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Compatibility of localized wave packets and unrestricted single particle dynamics
for cluster formation in nuclear collisions
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Antisymmetrized molecular dynamics with quantum branching is generalized so as to allow finite time
duration of the unrestricted coherent mean field propagation, which is followed by the decoherence into wave
packets. In this new model, the wave packet shrinking by the mean field propagation is respected as well as the
diffusion, so that it predicts a one-body dynamics similar to that in mean field models. The shrinking effect is
expected to change the diffusion property of nucleons in nuclear matter and the global one-body dynamics. The
central 129Xe1Sn collisions at 50 MeV/nucleon are calculated by the models with and without shrinking, and
it is shown that the inclusion of the wave packet shrinking has a large effect on the multifragmentation in a big
expanding system with a moderate expansion velocity.
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I. INTRODUCTION

In order to describe heavy ion reactions as the dynam
of many-nucleon systems, two different kinds of microsco
approaches have been proposed and applied. One is the
lecular dynamics model@1–4# and the other is the mean fiel
@time-dependent-Hartree-Fock-~TDHF-! like# model @5,6#.
An advantage of the mean field models is that they do
put any restriction on the one-body motion, while their d
advantage is that they cannot properly describe the clu
formation because of the lack of many-body cluster corre
tions. On the other hand, usual molecular dynamics mo
assume a fixed Gaussian shape for single particle wave f
tions. This is an efficient way to describe the cluster corre
tion even by using a simple product wave function with
without antisymmetrization. However, in another sense,
use of localized wave packets can be a regression, bec
the one-body dynamics is not as precisely described a
mean field models.

A unified understanding is desired on the quest
whether the single particle wave functions should be un
stricted or localized. Unless we can solve the dynamics ke
ing the full order of the many-body correlations, it is esse
tial for a reasonable model to introduce the fluctuations t
bring the system into many quantum branches each of w
corresponds to one of the reaction channels or the confi
rations of clusterization. In mean field models, it has be
proposed to introduce fluctuations in the one-body distri
tion function@7,8#, though it should be a difficult problem t
determine the correlations among an infinite number of
grees of freedom of fluctuations. In this viewpoint, the p
losophy of molecular dynamics is to introduce a special k
of fluctuation by stochastically localizing the single partic
wave functions, which is essential for the cluster producti
The mean field equation should be interpreted as giving
short-time evolution of the one-body distribution averag
over the stochastic branches. Based on this idea, the anti
metrized molecular dynamics~AMD ! has been extended i
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Refs. @9,10# by incorporating the wave packet diffusion e
fect in the mean field as a source of the fluctuation to
wave packet centroid, which causes the quantum branc
on the many-body level. Thus the single particle wave fu
tions are localized in each branch, which makes cluster
mation possible, while the single particle motion is not r
stricted for the averaged value over the branches.
stochastic treatment of the dynamics of the wave pac
width is the essential point of our approach. There is anot
approach@4,11–13# which treats the width parameters a
time-dependent variables in molecular dynamics, thoug
has turned out that the deterministic dynamics of the wi
variables cannot explain the evolution of the density fluct
tion and the multiple cluster formation@11,12#. Ohnishi and
Randrup@14,15# have introduced quantum fluctuation in
wave packet molecular dynamics based on their statist
consideration and have shown its importance in cluster
mation. However the dynamical origin of the their fluctu
tion has not been made clear.

An unsatisfactory point of the improvement in Ref
@9,10# was that the stochastic fluctuation to the wave pac
centroids can diffuse the distribution but cannot shrink
distribution. Note that a wave packet in the mean field n
mally diffuses in three directions in phase space and shr
in the other three directions. Because of this difficulty, f
example, the improved AMD could not be directly applied
an isolated nucleon, and therefore the diffusion was switc
off for isolated nucleons, which introduces an ambiguity
the model. To solve this kind of problems, we absolute
need a consistent understanding of both the mean field
scription and the molecular dynamics description.

The first purpose of the present work is to construc
general framework which contains both molecular dynam
models and mean field models as specific cases. In
framework, the time evolution of a many-body system
given by the coherent mean field propagation and the de
herence of single particle states into wave packets. It w
have two physically essential ingredients,t andtmf , which
©2002 The American Physical Society03-1
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define when decoherence and mean field branching
place, respectively. The choice (t,tmf)5(`,`) corresponds
to a mean field model, while the choice (t,tmf)5(0,0) cor-
responds to the version of AMD of Refs.@9,10# ~called
AMD/ D in this paper!. Based on this general framework, w
introduce a new model AMD/DS as the case of (t,tmf)
5(large,0), with which we can respect not only the diffusi
but also the shrinking of the phase space distribution p
dicted by the coherent mean field propagation.

The second purpose of the present work is to demons
the effect of the wave packet shrinking. The difference
tween AMD/D and AMD/DS is expected to result in the
different diffusion properties of nucleons in nuclear mat
and the different global one-body dynamics. We perform
AMD/ D and AMD/DS calculations for the central129Xe
1Sn collisions at 50 MeV/nucleon and compare the resu
The velocity of the expansion strongly depends on
model. The different expansion velocity results in the diff
ent cluster size distribution. It is shown, by comparison w
INDRA experimental data, that AMD/D had problems of the
overestimation ofZ54,5,6 clusters and the underestimati
of Z*15 clusters and these problems are solved by AM
DS.

This paper is organized as follows. In Sec. II, the form
lation is presented. The physical principle of the gene
framework is given in Sec. II A, and then the concrete f
mulas are given in Sec. II B, which includes all the details.
Sec. II C, we introduce specific models such as AMD/D and
AMD/DS, and give simple examples to show how our fo
mulation works for AMD/D and AMD/DS. In Sec. III, the
results of the calculations with AMD/D and AMD/DS are
compared to each other and to the INDRA data for cen
129Xe1Sn collisions at 50 MeV/nucleon, so as to demo
strate the important effect of the wave packet shrinking
AMD/DS in multifragmentation. Section IV is devoted to
summary.

II. MEAN FIELD PROPAGATION FOLLOWED
BY DECOHERENCE

A. Principle

First we give a general framework which includes bo
mean field models and molecular dynamics models as lim
ing cases of model parameters. Originally we have reac
this framework in the course of an extension of AMD by t
incorporation of the good points of mean field models. Ho
ever, the framework is given here from a more general po
of view as an approximation of quantum many-body dyna
ics.

In what follows, the two-nucleon collision effect is no
shown explicitly for the brevity of presentation, but it is a
ways considered in all the practical calculations as a stoc
tic process@3,16#.

In this model, we will use~without specifying yet how to
use it! the AMD wave function, which is a Slater determina
of Gaussian wave packets@3#,
01460
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^r1•••rAuF~Z!&5detijFexpH 2nS r j2
Z i

An
D 2J xa i

~ j !G .

~1!

The complex variablesZ[$Z i ; i 51, . . . ,A% represent the
centroids of the wave packets. We take the width param
n50.16 fm22 and the spin isospin statesxa i

5p↑, p↓, n↑,

or n↓. Because of the antisymmetrization, the variablesZ do
not necessarily have a direct physical meaning as nuc
positions and momenta. The AMD wave functionuF(Z)&
contains many quantum features in it and has been applie
the study of nuclear structure problems with some extens
such as the parity and angular momentum projections@17#.

The time-dependent many-body wave functionuC(t)& de-
scribing a complicated nuclear collision is, in an intermedi
or final state, a superposition of a huge number of chann
each of which corresponds to a different clusterization c
figuration. We do not try to directly treat such a complicat
many-body stateuC(t)& nor do we approximateuC(t)& by a
single AMD wave functionuF(Z)&. We rather approximate
the many-body density matrixuC(t)&^C(t)u by an ensemble
of many AMD wave functions,

uC~ t !&^C~ t !u'E uF~Z!&^F~Z!u
^F~Z!uF~Z!&

w~Z,t !dZ. ~2!

A pure many-body state is approximated by a mixed sta
This approximation itself will not be a serious drawba
practically because the nuclear collision dynamics is so co
plicated that one cannot observe full many-body correlati
to distinguish a pure state from a mixed state. The benefi
this approximation is that the right hand side of Eq.~2! still
contains nontrivial many-body correlations required in m
tiple cluster formation, even though an ensemble of AM
wave functions is sufficiently simple to be tractable nume
cally. We should, of course, define a reasonable time ev
tion of the weightw(Z,t) or, alternatively, stochastic trajec
tories of the variablesZ(t).

