the mean field equation in which different componentsp’), |¢”), ... do not inter-
fere in a simple way. The many-body state for this situation
., d HE will be
|ﬁa|\P(t,Z)>=H (H)|Ww(t,2)) 4
[(W)=c'[e") |V )+c" o)W )+ -, (9)
with the initial condition| ¥ (0,2))=|®(Z)). The mean field _ 5
Hamiltonian has a form where the states of the rest of the systelt), V"), ...
are orthogonal to one another, to arrive to E8). In our

- A A p? A model, the coherent mean field propagatioW Y=|¢)
H (t)Ii; hi(t):izl om TUERP(D) ] (B g|F)) is assumed to be valid in the time duration frogito
to+ 7, and decoherence is assumed to physically take place

where the potentidll depends on a one-body density matrix iNto Gaussian packets &f+ 7 as in Eqs(8) and(9). [Deco-
A Ao herence is a general concept of quantum mechanics in open
p(t). For the moment, we may assume tpét) is the one-

body density matrix for the staie¥(t.2)). We wish to em- systemd 18]. It means not only that Ed8) is satisfied at a

hasize that the sinale particle wave functions are not re§pecific time but also that different branches do not interfere
gtricted to Gaussiangpacpkets in the mean field propagatio%t any later timd. In this way, the parameter has a deep
and therefor¢W (7,Z)) is a general Slater determinant. Next physical meaning as the coherence time. We do not try to

i .7 determiner a priori in the present paper, but we assume that
at the timeto + 7, the propagated stgtdf(r,Z)><\If(r,Z)| 'S" decoherence is a physical process as should be the case at
decomposed into AMD wave functions as

least in multiple cluster formation. It should be noted that the
physical state changes by decoherence, and therefor@)Eq.

w(z,7;Z)dz, (6) should not be required for all the operatt{)éa}. We should

require Eq.(7) for those operator§O,} which we can be-
lieve to remain after physical decoherence.

Closely related to the decoherence of a nucleon, we
should decide how this nucleon interacts with the rest of the
system, namely, how this nucleon contributes to the mean
field potentialU. Once decoherence takes place gt m so

¥(r2))(¥(r2)| [ [@(2)(®(2)
@@[e@) ) (@@[e()

with a suitable weightv(z,7;Z). A reasonable principle to

determinew(z, r;Z) would be first to choose a set of impor-
tant (one-body operatorgO,} and then to require that both
sides of EQ.(6) give the same expectation values for all

{Ouh that different branches in E¢9) do not interfere any longer,
R R then the mean field should be calculated in each branch,
(P(2)|0,|P(2)) (¥(7,2)|0,]¥(7,2)) independently of the other branches, by using the corre-
w(z,7,Z)dz= (®(2)|®(2)) ~  sponding wave packébne of|¢’), |¢"), ... ). Wewill call

(@(2)|@(2))

(7)  this change of the mean field “mean field branching.” The

decomposition of the many-body state in E§).is consistent

However, this prescription will not always work well be- with the mean field branching at+ 7. Nevertheless, we
cause it is incompatible to the necessary conditionmay think of the other possibility that the time scale of mean

w(z,7;Z)=0. A practical choice ofO,} will be given be- field branching, denoted by, is shorter tharr. The choice
low. In this way, in principle, Eqs(3) and(6) determine the ~7mf< T Can be reasonable in such a physical situation where,
time evolution fromt, to to+7. The next time evolution €ven before decoherence, the mean field approximation is

after to+ 7 is obtained successively by applying the sameapplicable not tdW) of Eq. (9) but to each of the “preb-

model to each term of the right hand side of E8). ranches” on the right hand side of E(P) even when the
What is the physical meaning of? Is Eq.(6) just a nu- prebranches have not been decohered fiet., |W'),
merical approximation of a mean field model or does it have ) . . are not orthogonpl This situation is possible be-

any physical meaning? Once one believes that the mean fieghuse the true time evolution is linear while the mean field
propagation is always perfect, then the choice of a finite approximation is nonlinear. Therefore we regatg as a
would be unphysical. But the mean field propagation is nophysical ingredient of the model which is not necessarily
perfect at least in that it unphysically keeps the idempotencgqual tor.

p?=p of the one-body density matrix. In many-body sys- The physical origin of decoherence we have in mind here
tems, even though the idempotency is satisfied at a particulas the full oder of many-body correlations beyond the two-
point of time, this is not the case at a later time due tobody correlation, which is especially important in multiple
many-body correlations. The reduced one-body density meeluster formation. The choice of wave packets as decohered
trix will be an ensemble of idempotent density matrices. Ifstates is done for this purpose. Of course, the two-body col-
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lision effect destroys the idempotency of the one-body denpurpose whether this approximation gives a good result. For
sity matrix, but this effect is already taken into account by aexample, it gives only a poor approximation for the evalua-
more explicit way of the stochastic two-nucleon collision tion of the Hamiltonian and the mean field potential. For the

procesd3,16] in all the realistic calculations. calculation of such quantities, we use the exact antisymme-
trized wave functio®(Z)) or use a better approximation
B. Formulation schemd 10].

Now we start to give concrete formulas for the calculation
of the time evolution governed by the mean field propaga- ] . )
tion, followed by the decoherence into stochastic branches. The mean field propagatiditq. (3)] from t, to to+ 7 is

2. Mean field propagation

The explanation will be given in five steps. calculated based on the Vlasov equation with the Gaussian-
Impatient readers may skip this part first moving to Sec Gaussian approximation whose exact meaning is given be-
II C, and later come back here, if necessary. low. o
We require that the Wigner functiori (x,t) of the
1. Physical coordinate approximation nucleonk should satisfy the Vlasov equation

We adopt the physical coordinate approximation for an

AMD wave function, %: al ﬂJr al ﬂ

. — .= (17)
ot ap aJr I Ip
[DDNPD)] o [#WidXa (Wi X

(®2)P(2)) =y (PWi)Xa]e(Wi)Xa)

at least approximately, for the time interval fromp to tg
+ 7, with the initial conditionf,(x,0)=g(x;X). A special
notation of the time derivative § 6t) is adopted for the
mean field propagation in order to avoid a future possible
confusion. Of course, it would be an easy numerical task to
W\ 2 solve Eq.(17) directly. However, in order to make the later
<r|<p(Wk))=exp| _,,( r— Tk) ] (12) decoherence process as simple as possible, we use another
14
stochastic virtual phase space distributions of deformed

method by writing the Wigner function as the mean of the
The centroids are the physical coordinatés {W,} defined  Gaussian shape,

where the spatial wave function of each nucldois given
by a Gaussian packet,

in Ref.[3] by
| A o0, = 906 X1, 50) = f 90X, S OO S
Wk:\/;Rk_l_—Pk:z ( Q)k]ZJ , (12) k ’ 1INk 1 1 /Ny k I 773 )
Zﬁ\/; =1 18

Qu=ByBj', By=e% %5 (13~ with

akaj N

6
In the phase space representation, the Wigner function for th X S)= 1 _ E S 1(x.—X —X
nucleonk is given by a Gaussian packet §x:x.9) gvdes T2 agl ab (Xa= Xa) (Xp—Xp) |-
(19

6
(X, Xi) =8 EXF{ _2;;'1 (Xa=Xka)?|, (14 Thus we have the virtually stochastic variabkg,(t) and

Scan(t) which represent the centroid and the shape, respec-
where we have introduced the six-dimensional phase spad&ely, of the  virtually  stochastic  distribution
coordinates g(x, Xi(t),S(t)). The initial condition for them can be given
by Xia(0) =Xy, andS,,(0) = 3 8,5, at the initial timet, [Eq.

