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Chiral 2 p exchange at fourth order and peripheral NN scattering

D. R. Entem* and R. Machleidt†
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We calculate the impact of the complete set of two-pion exchange contributions at chiral fourth order~also
known as next-to-next-to-next-to-leading order! on peripheral partial waves of nucleon-nucleon scattering. Our
calculations are based upon the analytical studies by Kaiser. It turns out that the contribution of fourth order is
substantially smaller than the one of third order, indicating convergence of the chiral expansion. We compare
the prediction from chiral pion exchange with the corresponding one from conventional meson theory as
represented by the Bonn full model and find, in general, good agreement. Our calculations provide a sound
basis for investigating the issue whether the low-energy constants determined frompN lead to reasonable
predictions forNN.
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I. INTRODUCTION

One of the most fundamental problems of nuclear phys
is a proper derivation of the force between two nucleons
great obstacle for the solution of this problem has been
fact that the fundamental theory of strong interaction, QC
is nonperturbative in the low-energy regime characteristic
nuclear physics. The way out of this dilemma is paved by
effective field theory concept which recognizes different e
ergy scales in nature. Below the chiral symmetry break
scale,Lx'1 GeV, the appropriate degrees of freedom
pions and nucleons interacting via a force that is governed
the symmetries of QCD, particularly~broken! chiral symme-
try.

The derivation of the nuclear force from chiral effectiv
field theory was initiated by Weinberg@1# and pioneered by
Ordóñez, Ray, and van Kolck@2–4#. Subsequently, many
researchers became interested in the field@5–20#. As a result,
efficient methods for deriving the nuclear force from chi
Lagrangians emerged@7–12# and the quantitative nature o
the chiral nucleon-nucleon (NN) potential improved@13,14#.

Current NN potentials@13,14# and phase shift analyse
@21# include 2p-exchange contributions up to third order
small momenta @next-to-next-to-leading order~NNLO!#.
However, the contribution at third order is very large, seve
times the one at second order~NLO!. This fact raises seriou
questions concerning the convergence of the chiral exp
sion for the two-nucleon problem. Moreover, it was shown
Ref. @14# that aquantitativechiralNN potential requires con
tact terms of fourth order. Consistency then implies that a
2p ~and 3p) contributions are to be included up to four
order.

For the reasons discussed, it is a timely project to inv
tigate the chiral 2p-exchange contribution to theNN inter-
action at fourth order. Recently, Kaiser@11,12# has derived
the analytic expressions at this order using covariant per
bation theory and dimensional regularization. It is the ch
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purpose of this paper to apply these contributions in peri
eral NN scattering and compare the predictions to empiri
phase shifts as well as to the results from conventional
son theory. Furthermore, we will investigate the abov
mentioned convergence issue. Our calculations provid
sound basis to discuss the question whether the low-en
constants~LECs! determined frompN lead to reasonable
predictions inNN.

In Sec. II, we summarize the Lagrangians involved in t
evaluation of the 2p-exchange contributions presented
Sec. III. In Sec. IV, we explain how we calculate the pha
shifts for peripheral partial waves and present results. S
tion V concludes the paper.

II. EFFECTIVE CHIRAL LAGRANGIANS

The effective chiral Lagrangian relevant to our proble
can be written as@22,23#

Leff5L pp
(2)1L pN

(1)1L pN
(2)1L pN

(3)1•••, ~1!

where the superscript refers to the number of derivatives
pion mass insertions~chiral dimension! and the ellipsis
stands for terms of chiral fourth order or higher.

At lowest and leading order, thepp Lagrangian is given
by

L pp
(2)5

f p
2

4
tr@]mU]mU†1mp

2 ~U1U†!# ~2!

and the relativisticpN Lagrangian reads

L pN
(1)5C̄S igmDm2MN1

gA

2
gmg5umDC, ~3!

with

Dm5]m1Gm , ~4!

Gm5
1

2
~j†]mj1j]mj†!5

i

4 f p
2

t•~p3]mp!1•••, ~5!
-
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um5 i ~j†]mj2j]mj†!52
1

f p
t•]mp1•••, ~6!

U5j2511
i

f p
t•p2

1

2 f p
2

p22
ia

f p
3 ~t•p!31

8a21

8 f p
4

p41•••.

~7!

The coefficienta that appears in the last equation is ar
trary. Therefore, diagrams with chiral vertices that invol
three or four pions must always be grouped together s
that thea dependence drops out~cf. Fig. 3, below!.

In the above equations,MN denotes the nucleon mass,gA
the axial-vector coupling constant, andf p the pion decay
constant. Numerical values are given in Table I.

We apply the heavy baryon~HB! formulation of chiral
perturbation theory@28# in which the relativisticpN La-
grangian is subjected to an expansion in terms of power
1/MN ~kind of a nonrelativistic expansion!, the lowest order
of which is

L̂pN
(1)5N̄S iD 02

gA

2
sW •uW DN

5N̄F i ]02
1

4 f p
2

t•~p3]0p!2
gA

2 f p
t•~sW •¹W !pGN1•••.

~8!

In the relativistic formulation, the field operators represe
ing nucleons,C, contain four-component Dirac spinor
while in the HB version, the field operatorsN contain Pauli
spinors; in addition, all nucleon field operators contain Pa
spinors describing the isospin of the nucleon.

At dimension 2, the relativisticpN Lagrangian reads

L pN
(2)5(

i 51

4

ciC̄Oi
(2)C. ~9!

The various operatorsOi
(2) are given in Ref.@23#. The fun-

damental rule by which this Lagrangian—as well as all
other ones—is assembled is that it must containall terms
consistent with chiral symmetry and Lorentz invarian
~apart from the other trivial symmetries! at a given chiral
dimension~here, order 2!. The parametersci are known as
LECs and are determined empirically from fits topN data
~Table I!.

The HB projectedpN Lagrangian at second order is mo
conveniently broken up into two pieces,

L̂pN
(2)5L̂pN,fix

(2) 1L̂pN,ct
(2) , ~10!

with

L̂pN,fix
(2) 5N̄F 1

2MN
DW •DW 1 i

gA

4MN
$sW •DW ,u0%GN ~11!

and
01400
h

of

-

li

e

L̂pN,ct
(2) 5N̄F2c1mp

2 ~U1U†!1S c22
gA

2

8MN
Du0

21c3umum

1
i

2 S c41
1

4MN
DsW •~uW 3uW !GN. ~12!

Note thatL̂pN,fix
(2) is created entirely from the HB expansio

of the relativistic L pN
(1) and thus has no free paramete

~‘‘fixed’’ !, while L̂pN,ct
(2) is dominated by the newpN contact

terms proportional to theci parameters, besides some sm
1/MN corrections.