What is the physical idea when we use AMD wave fun
tions uF(Z)& in Eq. ~2!? When multiple cluster formation
takes place,uC(t)& is composed of a huge number o
branches. The decomposition into branches should be d
so that, in each branch, the one-body distribution of e
nucleon is localized in one of the clusters. Namely, a nucle
should not belong to many clusters at the same time, to av
noninteger mass numbers of clusters.~The width of wave
packetsn has been chosen in such a way.! In turn, if nucle-
ons are localized in each branch, the clusters are natu
bound due to the mean field among localized nucleons. T
idea exists behind the molecular dynamics models which
strict each single particle wave function in each branch t
wave packet.

The time evolution in our model is determined by tw
factors, the mean field propagation and the decomposi
into branches. At a timet0, let us take one of the branche
uF(Z)&^F(Z)u from Eq. ~2!. This is justified because th
3-2
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time evolution of a branch is independent of the others du
linear quantum mechanics. We consider the mean fi
propagation fromt0 to t01t,

uF~Z!&^F~Z!u→uC~t,Z!&^C~t,Z!u, ~3!

whereuC(t,Z)& is the solution of the mean field equation

i\
d

dt
uC~ t,Z!&5HHF~ t !uC~ t,Z!& ~4!

with the initial conditionuC(0,Z)&5uF(Z)&. The mean field
Hamiltonian has a form

HHF~ t !5(
i 51

A

hi~ t !5(
i 51

A S pi
2

2M
1U„r i ,pi ; r̂~ t !…D , ~5!

where the potentialU depends on a one-body density mat
r̂(t). For the moment, we may assume thatr̂(t) is the one-
body density matrix for the stateuC(t,Z)&. We wish to em-
phasize that the single particle wave functions are not
stricted to Gaussian packets in the mean field propaga
and thereforeuC(t,Z)& is a general Slater determinant. Nex
at the timet01t, the propagated stateuC(t,Z)&^C(t,Z)u is
decomposed into AMD wave functions as

uC~t,Z!&^C~t,Z!u
^F~Z!uF~Z!&

'E uF~z!&^F~z!u
^F~z!uF~z!&

w~z,t;Z!dz, ~6!

with a suitable weightw(z,t;Z). A reasonable principle to
determinew(z,t;Z) would be first to choose a set of impo
tant ~one-body! operators$Ôa% and then to require that bot
sides of Eq.~6! give the same expectation values for

$Ôa%,

E ^F~z!uÔauF~z!&

^F~z!uF~z!&
w~z,t;Z!dz5

^C~t,Z!uÔauC~t,Z!&

^F~Z!uF~Z!&
.

~7!

However, this prescription will not always work well be
cause it is incompatible to the necessary condit
w(z,t;Z)>0. A practical choice of$Ôa% will be given be-
low. In this way, in principle, Eqs.~3! and~6! determine the
time evolution from t0 to t01t. The next time evolution
after t01t is obtained successively by applying the sa
model to each term of the right hand side of Eq.~6!.

What is the physical meaning oft? Is Eq.~6! just a nu-
merical approximation of a mean field model or does it ha
any physical meaning? Once one believes that the mean
propagation is always perfect, then the choice of a finitt
would be unphysical. But the mean field propagation is
perfect at least in that it unphysically keeps the idempote
r̂25 r̂ of the one-body density matrix. In many-body sy
tems, even though the idempotency is satisfied at a partic
point of time, this is not the case at a later time due
many-body correlations. The reduced one-body density
trix will be an ensemble of idempotent density matrices.
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we ignore the antisymmetrization for the simplicity of th
discussion here, the one-body density matrix of a nucle
will be given as

r̂5w8uw8&^w8u1w9uw9&^w9u1•••, ~8!

in which different componentsuw8&, uw9&, . . . do not inter-
fere in a simple way. The many-body state for this situat
will be

uC&5c8uw8& ^ uC̃8&1c9uw9& ^ uC̃9&1•••, ~9!

where the states of the rest of the systemuC̃8&, uC̃9&, . . .
are orthogonal to one another, to arrive to Eq.~8!. In our
model, the coherent mean field propagation (uC&5uw&
^ uC̃&) is assumed to be valid in the time duration fromt0 to
t01t, and decoherence is assumed to physically take p
into Gaussian packets att01t as in Eqs.~8! and~9!. @Deco-
herence is a general concept of quantum mechanics in o
systems@18#. It means not only that Eq.~8! is satisfied at a
specific time but also that different branches do not interf
at any later time.# In this way, the parametert has a deep
physical meaning as the coherence time. We do not try
determinet a priori in the present paper, but we assume th
decoherence is a physical process as should be the ca
least in multiple cluster formation. It should be noted that t
physical state changes by decoherence, and therefore Eq~7!

should not be required for all the operators$Ôa%. We should
require Eq.~7! for those operators$Ôa% which we can be-
lieve to remain after physical decoherence.

Closely related to the decoherence of a nucleon,
should decide how this nucleon interacts with the rest of
system, namely, how this nucleon contributes to the m
field potentialU. Once decoherence takes place att01t so
that different branches in Eq.~9! do not interfere any longer
then the mean field should be calculated in each bran
independently of the other branches, by using the co
sponding wave packet~one ofuw8&, uw9&, . . . ). Wewill call
this change of the mean field ‘‘mean field branching.’’ Th
decomposition of the many-body state in Eq.~6! is consistent
with the mean field branching att01t. Nevertheless, we
may think of the other possibility that the time scale of me
field branching, denoted bytmf , is shorter thant. The choice
tmf,t can be reasonable in such a physical situation wh
even before decoherence, the mean field approximatio
applicable not touC& of Eq. ~9! but to each of the ‘‘preb-
ranches’’ on the right hand side of Eq.~9! even when the
prebranches have not been decohered yet~i.e., uC̃8&,
uC̃9&, . . . are not orthogonal!. This situation is possible be
cause the true time evolution is linear while the mean fi
approximation is nonlinear. Therefore we regardtmf as a
physical ingredient of the model which is not necessa
equal tot.

The physical origin of decoherence we have in mind h
is the full oder of many-body correlations beyond the tw
body correlation, which is especially important in multip
cluster formation. The choice of wave packets as decohe
states is done for this purpose. Of course, the two-body
3-3
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lision effect destroys the idempotency of the one-body d
sity matrix, but this effect is already taken into account b
more explicit way of the stochastic two-nucleon collisio
process@3,16# in all the realistic calculations.

B. Formulation

Now we start to give concrete formulas for the calculati
of the time evolution governed by the mean field propa
tion, followed by the decoherence into stochastic branch
The explanation will be given in five steps.

Impatient readers may skip this part first moving to S
II C, and later come back here, if necessary.

1. Physical coordinate approximation

We adopt the physical coordinate approximation for
AMD wave function,

uF~Z!&^F~Z!u
^F~Z!uF~Z!&

' ^
k51

A uw~Wk!xak
&^w~Wk!xak

u

^w~Wk!xak
uw~Wk!xak

&
, ~10!

where the spatial wave function of each nucleonk is given
by a Gaussian packet,

^r uw~Wk!&5expH 2nS r2
Wk

An
D 2J . ~11!

The centroids are the physical coordinatesW5$Wk% defined
in Ref. @3# by

Wk5An Rk1
i

2\An
Pk5(

j 51

A

~AQ!k jZ j , ~12!

Qk j5Bk jBjk
21 , Bk j5eZk* •Z jdaka j

. ~13!

In the phase space representation, the Wigner function fo
nucleonk is given by a Gaussian packet

g~x;Xk!58 expF22(
a51

6

~xa2Xka!
2G , ~14!

where we have introduced the six-dimensional phase sp
coordinates

x5$xa ;a51, . . . ,6%5H Anr ,
Pk

2\An
J , ~15!

Xk5$Xka ;a51, . . . ,6%5H AnRk ,
Pk

2\An
J . ~16!

