PHYSICAL REVIEW C 66, 014002 (2002

Chiral 2 7w exchange at fourth order and peripheral NN scattering
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We calculate the impact of the complete set of two-pion exchange contributions at chiral fourtiiadsder
known as next-to-next-to-next-to-leading orden peripheral partial waves of nucleon-nucleon scattering. Our
calculations are based upon the analytical studies by Kaiser. It turns out that the contribution of fourth order is
substantially smaller than the one of third order, indicating convergence of the chiral expansion. We compare
the prediction from chiral pion exchange with the corresponding one from conventional meson theory as
represented by the Bonn full model and find, in general, good agreement. Our calculations provide a sound
basis for investigating the issue whether the low-energy constants determinedrfMolead to reasonable
predictions forNN.
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[. INTRODUCTION purpose of this paper to apply these contributions in periph-
eral NN scattering and compare the predictions to empirical

One of the most fundamental problems of nuclear physicphase shifts as well as to the results from conventional me-
is a proper derivation of the force between two nucleons. Ason theory. Furthermore, we will investigate the above-
great obstacle for the solution of this problem has been thenentioned convergence issue. Our calculations provide a
fact that the fundamental theory of strong interaction, QCD sound basis to discuss the question whether the low-energy
is nonperturbative in the low-energy regime characteristic foconstants(LECs) determined fromwN lead to reasonable
nuclear physics. The way out of this dilemma is paved by theredictions inNN.
effective field theory concept which recognizes different en- In Sec. Il, we summarize the Lagrangians involved in the
ergy scales in nature. Below the chiral symmetry breakingevaluation of the 2r-exchange contributions presented in
scale,A,~1 GeV, the appropriate degrees of freedom areSec. lll. In Sec. IV, we explain how we calculate the phase
pions and nucleons interacting via a force that is governed bghifts for peripheral partial waves and present results. Sec-
the symmetries of QCD, particular{foroken chiral symme- tion V concludes the paper.
try.

The derivation of the nuclear force from chiral effective Il. EFFECTIVE CHIRAL LAGRANGIANS
field theory was initiated by Weinbeifd ] and pioneered by
Orddiez, Ray, and van Kolck2—4]. Subsequently, many The effective chiral Lagrangian relevant to our problem
researchers became interested in the figeR0]. As a result, can be written a$22,23
efficient methods for deriving the nuclear force from chiral
Lagrangians emergel—12 and the quantitative nature of L= LA LR+ LB+ LR+, 1)
the chiral nucleon-nucleor\(N) potential improved13,14].

CurrentNN potentials[13,14 and phase shift analyses where the superscript refers to the number of derivatives or
[21] include 27-exchange contributions up to third order in Pion mass insertiongchiral dimension and the ellipsis
small momenta[next-to-next-to-leading orde(NNLO)]. stands for terms of chiral fourth order or higher.

However, the contribution at third order is very large, several At lowest and leading ordethe 7 Lagrangian is given
times the one at second ord®&HO). This fact raises serious by
guestions concerning the convergence of the chiral expan-
sion for the two-nucleon problem. Moreover, it was shown in
Ref.[14] that aquantitativechiral NN potential requires con-

tact terms of fourth order. Consistency then implies that also
27 (and 3m) contributions are to be included up to fourth and the relativistictN Lagrangian reads
order.

2
£5727)T=Ztr[&“UaMUT+ m2(U+U"] )

For the reasons discussed, it is a timely project to inves- W _ 3l on 9a_,
tigate the chiral Z--exchange contribution to thidN inter- Lon=Y[17*D,—My+ PRARG" v, ©)
action at fourth order. Recently, Kaisgtl,12 has derived
the analytic expressions at this order using covariant pertukyith
bation theory and dimensional regularization. It is the chief
D,=d,+T,, (4)
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1 TABLE |. Parameters used in our calculations. The LECand
U#:i(fTaﬂg— f%fT): T dymt- -, (6)  d are in units of GeV! and GeV 2, respectively.
o
Our choice Empirical
i 1 i 8a—1
U=@=ltra- - o (ra)t —=—a'+t . My 938.9182 MeV
m 217 fa 8t m,. 138.039 MeV
@) gA 1.29 1.29-0.01
The coefficienta that appears in the last equation is arbi-' 92.4 Mev 92.4:0.3 MeV’
trary. Therefore, diagrams with chiral vertices that involve —0.81 —0.81+0.15
three or four pions must always be grouped together such2 3.28 3.28-0.23
that thea dependence drops o(gdf. Fig. 3, belowy. Cs —3.40 —4.69-1.34
In the above equations]y denotes the nucleon magg, ¢+ 3.40 3.40-0.04
the axial-vector coupling constant, arig the pion decay d;+d, 3.06 3.06-0.21°
constant. Numerical values are given in Table I. ds -3.27 -3.27+0.78
We apply the heavy baryofHB) formulation of chiral ds 0.45 0.45-0.4F
perturbation theoryf28] in which the relativisticwN La- A Oy _565 —5.65+0.41