At dimension 3, the relativisticpN Lagrangian can be
formally written as

L pN
(3)5(

i 51

23

diC̄Oi
(3)C, ~13!

with the operators,Oi
(3) , listed in Refs.@22,23#; not all 23

terms are of interest here. The new LECs that occur at
order are thedi . Similar to the second-order case, the H
projected Lagrangian at third order can be broken into t
pieces,

L̂pN
(3)5L̂pN,fix

(3) 1L̂pN,ct
(3) , ~14!

with L̂pN,fix
(3) and L̂pN,ct

(3) given in Refs.@22,23#.

III. NONITERATIVE 2 p-EXCHANGE CONTRIBUTIONS
TO THE NN INTERACTION

The effective Lagrangian presented in the previous s
tion is the crucial ingredient for the evaluation of the pio
exchange contributions to the nucleon-nucleon (NN) inter-
action. Since we are dealing here with a low-energy effect

TABLE I. Parameters used in our calculations. The LECsci and

d̄i are in units of GeV21 and GeV22, respectively.

Our choice Empirical

MN 938.9182 MeV
mp 138.039 MeV
gA 1.29 1.2960.01a

f p 92.4 MeV 92.460.3 MeVb

c1 –0.81 20.8160.15c

c2 3.28 3.2860.23d

c3 –3.40 24.6961.34c

c4 3.40 3.4060.04c

d̄11d̄2
3.06 3.0660.21d

d̄3
–3.27 23.2760.73d

d̄5
0.45 0.4560.42d

d̄142d̄15
–5.65 25.6560.41d

aUsing gpNN
2 /4p513.6360.20 @24,25# and applying the

Goldberger-Treiman relation,gA5gpNNf p /MN .
bReference@26#.
cTable 1, fit 1 of Ref.@27#.
dTable 2, fit 1 of Ref.@22#.
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theory, it is appropriate to analyze the diagrams in terms
powers of small momenta: (Q/Lx)n, whereQ stands for a
momentum ~nucleon three-momentum or pion fou
momentum! or a pion mass andLx'1 GeV is the chiral
symmetry breaking scale. This procedure has become kn
as power counting. For noniterative contributions to theNN
interaction ~i.e., irreducible graphs with four externa
nucleon legs!, the powern of a diagram is given by

n52l 1(
j

S dj1
nj

2
22D , ~15!

where l denotes the number of loops in the diagram,dj the
number of derivatives or pion-mass insertions andni the
number of nucleon fields involved in vertexj; the sum runs
over all verticesj contained in the diagram under conside
ation.

At zeroth order@n50, lowest order, leading order~LO!#,
we have only the static one-pion-exchange~OPE! and, at
first order, there are no pion-exchange contributions. High
order graphs are shown in Figs. 1–3. Analytic results
these graphs were derived by Kaiser and co-work
@7,11,12# using covariant perturbation; i.e., they start o
with the relativistic versions of thepN Lagrangians~see
previous section!. Relativistic vertices and nucleon propag
tors are then expanded in powers of 1/MN . The divergences
that occur in conjunction with the four-dimensional loop i
tegrals are treated by means of dimensional regularizatio
prescription which is consistent with chiral symmetry a
power counting. The results derived in this way are the sa
obtained when starting right away with the HB versions
the pN Lagrangians. However, as it turns out, the meth
used by the Munich group is more efficient in dealing w
the rather tedious calculations.

We will state the analytical results in terms of contrib
tions to the on-shell momentum-spaceNN amplitude which
has the general form

V~pW 8,pW !5
1

~2p!3
$VC1t1•t2WC1@VS1t1•t2WS#sW 1•sW 2

1@VT1t1•t2WT#sW 1•qW sW 2•qW

1@VLS1t1•t2WLS#„2 iSW •~qW 3kW !…

1@VsL1t1•t2WsL#sW 1•~qW 3kW !sW 2•~qW 3kW !%,

~16!

wherepW 8 andpW denote the final and initial nucleon momen
in the center-of-mass~c.m.! frame, respectively,

qW [pW 82pW is the momentum transfer,

kW[
1

2
~pW 81pW ! the average momentum,

SW [
1

2
~sW 11sW 2! the total spin,
01400
f

n

r-
r
rs
t

, a

e
f
d

andsW 1,2 andt1,2 are the spin and isospin operators, resp
tively, of nucleons 1 and 2. For on-energy-shell scatteri
Va and Wa (a5C,S,T,LS,sL) can be expressed as fun
tions of q andk ~with q[uqW u andk[ukW u), only.

Our formalism is similar to the one used in Refs.@7–12#,
except for two differences: all our momentum-space am
tudes differ by an overall factor of (21) and our spin-orbit
amplitudesVLS and WLS differ by an additional factor of
(22) from the conventions used by Kaiseret al. @7–12#. We
have chosen our conventions such that they are closel
tune with what is commonly used in nuclear physics.

We stress that, throughout this paper, we consideron-shell

NN amplitudes; i.e., we always assumeupW 8u5upW u[p. Note
also that we will state only thenonpolynomialpart of the
amplitudes. Polynomial terms can be absorbed into con
interactions that are not the subject of this study. Moreov
in Sec. IV, below, we will show results forNN scattering in
F and higher partial waves~orbital angular momentumL
>3) where polynomials of orderQn with n<4 do not con-
tribute.

A. Second order

Two-pion exchange occurs first at second order (n52,
NLO!, also know as leading-order 2p exchange. The graph
are shown in the first row of Fig. 1. Since a loop crea
alreadyn52, the vertices involved at this order can only b
from the leading and lowest-order LagrangianL̂pN

(1) , Eq. ~8!;
i.e., they carry only one derivative. These vertices are
noted by small dots in Fig. 1. Note that, here, we inclu
only the noniterative part of the box diagram which is o
tained by subtracting the iterated OPE contribution@Eq. ~64!,
below, but usingMN

2 /Ep'MN] from the full box diagram at
second order. To make this paper self-contained and
uniquely define the contributions for which we will sho
results in Sec. IV, below, we summarize here the expl
mathematical expressions derived in Ref.@7#:

WC52
L~q!

384p2f p
4 F4mp

2 ~5gA
424gA

221!1q2~23gA
4210gA

2

21!1
48gA

4mp
4

w2 G , ~17!

VT52
1

q2 VS52
3gA

4L~q!

64p2f p
4 , ~18!

where

L~q![
w

q
ln

w1q

2mp
~19!

and

w[A4mp
2 1q2. ~20!
2-3
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B. Third order

The two-pion-exchange diagrams of third order (n53,
NNLO! are very similar to the ones of second order, exc
that they contain one insertion fromL̂pN

(2) , Eq. ~10!. The re-
sulting contributions are typically either proportional to o
of the low-energy constantsci or they contain a factor
1/MN . Notice that relativistic 1/MN corrections can occu
for vertices and nucleon propagators. In Fig. 1, we show
row 2 the diagrams with vertices proportional toci ~large
solid dot!, Eq. ~12!, and in rows 3 and 4 a few representati
graphs with a 1/MN correction~symbols with an open circle!.
The number of 1/MN correction graphs is large and not a
are shown in the figure. Again, the box diagram is correc
for a contribution from the iterated OPE: in Eq.~64!, below,
the expansion of the factorMN

2 /Ep5MN2p2/MN1••• is
applied; the term proportional to (2p2/MN) is subtracted
from the third-order box diagram contribution. For comple
ness, we recall here the mathematical expressions derive
Ref. @7#:

VC5
3gA

2

16p f p
4 H gA

2mp
5

16MNw22F2mp
2 ~2c12c3!