Py (14)]. The stochasticity 08, ,,(t) is not shown explicitly in
x={xg;a=1,...,8=1 Jor, —=¢, (15  Eg. (18) because we will see later that its stochasticity is
2h\v weak.

5 We shall now determine the virtually stochastic time evo-

] k lution of X, (1) andS,,(t). It is first noticed that the Vlasov

Xe={Xkaia=1, . .. ,q=l VPR, oh \/;} (16) equation can be applied to each component of #8) as

long as Eq.(17) is linear in f,. The time evolution of

We wish to emphasize that much of the fermionic featureg, (x,X,(t),Sc(t)) by the Vlasov equation

remains even though we adopt the physical coordinate ap-

proximation[Eq. (10)]. This is because the value Wf car- og  dh g oh dg

ries the fermionic information. For example, in the St gp ar  ar ap

6A-dimensional space dlV, there exist Pauli forbidden re-

gions whereW cannot take a value for any choice of the is characterized by the time evolution of the first and the

original coordinateZ [3]. Nevertheless, it depends on the second moments of the distribution

(20
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5 5 dbx Gaussian form because the stochastic centdift) can
Exka(t): ﬁj xag(x,t)?, (21)  move on its own way in each stochastic realization.
3. Decoherence
) ) d®x - :
_ _ _ At the timety+ 7, we will now perform the decoherence
—= Scan() == | [Xa—Xka(H) [ Xp— Xip() 1g(X,t) —, ) o+ T .
ot Sxanlt) b‘tf[ 2™ Xkal 1%~ Xl ) JO(,1) w3 into AMD wave functions[Eq. (6)], by decomposing the
(220 wave function of each nucledg
in which (8/6t)g(x,t) is given by Eq(20). The shape of the | (7)) i (T)] [e(W))(e(W)| |
distribution at t+At is characterized by Se.x(t) o) ) (o(w)]e(w)) wi(w, 7)dw, (28)
+ (61 6t) Syap(t)At. This symmetric matrix is diagonalized
by an orthogonal matrix as where| ¢, (7)) stands for the state after the mean field propa-

gation fromty to tg+ 7 with the initial condition of the

3 _ Gaussian packet(W,)) att,. In the phase space represen-
Scan(t) + Eskab(t)“‘g A eOacOne- 23 tation, an equivalent equation is written as
The distribution is generally diffusing in some directions and — _ , déx
shrinking in the other directions in the phase space. We will fi(x,7)~ g(X'X)WK(X'T)?' (29)
extract the component that is diffusing beyond the original
width of the wave packefEg. (14)] as with the wave packeg(x;X) defined by Eq.(14). We are
s 1 1 going to show that the weight/,(X,7) in this equation is
—S, (s)) = lim — >, ma><(0, \ ——)O Oy, given by the weightw,(X,7) defined by Eq.(18) under a
(& e L a0At T ° 4] TacTbe reasonable choice of the requirement.
(24 Before deriving it, we should notice two features of the

o ] ) _variableS,,(7), which represents the shape of the stochastic
which is now taken into account, not by changing the vari-Gayssian distributio(x; X,(7),S(7)). The first feature is
able Scp(t), but by giving a virtual Gaussian fluctuation that the stochasticity 06,(7) is weak because it is only
AXya(t) to the centroidX,,(t) satisfying through the indirect influence of the stochasticity>qf,(t)

AXa(1)=0, (259 [Egs.(27) and(26)], and therefore
Scan(T)=Stan(7) i [Xial D —Xia( D=1, (30

1)
AXa(DAXp(t") = (Eskab(t)) o(t—t"). (25 for different stochastic realization§Xs(t),Sean(t)) and
* (Xra(t),Sean(t))- The second feature is that the eigenvalues

The equation of motion foK,4(t) with virtual stochasticity ~ Of Skan(7) (A1=- - <) are bound by 0 and as is evident
may be written as from the way of the constructidieq. (27) with Eq. (24)] and

normally three of them are equal

d

o
gkl = 5 XD+ AXia(D). (26

1
dt O<N1=Ap=Ng=Ng=As=Ne=7. (31)

The equation of motion fo8, ,,(t) is - -
[These two features are valid if the coherence tirme not

d S S very long or the mean field Hamiltonian is not very different
gt Sxab(D) = 5 Skan(t) — (gskab(t)> : (27)  from a quadratic formwith arbitrary curvaturesin the in-
+ teresting phase space region, as we will see later in simple

: . e examples. For convenience, we can change the variable
which does not contain the diffusing component beyond thef=rom Etoﬂy the latter being defined so asgto diagonalize

original width because its effect has been counted as th
fluctuation toXap(t). an(7)
We emphasize again that the stochasticity has been, at this
stage, introduced only as a numerical method to solve the yb=2 OapXas Yb=2 OapXas (32
mean field propagatiofEg. (17)]. By taking the mean of the a a
ensemble of stochastic distributiomgx, X, (t),Sc(t)) [Eq.
(18)], our solution will reproduce the deterministic solution
of Eqg. (17), up to the Gaussian-Gaussian approximation.
This approximation means that we have introduced some Skab(7)=§ AcOacOpe- (33

restriction onf_k(x,t) by considering only the Gaussian fluc-
tuation to the centroid of deformed Gaussian distribution e now require that, integrating out the shrinking direc-

g (X, Xi(t),S(1)). Neverthelessf_k(x,t) is not restricted to a tions, the distribution in the diffusing directiongA,ys,Ys),

whereQ,,, is the matrix to diagonaliz& (),
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. dy,dy,dys timetg+ 7 yvhen decoherenpe takes_plac;e for_ single particle
f fuly, 1) ——— (34  wave functions, the mean field Hamiltonian will also change
™ as
should be unchanged by decoherence. From Edf.and h[f_(T)]—>h[g(X(7-))], (37
(29), it is easily seen that the requirement is satisfied by
choosingw, (Y, ) so that the latter being calculated for the wave packgs, X,(7)).
We will call this change “mean field branching.”
dY;dY,dYs dY;dY,dYs We may think of the othgr possibility that mean fi_eld
J w(Y,7) — = J wi (Y, 7 TR branching does not necessarily take place at the same time as
a a

the decoherence of single particle wave functions. Let us
(39 introduce the time scale,; of mean field branching which
can be different fromr, and generalize Eq37) to
This condition is, of course, fulfilled by takingy’(Y,7)
=w(Y, 7). S , h[f(t)] for O<t<ryy
What about for the shrinking directiony,y,,ys)? In h(t) ha(X(D)] for m=t<s

typical cases, the width of the Wigner functi(y, 7) in the

shrinking directions is comparable 1, A3 and iS |y fact in a more elaborate theory, the decoherence of wave
smaller thang. [This is because the fluctuation has beengctions may take place gradually during the time interval
given only to the diffusing directions and therefore theg,mt (ot + 7. Then it can be reasonable in our model with

weight distributionw(Y, 7) is narrow in the shrinking direc- ¢, qqen branching to take, shorter thanr: for example,
tions, which is the case if<2m/w, wherew is the oscilla- =17 As mentioned in Sec. Il A, another physical possi-