We wish to emphasize that much of the fermionic feat
remains even though we adopt the physical coordinate
proximation@Eq. ~10!#. This is because the value ofW car-
ries the fermionic information. For example, in th
6A-dimensional space ofW, there exist Pauli forbidden re
gions whereW cannot take a value for any choice of th
original coordinateZ @3#. Nevertheless, it depends on th
01460
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purpose whether this approximation gives a good result.
example, it gives only a poor approximation for the evalu
tion of the Hamiltonian and the mean field potential. For t
calculation of such quantities, we use the exact antisym
trized wave functionuF(Z)& or use a better approximatio
scheme@10#.

2. Mean field propagation

The mean field propagation@Eq. ~3!# from t0 to t01t is
calculated based on the Vlasov equation with the Gauss
Gaussian approximation whose exact meaning is given
low.

We require that the Wigner functionf̄ k(x,t) of the
nucleonk should satisfy the Vlasov equation

d f̄ k

dt
52

]h

]p
•

] f̄ k

]r
1

]h

]r
•

] f̄ k

]p
, ~17!

at least approximately, for the time interval fromt0 to t0

1t, with the initial condition f̄ k(x,0)5g(x;Xk). A special
notation of the time derivative (d/dt) is adopted for the
mean field propagation in order to avoid a future possi
confusion. Of course, it would be an easy numerical task
solve Eq.~17! directly. However, in order to make the late
decoherence process as simple as possible, we use an
method by writing the Wigner function as the mean of t
stochastic virtual phase space distributions of deform
Gaussian shape,

f̄ k~x,t !5g„x;Xk~ t !,Sk~ t !…5E g„x;X,Sk~ t !…wk~X,t !
d6X

p3
,

~18!

with

g~x;X,S!5
1

8AdetS
expF2

1

2 (
ab51

6

Sab
21~xa2Xa!~xb2Xb!G .

~19!

Thus we have the virtually stochastic variablesXka(t) and
Skab(t) which represent the centroid and the shape, resp
tively, of the virtually stochastic distribution
g„x,Xk(t),Sk(t)…. The initial condition for them can be give
by Xka(0)5Xka andSkab(0)5 1

4 dab at the initial timet0 @Eq.
~14!#. The stochasticity ofSkab(t) is not shown explicitly in
Eq. ~18! because we will see later that its stochasticity
weak.

We shall now determine the virtually stochastic time ev
lution of Xka(t) andSkab(t). It is first noticed that the Vlasov
equation can be applied to each component of Eq.~18! as
long as Eq.~17! is linear in f̄ k . The time evolution of
gk„x,Xk(t),Sk(t)… by the Vlasov equation

dg

dt
52

]h

]p
•

]g

]r
1

]h

]r
•

]g

]p
~20!

is characterized by the time evolution of the first and t
second moments of the distribution
3-4



d

nd
w
na

ri
n

th
th

t t
th

n
on
m

c-
io

e

a-

n-

e
stic

es

nt

ple
ble
ze

c-

COMPATIBILITY OF LOCALIZED WAVE PACKETS AND . . . PHYSICAL REVIEW C66, 014603 ~2002!
d

dt
Xka~ t !5

d

dtE xag~x,t !
d6x

p3
, ~21!

d

dt
Skab~ t !5

d

dtE @xa2Xka~ t !#@xb2Xkb~ t !#g~x,t !
d6x

p3
,

~22!

in which (d/dt)g(x,t) is given by Eq.~20!. The shape of the
distribution at t1Dt is characterized by Skab(t)
1(d/dt)Skab(t)Dt. This symmetric matrix is diagonalize
by an orthogonal matrix as

Skab~ t !1
d

dt
Skab~ t !Dt5(

c
lcOacObc . ~23!

The distribution is generally diffusing in some directions a
shrinking in the other directions in the phase space. We
extract the component that is diffusing beyond the origi
width of the wave packet@Eq. ~14!# as

S d

dt
Skab~s! D

1

5 lim
Dt→0

1

Dt (
c

maxS 0, lc2
1

4DOacObc ,

~24!

which is now taken into account, not by changing the va
able Skab(t), but by giving a virtual Gaussian fluctuatio
DXka(t) to the centroidXka(t) satisfying

DXka~ t !50, ~25a!

DXka~ t !DXkb~ t8!5S d

dt
Skab~ t ! D

1

d~ t2t8!. ~25b!

The equation of motion forXka(t) with virtual stochasticity
may be written as

d

dt
Xka~ t !5

d

dt
Xka~ t !1DXka~ t !. ~26!

The equation of motion forSkab(t) is

d

dt
Skab~ t !5

d

dt
Skab~ t !2S d

dt
Skab~ t ! D

1

, ~27!

which does not contain the diffusing component beyond
original width because its effect has been counted as
fluctuation toXkab(t).

We emphasize again that the stochasticity has been, a
stage, introduced only as a numerical method to solve
mean field propagation@Eq. ~17!#. By taking the mean of the
ensemble of stochastic distributionsg„x,Xk(t),Sk(t)… @Eq.
~18!#, our solution will reproduce the deterministic solutio
of Eq. ~17!, up to the Gaussian-Gaussian approximati
This approximation means that we have introduced so
restriction onf̄ k(x,t) by considering only the Gaussian flu
tuation to the centroid of deformed Gaussian distribut
g„x,Xk(t),Sk(t)…. Nevertheless,f̄ k(x,t) is not restricted to a
01460
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Gaussian form because the stochastic centroidXk(t) can
move on its own way in each stochastic realization.

3. Decoherence

At the time t01t, we will now perform the decoherenc
into AMD wave functions@Eq. ~6!#, by decomposing the
wave function of each nucleonk,

uck~t!&^ck~t!u
^ck~t!uck~t!&

'E uw~w!&^w~w!u
^w~w!uw~w!&

wk8~w,t!dw, ~28!

whereuck(t)& stands for the state after the mean field prop
gation from t0 to t01t with the initial condition of the
Gaussian packetuw(Wk)& at t0. In the phase space represe
tation, an equivalent equation is written as

f̄ k~x,t!'E g~x;X!wk8~X,t!
d6X

p3
, ~29!

with the wave packetg(x;X) defined by Eq.~14!. We are
going to show that the weightwk8(X,t) in this equation is
given by the weightwk(X,t) defined by Eq.~18! under a
reasonable choice of the requirement.

Before deriving it, we should notice two features of th
variableSkab(t), which represents the shape of the stocha
Gaussian distributiong„x;Xk(t),Sk(t)…. The first feature is
that the stochasticity ofSkab(t) is weak because it is only
through the indirect influence of the stochasticity ofXka(t)
@Eqs.~27! and ~26!#, and therefore

Skab~t!'Skab8 ~t! if uXka~t!2Xka8 ~t!u&1, ~30!

for different stochastic realizations„Xka(t),Skab(t)… and
„Xka8 (t),Skab8 (t)…. The second feature is that the eigenvalu
of Skab(t) (l1<•••<l6) are bound by 0 and14 as is evident
from the way of the construction@Eq. ~27! with Eq. ~24!# and
normally three of them are equal to14 ,

0,l1<l2<l3<l45l55l65
1

4
. ~31!

@These two features are valid if the coherence timet is not
very long or the mean field Hamiltonian is not very differe
from a quadratic form~with arbitrary curvatures! in the in-
teresting phase space region, as we will see later in sim
examples.# For convenience, we can change the varia
from x to y, the latter being defined so as to diagonali
Skab(t),

yb5(
a

Oabxa , Yb5(
a

OabXa , ~32!

whereOab is the matrix to diagonalizeSkab(t),

Skab~t!5(
c

lcOacObc . ~33!

We now require that, integrating out the shrinking dire
tions, the distribution in the diffusing directions (y4 ,y5 ,y6),
3-5
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E f̄ k~y,t!
dy1dy2dy3

p3/2
, ~34!

should be unchanged by decoherence. From Eqs.~18! and
~29!, it is easily seen that the requirement is satisfied
choosingwk8(Y,t) so that

E wk8~Y,t!
dY1dY2dY3

p3/2
5E wk~Y,t!

dY1dY2dY3

p3/2
.

~35!

This condition is, of course, fulfilled by takingw8(Y,t)
5w(Y,t).