2q2S c31
3gA

2

16MN
D Gw̃2A~q!J , ~21!

WC5
gA

2

128pMNf p
4 $3gA

2mp
5 w22

2@4mp
2 12q22gA

2~4mp
2 13q2!#w̃2A~q!%, ~22!

FIG. 1. Two-pion exchange contributions to theNN interaction
at second and third order in small momenta. Solid lines repre
nucleons and dashed lines pions. Small dots denote vertices

the leading orderpN LagrangianL̂pN
(1) , Eq. ~8!. Large solid dots are

vertices proportional to the LECsci from the second-order La

grangianL̂pN,ct
(2) , Eq. ~12!. Symbols with open circles are relativisti

1/MN corrections contained in the second-order LagrangianL̂pN
(2) ,

Eqs.~10!. Only a few representative examples of 1/MN corrections
are shown and not all.
01400
t

n

d

-
in

VT52
1

q2 VS5
9gA

4w̃2A~q!

512pMNf p
4

, ~23!

WT52
1

q2 WS

52
gA

2A~q!

32p f p
4 F S c41

1

4MN
Dw22

gA
2

8MN
~10mp

2 13q2!G ,
~24!

VLS5
3gA

4w̃2A~q!

32pMNf p
4

, ~25!

WLS5
gA

2~12gA
2 !

32pMNf p
4 w2A~q!, ~26!

with

A~q![
1

2q
arctan

q

2mp
~27!

and

w̃[A2mp
2 1q2. ~28!

C. Fourth order

This order, which may also be denoted by next-to-ne
to-next-to-leading order (N3LO), is the main focus of this
paper. There are one-loop graphs~Fig. 2! and two-loop con-
tributions ~Fig. 3!.

1. One-loop diagrams

(a) ci
2 contributions. The only contribution of this kind

comes from the football diagram with both vertices prop
tional to ci ~first row of Fig. 2!. One obtains@11#

VC5
3L~q!

16p2f p
4 F S c2

6
w21c3w̃224c1mp

2 D 2

1
c2

2

45
w4G ,

~29!

WT52
1

q2 WS5
c4

2w2L~q!

96p2f p
4 . ~30!

(b) ci /MN contributions. This class consists of diagram
with one vertex proportional toci and one 1/MN correction.
A few graphs that are representative for this class are sh
in the second row of Fig. 2. Symbols with a large solid d
and an open circle denote 1/MN corrections of vertices pro
portional toci . They are part ofL̂pN

(3) , Eq. ~14!. The result
for this group of diagrams is@11#

VC52
gA

2L~q!

32p2MNf p
4 @~c226c3!q414~6c11c223c3!q2mp

2

16~c222c3!mp
4 124~2c11c3!mp

6 w22#, ~31!

nt
m
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WC52
c4q2L~q!

192p2MNf p
4 @gA

2~8mp
2 15q2!1w2#, ~32!

WT52
1

q2 WS52
c4L~q!

192p2MNf p
4 @gA

2~16mp
2 17q2!2w2#,

~33!

VLS5
c2gA

2

8p2MNf p
4 w2L~q!, ~34!

WLS52
c4L~q!

48p2MNf p
4 @gA

2~8mp
2 15q2!1w2#. ~35!

(c) 1/MN
2 corrections. These are relativistic 1/MN

2 correc-
tions of the leading-order 2p-exchange diagrams. Typica
examples for this large class are shown in rows 3–6 of F
2. This time, there is no correction from the iterated OP
Eq. ~64!, since the expansion of the factorMN

2 /Ep does not
create a term proportional to 1/MN

2 . The total result for this
class is@12#

FIG. 2. One-loop 2p-exchange contributions to theNN interac-
tion at fourth order. Basic notation as in Fig. 1. Symbols with
large solid dot and an open circle denote 1/MN corrections of ver-
tices proportional toci . Symbols with two open circles mark rela
tivistic 1/MN

2 corrections. Both corrections are part of the thir

order LagrangianL̂pN
(3) , Eq. ~14!. Representative examples for a

types of one-loop graphs that occur at this order are shown.
01400
.
,

VC52
gA

4

32p2MN
2 f p

4 FL~q!~2mp
8 w24

18mp
6 w222q422mp

4 !1
mp

6

2w2G , ~36!

WC52
1

768p2MN
2 f p

4 H L~q!F8gA
2 S 3

2
q413mp

2 q213mp
4

26mp
6 w222k2~8mp

2 15q2! D14gA
4@k2~20mp

2 17q2

216mp
4 w22!116mp

8 w24112mp
6 w2224mp

4 q2w22

25q426mp
2 q226mp

4 #24k2w2G1
16gA

4mp
6

w2 J , ~37!

VT52
1

q2 VS5
gA

4L~q!

32p2MN
2 f p

4 S k21
5

8
q21mp

4 w22D , ~38!

WT52
1

q2 WS5
L~q!

1536p2MN
2 f p

4 F4gA
4 S 7mp

2 1
17

4
q2

14mp
4 w22D232gA

2 S mp
2 1

7

16
q2D1w2G ,

~39!

VLS5
gA

4L~q!

4p2MN
2 f p

4 S 11

32
q21mp

4 w22D , ~40!

WLS5
L~q!

256p2MN
2 f p

4 F16gA
2 S mp

2 1
3

8
q2D

1
4

3
gA

4 S 4mp
4 w222

11

4
q229mp

2 D2w2G , ~41!

VsL5
gA

4L~q!

32p2MN
2 f p

4 . ~42!

In the above expressions, we have replaced thep2 depen-
dence used in Ref.@12# by a k2 dependence applying th
~on-shell! identity

p25
1

4
q21k2. ~43!

2. Two-loop contributions

The two-loop contributions are quite involved. In Fig.
we attempt a graphical representation of this class. The g
disk stands for all one-looppN graphs which are shown in
some detail in the lower part of the figure. Not all of th
numerous graphs are displayed. Some of the missing o
are obtained by permutation of the vertices along the nucl
line, others by inverting initial and final states. Vertices d
noted by a small dot are from the leading-orderpN Lagrang-
2-5
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ian L̂pN
(1) , Eq. ~8!, except for the 4p vertices which are from

L pp
(2) , Eq. ~2!. The solid square represents vertices prop

tional to the LECsdi which are introduced by the third-orde
LagrangianL pN

(3) , Eq. ~13!. Thedi vertices occur actually in
one-loopNN diagrams, but we list them among the two-loo
NN contributions because they are needed to absorb d
gences generated by one-looppN graphs. Using technique
from dispersion theory, Kaiser@11# calculated the imaginary
parts of theNN amplitudes, ImVa( im) and Im Wa( im),
which result from analytic continuation to timelike mome
tum transferq5 im201 with m>2mp . We will first state
these expressions and, then, further elaborate on them:

Im VC~ im!52
3gA

4~m222mp
2 !

pm~4 f p!6 F ~mp
2 22m2!