. . m
tion frequency corresponding to the curvature of the meagjiy of < 7 is found if one considers the decomposition
field Hamiltonian] Therefore, by using Gaussian packets OfSUCh as Eq(9) before the coherence time Even though the

o - N o .
width 3 and a positive weigh in Eq. (29), itis impossible  prepranches have not decohered, the mean field approxima-
to reproduce the shrinking componentfg{y,7). This is a  tion may be applicable not to the total stéf) but to each
physical consequence of the decoherence into wave packelss ihe prebranchey’ ) o |T'), |¢" @ |T"), ... separately.
After decoherence has taken place, the shrinking disappeaig,is sjtuation is possible because the true time evolution is
due to the uncertainty principle in each branch, which shouldinear while the mean field approximation is nonlinear. If this
be regarded as a physical change of the state by decoherenggihe physical case, we should takg< 7. It should also be
Therefore we shall never require that the distribution in thyentioned that. if the coherence timés short compared to
shrinking directionsy;,y,,ys) be kept unchanged by deco- ¢ fime scale of the diffusion[(/8/ 5t)S ], , the result does
herence. Instead, we require that the widthfefy,7) in  not depend on the choice ef, (< 7).
these directions be kept as close as possible to the minimum The extreme case af,;=0 is convenient for the numeri-
valuez. As mentioned above, the weight distributim(Y,7)  cal calculation with a code based on molecular dynamics. In
in the shrinking directions is usually narrow, and thereforethis case, we only need to calculate the mean field Hamil-
the choicew,(Y,7) =w(Y,7) does not increase the width of tonianh[g(X(t))] without performing the mean averaging in
fi(y,7) in the shrinking directions much beyord Eq. .(1_8), which would be a hard numer.ical task._Another
The derived numerical procedure for decoherence is quitgerit is thgth[g(X(t))] can be replaced with a precise mean
simple. The virtually stochastic variab¥,(7), obtained by field Hamiltonianh[®(Z(t))], which is obtained from the
the mean field propagation procedure, is now given a physifully antisymmetrized AMD wave functiof®(Z(t))) with-
cal meaning as the wave packet centroid. Accordingly, theut employing the physical coordinate approximation.
variable of the shape is replaced as

(39)

5. Equation of motion and energy conservation

1 The equation of motion26) should be written in the
Skanl T)_)Z‘Sab' (36) original coordinate<. Furthermore, a special consideration
is necessary so as to ensure the total energy conservation. No

and the calculation is continued to the next mean field propachange has been made since iRef] and these problems are
gation. not directly related to the main aim of this paper. Therefore
the readers who are not interested in them can skip this part
and go to Sec. Il C. The prescriptions that have been given in
Ref.[10] are briefly summarized below.

Equation (20) for the mean field propagation of the  Before writing down the stochastic equation of motion for
nucleonk contains the mean field Hamlltonlaﬂ which de- the wave packet Centroicg’ several comments are neces-
pends on the state of the other nucleons. If one follows theary. The deterministic part of the equation is derived by the
original idea of the mean field propagatidnshould be cal-  time-dependent variational principle for the AMD wave
culated ash[f(t)] by using the Wigner functiorf(x,t) function rather than using the deterministic part of E2f),
given by equations similar to E¢L8) for1=1, ... A. Atthe  though these two ways should be almost equivalent. The

4. Mean field branching
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fluctuationA X, is for the physical coordinat¥, , and there- conservation of the three components of the center-of-mass
fore it is necessary to convert it to the fluctuation for thecoordinate and those of the total momentgdenoted by
original coordinateZ. This is done by introducing a stochas- {P,,}). The Lagrange multiplier§a,,} should be determined

tic one-body quantity®, that generates the fluctuatiadnX; by

in the form of Poisson brackets, as shown in R&€)]. It has

been implicitly assumed that there is no correlation among _

the fluctuations of different wave packets. However, some P ’Ok}CkJr% {P1 Pk, @em=0- 49
minimal correlations should exist so that the conservation

laws are satisfied. The second term in the square brackets of B§) is the

The equation of motion for the centroids is written as ~ dissipation term to achieve the energy conservation. Since
the dissipation term should not violate the other conservation

d A laws, the center-of-mass coordinate, the total momentum,
gi&i=1Z .H}+kzl Zi ,Ok+% WkmPm and the total orbital angular momentuiienoted by{ Q,,})
Cx are kept constant by determining the Lagrange multipliers

:Bkm by
+ i

Zi 1H+% ﬁkmgm) 1:
My (Q Hn 2 (12 Qm)n Bkm="0- (45)

(39 )

The monopole and the quadrupole moments in the coordi-

nate and momentum spaces are also includddjp} when
Ny is composed of more than 15 packets, because the global

where the Poisson bracke,G} and the inner product of
the gradients F,G) are defined by

1 OF 9G 9 OF one-body quantities should be well described without the
{F.G}=— 2 Ci}l'r — Ci}l'r , dissipation term due to the way the fluctuation is derived.
i i5]e\ 0Zic "V gzr, 0Zie 'z, The parametep, is then determined by
(40)
( 'g)_ﬁ ioqr \ 0Z “”T(?Z]*T 9Zi, 'UJT(?Z]-*T ' M=~ : (46)
(4D (H, H+2 Bkam)
m Nk
2
CiU,jT:MIn<Cb(Z)|®(Z)>1 o, 7=X,Y,Z. (42  in order to conserve the total energg Finally, we need to
ks avoid the problem that the fluctuation is finite even near the

esdround state and therefore the energy conservation is impos-
Csible. This is done by introducing a reduction factgr in

front of the square brackets of E@9) near the ground state
(see Ref[10]).

The subscripts cand N, attached to these brackets indicat
that the consideration is limited to the sets of nucleoRs
and N, respectively, where Cstands for the cluster that
includes the nucleok and N, stands for a neighborhood of
the nucleork. The explicit definition is given in Ref.10].