What about for the shrinking directions (y1 ,y2 ,y3)? In
typical cases, the width of the Wigner functionf̄ k(y,t) in the
shrinking directions is comparable tol1 ,l2 ,l3 and is
smaller than1

4 . @This is because the fluctuation has be
given only to the diffusing directions and therefore t
weight distributionw(Y,t) is narrow in the shrinking direc
tions, which is the case ift&2p/v, wherev is the oscilla-
tion frequency corresponding to the curvature of the m
field Hamiltonian.# Therefore, by using Gaussian packets
width 1

4 and a positive weightwk8 in Eq. ~29!, it is impossible

to reproduce the shrinking component off̄ k(y,t). This is a
physical consequence of the decoherence into wave pac
After decoherence has taken place, the shrinking disapp
due to the uncertainty principle in each branch, which sho
be regarded as a physical change of the state by decoher
Therefore we shall never require that the distribution in
shrinking directions (y1 ,y2 ,y3) be kept unchanged by deco
herence. Instead, we require that the width off̄ k(y,t) in
these directions be kept as close as possible to the minim
value 1

4 . As mentioned above, the weight distributionw(Y,t)
in the shrinking directions is usually narrow, and therefo
the choicewk8(Y,t)5w(Y,t) does not increase the width o

f̄ k(y,t) in the shrinking directions much beyond1
4 .

The derived numerical procedure for decoherence is q
simple. The virtually stochastic variableXka(t), obtained by
the mean field propagation procedure, is now given a ph
cal meaning as the wave packet centroid. Accordingly,
variable of the shape is replaced as

Skab~t!→ 1

4
dab , ~36!

and the calculation is continued to the next mean field pro
gation.

4. Mean field branching

Equation ~20! for the mean field propagation of th
nucleonk contains the mean field Hamiltonianh, which de-
pends on the state of the other nucleons. If one follows
original idea of the mean field propagation,h should be cal-
culated ash@ f̄ (t)# by using the Wigner functionf̄ l(x,t)
given by equations similar to Eq.~18! for l 51, . . . ,A. At the
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time t01t when decoherence takes place for single part
wave functions, the mean field Hamiltonian will also chan
as

h@ f̄ ~t!#→h@g„X~t!…#, ~37!

the latter being calculated for the wave packetsg„x,Xl(t)….
We will call this change ‘‘mean field branching.’’

We may think of the other possibility that mean fie
branching does not necessarily take place at the same tim
the decoherence of single particle wave functions. Let
introduce the time scaletmf of mean field branching which
can be different fromt, and generalize Eq.~37! to

h~ t !5H h@ f̄ ~ t !# for 0<t,tmf

h@g„X~ t !…# for tmf<t,t
. ~38!

In fact, in a more elaborate theory, the decoherence of w
functions may take place gradually during the time inter
from t0 to t01t. Then it can be reasonable in our model wi
sudden branching to taketmf shorter thant; for example,
tmf5

1
2 t. As mentioned in Sec. II A, another physical pos

bility of tmf,t is found if one considers the decompositio
such as Eq.~9! before the coherence timet. Even though the
prebranches have not decohered, the mean field approx
tion may be applicable not to the total stateuC& but to each
of the prebranchesuw8& ^ uC̃8&, uw9& ^ uC̃9&, . . . separately.
This situation is possible because the true time evolution
linear while the mean field approximation is nonlinear. If th
is the physical case, we should taketmf,t. It should also be
mentioned that, if the coherence timet is short compared to
the time scale of the diffusion 1/@(d/dt)Sl #1 , the result does
not depend on the choice oftmf (<t).

The extreme case oftmf50 is convenient for the numeri
cal calculation with a code based on molecular dynamics
this case, we only need to calculate the mean field Ham
tonianh@g„X(t)…# without performing the mean averaging
Eq. ~18!, which would be a hard numerical task. Anoth
merit is thath@g„X(t)…# can be replaced with a precise me
field Hamiltonianh@F„Z(t)…#, which is obtained from the
fully antisymmetrized AMD wave functionuF„Z(t)…& with-
out employing the physical coordinate approximation.

5. Equation of motion and energy conservation

The equation of motion~26! should be written in the
original coordinatesZ. Furthermore, a special consideratio
is necessary so as to ensure the total energy conservation
change has been made since Ref.@10# and these problems ar
not directly related to the main aim of this paper. Therefo
the readers who are not interested in them can skip this
and go to Sec. II C. The prescriptions that have been give
Ref. @10# are briefly summarized below.

Before writing down the stochastic equation of motion f
the wave packet centroidsZ, several comments are nece
sary. The deterministic part of the equation is derived by
time-dependent variational principle for the AMD wav
function rather than using the deterministic part of Eq.~26!,
though these two ways should be almost equivalent. T
3-6
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fluctuationDXka is for the physical coordinateXka and there-
fore it is necessary to convert it to the fluctuation for t
original coordinateZ. This is done by introducing a stocha
tic one-body quantityOk that generates the fluctuationDXk
in the form of Poisson brackets, as shown in Ref.@10#. It has
been implicitly assumed that there is no correlation amo
the fluctuations of different wave packets. However, so
minimal correlations should exist so that the conservat
laws are satisfied.

The equation of motion for the centroids is written as

d

dt
Z i5$Z i ,H%1 (

k51

A F H Z i ,Ok1(
m

akmPmJ
Ck

1mkS Z i ,H1(
m

bkmQmD
Nk

G ,

~39!

where the Poisson brackets$F,G% and the inner product o
the gradients (F,G) are defined by

$F,G%5
1

i\ (
is, j t

S ]F
]Zis

Cis, j t
21 ]G

]Zj t*
2

]G
]Zis

Cis, j t
21 ]F

]Zj t*
D ,

~40!

~F,G!5
1

\ (
is, j t

S ]F
]Zis

Cis, j t
21 ]G

]Zj t*
1

]G
]Zis

Cis, j t
21 ]F

]Zj t*
D ,

~41!

Cis, j t5
]2

]Zis* ]Zj t

ln^F~Z!uF~Z!&, s,t5x,y,z. ~42!

The subscripts Ck and Nk attached to these brackets indicat
that the consideration is limited to the sets of nucleonsk
and Nk , respectively, where Ck stands for the cluster tha
includes the nucleonk and Nk stands for a neighborhood o
the nucleonk. The explicit definition is given in Ref.@10#.

The first term of Eq.~39! has been derived based on t
time-dependent variational principle, withH given by

H~Z!5
^F~Z!uHuF~Z!&

^F~Z!uF~Z!&
2

3\2n

2M
A1T0„A2NF~Z!….

~43!

The quantum HamiltonianH includes an effective two-body
interaction such as the Gogny force@25#, which can be den-
sity dependent. The spurious kinetic energies of the ze
point oscillation of the center of mass of the isolated fra
ments and nucleons have been subtracted in Eq.~43! by
introducing a continuous number of fragmentsNF(Z) @3,16#.
Without this subtraction, theQ values for nucleon emission
and fragmentations would not be reproduced. The param
T0 is 3\2n/2M , in principle, but is treated as a free param
eter for the adjustment of the binding energies.

The first term in the square brackets of Eq.~39! is the
fluctuation due toDXk generated by the stochastic one-bo
quantityOk as mentioned above, with the correction for t
01460
g
e
n
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conservation of the three components of the center-of-m
coordinate and those of the total momentum~denoted by
$Pm%). The Lagrange multipliers$am% should be determined
by

$Pl ,Ok%Ck
1(

m
$Pl ,Pm%Ck

akm50. ~44!

The second term in the square brackets of Eq.~39! is the
dissipation term to achieve the energy conservation. Si
the dissipation term should not violate the other conserva
laws, the center-of-mass coordinate, the total moment
and the total orbital angular momentum~denoted by$Qm%)
are kept constant by determining the Lagrange multipli
bkm by

~Ql ,H!Nk
1(

m
~Ql ,Qm!Nk

bkm50. ~45!

The monopole and the quadrupole moments in the coo
nate and momentum spaces are also included in$Qm% when
Nk is composed of more than 15 packets, because the gl
one-body quantities should be well described without
dissipation term due to the way the fluctuation is derive
The parametermk is then determined by

mk52

HH, Ok1(
m

akmPmJ
Ck

S H, H1(
m

bkmQmD
Nk

~46!

in order to conserve the total energyH. Finally, we need to
avoid the problem that the fluctuation is finite even near
ground state and therefore the energy conservation is im
sible. This is done by introducing a reduction factorgk in
front of the square brackets of Eq.~39! near the ground state
~see Ref.@10#!.