3S 2mp1
2mp

2 2m2

2m
ln

m12mp

m22mp
D

14gA
2mp~2mp

2 2m2!G , ~44!

Im WC~ im!5Im WC
(a)~ im!1ImWC

(b)~ im!, ~45!

with

Im WC
(a)~ im!52

2k

3m~8p f p
2 !3E

0

1

dx@gA
2~2mp

2 2m2!

12~gA
221!k2x2#H 96p2f p

2 @~2mp
2 2m2!

3~ d̄11d̄2!22k2x2d̄314mp
2 d̄5#

FIG. 3. Two-loop 2p-exchange contributions at fourth orde
Basic notation as in Fig. 1. The oval stands for all one-looppN
graphs some of which are shown in the lower part of the figure.
solid square represents vertices proportional to the LECsdi which
are introduced by the third-order LagrangianL pN

(3) , Eq. ~13!. More
explanations are given in the text.
01400
r-

r-

1@4mp
2 ~112gA

2 !2m2~115gA
2 !#

k

m

3 ln
m12k

2mp
1

m2

12
~5113gA

2 !

22mp
2 ~112gA

2 !J ~46!

and

Im WC
(b)~ im!52

2k

3m~8p f p
2 !3E

0

1

dx@gA
2~2mp

2 2m2!

12~gA
221!k2x2#H 23k2x2

16kxAmp
2 1k2x2ln

kx1Amp
2 1k2x2

mp

1gA
4~m222k2x222mp

2 !F5

6
1

mp
2

k2x2

2S 11
mp

2

k2x2D 3/2

ln
kx1Amp

2 1k2x2

mp
G J ,

~47!

Im VS~ im!5Im VS
(a)~ im!1Im VS

(b)~ im!

5m2Im VT~ im!

5m2Im VT
(a)~ im!1m2Im VT

(b)~ im! ~48!

with

Im VS
(a)~ im!5m2Im VT

(a)~ im!

52
3gA

2mk3

16p f p
4 E

0

1

dx~12x2!~ d̄142d̄15!

~49!

and

Im VS
(b)~ im!5m2Im VT

(b)~ im!

52
2gA

6mk3

~8p f p
2 !3E

0

1

dx~12x2!F2
1

6
1

mp
2

k2x2

2S 11
mp

2

k2x2D 3/2

ln
kx1Amp

2 1k2x2

mp
G ,

~50!

e

2-6
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Im WS~ im!5m2ImWT~ im!

52
gA

4~m224mp
2 !

p~4 f p!6 F S mp
2 2

m2

4 D
3 ln

m12mp

m22mp
1~112gA

2 !mmpG , ~51!

wherek[Am2/42mp
2 .

We need the momentum-space amplitudesVa(q) and
Wa(q) which can be obtained from the above expressions
means of the dispersion integrals:

VC,S~q!52
2q6

p E
2mp

`

dm
Im VC,S~ im!

m5~m21q2!
, ~52!

VT~q!5
2q4

p E
2mp

`

dm
Im VT~ im!

m3~m21q2!
, ~53!

and similarly forWC,S,T .
We have evaluated these dispersion integrals and obt

VC~q!5
3gA

4w̃2A~q!

1024p2f p
6 $~mp

2 12q2!@2mp1w̃2A~q!#

14gA
2mpw̃2%, ~54!

WC~q!5WC
(a)~q!1WC

(b)~q! ~55!

with

WC
(a)~q!5

L~q!

18432p4f p
6 H 192p2f p

2 w2d̄3F2gA
2w̃2

2
3

5
~gA

221!w2G1@6gA
2w̃22~gA

221!w2#

3F384p2f p
2 @w̃2~ d̄11d̄2!14mp

2 d̄5#

1L~q!@4mp
2 ~112gA

2 !1q2~115gA
2 !#

2S q2

3
~5113gA

2 !18mp
2 ~112gA

2 ! D G J ~56!

and

WC
(b)~q!52

2q6

p E
2mp

`

dm
Im WC

(b)~ im!

m5~m21q2!
, ~57!

VT~q!5VT
(a)~q!1VT

(b)~q!

52
1

q2 VS~q!52
1

q2 @VS
(a)~q!1VS

(b)~q!#, ~58!

with
01400
y

n

VT
(a)~q!52

1

q2 VS
(a)~q!52

gA
2w2L~q!

32p2f p
4 ~ d̄142d̄15! ~59!

and

VT
(b)~q!52

1

q2 VS
(b)~q!5

2q4

p E
2mp

`

dm
Im VT

(b)~ im!

m3~m21q2!
,

~60!

WT~q!52
1

q2 WS~q!

5
gA

4w2A~q!

2048p2f p
6 @w2A~q!12mp~112gA

2 !#. ~61!

We were able to find analytic solutions for all dispersi
integrals exceptWC

(b) andVT
(b) ~andVS

(b)). The analytic solu-
tions hold modulo polynomials. We have checked the imp
tance of those contributions where the integrations have to
performed numerically. It turns out that the combined effe
on NN phase shifts fromWC

(b) , VT
(b) , andVS

(b) is smaller than
0.1° inF andG waves and smaller than 0.01° inH waves, at
Tlab5300 MeV ~and less at lower energies!. This renders
these contributions negligible, a fact that may be of inter
in future chiralNN potential developments where computin
time could be an issue. We stress, however, that in all ph
shift calculations of this paper~presented in Sec. IV, below!
the contributions fromWC

(b) , VT
(b) , andVS

(b) are always in-
cluded in all fourth-order results.

In Eqs.~56! and~59!, we use the scale-independent LEC
d̄i , which are obtained by combining the scale-depend
onesdi

r(l) with the chiral logarithmus ln(mp /l) or, equiva-

lently, d̄i5di
r(mp). The scale-dependent LECsdi

r(l) are a
consequence of renormalization. For more details about
issue, see Ref.@22#.

IV. NN SCATTERING IN PERIPHERAL PARTIAL WAVES

In this section, we will calculate the phase shifts that
sult from theNN amplitudes presented in the previous se
tion and compare them to the empirical phase shifts as w
as to the predictions from conventional meson theory.
this comparison to be realistic, we must also include
one-pion-exchange amplitude and the iterated one-pion
change, which we will explain first. We then describe
detail how the phase shifts are calculated. Finally, we sh
phase parameters forF and higher partial waves and energi
below 300 MeV.

A. OPE and iterated OPE

Throughout this paper, we consider neutron-proton (np)
scattering and take the charge dependence of OPE du
pion-mass splitting into account, since it is appreciable.
troducing the definition
2-7
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Vp~mp![2
1

~2p!3

gA
2

4 f p
2

sW 1•qW sW 2•qW

q21mp
2

, ~62!

the charge-dependent OPE fornp scattering is given by

VOPE~pW 8,pW !52Vp~mp0!1~21! I 112Vp~mp6!, ~63!

where I denotes the isospin of the two-nucleon system.
usemp05134.9766 MeV andmp65139.5702 MeV@26#.