grangian is subjected to an expansion in terms of powers of*
1My (kind of a nonrelativistic expansionthe lowest order  ausing g2,,/47=13.63-0.20 [24,25 and applying the

of which is Goldberger-Treiman relatioms =g ,nnf - /My -
bReferencd 26].
A1) i %». - ‘Table 1, fit 1 of Ref[27].
ﬁwN_q'DO 57 “) N Table 2, fit 1 of Ref[22].
. 1 ga 2 2 ’i 2
=N |80_F37’T'(7T><(9017)_2f 7(0' V) ’CSTI\)ICI 2C1m,n_(U+UT)+ Cr— 8MN UO+C3UMUM
8 i -
+2 Cpt+ —— My -(u><u) N (12

In the relativistic formulation, the field operators represent-

ing nucleons, ¥, contain four-component Dirac spinors,
wﬁne in the HB version, the field oprt)aratoN;contaln gaull Note thatZiy g is c(reated entirely from the HB expansion
spinors; in addition, all nucleon field operators contain PaulPf the relativistic L7 and thus has no free parameters
spinors describing the isospin of the nucleon. (“fixed” ), while /:572,5 «t 1S dominated by the newrN contact
At dimension 2the relativisticrN Lagrangian reads terms proportional to the; parameters, besides some small
1/My corrections.

5 A ) At dimension 3the relativisticwN Lagrangian can be
55731:21 Yol 3 (9 formally written as

i<
23

The various operator®® are given in Ref[23]. The fun- £®=> dvolw, (13)

damental rule by which this Lagrangian—as well as all the =1

other ones—is assembled is that it must cont@interms

consistent with chiral symmetry and Lorentz invariance\’\”th the opergtorsoi(”, listed in Refs[22,23; not all 23 .
(apart from the other trivial symmetriest a given chiral terms are of mtere_st_here. The new LECs that occur at this
dimension(here, order 2 The parameters; are known as ordgr are thed; . S!mllar to .the second-order case, Fhe HB
LECs and are determined empirically from fits #N data p_rolected Lagrangian at third order can be broken into two
(Table ). PIEces,

The HB projectedrN Lagrangian at second order is most IR L) (14)
conveniently broken up into two pieces, aN— ZaN fix T S aN,cts

- . N with £&) - and 28) . given in Refs[22,23.
L(wZ'\)l: Lgrzl\)l,fix+ ‘CSTZI\)I,CU (10) N, fix 7TN ct 9 [ 3

with Ill. NONITERATIVE 2 w-EXCHANGE CONTRIBUTIONS
TO THE NN INTERACTION

5 1 <= 9A The effective L i ted in th i -
2 N 5.5+i 5. 11 e effective Lagrangian presented in the previous sec

£ ‘LMN I {U U} N (D tion is the crucial ingredient for the evaluation of the pion-

exchange contributions to the nucleon-nuclediNj inter-

and action. Since we are dealing here with a low-energy effective
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theory, it is appropriate to analyze the diagrams in terms ofnd o, , and , , are the spin and isospin operators, respec-

powers of small momentaQ/A )", whereQ stands for a
momentum (nucleon three-momentum or pion four-
momentum or a pion mass and,~1 GeV is the chiral

symmetry breaking scale. This procedure has become known

as power counting. For noniterative contributions to g
interaction (i.e., irreducible graphs with four external
nucleon legs the powerr of a diagram is given by

V:2|+E
j

(19

nj
dj+ 3_2 ,

wherel denotes the number of loops in the diagraipthe
number of derivatives or pion-mass insertions andthe
number of nucleon fields involved in vert¢xthe sum runs
over all verticeg contained in the diagram under consider-
ation.