C. Specific models and simple examples

Our framework includes two essential parameterst and
tmf , which represent the time scales for the decoherence
wave packets and the mean field branching, respectiv
Each of the following models can be regarded as correspo
ing to a specific choice of (t,tmf) ~with an additional sim-
plification in the case of the original AMD!. One of the main
aims here is to compare the last two models (AMD/D and
AMD/DS! by taking simple examples.

1. Mean field models

It is needless to mention that the choice oft5tmf5`
corresponds to the mean field theory, which solves the m
field equation@Eq. ~4!# for a given initial Slater determinan
toward the final state for larget. In fact, in this case, our
model is equivalent to solving the Vlasov equation

] f̄

]t
52

]h@ f̄ #

]p
•

] f̄

]r
1

]h@ f̄ #

]r
•

] f̄

]p
, ~47!
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with the Gaussian-Gaussian approximation introduced
Sec. II B 2. The collision term@5,6# is not explicitly shown
here for the brevity of presentation.

It is worthwhile to mention the similarity and the differ
ence between our scheme and the mean field transport th
with fluctuation@7,8#. In the latter theory, a stochastic ter
D f is added to the mean field equation. However, from
view point of this paper, we can equivalently interpret th
the one-body Wigner functionf̄ follows the usual mean field
equation~47! and, at the same time, the decomposition
made by

f̄ ~r ,p,t !5(
D f

w~D f ,t !@ f̄ ~r ,p,t !1D f ~r ,p!#, ~48!

which defines a scheme of mean field branching. Never
less, we encounter a problem if we want to interpret e
stochastic realizationf̄ 1D f as a decohered state. A spec
implementation of the fluctuationD f is necessary, becaus
the randomness ofD f does not generally ensure the idemp
tency of f̄ 1D f and the eventual localization of it in phas
space.

2. The original AMD

In the original version of AMD@3#, the change of the
wave packet shape in the mean field propagation@Eq. ~3!#
has not been considered. This corresponds to replacing
~22! with

d

dt
Skab~ t !50, ~49!

to have a constant shapeSkab5
1
4 dab . Then there is no

branching due to decoherence, and we have a determin
equation of motion

d

dt
Z i5$Z i ,H% ~50!

instead of Eq.~39!. It should be noted, however, that th
two-body collision effect has been incorporated as a stoc
tic process@3,16# in addition to Eq.~50! already in this origi-
nal version, as well as in all the other versions of AMD.

3. AMDÕD

In Refs. @9,10#, the wave packet diffusion effect by th
mean field propagation has been incorporated into AMD a
source of the stochastic branching of the wave packets.
version of AMD corresponds to the case of the strong
decoherence (t5tmf→0) in the present general framewor
It is straightforward to confirm that taking the limitt→0
exactly results in the formulation of Ref.@10#.

This version of AMD, which is also called AMD-V, is
called AMD/D in this paper, because the wave packet dif
sion ~D! effect in the mean field propagation@Eq. ~4! or Eq.
~17!# is taken into account as branching while the shrink
of wave packets in some phase space directions is disca
It should be noted that the shrinking is a result of the coh
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ent mean field propagation which disappears in the cas
the zero coherence timet50.

It is difficult to judge a priori whether the choice oft
50 is reasonable or not. The answer will depend on the t
of reaction which we want to describe. AMD/D has been
applied, with a reasonable success, to various reaction
tems in the medium energy region not only for nuclear c
lisions @9,19–21# but also for nucleon induced fragmentatio
reactions@22#. However, these successes do not mean
AMD/ D is valid for all kinds of reactions.

We cana priori expect that AMD/D will fail if decoher-
ence is not a physical case. The most simple and clear
ample is the dynamics of a single nucleon moving in a o
body external potentialU(r ), in which decoherence does no
exist because the nucleon is not interacting with anything
this case, the exact time evolutionc(r ,t) is given by the
time-dependent Schro¨dinger equation with an initial condi
tion c(r ,t0)} exp@2n(r2Z/An)2#. It is known that Eq.~17!
with h(r ,p)5p2/2M1U(r ) yields the exact quantum
mechanical time evolution of the one-body Wigner functi

f̄ (r ,p,t) when the potential has a quadratic form, includi
the case of a free nucleon or a nucleon in a harmonic os
lator potential with arbitrary curvatures.

The light gray region in Fig. 1 shows the exact time ev

lution of the Wigner functionf̄ (r ,p,t) for a free nucleon with
the initial condition of a Gaussian wave packet att0. The
spatial distribution increases as the time progresses, w
the momentum distribution does not change at all. Due to
Liouville theorem, the phase space volume is conserv
which is the semiclassical analog of the fact thatf̄ (r ,p,t)
corresponds to a pure statec(r ,t). At the initial time t0, the
Wigner function is diffusing in the direction of the↔ sym-
bol in Fig. 1 and shrinking in the other direction. If AMD/D
is applied to this situation, the diffusion is taken into accou
as branching by giving a fluctuation to the wave packet c
troid in the↔ direction, while the shrinking is ignored. A
another time,t1 or t2, each of the branched wave packets
treated in the same way as the initial wave packet att0 ~ex-
cept for the different centroid value!, without any influence
of the history of the wave packet and the existence of
other branches. Namely, the fluctuation always has the s
property for a free nucleon, and therefore both the spatial
the momentum distributions increase as the time progres
Consequently the coherent Wigner functionf̄ (r ,p,t) cannot
be reproduced if AMD/D is applied. Generally speaking

FIG. 1. The branching of the wave packet in AMD/D is sche-
matically shown for a free nucleon. The↔ symbols show the fluc-
tuation to the wave packet centroids. Light gray region shows

exact time evolution of the Wigner functionf̄ .
3-8
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decoherence increases the width of the phase space dis
tion.

In the practical calculations of nuclear reactions, t
above problem for a free nucleon is not so serious beca
the dynamics of free nucleons is not of our interest, and
usually sufficient to describe an emitted nucleon as mov
on a straight line~or on a Coulomb trajectory! as a classica
particle. Therefore, in Refs.@9,10# the branching was
switched off for isolated nucleons. For example, t
switching-off condition adopted in Ref.@10# is

(
i

u~1.752uRe@Z i2Zk#u!<10 ~51a!

and

U(
i

u~1.752uRe@Z i2Zk#u!Re~Z i2Zk!U<5. ~51b!

This condition switches off the branching for the nucleons
small clusters withAc&10 as well as emitted nucleons.

Not only the branching is switched off for isolated nucl
ons, but also each isolated nucleon is regarded as havi
definite momentum value without the internal distribution
the Gaussian wave packet. This interpretation is consis
with the definition of the Hamiltonian@Eq. ~43!# where the
zero-point oscillation kinetic energies of isolated nucleo
have been subtracted. Therefore, we can get reasonab
sults even with AMD/D if the switching-off condition is
appropriately chosen so that the branching is switched of~at
t2 in Fig. 1, for example! when the momentum centroid ha
got the appropriate amount of the fluctuation correspond
to the internal momentum distribution of the initial wav
packet.

However, it will not be easy to find the switching-o
condition that works for all situations. The condition of E
~51! may not work well for the reaction systems that ha
not been studied. When a big system is expanding slowly,
example, the switching off will not take place for a lon
time, and then the branching will continue too long for t
AMD/ D method to reproduce the mean field prediction.
fact, we will show in Sec. III that the AMD/D method with
the switching-off condition~51! seems to overestimate th
diffusion effect in a rather slowly expanding big syste
Therefore we want such a new scheme of branching tha
have no ambiguity of introducing any switching-off cond
tion.