The twice-iterated OPE generates the iterative part of
2p exchange, which is

V2p,i t~pW 8,pW !5
MN

2

Ep
E d3p9

VOPE~pW 8,pW 9!VOPE~pW 9,pW !

p22p921 i e
,

~64!

where, forMN , we use twice the reduced mass of the pro
and neutron,

MN5
2M pMn

M p1Mn
5938.9182 MeV, ~65!

andEp[AMN
2 1p2.

The T matrix considered in this study is

T~pW 8,pW !5VOPE~pW 8,pW !1V2p,i t~pW 8,pW !1V2p,irr ~pW 8,pW !,
~66!

whereV2p,irr refers to any or all of the contributions pre
sented in Sec. III. In the calculation of the latter contrib
tions, we use the average pion massmp5138.039 MeV
and, thus, neglect the charge dependence due to pion-
splitting. The charge dependence that emerges from irre
ible 2p exchange was investigated in Ref.@29# and found to
be negligible for partial waves withL>3.

B. Calculating phase shifts

We perform a partial-wave decomposition of the amp
tude using the formalism of Refs.@30–32#. For this purpose,
we first representT(pW 8,pW ), Eq. ~66!, in terms of helicity
states yieldinĝ pW 8l18l28uTupW l1l2&. Note that the helicityl i

of particle i ~with i 51 or 2! is the eigenvalue of the helicity
operator1

2 sW i•pW i /upW i u which is 6 1
2 . Decomposition into an-

gular momentum states is accomplished by

^l18l28uT
J~p8,p!ul1l2&

52pE
21

11

d~cosu!dl12l2 ,l
182l

28
J

~u!

3^pW 8l18l28uTupW l1l2&, ~67!

whereu is the angle betweenpW 8 andpW anddm,m8
J (u) are the

conventional reduced rotation matrices which can be
pressed in terms of Legendre polynominalsPJ(cosu). Time-
reversal invariance, parity conservation, and spin conse
tion ~which is a consequence of isospin, conservation and
01400
e

e

n

-

ass
c-

-

-

a-
e

Pauli principle! imply that only five of the 16 helicity ampli-
tudes are independent. For the five amplitudes, we cho
the following set:

T1
J~p,p![^11uTJ~p,p!u11&,

T2
J~p,p![^11uTJ~p,p!u22&,

T3
J~p,p![^12uTJ~p,p!u12&,

T4
J~p,p![^12uTJ~p,p!u21&,

T5
J~p,p![^11uTJ~p,p!u12&, ~68!

where 6 stands for6 1
2 and where the repeated argume

(p,p) stresses the fact that our consideration is restricte
the on-shell amplitude. The following linear combinations
helicity amplitudes will prove to be useful:

0TJ[T1
J2T2

J ,

1TJ[T3
J2T4

J ,

12TJ[T1
J1T2

J ,

34TJ[T3
J1T4

J ,

55TJ[2T5
J . ~69!

More common in nuclear physics is the representation
two-nucleon states in terms of anuLSJM& basis, whereS
denotes the total spin,L the total orbital angular momentum
andJ the total angular momentum with projectionM. In this
basis, we will denote theT-matrix elements byTL8,L

JS

[^L8SJMuTuLSJM&. These are obtained from the helicit
state matrix elements by the following unitary transform
tion:

Spin singlet

TJ,J
J0 50TJ. ~70!

Uncoupled spin triplet

TJ,J
J1 51TJ. ~71!

Coupled triplet states

TJ21,J21
J1 5

1

2J11
@J12TJ1~J11!34TJ12AJ~J11!55TJ#,

TJ11,J11
J1 5

1

2J11
@~J11!12TJ1J34TJ22AJ~J11!55TJ#,

TJ21,J11
J1 5

1

2J11
@AJ~J11!~12TJ234TJ!155TJ#,

TJ11,J21
J1 .5TJ21,J11

J1 . ~72!

The matrix elements for the five spin-dependent opera
involved in Eq.~16! in a helicity state basis, Eqs.~67!, as
2-8
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well as in uLSJM& basis, Eq.~72!, are given in Sec. IV of
Ref. @32#. Note that, for the amplitudesTJ21,J11

J1 and
TJ11,J21

J1 , we use a sign convention that differs by a fac
(21) from the one used in Ref.@32#.

We consider neutron-proton scattering and determine
c.m. on-shell nucleon momentump using the correct relativ-
istic kinematics:

p25
M p

2Tlab~Tlab12Mn!

~M p1Mn!212TlabM p

, ~73!

where M p5938.2720 MeV is the proton mass,Mn
5939.5653 MeV the neutron mass@26#, andTlab the kinetic
energy of the incident nucleon in the laboratory system.

The on-shellS matrix is related to the on-shellT matrix
by

SL8L
JS

~Tlab!5dL8L12i tL8L
JS

~p,p!, ~74!

with

tL8L
JS

~p,p![2
p

2

MN
2

Ep
pTL8L

JS
~p,p!. ~75!

For an uncoupled partial wave, the phase shiftsdJ
JS(Tlab)

parametrizes the partial-waveS matrix in the form

SJJ
JS~Tlab!5hJ

JS~Tlab!e2idJ
JS(Tlab), ~76!

implying

tan 2dJ
JS~Tlab!5

2 RetJJ
JS~p,p!

122 ImtJJ
JS~p,p!

. ~77!

The real parameterhJ
JS(Tlab), which is given by

hJ
JS~Tlab!5uSJJ

JS~Tlab!u, ~78!

tells us to what extent unitarity is observed~ideally, it should
be unity!.

For coupled partial waves, we use the parametrization
troduced by Stappet al. @33# ~commonly known as ‘‘bar’’
phase shifts,but we denote them simply byd6

J and eJ):

S S22
J S21

J

S12
J S11

J D
5S ~h2

J !1/2eid2
J

0

0 ~h1
J !1/2eid1

J D S cos 2eJ i sin 2eJ

i sin 2eJ cos 2eJ
D

3S ~h2
J !1/2eid2

J
0

0 ~h1
J !1/2eid1

J D , ~79!

where the subscript ‘‘1’’ stands for ‘‘J11’’ and ‘‘ 2 ’’ for
‘‘ J21’’ and where the superscriptS51 as well as the argu
ment Tlab are suppressed. The explicit formulas for the
sulting phase parameters are
01400
r

e

-

-

tan 2d6
J 5

Im~S66
J /cos 2eJ!

Re~S66
J /cos 2eJ!

, ~80!

tan 2eJ5
2 iS12

J

AS11
J S22

J
, ~81!

h6
J 5U S66

J

cos 2eJ
U. ~82!