The first term of Eq(39) has been derived based on the C. Specific models and simple examples

time-dependent variational principle, witi given by Our framework includes two essential parameterand
2 Tmt,» Which represent the time scales for the decoherence into
H(Z)=<<I>(Z)|H|q)(z)> _3h VA+T0(A—NF(Z)). wave packets and the mean field branching, respectively.

(D(2)|@(2)) 2M Each of the following models can be regarded as correspond-
(43 ing to a specific choice ofx 7y (with an additional sim-

The quantum Hamiltoniail includes an effective two-body g:ﬂza;:g?e'?sﬂgg ggsmep(;fréhtehgrllg;r;atlvﬁ) Mn)?c%r;?sog ;hmel:mg r?('jn

interaction such as the Gogny forf25], which can be den- ) ;
sity dependent. The spurious kinetic energies of the zeroAMD/DS) by taking simple examples.

point oscillation of the center of mass of the isolated frag-
ments and nucleons have been subtracted in (E8). by
introducing a continuous number of fragmehtg(Z) [3,16. It is needless to mention that the choice ©f 7=
Without this subtraction, thé values for nucleon emissions corresponds to the mean field theory, which solves the mean
and fragmentations would not be reproduced. The parametéigld equationEq. (4)] for a given initial Slater determinant
To is 342v/2M, in principle, but is treated as a free param-toward the final state for large In fact, in this case, our

1. Mean field models

eter for the adjustment of the binding energies. model is equivalent to solving the Vlasov equation
The first term in the square brackets of E89) is the _ . .

fluctuation due ta\ X, generated by the stochastic one-body of _ on[f] f?_f+ Jn[f] of @

guantity O, as mentioned above, with the correction for the ot ap s or a ap’
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with the Gaussian-Gaussian approximation introduced in
Sec. Il B 2. The collision ternp5,6] is not explicitly shown
here for the brevity of presentation.

It is worthwhile to mention the similarity and the differ-
ence between our scheme and the mean field transport theory
with fluctuation[7,8]. In the latter theory, a stochastic term
Af is added to the mean field equation. However, from the . .
view point of this paper, we can equivalently interpret that F!G. 1. The branching of the wave packet in AMDfs sche-

. . ) matically shown for a free nucleon. The symbols show the fluc-
the one-body Wigner functiohfollows the usual mean field tuation to the wave packet centroids. Light gray region shows the

fnq:da;%;mn and, at the same time, the decomposition Isexact time evolution of the Wigner functiadn

ent mean field propagation which disappears in the case of
the zero coherence time=0.

It is difficult to judge a priori whether the choice of
which defines a scheme of mean field branching. Neverthe=( is reasonable or not. The answer will depend on the type
less, we encounter a problem if we want to interpret eaclyf reaction which we want to describe. AMD/ has been
stochastic realizatiof+ Af as a decohered state. A special applied, with a reasonable success, to various reaction sys-
implementation of the fluctuatioAf is necessary, because tems in the medium energy region not only for nuclear col-
the randomness & f does not generally ensure the idempo-lisions[9,19—21 but also for nucleon induced fragmentation
tency of f+ Af and the eventual localization of it in phase reactions[22]. However, these successes do not mean that
space. AMD/ D is valid for all kinds of reactions.

We cana priori expect that AMDD will fail if decoher-
2. The original AMD ence is not a physical case. The most simple and clear ex-

In the original version of AMD[3], the change of the ample is the dynamics of a single nucleon moving in a one-
wave packet shape in the mean field propagaf®n. (3)] body external potentidl (r), in which decoherence does not
has not been considered. This corresponds to replacing Egxist because the nucleon is not interacting with anything. In
(22) with this case, the exact time evolutigf(r,t) is given by the

time-dependent Schdinger equation with an initial condi-
ésk ()=0 (a9 ton y(r o) exd —u(r — Z/\/v)?]. Itis known that Eq(17)
ot ~Kab ' with h(r,p)=p%2M+U(r) vyields the exact quantum-
mechanical time evolution of the one-body Wigner function

—1 H —
to havg a constant shaf,=sdap. Then there is no = r,p,t) when the potential has a quadratic form, including
branching due to decoherence, and we have a determmlst% e case of a free nucleon or a nucleon in a harmonic oscil-
equation of motion . : .
g lator potential with arbitrary curvatures.
The light gray region in Fig. 1 shows the exact time evo-

azi ={zi . H} (50 lution of the Wigner functiorf(r,p,t) for a free nucleon with

the initial condition of a Gaussian wave packettgt The
instead of Eq.(39). It should be noted, however, that the spatial distribution increases as the time progresses, while
two-body collision effect has been incorporated as a stochaghe momentum distribution does not change at all. Due to the
tic procesg3,16] in addition to Eq.(50) already in this origi-  Liouville theorem, the phase space volume is conserved,

nal version, as well as in all the other versions of AMD.  which is the semiclassical analog of the fact tm_ett,p,t)
corresponds to a pure statér,t). At the initial timet,, the
3. AMD/D Wigner function is diffusing in the direction of the: sym-

In Refs. [9,10], the wave packet diffusion effect by the bol in F|g 1 and Shl’inking in the other direction. If AMD/
mean field propagation has been incorporated into AMD as § applled to this Situation, the diffusion is taken into account
source of the stochastic branching of the wave packets. Ths branching by giving a fluctuation to the wave packet cen-
version of AMD corresponds to the case of the strongestoid in the — direction, while the shrinking is ignored. At
decoherenceT(: Tmf_)o) in the present genera| framework. another timEIl ort,, each of the branched wave paCketS is

It is straightforward to confirm that taking the limit—0  treated in the same way as the initial wave packet #ex-
exactly results in the formulation of R€f10]. cept for the different centroid valliiewithout any influence

This version of AMD, which is also called AMD-V, is Of the history of the wave packet and the existence of the

called AMD/D in this paper, because the wave packet diffu-other branches. Namely, the fluctuation always has the same
sion (D) effect in the mean field propagati¢Bq. (4) or Eq.  Property for a free nucleon, and therefore both the spatial and
(17)] is taken into account as branching while the shrinkingthe momentum distributions increase as the time progresses.
of wave packets in some phase space directions is discardedonsequently the coherent Wigner functibfr,p,t) cannot

It should be noted that the shrinking is a result of the coherbe reproduced if AMDD is applied. Generally speaking,

f_(r,p,t>=; w(Af,O[f(r,p,)+Af(r,p)], (48
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decoherence increases the width of the phase space distribu- fo ho o)
tion. N

In the practical calculations of nuclear reactions, the
above problem for a free nucleon is not so serious because
the dynamics of free nucleons is not of our interest, and it is
usually sufficient to describe an emitted nucleon as moving
on a straight lindor on a Coulomb trajectojyas a classical
particle. Therefore, in Refs[9,10] the branching was
switched off for isolated nucleons. For example, the
switching-off condition adopted in Ref10] is