4. AMDÕDS

Now we introduce a new scheme of decoherence by
ing the choice of a large coherence timet and a short time
scale for mean field branchingtmf50. We will call this
model AMD/DSbecause the wave packet shrinking~S! effect
in the mean field propagation@Eq. ~4! or Eq. ~17!# is re-
flected in the dynamics as well as the diffusion~D! effect
with the choice of a finitet. The explicit definition oft,
which depends on two-nucleon collisions, will be given lat

AMD/DSprovides us a one-body dynamics similar to th
in mean field models, as expected from the fact that
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coherent mean field propagation is respected by the choic
a large coherence timet. Figure 2 illustrates how our formu
lation in Sec. II B works in the simplest example of a fre
nucleon. The light gray region is identical to that in Fig.
showing the exact time evolution of the Wigner functio
f̄ (r ,p,t) with the initial condition of a Gaussian packet at th
time t0. The wave packet diffusion effect,@(d/dt)S(t)#1 de-
fined by Eq.~24!, is taken into account as before by givin
the fluctuation to the wave packet centroidX(t)
5„R(t),P(t)… in Eq. ~26! with the property of the fluctuation
given by Eq.~25!. On the other hand, the shrinking effect
reflected to the shape matrixS(t) by the equation of motion
~27!. The ellipse with a solid line in each branch in Fig.
represents the deformed and shrunken shape
g„r ,p;X(t),S(t)…. It should be noted that the eigenvalues
S(t) do not exceed the original wave packet width1

4 ~shown
by dotted circles in Fig. 2!, since the diffusion beyond tha
width is considered by the fluctuation to the centroid. T
exact Wigner functionf̄ (r ,p,t) is reproduced by the mea
average of the elliptic shapesg„r ,p;X(t),S(t)… as defined by
Eq. ~18!.

A general difference between AMD/DS and AMD/D is
that the phase space diffusion is weaker in AMD/DS than in
AMD/ D, reflecting the different strength of decoherenc
Mathematically, this difference arises due to the property
the fluctuation to the wave packet centroids. Namely,
Vlasov equation ~20! is applied to different
g„r ,p;X(t),S(t)…, which has always a full width in AMD/D
and has a shrunken shape in AMD/DS, and therefore the
property of the fluctuation@Eq. ~25!# is different. In general,
AMD/DS has a smaller strength of the fluctuation th
AMD/ D ~except for the switching off in AMD/D). In the
case of the AMD/DS description of a free nucleon in Fig. 2
as the time progresses, the strength of the fluctuation
smaller and smaller with the direction of the fluctuation a
changing, and att5` the fluctuation ceases and the ellipt
distribution S(`) is completely shrunken to have a defini
value of the momentum.

It is easily proved that, in some cases, the coherent t
evolution of the Wigner function is reproduced exactly
AMD/DS as the mean average of the shrunken ellip
shapesg„r ,p;X(t),S(t)…, in spite of the Gaussian-Gaussia
approximation adopted in Sec. II B 2. This is the case
only for a free nucleon but also for a nucleon in a harmo

FIG. 2. The branching of the wave packet in AMD/DS is sche-
matically shown for a free nucleon. Light gray region shows t

exact time evolution of the Wigner functionf̄ . Each of the solid
ellipses shows the shrunken shapeg„r ,p;X(t),S(t)… in each branch,
while the dashed circles show the wave packets with the orig
width. The↔ symbols schematically show the magnitude and
direction of the fluctuation to the wave packet centroids.
3-9
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oscillator potential with arbitrary curvatures. In gene
cases, however, the reproduction is not exact because o
Gaussian-Gaussian approximation. In future, such an
proximation may be removed if it turns out to be necessa
but in the present work we are satisfied with this agreem
of AMD/DS, which ensures the approximate validity
AMD/DS in the extreme case when decoherence does
physically take place.

When the coherence timet is long and the mean field
branching time is short (tmf50), it is interesting to imagine
the behavior of this model in nuclear collisions. We can e
pect that the mean field branching~namely, the stochastic
fluctuation of the mean field! does not influence so much th
global dynamics and the early dynamics in the high den
stage. For such aspects, AMD/DS will behave similarly to
the mean field model because the coherence of the si
particle wave functions is kept for a large time scalet. On
the other hand, for the aspect of clusterization, AMD/DS
with tmf50 will behave like usual molecular dynamics mo
els, because the branched mean fieldh@F„Z(t)…# is equiva-
lent to the mean field in such models, and therefore it he
the formation of clusters each of which is bound by t
branched mean field.

The policy of the scheme of AMD/DS is to taket that is
as large as possible. However, if a two-nucleon collis
takes place, it will not make sense to keep the coherenc
the single particle wave functions of collided nucleon
Therefore, we assume that decoherence takes place
nucleon with some probability when it experiences a tw
nucleon collision with another nucleon.@Thereforet, defined
for each nucleon, is the time interval between two succes
collisions related to it.# The probabilityPdec of decoherence
at each two-nucleon collision is chosen to be

Pdec~E,u!5e2E(12cosu)/E0, ~52!

whereE is the two-nucleon collision energy in the laborato
system for the two nucleons andu is the scattering angle in
the center-of-mass system for the two nucleons. The purp
of this probability is to reject the low momentum transf
cases where the scattered state has a significant overlap
ability with the case of no collision. Note that the probabili
is related to the momentum transferq25ME(12cosu). The
parameterE0515 MeV is chosen in the present work. Wit
this choice, decoherence takes place in most of the collis
between the nucleons from the different initial nuclei in t
early stage of the reaction with the incident energy more t
several ten MeV/nucleon, while decoherence seldom ta
place within the initial nuclei and the produced clusters.

At the end, let us discuss on the method of the subtrac
of the zero-point kinetic energies of the isolated nucleons
Eq. ~43!. This subtraction is consistent with the cohere
one-body dynamics of AMD/DS, in that the shrunken shap
g„r ,p;X(t),S(t)… for an emitted nucleon eventually has
definite momentum and therefore the zero-point kinetic
ergy should not be counted in the conserved energyH. How-
ever, when a nucleon is coming out of a nucleus, the ze
point energy subtraction acts as a repulsive force to
nucleon from the nucleus in spite of the fact that such
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repulsion does not exist in the one-body dynamics in
mean field. It is possible to remove the repulsive effect
keeping the conserved energyH given by Eq.~43!. This is
easily done by formally adding a term to the fluctuation p
in the equation of motion~39! by the replacement

]Ok

]Zj t*
→ ]Ok

]Zj t*
1d jkT0

]NF

]Zj t*
. ~53!

Then the added term cancels the zero-point subtraction t
in the deterministic part$Z i ,H% and thus the repulsive forc
mentioned above does not exist any longer. The replacem
of Eq. ~53! is done at any place whereOk appears, such as in
Eqs.~44! and~46!. Therefore, the conserved energy is stillH
with the zero-point energy subtracted. The key of this trick
that the zero-point energy is converted to the translatio
motion of the nucleon in the old treatment, while that ene
is shared by all the nucleons in the new treatment with
replacement of Eq.~53!.

III. EFFECTS IN A MULTIFRAGMENTATION REACTION

In this section, we discuss the results for129Xe1Sn col-
lisions at the incident energyE/A550 MeV and the impact
parameter range 0,b,4 fm. A detailed and systemati
analysis of this reaction system will be given in separ
papers@23,24#. The main purpose here is to make a compa
son of the two models of quantum branching in AMD, o
(AMD/ D) with only the wave packet diffusion effect and th
other~AMD/DS! with the wave packet diffusion and shrink
ing effects, the latter effect being a consequence of the
herent mean field propagation for a finite coherence timet.
From the character of these models, as discussed in the
ceding section, we expect that differences should be foun
the diffusion property of nucleons in nuclear matter and
global one-body dynamics.

Many events with various impact parameters in the ran
of 0,b,4 fm were produced by solving the stochas
equation of motion given in Sec. II B. The triple loop a
proximation@10# was used in order to save the computati
time. The Gogny force@25# was used as the effective inte
action. In the calculation of AMD/DS, we use the new treat
ment of the subtraction of the zero-point kinetic energies
nucleons and clusters given at the end of Sec. II C 4, w
AMD/ D calculation is done with the old treatment of th
zero-point subtraction, unless otherwise stated. In additio
the equation of motion, the two-nucleon collision effect w
introduced in the usual stochastic way@3,16#. The two-
nucleon collision cross section adopted here is given by

s~E,r!5minS sLM~E,r!,
100 mb

11E/~200 MeV! D , ~54!

where sLM(E,r) is the cross section given by Li an
Machleidt @26# from Dirac-Brueckner calculations using th
Bonn nucleon-nucleon potential. This cross section depe
on the two-nucleon collision energyE and the density around
the collision pointr. It also depends on the isospins of th
colliding nucleons. The temperature in the parametrizat
3-10
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FIG. 3. The time evolution of the density in the center-of-mass system projected onto the reaction plane, in a typical even
129Xe1Sn collision at 50 MeV/nucleon, fromt50 to t5225 fm/c. The beam direction is parallel to the horizontal axis, and the imp
parameter of this event is 3.4 fm. The size of the shown area is 60 fm360 fm. This is a result of the calculation with AMD/DS.
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by Li and Machleid was, however, replaced by zero. A lo
energy cut has been introduced in the adopted cross sec
though its effect on the final results has turned out to
unimportant. For the angular distribution, we use the sa
parametrization as in Ref.@16#.