The parametersd6
J andh6

J are always real, while the mixing
parametereJ is real if h6

J 51 and complex otherwise.
We note that since theT matrix is calculated perturba

tively @cf. Eq. ~66!#, unitarity is ~slightly! violated. Through
the parameterhL

JS, the above formalism provides precise i
formation on the violation of unitarity. It turns out that fo
the cases considered in this paper~namely partial waves with
L>3 andTlab<300 MeV) the violation of unitarity is, gen-
erally, of the order of 1% or less.

There exists an alternative method of calculating ph
shifts for which unitarity is perfectly observed. In th
method—known as theK-matrix approach—one identifie
the real part of the amplitudeV with the K matrix. For an
uncoupled partial wave, theS-matrix elementSL is defined in
terms of the~real! K-matrix elementkL by

SL~Tlab!5
11 ikL~p,p!

12 ikL~p,p!
, ~83!

which guarantees perfect unitarity and yields the phase s

tandL~Tlab!5kL~p,p!52
p

2

MN
2

Ep
pKL~p,p!, ~84!

with KL(p,p)5ReVL(p,p). Combining Eqs.~74! and ~83!,
one can write down theT-matrix elementtL , which is
equivalent to a givenK-matrix elementkL ,

tL~p,p!5
kL~p,p!1 ikL

2~p,p!

11kL
2~p,p!

. ~85!

Obviously, thisT matrix includes higher orders ofK ~and,
thus, ofV) such that consistent power counting is destroy

The bottom line is that there is no perfect way of calc
lating phase shifts for a perturbative amplitude. Either o
includes contributions strictly to a certain order, but violat
unitarity, or one satisfies unitarity, but includes implicit
contributions beyond the intended order. To obtain an idea
what uncertainty this dilemma creates, we have calculated
phase shifts presented below both ways: using theT-matrix
and K-matrix approaches. We found that the difference b
tween the phase shifts due to the two different method
smaller than 0.1° inF andG waves and smaller than 0.01° i
H waves, atTlab5300 MeV ~and less at lower energies!.
Because of this small difference, we have confidence in
phase shift calculations. All results presented below h
been obtained using theT-matrix approach, Eqs.~74!–~82!.
2-9
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C. Results

For the T matrix given in Eq.~66!, we calculate phase
shifts for partial waves withL>3 andTlab<300 MeV. At
fourth order in small momenta, partial waves withL>3 do
not receive any contributions from contact interactions a
thus, the nonpolynomial pion contributions uniquely pred
the F and higher partial waves. The parameters used in
calculations are shown in Table I. In general, we use aver
masses for the nucleon and pion,MN and mp , as given in
Table I. There are, however, two exceptions to this rule.
the evaluation of the c.m. on-shell momentump, we apply
correct relativistic kinematics, Eq.~73!, which involves the
correct and precise values for the proton and neutron mas
For OPE, we use the charge-dependent expression, Eq.~63!,
which employs the correct and precise values for the char
and neutral pion masses.

Many determinations of the LECsci andd̄i can be found
in the literature. The most reliable way to determine t
LECs from empiricalpN information is to extract them from
the pN amplitude inside the Mandelstam triangle~unphysi-
cal region! which can be constructed with the help of dispe
sion relations from empiricalpN data. This method was
used by Bu¨ttiker and Meißner@27#. Unfortunately, the values
for c2 and all d̄i parameters obtained in Ref.@27# carry un-
certainties so large that the values are useless. Therefor
Table I, only c1 , c3, and c4 are from Ref.@27#, while the
other LECs are taken from Ref.@22# where thepN ampli-
tude in the physical region was considered. To establis
link betweenpN and NN, we apply the values from the
above determinations in ourNN calculations. In general, we
use the mean values; the only exception isc3, where we
choose a value that is, in terms of magnitude, about
standard deviation below the one from Ref.@27#. With the
exception ofc3, our results do not depend sensitively o
variations of the LECs within the quoted uncertainties.

In Figs. 4–6, we show the phase-shift predictions
neutron-proton scattering inF, G, andH waves for labora-
tory kinetic energies below 300 MeV. The orders display
are defined as follows.

~i! Leading order~LO! is just OPE, Eq.~63!.
~ii ! Next-to-leading order~NLO! is OPE plus iterated

OPE, Eq.~64!, plus the contributions of Sec. III A~second
order!, Eqs.~17! and ~18!.

~iii ! Next-to-next-to-leading order~denoted by N2LO in
the figures! consists of NLO plus the contributions of Se
III.B ~third order!, Eqs.~21!–~26!.

~iv! Next-to-next-to-next-to-leading order~denoted by
N3LO in the figures! consists of N2LO plus the contribution
of Sec. III C~fourth order!, Eqs.~29!, ~30!, ~31!–~35!, ~36!–
~42!, and ~54!–~61!. To this order, the phase shifts hav
never been calculated before.

It is clearly seen in Figs. 4–6 that the leading order 2p
exchange~NLO! is a rather small contribution, insufficient t
explain the empirical facts. In contrast, the next ord
~N2LO! is very large, several times NLO. This is due to t
ppNN contact interactions proportional to the LECsci that
are introduced by the second order LagrangianL pN

(2) , Eq.~9!.
These contacts are supposed to simulate the contribu
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from intermediateD isobars and correlated 2p exchange
which are known to be large~see, e.g., Ref.@36#!.

All past calculations ofNN phase shifts in peripheral par
tial waves stopped at order N2LO~or lower!. This was very
unsatisfactory, since to this order there is no indication t

FIG. 4. F-wave phase shifts of neutron-proton scattering
laboratory kinetic energies below 300 MeV. We show the pred
tions from chiral pion exchange to leading order~LO!, next-to-
leading order~NLO!, next-to-next-to-leading order~N2LO!, and
next-to-next-to-next-to-leading order~N3LO!. The solid dots and
open circles are the results from the Nijmegen multienergynp
phase shift analysis@34# and the Virginia Polytechnic Institute
single-energynp analysis SM99@35#, respectively.

FIG. 5. Same as Fig. 4, but forG waves.
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CHIRAL 2p EXCHANGE AT FOURTH ORDER AND . . . PHYSICAL REVIEW C 66, 014002 ~2002!
the chiral expansion will ever converge. The novelty of t
present work is the calculation of phase shifts to N3LO~the
details of which are shown in the Appendix!. Comparison
with N2LO reveals that at N3LO a clearly identifiable tren
towards convergence emerges~Figs. 4–6!. In G ~except for
3G5, a problem that is discussed in the Appendix! and H
waves, N3LO differs very little from N2LO, implying tha
we have reached convergence. Also1F3 and 3F4 appear
fully converged. In3F2 and 3F3, N3LO differs noticeably
from N2LO, but the difference is much smaller than the o
between N2LO and NLO. This is what we perceive as
trend towards convergence.