FIG. 2. The branching of the wave packet in AMIg is sche-
matically shown for a free nucleon. Light gray region shows the
exact time evolution of the Wigner functioh Each of the solid
ellipses shows the shrunken shayie,p; X(t),S(t)) in each branch,
while the dashed circles show the wave packets with the original
> 6(1.75-|R4 Z;— Z,]|)<10 (519  width. The— symbols schematically show the magnitude and the

I direction of the fluctuation to the wave packet centroids.

and
coherent mean field propagation is respected by the choice of

a large coherence time Figure 2 illustrates how our formu-
lation in Sec. Il B works in the simplest example of a free
nucleon. The light gray region is identical to that in Fig. 1,
This condition switches off the branching for the nucleons inshowing the exact time evolution of the Wigner function
small clusters withA;.=<10 as well as emitted nucleons. f(r,p,t) with the initial condition of a Gaussian packet at the
Not only the branching is switched off for isolated nucle- time t,. The wave packet diffusion effedt( 6/ 5t)S(t)]. de-
ons, but also each isolated nucleon is regarded as havingfimed by Eq.(24), is taken into account as before by giving
definite momentum value without the internal distribution ofthe fluctuation to the wave packet centroiX(t)
the Gaussian wave packet. This interpretation is consistent (R(t),P(t)) in Eq. (26) with the property of the fluctuation
with the definition of the HamiltoniahEq. (43)] where the  given by Eq.(25). On the other hand, the shrinking effect is
zero-point oscillation kinetic energies of isolated nucleonsreflected to the shape matr$(t) by the equation of motion
have been subtracted. Therefore, we can get reasonable [@7). The ellipse with a solid line in each branch in Fig. 2
sults even with AMDD if the switching-off condition is represents the deformed and shrunken shape of
appropriately chosen so that the branching is switche@ff g(r,p;X(t),S(t)). It should be noted that the eigenvalues of
t, in Fig. 1, for examplgwhen the momentum centroid has S(t) do not exceed the original wave packet widttishown
got the appropriate amount of the fluctuation correspondingy dotted circles in Fig. 2 since the diffusion beyond that
to the internal momentum distribution of the initial wave width is considered by the fluctuation to the centroid. The

packet, exact Wigner functiorf(r,p,t) is reproduced by the mean

However, it will not be easy to find the svv_it_ching-off average of the elliptic shapegr,p; X(t),S(t)) as defined by
condition that works for all situations. The condition of Eg. Eq. (18).

(51) may not work well for the reaction systems that have A general difference between AMDS and AMD/D is

not been studied. When a big system is expanding slowly, fof ¢ the phase space diffusion is weaker in AMS/than in
gxample, the switching Of.f will _not ta!<e place for a long AMD/ D, reflecting the different strength of decoherence.
time, and then the branching will continue too long for the \;aihematically, this difference arises due to the property of
AMD/D method to reproduce the mean field prediction. Ny, fctuation to the wave packet centroids. Namely, the
fact, we will show in Sec. Il that the AMOD method with /550y equation (20) is applied to different
the switching-off condition(51) seems to overestimate the g(r,p: X(1),S(t)), which has always a full width in AMOD

diffusion effect in a rather slowly expanding big systeM. 2nd has a shrunken shape in AMI%, and therefore the
Therefore we want such a new scheme of branching that wgy ety of the fluctuatiofiEq. (25)] is different. In general,
have no ambiguity of introducing any switching-off condi- AMp/pS has a smaller strength of the fluctuation than
tion. AMD/ D (except for the switching off in AMDD). In the
case of the AMDDS description of a free nucleon in Fig. 2,
as the time progresses, the strength of the fluctuation gets
Now we introduce a new scheme of decoherence by taksmaller and smaller with the direction of the fluctuation also
ing the choice of a large coherence timeand a short time changing, and at=« the fluctuation ceases and the elliptic
scale for mean field branching,=0. We will call this distribution S(e) is completely shrunken to have a definite
model AMD/DSbecause the wave packet shrinkii®effect  value of the momentum.
in the mean field propagatiofEq. (4) or Eq. (17)] is re- It is easily proved that, in some cases, the coherent time
flected in the dynamics as well as the diffusi) effect  evolution of the Wigner function is reproduced exactly by
with the choice of a finiter. The explicit definition ofr, = AMD/DS as the mean average of the shrunken elliptic
which depends on two-nucleon collisions, will be given later.shapesg(r,p; X(t),S(t)), in spite of the Gaussian-Gaussian
AMD/DS provides us a one-body dynamics similar to thatapproximation adopted in Sec. |l B 2. This is the case not
in mean field models, as expected from the fact that thenly for a free nucleon but also for a nucleon in a harmonic

> 6(1.75- |R€Z;—Z,]|)Re(Z;—Z,)|<5. (51b

4. AMD/DS
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oscillator potential with arbitrary curvatures. In generalrepulsion does not exist in the one-body dynamics in the
cases, however, the reproduction is not exact because of timean field. It is possible to remove the repulsive effect by
Gaussian-Gaussian approximation. In future, such an apkeeping the conserved ener@y given by Eq.(43). This is
proximation may be removed if it turns out to be necessaryeasily done by formally adding a term to the fluctuation part
but in the present work we are satisfied with this agreemeni the equation of motiori39) by the replacement
of AMD/DS which ensures the approximate validity of
AMD/DS in the extreme case when decoherence does not IOy IO INg
physically take place. 97" *E JkTOE-

When the coherence time is long and the mean field I I Im

branching time is shortrn=0), it is interesting to imagineé  Then the added term cancels the zero-point subtraction term

the behavior of this mpdel in nuc_lear collisions. We can exX-in the deterministic parfZ, 1} and thus the repulsive force
pect that the mean field branchirfgamely, the stochastic

) X 3 mentioned above does not exist any longer. The replacement
fluctuation of the mean fieJddoes not influence so much the of Eq. (53) is done at any place whef@, appears, such as in

3Eqs.(44) and(46). Therefore, the conserved energy is il

ith the zero-point energy subtracted. The key of this trick is
fat the zero-point energy is converted to the translational
motion of the nucleon in the old treatment, while that energy
is shared by all the nucleons in the new treatment with the
replacement of Eq53).