The calculation of each event was started by putting t
nuclei with a distance 12 fm and boosting them at the ti
t50. The AMD calculation was continued untilt
5300 fm/c, at which we assume the thermal equilibrium
each produced fragment and calculate its decay by usin
statistical decay code@2#, which is based on the sequenti
binary decay model by Pu¨hlhofer @27#.

Figure 3 shows the time evolution of a typical event w
the impact parameterb53.4 fm. It appears that a system
formed, which, after a maximum compression aroundt
;45 fm/c, expands and many clusters appear arount
;100 fm/c. The expansion is stronger in the beam direct
than in the transverse directions, which means that the in
nuclei do not stop completely even in such central collisio
Therefore, another possible interpretation may be that
initial two nuclei are passing each other with large dissi
tion and breaking up into clusters. However, the mixing
the wave packets from the two nuclei is considerable. On
average, 87 nucleons from the projectile129Xe nucleus come
out to the forward direction (pz.0 in the center-of-mass
system!, while the other 42 nucleons from the projecti
nucleus appear in the backward direction. This correspo
to around 67%-33% sharing of the projectile nucleons
forward-backward directions, to be compared with 50%-5
for full mixing or 100%-0% for no mixing at all. These
qualitative features do not depend so much on the choic
the models of the quantum branching, though the even
Fig. 3 was obtained with AMD/DS.

The same reaction system has been studied by Neb
et al. with the quantum molecular dynamics~QMD! @28#. A
serious problem of their QMD result is that too large proje
tilelike and targetlike fragments are produced even in
central collisions (Etrans.450 MeV). Consequently the
QMD calculation largely overestimates the yield of the b
clusters withZ*20, as shown in Fig. 7 of Ref.@28#. This
problem of the spurious binary feature is qualitatively simi
to the problem that has been encountered even in the A
calculation by Ono and Horiuchi for the40Ca1 40Ca colli-
sions at 35 MeV/nucleon@9#. This problem in AMD has been
solved in Ref.@9# by the stochastic incorporation of the wav
packet diffusion effect, which allows the mixing and/
breakup of the initial nuclei. In fact, the present AMD calc
lation does not show a binary feature as strong as in
01460
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QMD calculation, which can be seen in Fig. 3 and in t
cluster charge distribution to be shown later. The fermio
nature may also be important to solve the problem of QM
Papaet al. have shown in Ref.@29# that the spurious binary
feature disappears when they introduce the fermionic na
into QMD in a stochastic way.

We can expect that the early stage dynamics is not
sensitive to the model of quantum branching, beca
AMD/ D and AMD/DS are equivalent for a short time sca
and because the effective coherence time in AMD/DS is
short due to many two-nucleon collisions. In fact, it is se
in the region oft&60 fm/c in Fig. 4, which shows the time
dependence of the two quantities

^R'&5K 1

A (
i 51

A

ARix
2 1Riy

2 L , ~55!

^P'&5K 1

A (
i 51

A

APix
2 1Piy

2 L , ~56!

FIG. 4. Time evolution of the transverse radius^R'& ~solid
lines! and the transverse momentum^P'& ~dashed lines! in 129Xe
1Sn collisions at 50 MeV/nucleon averaged for the impact para
eter region 0,b,4 fm. The results of AMD/D are shown by thin
lines, while those of AMD/DS are shown by thick lines. Filled and
open circles shoŵ R'& and ^P'&, respectively, obtained by the
origial AMD calculation applied to the intermediate states at
560 fm/c of the AMD/DS calculation.
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characterizing the transverse expansion. We use the tr
verse components of the physical positionsRi and the physi-
cal momentaPi defined by Eq.~12!. The brackets stand fo
the averaging over the events with the impact param
range 0,b,4 fm. @We consider these quantities rather th
the root mean square quantities in order to focus on the
tral part of the system where clusters are mainly produc#
The solid lines in Fig. 4 show the transverse radius^R'& and
the dashed lines show the average transverse mome
^P'&. The thin lines show the result of AMD/D, while the
thick lines show the result of AMD/DS. We can see that the
transverse momentum is produced in the early stage of
collision ~before 40 or 50 fm/c). As expected, there is n
significant difference between AMD/D and AMD/DS for the
early stage dynamicst&60 fm/c.

Now our interest is in the evolution of the expanding sy
tem which has been created by the early stage dynam
beforet;60 fm/c. In Fig. 4, we can see that an importa
deviation between the two models appears in the spatia
dius ^R'& in the later reaction stage. The expansion veloc
is slower in AMD/DS with the wave packet shrinking effec
than in AMD/D without it. On the other hand, the transver
momentum, which is almost constant fort*60 fm/c, is al-
most independent of model of quantum branching. It sho
be noted that the expansion is governed not only by
momentum centroids of wave packets but also by the pr
erty of the fluctuation to the wave packet centroids. The
ter is the difference between the models, which can be n
rally understood because the wave packet shrinking ef
reduces the strength of the fluctuation to the wave pac
centroids, as discussed in Sec. II C 4. To see this effect m
clearly, we also show, by filled and open circles in Fig. 4,
results of the original AMD without quantum branching.
order to avoid the influence of the different early stage
namics, the original AMD was applied to the intermedia
states att560 fm/c of the AMD/DScalculation. We can see
that the transverse expansion is very weak without quan
branching.

In order to get a deeper understanding, let us first cons
how the expansion dynamics is described if a mean fi
model ~such as TDHF! is applied. If the two-nucleon colli-
sion effect is negligible in the expanding system, most of
single particle wave functions will widely spread over t
space. Clusters will not be produced in a mean field mo
but the global one-body distribution may be reliable. Due
the coherence of the mean field propagation, the nucl
position and the nucleon momentum are strongly correla
in the expanded system, in a similar way to the case con
ered in Fig. 2, for example. If we focus on a local part of t
expanded system, each nucleon has a rather sharp mo
tum distribution like a classical particle. The main aim
AMD/DS is to have the same global one-body distribution
in mean field models, when averaged over the branches.
essential difference is that the mean field varies from bra
to branch in the case of AMD, which is the reason w
clusters are produced in AMD, though this difference w
not affect so much the global one-body distribution. Wh
clusters are formed, however, each nucleon is localized
one of the clusters, and then it should have some momen
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distribution that satisfies the uncertainty relation and
Pauli principle. If this momentum distribution is considere
the global momentum distribution will become wider tha
the mean field prediction. Now the question is whether t
widening of the momentum distribution should be respec
or the coherent mean field propagation should be respec
When we apply AMD/DS, the coherent mean field propag
tion is respected and the widening of the momentum dis
bution is not considered as far as the one-body dynamic
concerned. It may be possible that the wave packet local
tion does not change the global one-body dynamics thro
complicated many-body correlations, which are out of t
scope of the present models. On the other hand, when
take AMD/D, we respect the widening of the momentu
distribution due to the localization of the wave packet
physical decoherence, which will increase the future exp
sion velocity. It is not possible to saya priori that one model
is superior to the other. What we can say is that AMD/DS
reproduces the mean field prediction more precisely t
AMD/ D. Another problem not discussed here is whether
mean field prediction is always reliable or not.