In Figs. 7–9, we conduct a comparison between the p
dictions from chiral one- and two-pion exchange at N3L
and the corresponding predictions from conventional me
theory ~curve ‘‘Bonn’’!. As representative for conventiona
meson theory, we choose the Bonn meson-exchange m
for the NN interaction@36#, since it contains a comprehen
sive and thoughtfully constructed model for 2p exchange.
This 2p model includes box and crossed box diagrams w
NN, ND, andDD intermediate states as well as directpp
interaction inS andP waves~of the pp system! consistent
with empirical information frompN andpp scattering. Be-
sides this the Bonn model also includes~repulsive! v-meson
exchange and irreducible diagrams ofp and r exchange
~which are also repulsive!. In the phase-shift predictions dis
played in Figs. 7–9, the Bonn calculation includes only
OPE and 2p contributions from the Bonn model; the shor
range contributions are left out to be consistent with the c
ral calculation. In all waves shown~with the usual exception
of 3G5), we see, in general, good agreement between N3
and Bonn@37#. In 3F2 and 3F3 above 150 MeV and in3F4
above 250 MeV the chiral model to N3LO is more attracti
than the Bonn 2p model. Note, however, that the Bon
model is relativistic and, thus, includes relativistic corre
tions up to infinite orders. Thus, one may speculate t

FIG. 6. Same as Fig. 4, but forH waves.
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higher orders in chiral perturbation theory (xPT) may create
some repulsion, moving the Bonn and the chiral predictio
even closer together@38#.

The 2p-exchange contribution to theNN interaction can
also be derived fromempirical pN andpp input using dis-
persion theory, which is based upon unitarity, causality~ana-
lyticity !, and crossing symmetry. The amplitudeNN̄→pp is

FIG. 7. F-wave phase shifts of neutron-proton scattering
laboratory kinetic energies below 300 MeV. We show the resu
from one-pion exchange~OPE! and one- plus two-pion exchange a
predicted byxPT at next-to-next-to-next-to-leading order~N3LO!
and by the Bonn full model@36# ~Bonn!. Empirical phase shifts
~solid dots and open circles! as in Fig. 4.

FIG. 8. Same as Fig. 7, but forG waves.
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D. R. ENTEM AND R. MACHLEIDT PHYSICAL REVIEW C66, 014002 ~2002!
constructed frompN→pN and pN→ppN data using
crossing properties and analytic continuation; this amplitu
is then ‘‘squared’’ to yield theNN̄ amplitude which is related
to NN by crossing symmetry@39#. The Paris group@40# pur-
sued this path and calculatedNN phase shifts in periphera
partial waves. Naively, the dispersion-theoretic approac
the ideal one, since it is based exclusively on empirical
formation. Unfortunately, in practice, quite a few uncerta
ties enter into the approach. First, there are ambiguities in
analytic continuation and, second, the dispersion integ
have to be cut off at a certain momentum to ensure rea
able results. In Ref.@36#, a thorough comparison was con
ducted between the predictions by the Bonn model and
Paris approach and it was demonstrated that the Bonn
dictions always lie comfortably within the range of unce
tainty of the dispersion-theoretic results. Therefore, ther
no need to perform a separate comparison of our ch
N3LO predictions with dispersion theory, since it would n
add anything that we cannot conclude from Figs. 7–9.

Finally, we like to compare the predictions with the em
pirical phase shifts. InG ~except3G5) andH waves there is
excellent agreement between the N3LO predictions and
data. On the other hand, inF waves the predictions abov
200 MeV are, in general, too attractive. Note, however, t
this is also true for the predictions by the Bonnp12p
model. In the full Bonn model, also~repulsive! v and pr
exchanges are included which bring the predictions to ag
ment with the data. The exchange of av meson or combined
pr exchange are 3p exchanges. Three-pion exchange o
curs first at chiral fourth order. It has be investigated
Kaiser @9# and found to be totally negligible, at this orde
However, 3p exchange at fifth order appears to be siza
@10# and may have an impact onF waves. Besides this, ther
is the usual short-range phenomenology. InxPT, this short-
range interaction is parametrized in terms of four-nucle
contact terms~since heavy mesons do not have a place

FIG. 9. Same as Fig. 7, but forH waves.
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that theory!. Contact terms of sixth order are effective inF
waves. In summary, the remaining small discrepancies
tween the N3LO predictions and the empirical phase sh
may be straightened out in fifth or sixth order ofxPT.

V. CONCLUSIONS AND FURTHER DISCUSSION

We have calculated the phase shifts for peripheral pa
waves (L>3) of neutron-proton scattering at fourth ord
(N3LO) in xPT. The two most important conclusions fro
this study are the following.

~i! At N3LO, the chiral expansion reveals a clearly ide
tifiable signature of convergence.

~ii ! There is good agreement between the N3LO predic-
tion and the corresponding one from conventional me
theory as represented by the Bonn full model@36#.

Besides the above fundamentally important stateme
our study has also some more specific implications. A c
troversial issue that has recently drawn a lot of attention@41#
is the question whether the LECs extracted frompN are
consistent withNN. After discussing dispersion theory in th
previous section, one may wonder how this can be an is
in the year of 2002. In the early 1970s, the Stony Bro
@42,39# and the Paris@43,40# groups showed independent
that pN and NN are consistent, based upon dispersio
theoretic calculations. Since dispersion theory is a mod
independent approach, the finding is of general valid
Therefore, if 30 years later a specific theory has proble
with the consistency ofpN and NN, then that theory can
only be wrong. Fortunately, we can confirm thatxPT for pN
andNN does yield consistent results, as we will explain no
in more detail.

The reliable way to investigate this issue is to use
approach that does not contain any parameters except fo
LECs. This is exactly true for our calculations since we
not use any cutoffs and calculate theT matrix directly up to
a well-defined order. We then vary the LECs within the
one-standard-deviation range from thepN determinations
~cf. Table I!. We find that these variations do not create a
essential changes of the predicted peripheralNN phase shifts
shown in Figs. 4–9, except forc3. Thus, the focus is onc3.
We find thatc3523.4 GeV21 is consistent with the empiri-
cal phase shifts as well as the results from dispersion the
and conventional meson theory as demonstrated in F
7–9. This choice forc3 is within one standard deviation o
its pN determination and, thus, the consistency ofpN and
NN in xPT at fourth order is established.

In view of the transparent and conclusive considerat
presented above, it is highly disturbing to find in the liter
ture very different values forc3, allegedly based uponNN.
In Ref. @21#, it its claimed that the valuec3525.08
60.28 GeV21 emerges from the worldpp data below 350
MeV, whereas Ref.@41# asserts thatc3521.15 GeV21 is
implied by theNN phase shifts. The two values differ b
more than 400% which is reason for deep concern.

In Fig. 10, we show the predictions at fourth order for t
three values forc3 under debate. We have chosen3F4 as a
representative example of a peripheral partial wave sinc
has a rather large contribution from 2p exchange. Moreover
2-12
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the LECc4 is ineffective in 3F4 such that differences in th
choices forc4 do not distort the picture in this partial wave
This fact makes3F4 special for the discussion ofc3.