(53

stage. For such aspects, AMI® will behave similarly to
the mean field model because the coherence of the sing
particle wave functions is kept for a large time scaleOn
the other hand, for the aspect of clusterization, AlAB/
with 7,+=0 will behave like usual molecular dynamics mod-
els, because the branched mean figld (Z(t))] is equiva-
lent to the mean field in such models, .and.therefore it helpsm_ EEFECTS IN A MULTIEFRAGMENTATION REACTION
the formation of clusters each of which is bound by the
branched mean field. In this section, we discuss the results f6PXe+ Sn col-
The policy of the scheme of AMIDSis to taker thatis lisions at the incident energg/A=50 MeV and the impact
as large as possible. However, if a two-nucleon collisionparameter range ©b<4 fm. A detailed and systematic
takes place, it will not make sense to keep the coherence @alysis of this reaction system will be given in separate
the single particle wave functions of collided nucleons.paperd23,24. The main purpose here is to make a compari-
Therefore, we assume that decoherence takes place forsan of the two models of quantum branching in AMD, one
nucleon with some probability when it experiences a two-(AMD/ D) with only the wave packet diffusion effect and the
nucleon collision with another nucledi-hereforer, defined  other(AMD/DS) with the wave packet diffusion and shrink-
for each nucleon, is the time interval between two successivig effects, the latter effect being a consequence of the co-
collisions related to if. The probabilityP 4. of decoherence herent mean field propagation for a finite coherence time

at each two-nucleon collision is chosen to be From the character of these models, as discussed in the pre-
ceding section, we expect that differences should be found in
Paed E, 0) =g E(1-c0st/E, (52)  the diffusion property of nucleons in nuclear matter and the

global one-body dynamics.

whereE is the two-nucleon collision energy in the laboratory  Many events with various impact parameters in the range
system for the two nucleons artis the scattering angle in of 0<b<4 fm were produced by solving the stochastic
the center-of-mass system for the two nucleons. The purpossguation of motion given in Sec. Il B. The triple loop ap-
of this probability is to reject the low momentum transfer proximation[10] was used in order to save the computation
cases where the scattered state has a significant overlap pralme. The Gogny forcg¢25] was used as the effective inter-
ability with the case of no collision. Note that the probability action. In the calculation of AMS we use the new treat-
is related to the momentum transfgr=ME(1—cos6). The  ment of the subtraction of the zero-point kinetic energies of
parameteEy=15 MeV is chosen in the present work. With nucleons and clusters given at the end of Sec. Il C 4, while
this choice, decoherence takes place in most of the collisionAMD/ D calculation is done with the old treatment of the
between the nucleons from the different initial nuclei in thezero-point subtraction, unless otherwise stated. In addition to
early stage of the reaction with the incident energy more thatthe equation of motion, the two-nucleon collision effect was
several ten MeV/nucleon, while decoherence seldom takeistroduced in the usual stochastic w$,16]. The two-
place within the initial nuclei and the produced clusters.  nucleon collision cross section adopted here is given by

At the end, let us discuss on the method of the subtraction
of the zero-point kinetic energies of the isolated nucleons in . 100 mb
Eq. (43). This subtraction is consistent with the coherent o(E,p)=min| om(E,p), 1+E/(200 MeV))’
one-body dynamics of AMJIS in that the shrunken shape
g(r,p; X(t),S(t)) for an emitted nucleon eventually has a where o 4(E,p) is the cross section given by Li and
definite momentum and therefore the zero-point kinetic enMachleidt[26] from Dirac-Brueckner calculations using the
ergy should not be counted in the conserved engtgilow-  Bonn nucleon-nucleon potential. This cross section depends
ever, when a nucleon is coming out of a nucleus, the zeroen the two-nucleon collision enerdyyand the density around
point energy subtraction acts as a repulsive force to théhe collision pointp. It also depends on the isospins of the
nucleon from the nucleus in spite of the fact that such acolliding nucleons. The temperature in the parametrization

(54)
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FIG. 3. The time evolution of the density in the center-of-mass system projected onto the reaction plane, in a typical event of the
12%¢e+Sn collision at 50 MeV/nucleon, frort=0 to t=225 fm/c. The beam direction is parallel to the horizontal axis, and the impact
parameter of this event is 3.4 fm. The size of the shown area is 606finfm. This is a result of the calculation with AMDS.

by Li and Machleid was, however, replaced by zero. A lowQMD calculation, which can be seen in Fig. 3 and in the
energy cut has been introduced in the adopted cross sectiotluster charge distribution to be shown later. The fermionic
though its effect on the final results has turned out to benature may also be important to solve the problem of QMD.
unimportant. For the angular distribution, we use the sam@apaet al. have shown in Ref.29] that the spurious binary
parametrization as in Reff16]. feature disappears when they introduce the fermionic nature
The calculation of each event was started by putting twanto QMD in a stochastic way.
nuclei with a distance 12 fm and boosting them at the time We can expect that the early stage dynamics is not so
t=0. The AMD calculation was continued untik sensitive to the model of quantum branching, because
=300 fmfc, at which we assume the thermal equilibrium of AMD/ D and AMDDS are equivalent for a short time scale
each produced fragment and calculate its decay by using @nd because the effective coherence time in AMIB/s
statistical decay codg2], which is based on the sequential short due to many two-nucleon collisions. In fact, it is seen
binary decay model by Pihofer[27]. in the region oft<60 fm/c in Fig. 4, which shows the time
Figure 3 shows the time evolution of a typical event with dependence of the two quantities
the impact parametdr=3.4 fm. It appears that a system is
formed, which, after a maximum compression around
~45 fm/c, expands and many clusters appear arotind <RL>:<
~100 fmi/c. The expansion is stronger in the beam direction
than in the transverse directions, which means that the initial
nuclei do not stop completely even in such central collisions.
Therefore, another possible interpretation may be that the <Pi>:<
initial two nuclei are passing each other with large dissipa-
tion and breaking up into clusters. However, the mixing of 20 ; .
the wave packets from the two nuclei is considerable. On the AMD/DS R, —
average, 87 nucleons from the projectiféXe nucleus come AMD/DS Py =====
out to the forward direction g,>0 in the center-of-mass AMDD R, —
: o AMD/D P.
system, while the other 42 nucleons from the projectile 15 F auoos:AMD R.
nucleus appear in the backward direction. This correspond: amoossAMD P.
to around 67%-33% sharing of the projectile nucleons in
forward-backward directions, to be compared with 50%—50%§
for full mixing or 100%-0% for no mixing at all. These =< 10
qualitative features do not depend so much on the choice oL
the models of the quantum branching, though the event of
Fig. 3 was obtained with AMJS
The same reaction system has been studied by Nebaue¢ 5
et al. with the quantum molecular dynami¢®MD) [28]. A
serious problem of their QMD result is that too large projec-
tilelike and targetlike fragments are produced even in the
central collisions Eg,ns>450 MeV). Consequently the
QMD calculation largely overestimates the yield of the big
clusters withZ=20, as shown in Fig. 7 of Ref28]. This
problem of the spurious binary feature is qualitatively similar £ 4. Time evolution of the transverse radi(®, ) (solid
to the problem that has been encountered even in the AMiheg and the transverse momentyiR, ) (dashed linesin 12%Xe
calculation by Ono and Horiuchi for th&Ca+ “%Ca colli-  + sn coliisions at 50 MeV/nucleon averaged for the impact param-
sions at 35 MeV/nucleofB]. This problem in AMD has been eter region 6<b<4 fm. The results of AMDD are shown by thin
solved in Ref[9] by the stochastic incorporation of the wave lines, while those of AMDDS are shown by thick lines. Filled and
packet diffusion effect, which allows the mixing and/or open circles showR,) and (P, ), respectively, obtained by the
breakup of the initial nuclei. In fact, the present AMD calcu- origial AMD calculation applied to the intermediate statest at
lation does not show a binary feature as strong as in the60 fm/c of the AMD/DS calculation.
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characterizing the transverse expansion. We use the trandistribution that satisfies the uncertainty relation and the
verse components of the physical positiéysand the physi-  Pauli principle. If this momentum distribution is considered,
cal momentaP; defined by Eq(12). The brackets stand for the global momentum distribution will become wider than
the averaging over the events with the impact parametethe mean field prediction. Now the question is whether this
range 6<b<4 fm.[We consider these quantities rather thanwidening of the momentum distribution should be respected
the root mean square quantities in order to focus on the ceror the coherent mean field propagation should be respected.
tral part of the system where clusters are mainly proddced When we apply AMDDS, the coherent mean field propaga-
The solid lines in Fig. 4 show the transverse radids) and  tion is respected and the widening of the momentum distri-
the dashed lines show the average transverse momentuoution is not considered as far as the one-body dynamics is
(P, ). The thin lines show the result of AMDY, while the  concerned. It may be possible that the wave packet localiza-
thick lines show the result of AMIS. We can see that the tion does not change the global one-body dynamics through
transverse momentum is produced in the early stage of theomplicated many-body correlations, which are out of the
collision (before 40 or 50 fmZ). As expected, there is no scope of the present models. On the other hand, when we
significant difference between AMD/ and AMD/DSfor the  take AMD/D, we respect the widening of the momentum
early stage dynamidss60 fm/c. distribution due to the localization of the wave packet as