At zeroth ordelf =0, lowest order, leading ord€LO)],
we have only the static one-pion-exchan@@PE and, at
first order, there are no pion-exchange contributions. Highe

order graphs are shown in Figs. 1-3. Analytic results for

r-

tively, of nucleons 1 and 2. For on-energy-shell scattering,
V,andW, («=C,S,T,LS,oL) can be expressed as func-
tions of q andk (with q=|q| andk=|k|), only.
Our formalism is similar to the one used in Refg-127],
except for two differences: all our momentum-space ampli-
tudes differ by an overall factor of1) and our spin-orbit
amplitudesV, s and W, g differ by an additional factor of
(—2) from the conventions used by Kaisaral.[7—12]. We
have chosen our conventions such that they are closely in
tune with what is commonly used in nuclear physics.

We stress that, throughout this paper, we consiteshell
NN amplitudes; i.e., we always assunpE|=|p|=p. Note
also that we will state only th@onpolynomialpart of the
amplitudes. Polynomial terms can be absorbed into contact
interactions that are not the subject of this study. Moreover,
in Sec. IV, below, we will show results fddN scattering in
F and higher partial wavegorbital angular momentuni
=3) where polynomials of orde®” with v<4 do not con-
tribute.

these graphs were derived by Kaiser and co-workers

[7,11,17 using covariant perturbation; i.e., they start out

with the relativistic versions of therN Lagrangians(see
previous section Relativistic vertices and nucleon propaga-
tors are then expanded in powers ofl/. The divergences
that occur in conjunction with the four-dimensional loop in-
tegrals are treated by means of dimensional regularization,

prescription which is consistent with chiral symmetry and

A. Second order

Two-pion exchange occurs first at second order2,
NLO), also know as leading-orderr2exchange. The graphs
are shown in the first row of Fig. 1. Since a loop creates

%Ireadyu= 2, the vertices involved at this order can only be

from the leading and lowest-order Lagrangiaf}),, Eq. (8);

power counting. The results derived in this way are the samk€-» they carry only one derivative. These vertices are de-
obtained when starting right away with the HB versions ofoted by small dots in Fig. 1. Note that, here, we include
the 7N Lagrangians. However, as it turns out, the methodPnly the noniterative part of the box diagram which is ob-

used by the Munich group is more efficient in dealing with
the rather tedious calculations.

We will state the analytical results in terms of contribu-
tions to the on-shell momentum-spad®& amplitude which
has the general form

{Ve+ 71 mWe+[Vst 71 mWeloy - 0y

V(B )=
p ’p _(277)3

+[Vr+ 7 Wrloy-qos-q
+[Vist 7 W sl(—iS- (qxK))

+H[ VoLt 710 Wi ]op- (A% K) a2 (GXK)},
(16)

wherep’ andp denote the final and initial nucleon momenta
in the center-of-mas&.m,) frame, respectively,

ﬁE |5’ - |5 is the momentum transfer,

.1 ..
k= E(p’ +p) the average momentum,

-1 . .
S= §(Ul+ o,) the total spin,

tained by subtracting the iterated OPE contribufigg. (64),
below, but usingM ﬁ/EpmMN] from the full box diagram at
second order. To make this paper self-contained and to
uniquely define the contributions for which we will show
results in Sec. IV, below, we summarize here the explicit
mathematical expressions derived in Réf:

o=~ %:z)fi 4m’(5g5— 493~ 1) +q7(23g2 —~ 1004
-1)+ %A“mi : (17)
VT:_iZ S:_M (18)
q 642t

where

L(q)= a4 (19
q 2m,
and

w=\am2+ 2. (20
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2 |.-. I T SO I N I 1 9giw?A
Q D B o < Vi=——=V _Z9AW AW (q), (23
T LT LS T d® % 512aMf
(NLO) mMntn
1
Wr=——5Ws
3 e . N ”’A L\\\ q
Q * : ;+ 5 * A . )
gAA(q , 9 o,
+
(NPLO) 32wf4t< 4MN) g, 1Om+ 390
%{’_\j ::/] - } (24)
3gaW?A(q)
WENE Vism T, (25
T}:: j::j% % LS 3277|\/|Nf4
ga(1-gd) ,
FIG. 1. Two-pion exchange contributions to tNeN interaction Wis= Ww A(a), (26)
N7

at second and third order in small momenta. Solid lines represent

nucleons and dashed lines pions. Small dots denote vertices froth

the leading ordetrN Lagranglanch, Eq.(8). Large solid dots are

vertices proportional to the LECs; from the second-order La-

grangian’'3), o, Eq.(12). Symbols with open circles are relativistic A(q)= rctanz— (27)
1/My corrections contained in the second-order Lagrandl&),