How does the different expansion velocity in the tw
models appear in the observables? As we have seen in F
the difference does not appear in the global transverse
mentum, and therefore the energy spectra are not good q
tities to see the effect directly. The different expansion v
locity is not due to the different momentum but due to t
different strength of the spatial component of the fluctuat
to the wave packet centroids. Therefore, we should look
the quantities that carry the information of the increase r
of the spatial radius. The cluster size distribution is one
such quantities because each cluster is formed by nucle
with similar spatial positions and velocities. It has be
shown that the cluster size decreases as the expansion v
ity increases@30,31#. Figure 5 shows how the total 104 pro
tons in the system are divided into clusters att5300 fm/c
before calculating the statistical decay of excited cluste
The results of AMD/DS and AMD/D are shown in~a! and
~b!, respectively. It is clearly seen that heavy clusters
produced more abundantly in AMD/DS than in AMD/D, re-
flecting the different expansion velocity. In the case of t
original AMD calculation linked to the early stage dynami
of AMD/DS @shown in~c!#, the produced clusters are muc
bigger than in AMD/DS, reflecting the very slow expansion
In Fig. 6, the final charge distribution after statistical decay
shown together with the INDRA data~bullets!. The data and
the calculated results can be directly compared, since
filter has been applied to the calculated events in orde
take account of the properties of the detector system.
result of AMD/D has a serious problem that the multiplic
ties of the heavy clusters withZ*15 are underestimated
Instead of the heavy clusters, the relatively light clusters w
Z;5,6 are produced too abundantly. Therefore, it seems
the expansion is too fast in AMD/D. On the other hand, the
reproduction by AMD/DS is quite satisfactory for the charg
distribution of the clusters withZ>3. These results sugges
that it is reasonable to respect the mean field prediction
the expansion dynamics in this reaction system, which c
sists of rather many nucleons and is expanding with a m
3-12
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COMPATIBILITY OF LOCALIZED WAVE PACKETS AND . . . PHYSICAL REVIEW C66, 014603 ~2002!
erate velocity. However, AMD/DShas a problem of the over
estimation of the proton multiplicity and the underestimati
of thea particle multiplicity. Probably this is a side effect o
the fact that AMD/DS uses the mean field equation so fait
fully that the light cluster emission is not respected compa
to the nucleon emission. Special care@32# will be necessary
to explain the direct production of light clusters which ha
only one quantum bound state. The use of the semiclas
version of the mean field equation~the Vlasov equation! may
also be one of the reasons why the nucleon emission is o
estimated.

The above quantitative results can be affected, in p
ciple, by the centrality selection method. In our calculati
all the events with 0,b,4 fm are considered as centr
events, while in experiment the central events are selecte
using the sum of the transverse energies (Etrans) of observed
light charged particles (Z51,2). The experimental data i
Fig. 6 were obtained by selecting the events with the con
tion Etrans.450 MeV@28#. ~These data are identical to thos
that have been shown by the histogram in Fig. 7 of Ref.@28#
in an arbitrary scale, while in our figure they are shown
the absolute scale.! Nebaueret al. have shown in QMD
simulation that events with 4,b,6 or 7 fm are also mixed
in the selected events withEtrans.450 MeV ~Fig. 3 of Ref.
@28#!. In order to estimate the effect of these semiperiphe
events, we show in Fig. 5~d! the charge partitioning obtaine
by AMD/D for 4,b,7 fm. We can see that the charact
of clusterization in semiperipheral events is not very diff

FIG. 5. The partitioning of the total charge into the clusters
t5300 fm/c ~before calculating the statistical decay of excit
clusters! in 129Xe1Sn collisions at 50 MeV/nucleon with the im
pact parameter 0,b,4 fm. The area of each sector represe
ZM(Z) summed over the specified region ofZ, whereM (Z) is the
multiplicity of clusters with chargeZ. ~a! The result of AMD/DS.
~b! The result of AMD/D. ~c! The result of the original AMD ap-
plied to the intermediate states at 60 fm/c of the AMD/DS calcu-
lation. ~d! The result of AMD/D for the impact parameter regio
4,b,7 fm.
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ent from the central events@Fig. 5~b!#. The difference be-
tween central and semiperipheral events in the AMD/D cal-
culation@~b! and~d!# is not as big as the difference betwee
AMD/ D and AMD/DS in central events@~b! and~a!#. There-
fore, a possible considerable mixture of semiperiphe
events in the data does not change our conclusion that
many small clusters are produced in AMD/D and that the
reproduction is improved by respecting the coherent m
field propagation as in AMD/DS.

Finally, the dependence on the treatment of the zero-p
kinetic energy subtraction is shown in Fig. 7 for the clus
charge distribution. As far as the AMD/D model of the quan-
tum branching is used, the result is far from the experimen
data irrespective of the treatment of the zero-point subtr
tion. In the result of AMD/DS, we can get a slightly bette
reproduction of data by using the new treatment of the ze
point subtraction given at the end of Sec. II C 4. It should
noted that the new treatment of the zero-point subtractio
more consistent with the philosophy of the AMD/DS model
of quantum branching, in that the mean field prediction
the one-body dynamics is respected.

IV. SUMMARY

In this paper, we have given a general framework t
determines the many-body quantum dynamics by the com
nation of the coherent mean field propagation and the de
herence into branched wave packets. This framework c
tains the mean field description and the molecular dynam

t

FIG. 6. The charge distribution of the produced clusters
129Xe1Sn collisions at 50 MeV/nucleon with the impact parame
0,b,4 fm, after calculating the statistical decay of excited clu
ters and applying the experimental filter for the detector setup.
solid histogram shows the result of AMD/DS, while the dotted his-
togram shows the result of AMD/D. The INDRA experimental data
@28# are shown by bullets.
3-13
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AKIRA ONO, S. HUDAN, A. CHBIHI, AND J. D. FRANKLAND PHYSICAL REVIEW C66, 014603 ~2002!
description as specific cases. The model given by R
@9,10# (AMD/ D) corresponds to taking the zero coheren
time (t50) for the mean field propagation. In this schem
the wave packet diffusion by the mean field propagation
respected by giving an appropriate fluctuation to the w
packet centroids. However, the usual fluctuation was not a
to describe the shrinking of the phase space distribut
which could be respected only by keeping the coherenc
the mean field propagation. On the other hand, we h
shown in this paper that it is possible to implement a fin
time durationt of the coherent mean field propagation b
fore decoherence, even though we still adopt a branch
treatment. As a consequence, in the new model~AMD/DS!,
the shrinking of the phase space distribution is respecte
well as the diffusion. AMD/DS reproduces the exact dynam
ics for a free nucleon and for a nucleon in a harmonic os
lator potential with arbitrary curvatures. In general cases,
branch-averaged one-body dynamics in AMD/DS should be
much closer to the prediction by mean field models than
AMD/ D. Nevertheless, by the choice oftmf50 for mean
field branching, clusters can be formed in AMD/DS as well

FIG. 7. Similar to Fig. 6. Solid and dotted histograms are
same as in Fig. 6, showing the results of AMD/DS and AMD/D,
respectively. The stars show the result of the calculation w
AMD/DScombined with the old treatment of the zero-point kine
energy subtraction. The bullets show the result of the calcula
with AMD/ D combined with the new treatment of the zero-po
kinetic energy subtraction.
i,

i,
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as in usual molecular dynamics models, because the m
field is calculated with localized wave packets in ea
branch. The two-nucleon collision effect is introduced
usual, and the decoherence into wave packets is assum
take place when a nucleon experiences a two-nucleon c
sion with a substantial momentum transfer.

The difference in the decoherence scheme between
two models results in the different diffusion properties
nucleons in nuclear matter and the different global one-b
dynamics. We have applied both models of AMD/D and
AMD/DS to the 129Xe1Sn collisions at 50 MeV/nucleon in
the impact parameter range 0,b,4 fm, where many clus-
ters are produced from the expanding system with a mo
ate expansion velocity. The effect of the wave packet shri
ing in AMD/DS certainly reduces the expansion veloci
compared to AMD/D. Reflecting this difference in the ex
pansion velocity, the charge distribution of the produc
clusters strongly depends on the model of decoherence
branches. With AMD/DS, we have larger number of heav
clusters withZ*15 and smaller number of relatively sma
clusters withZ;5,6 than with AMD/D. AMD/DS repro-
duces the INDRA experimental data much better th
AMD/ D, which suggests that the coherent mean field pro
gation for the one-body dynamics should be respected in
reaction system, where a big system is expanding wit
moderate expansion velocity. The detailed analysis of
reaction system based on the AMD calculations will be giv
in a separate paper.

However, we do not claim that AMD/DS is always supe-
rior to AMD/D or vice versa. These two models should
regarded as different schemes of approximation. AMD/DS
respects the coherent mean field propagation, while AMDD
respects the existence of strong many-body correlati
which causes the decoherence into branched wave pac
Although the decoherence has been considered in AMDDS
based on the two-nucleon collisions in this paper, it is a
possible to have other many-body effects to cause deco
ence, with which AMD/DScan be closer to AMD/D depend-
ing on the considered reaction systems. In future works
will be important to investigate such possibilities.
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