Now our interest is in the evolution of the expanding sys-physical decoherence, which will increase the future expan-
tem which has been created by the early stage dynamicion velocity. It is not possible to saypriori that one model
beforet~60 fm/c. In Fig. 4, we can see that an important is superior to the other. What we can say is that ARB/
deviation between the two models appears in the spatial raeproduces the mean field prediction more precisely then
dius(R, ) in the later reaction stage. The expansion velocityYAMD/ D. Another problem not discussed here is whether the
is slower in AMDDS with the wave packet shrinking effect mean field prediction is always reliable or not.
than in AMD/D without it. On the other hand, the transverse How does the different expansion velocity in the two
momentum, which is almost constant foe 60 fm/c, is al- models appear in the observables? As we have seen in Fig. 4,
most independent of model of quantum branching. It shouldhe difference does not appear in the global transverse mo-
be noted that the expansion is governed not only by thénentum, and therefore the energy spectra are not good quan-
momentum centroids of wave packets but also by the proptities to see the effect directly. The different expansion ve-
erty of the fluctuation to the wave packet centroids. The latocity is not due to the different momentum but due to the
ter is the difference between the models, which can be natdifferent strength of the spatial component of the fluctuation
rally understood because the wave packet shrinking effedo the wave packet centroids. Therefore, we should look at
reduces the strength of the fluctuation to the wave packdhe quantities that carry the information of the increase rate
centroids, as discussed in Sec. Il C 4. To see this effect moref the spatial radius. The cluster size distribution is one of
clearly, we also show, by filled and open circles in Fig. 4, thesuch quantities because each cluster is formed by nucleons
results of the original AMD without quantum branching. In with similar spatial positions and velocities. It has been
order to avoid the influence of the different early stage dy-shown that the cluster size decreases as the expansion veloc-
namics, the original AMD was applied to the intermediateity increase430,31]. Figure 5 shows how the total 104 pro-
states at=60 fm/c of the AMD/DScalculation. We can see tons in the system are divided into clusters at300 fm/c
that the transverse expansion is very weak without quanturfefore calculating the statistical decay of excited clusters.
branching. The results of AMDDS and AMD/D are shown in(a) and

In order to get a deeper understanding, let us first consideb), respectively. It is clearly seen that heavy clusters are
how the expansion dynamics is described if a mean fielgpproduced more abundantly in AMDS than in AMD/D, re-
model (such as TDHFis applied. If the two-nucleon colli- flecting the different expansion velocity. In the case of the
sion effect is negligible in the expanding system, most of theoriginal AMD calculation linked to the early stage dynamics
single particle wave functions will widely spread over the of AMD/DS [shown in(c)], the produced clusters are much
space. Clusters will not be produced in a mean field modébigger than in AMDDS, reflecting the very slow expansion.
but the global one-body distribution may be reliable. Due toln Fig. 6, the final charge distribution after statistical decay is
the coherence of the mean field propagation, the nucleoshown together with the INDRA datdullets. The data and
position and the nucleon momentum are strongly correlatethe calculated results can be directly compared, since the
in the expanded system, in a similar way to the case considiter has been applied to the calculated events in order to
ered in Fig. 2, for example. If we focus on a local part of thetake account of the properties of the detector system. The
expanded system, each nucleon has a rather sharp momeasult of AMD/D has a serious problem that the multiplici-
tum distribution like a classical particle. The main aim of ties of the heavy clusters witd=15 are underestimated.
AMD/DS:is to have the same global one-body distribution adnstead of the heavy clusters, the relatively light clusters with
in mean field models, when averaged over the branches. The~5,6 are produced too abundantly. Therefore, it seems that
essential difference is that the mean field varies from brancthe expansion is too fast in AMD. On the other hand, the
to branch in the case of AMD, which is the reason whyreproduction by AMDDS is quite satisfactory for the charge
clusters are produced in AMD, though this difference will distribution of the clusters witZ=3. These results suggest
not affect so much the global one-body distribution. Whenthat it is reasonable to respect the mean field prediction of
clusters are formed, however, each nucleon is localized ithe expansion dynamics in this reaction system, which con-
one of the clusters, and then it should have some momentusists of rather many nucleons and is expanding with a mod-
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FIG. 5. The partitioning of the total charge into the clusters at Z

t=300 fm/c (before calculating the statistical decay of excited
clusters in 1?*Xe+Sn collisions at 50 MeV/nucleon with the im-
pact parameter €b<4 fm. The area of each sector represents

ZM(Z) summed over the specified regionZfwhereM (Z) is the 0<b<4 fm, a_fter calculatir!g the sta_ltistical decay of excited clus-
multiplicity of clusters with chargeZ. () The result of AMDDS. ters and applying the experimental filter for the detector setup. The

(b) The result of AMDD. (c) The result of the original AMD ap- solid histogram shows the result of AMD$, while the dotted his-
plied to the intermediate states at 60 &f the AMD/DS calcu- togram shows the result of AMD. The INDRA experimental data

lation. (d) The result of AMDD for the impact parameter region [28] are shown by bullets.
4<b<7 fm.