Figure 10 reveals that the chiral 2p exchange depend
most sensitively onc3. It is clearly seen that the Nijmege
choicec3525.08 GeV21 @21# leads to too much attraction
while the valuec3521.15 GeV21, advocated in Ref.@41#,
is far too small~in terms of magnitude! since it results in an
almost vanishing 2p-exchange contribution—quite in con
trast to the empiricalNN facts, the dispersion-theoretic re
sult, and the Bonn model.

One reason for the difference between the Nijmegen va
and ours could be that their analysis is conducted at N2LO,
while we go to N3LO. However, as demonstrated in Fig
4–6, N3LO is not that different from N2LO and, therefore,
not the main reason for the difference. More crucial is
fact that, in the Nijmegen analysis, the chiral 2p-exchange
potential, represented as a localr-space function, is cut off a
r 51.4 fm ~i.e., it is set to zero forr<1.4 fm) @44#. This
cutoff suppresses the 2p contribution, also, in periphera
waves. If the 2p potential is suppressed by phenomenolo
then, of course, stronger values forc3 are necessary, resul
ing in a highly model-dependent determination ofc3. For
example, if we multiply all noniterative 2p contributions by
exp@2(p2n1p8 2n)/L2n# with L'400 MeV andn52, then
with c3525.08 GeV21 we obtain a good reproduction o
the peripheral partial-wave phase shifts. Note thatL
'400 MeV is roughly equivalent to ar-space cutoff of
about 0.5 fm, which is not even close to the cutoff used

FIG. 10. One- and two-pion-exchange contributions at fou
order to the3F4 phase shifts for three different choices of the LE
c3. The numbers given next to the curves denote the values forc3 in
units of GeV21 used for the respective curves~all other parameters
as in Table I!. For comparison, we also show the OPE contributr
~OPE! and the result fromp12p exchange of the Bonn mode
~Bonn!. Empirical phase shifts~solid dots and open circles! as in
Fig. 4.
01400
e

e

,

n

the Nijmegen analysis. In fact, the Nijmegenr-space cutoff
of r 51.4 fm is equivalent to a momentum-space cutoffL
'mp which is bound to kill the 2p exchange contribution
~which has a momentum-space range of 2mp and larger!. To
revive it, unrealistically large parameters are necessary.

The motivation underlying the value forc3 advocated in
Ref. @41# is quite different from the Nijmegen scenario. I
Ref. @41#, c3 was adjusted to theD waves ofNN scattering,
which are notoriously too attractive. With their choicec35
21.15 GeV21, the D waves are, indeed, about righ
whereas theF waves are drastically underpredicted. Th
violates an important rule:The higher the partial, the highe
the priority. The reason for this rule is that we have mo
trust in the long-range contributions to the nuclear force th
in the short-range ones. Thep12p contributions to the
nuclear force rule theF and higher partial waves, not theD
waves. IfD waves do not come out right, then one can thi
of plenty of short-range contributions to fix it. IfF and
higher partial waves are wrong, there is no fix.

In summary, a realistic choice for the important LECc3 is
23.4 GeV21 and one may deliberately assign an unc
tainty of 610% to this value. Substantially different value
are unrealistic as clearly demonstrated in Fig. 10.
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APPENDIX: DETAILS OF FOURTH-ORDER
CONTRIBUTIONS TO PERIPHERAL PARTIAL-WAVE

PHASE SHIFTS

The fourth order consists of very many contributions~cf.
Sec. III C and Figs. 2 and 3!. Here, we show how the variou
contributions of fourth order impactNN phase shifts in pe-
ripheral partial waves. For this purpose, we display in Fig.
phase shifts for four important peripheral partial wave
namely,1F3 , 3F3 , 3F4, and 3G5. In each frame, the follow-
ing individual fourth-order contributions are shown.

~i! ci
2 graph, first row of Fig. 2, Eqs.~29! and ~30!, de-

noted by ‘‘c2’’ in Fig. 11.
~ii ! ci /MN contributions~denoted by ‘‘c/M’’!, second row

of Fig. 2, Eqs.~31!–~35!.
~iii ! 1/Mn

2 corrections~‘‘1/M2’’ !, rows 3–6 of Fig. 2, Eqs.
~36!–~42!.

~iv! Two-loop contributions without the terms propo
tional to d̄i ~‘‘2-L’’ !: Fig. 3, but without the solid square, Eq
~54!–~61!, but with all d̄i[0.

~v! Two-loop contributions including the terms propo
tional to d̄i ~denoted by ‘‘d’’ in Fig. 11!: Fig. 3, Eqs.~54!–
~61! with the d̄i parameters as given in Table I.

Starting with the result at N2LO, curve~1!, the individual
N3LO contributions are added up successively in the or

h
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FIG. 11. The effect of indi-
vidual fourth-order contributions
on the neutron-proton phase shif
in some selected peripheral parti
waves. The individual contribu-
tions are added up successively
the order given in parenthese
next to each curve. Curve~1! is
N2LO and curve~6! is the com-
plete N3LO. For further explana
tions, see the Appendix. Empirica
phase shifts~solid dots and open
circles! as in Fig. 4.
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given in parentheses next to each curve. The last curve in
series, curve~6!, is the full N3LO result.

Theci
2 graph generates large attraction in all partial wav

@cf. differences between curves~1! and ~2! in Fig. 11#. This
attraction is compensated by repulsion from theci /MN dia-
grams, in most partial waves; the exception is1F3 where
ci /MN adds more attraction@curve ~3!#. The 1/MN

2 correc-
tions @difference between curves~3! and ~4!# are typically
small. Finally, the two-loop contributions create substan
repulsion in1F3 and 3G5 which brings1F3 into good agree-
ment with the data while causing a discrepancy for3G5. In
3F3 and 3F4, there are large cancellations between
‘‘pure’’ two-loop graphs and thed̄i terms, making the ne
two-loop contribution rather small.

A pivotal role in the above game is played byWS , Eq.
~33!, from theci /MN group. This attractive term receives
factor of 9 in 1F3, a factor (23) in 3G5 and a factor of 1 in
3F3 and 3F4. Thus, this contribution is very attractive in1F3
01400
is

s

l

e

and repulsive in3G5. The latter is the reason for the ove
compensation of theci

2 graph by theci /MN contribution in
3G5 which is why the final N3LO result in this partial wav
comes out too repulsive. One can expect that 1/MN correc-
tions that occur at fifth or sixth order will resolve this pro
lem.

Before finishing this appendix, we like to point out th
the problem with the3G5 is not as dramatic as it may appe
from the phase-shift plots—for two reasons. First, the3G5
phase shifts are about one order of magnitude smaller
the F and most of the otherG phases. Thus, in absolut
terms, the discrepancies seen in3G5 are small. In a certain
sense, we are looking at ‘‘higher-order noise’’ under a ma
nifying glass. Second, the3G5 partial wave contributes 0.06
MeV to the energy per nucleon in nuclear matter, the tota
which is 216 MeV. Consequently, small discrepancies
the reproduction of3G5 by aNN interaction model will have
negligible influence on the microscopic nuclear structure p
dictions obtained with that model.
2-14
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