FIG. 6. The charge distribution of the produced clusters in
129 e+ Sn collisions at 50 MeV/nucleon with the impact parameter

ent from the central even{d=ig. 5b)]. The difference be-
erate velocity. However, AMIIS has a problem of the over- tween central and semiperipheral events in the AMal-
estimation of the proton multiplicity and the underestimationculation[(b) and(d)] is not as big as the difference between
of the & particle multiplicity. Probably this is a side effect of AMD/ D and AMDDSin central event§(b) and(a)]. There-
the fact that AMDDS uses the mean field equation so faith- fore, a possible considerable mixture of semiperipheral
fully that the light cluster emission is not respected compare@vents in the data does not change our conclusion that too
to the nucleon emission. Special c482] will be necessary many small clusters are produced in AMD/and that the
to explain the direct production of light clusters which havereproduction is improved by respecting the coherent mean
only one quantum bound state. The use of the semiclassicéfld propagation as in AMIIS

version of the mean field equatiétne Viasov equationmay ~ Finally, the dependence on the treatment of the zero-point
also be one of the reasons why the nucleon emission is ovekinetic energy subtraction is shown in Fig. 7 for the cluster
estimated. charge distribution. As far as the AMD/model of the quan-

The above quantitative results can be affected, in printum branching is used, the result is far from the experimental
ciple, by the centrality selection method. In our calculationdata irrespective of the treatment of the zero-point subtrac-
all the events with &2b<4 fm are considered as central tion. In the result of AMDDS we can get a slightly better
events, while in experiment the central events are selected Bgproduction of data by using the new treatment of the zero-
using the sum of the transverse energiE§a£9 of observed point subtraction given at the end of Sec. Il C 4. It should be
light charged particlesZ=1,2). The experimental data in noted that the new treatment of the zero-point subtraction is
Fig. 6 were obtained by selecting the events with the condimore consistent with the philosophy of the AMDB model
tion Eyane>450 MeV[28]. (These data are identical to those Of quantum branching, in that the mean field prediction of
that have been shown by the histogram in Fig. 7 of Rzg]  the one-body dynamics is respected.
in an arbitrary scale, while in our figure they are shown in
the absolute scale.Nebaueret al. have shown in QMD
simulation that events with<4b<6 or 7 fm are also mixed
in the selected events with, ,,s>450 MeV (Fig. 3 of Ref. In this paper, we have given a general framework that
[28]). In order to estimate the effect of these semiperipheratietermines the many-body quantum dynamics by the combi-
events, we show in Fig.(8) the charge partitioning obtained nation of the coherent mean field propagation and the deco-
by AMD/D for 4<b<7 fm. We can see that the character herence into branched wave packets. This framework con-
of clusterization in semiperipheral events is not very differ-tains the mean field description and the molecular dynamics

IV. SUMMARY
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— AMD/DS as in usual molecular dynamics models, because the mean
field is calculated with localized wave packets in each
., === AMD/D branch. The two-nucleon collision effect is introduced as
; % AMD/DS + Old Sub0 usual, and the decoherence into wave packets is assumed to
. e AMD/D + New Sub0 te_lke pllace when a n_ucleon experiences a two-nucleon colli-
i sion with a substantial momentum transfer.
The difference in the decoherence scheme between the
two models results in the different diffusion properties of
. nucleons in nuclear matter and the different global one-body
m! dynamics. We have applied both models of AMD/and
0. ® AMD/DS to the *?°Xe+ Sn collisions at 50 MeV/nucleon in
- the impact parameter range<®<<4 fm, where many clus-
: 1 ters are produced from the expanding system with a moder-
. Yok & ate expansion velocity. The effect of the wave packet shrink-
L ing in AMD/DS certainly reduces the expansion velocity
e compared to AMDD. Reflecting this difference in the ex-
. . pansion velocity, the charge distribution of the produced
oo, * clusters strongly depends on the model of decoherence into
branches. With AMDDS, we have larger number of heavy
T T n T clusters withZ=15 and smaller number of relatively small
5 10 15 20 25 30 clusters withZ~5,6 than with AMDD. AMD/DS repro-
Z duces the INDRA experimental data much better than
FIG. 7. Similar to Fig. 6. Solid and dotted histograms are theAMD/ D, which suggests that the coherent mean field propa-
same as in Fig. 6, showing the results of ANII¥ and AMD/D, gation for the one-body dynamics should be respected in this
respectively. The stars show the result of the calculation withfeaction system, where a big system is expanding with a
AMD/ DS combined with the old treatment of the zero-point kinetic moderate expansion velocity. The detailed analysis of this
energy subtraction. The bullets show the result of the calculatiofeaction system based on the AMD calculations will be given
with AMD/ D combined with the new treatment of the zero-point in a separate papetr.
kinetic energy subtraction. However, we do not claim that AMDIS is always supe-
rior to AMD/D or vice versa. These two models should be

description as specific cases. The model given by Refd€9arded as different schemes of approximation. ADIB/

[9,10] (AMD/ D) corresponds to taking the zero coherencer.eSpeCtS the coherent mean field propagation, while AMD/

time (7=0) for the mean field propagation. In this scheme,reSpeCtS the existence of strong many-body correlations

the wave packet diffusion by the mean field propagation ié/\lhlch causes the decoherence into branc'hed wave packets.
respected by giving an appropriate fluctuation to the Wavéglthough the decoherence has_ peen _cons_ldered '”.AMD’
packet centroids. However, the usual fluctuation was not abl ase_d on the two-nucleon collisions in this paper, it is also
to describe the shrinking of the phase space distribution?oss'ble. to ha}ve other many-body effects to cause decoher-
which could be respected only by keeping the coherence dthee with which AMDDS can be closer to AMLID depend-

the mean field propagation. On the other hand, we hayihg on the considered reaction systems. In future works, it

shown in this paper that it is possible to implement a finiteWIII be important to investigate such possibilities.

time durationr of the coherent mean field propagation be-
fore decoherence, even though we still adopt a branching
treatment. As a consequence, in the new m@éd&iD/DS), This work was supported by High Energy Accelerator Re-
the shrinking of the phase space distribution is respected agarch OrganizatiofKEK) as the Supercomputer Project
well as the diffusion. AMDDS reproduces the exact dynam- Nos. 58(FY2000 and 70(FY2002), and Le Commissariat a

ics for a free nucleon and for a nucleon in a harmonic oscil{’'Energie Atomique, le Centre National de la Recherche Sci-
lator potential with arbitrary curvatures. In general cases, thentifique, and Le Centre de Calcul du CEA, Grenoble under
branch-averaged one-body dynamics in ANDS/should be  Project No. P542. We also used the supercomputer system at
much closer to the prediction by mean field models than irthe Research Center for Nuclear Phys{@&CNP, Osaka
AMD/D. Nevertheless, by the choice ef;=0 for mean  University. A.C. and A.O. thank Patrick Bertrand for his help
field branching, clusters can be formed in AMES as well  is installing the AMD software.
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