Egs.(10). Only a few representative examples oMl corrections  and

are shown and not all.

w=\2m2+q2. (28)

C. Fourth order

B. Third order

The two-pion-exchange diagrams of third order=(3,
NNLO) are very similar to the ones of second order, except This order, which may also be denoted by next-to-next-
that they contain one insertion from( , Eq. (10). The re-  to-next-to-leading order (NLO), is the main focus of this
sulting contributions are typically e|ther proportional to one Paper. There are one-loop grapiég. 2) and two-loop con-
of the low-energy constants; or they contain a factor tributions(Fig. 3.
1/My. Notice that relativistic I corrections can occur i
for vertices and nucleon propagators. In Fig. 1, we show in 1. One-loop diagrams
row 2 the diagrams with vertices proportional ¢p (large (a) ¢’ contributions The only contribution of this kind
solid dof, Eq.(12), and in rows 3 and 4 a few representative comes from the football diagram with both vertices propor-

graphs with a M correction(symbols with an open circle  tional toc; (first row of Fig. 2. One obtaing11]
The number of Wy correction graphs is large and not all

are shown in the figure. Again, the box diagram is corrected 3L(q) |[cCa W2 2 c2
for a contribution from the iterated OPE: in E®4), below, VC:l@n_—zle ( 6 +03W 4c1m + 45W
the expansion of the factav? N Ep=My—p 2IMp+ - -+ is i (29)
applied; the term proportlonal to—(pZ/MN) is subtracted
from the third-order box diagram contribution. For complete- 1 cﬁwZL(q)
ness, we recall here the mathematical expressions derived in Wi=— 5Ws= 9621% (30)
Ref. [7], g T
3g2 g2me (b) ¢;/My contributions This class consists of diagrams
C=—A4[A—”2—{2mi(201—c3) with one vertex proportional to; and one I correction.
16t [ 16Myw A few graphs that are representative for this class are shown
2 in the second row of Fig. 2. Symbols with a large solid dot
—? cat A ” 2A(q)] (21)  and an open circle denoteM{, corrections of vertices pro-
16Mp portional toc; . They are part o2, Eq. (14). The result
for this group of diagrams igl1]
9a (q)
We= W{39Am w2 Ve=— %[ —6C3)q*+4(6¢,+Cc,— 3C5)g2m?
—[4m2+20%—gi(4m>+3g?) W?A(q)}, (22 +6(c,—2¢3)mM +24(2¢, + cg)mew 2], (31)
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Q4 (N°LO) ¥

b - -

—— b - - -~ - -

———

FIG. 2. One-loop Zr-exchange contributions to théN interac-
tion at fourth order. Basic notation as in Fig. 1. Symbols with a
large solid dot and an open circle denot&}/ corrections of ver-
tices proportional t&; . Symbols with two open circles mark rela-
tivistic 1/M2, corrections. Both corrections are part of the third-
order LagrangianZ®, Eq. (14). Representative examples for all
types of one-loop graphs that occur at this order are shown.
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4
Vo= — 9a

L(q)(2méw

-4

32m?ME L

6
m

2Z-g*—2ml)+ —”1
2w

+8méw™ (36)

We=— L(q)

1 3
22 441 3m2 a2+ 3m?
—6mow 2 —k*(8m? + 5q2)) +4ga[k*(20m2 +7q?

4+ 12miw 2

-2 4.2 —

—4m_ g°w

4.6

1®Am’ﬁ
2

w

—16miw )+ 16miw-

—5q*—6m2g”—6my]—4kw?| + ] ., (37)

1 gaL(@) [ , 5
J— [ — +___
Vs 32m°ME L k

8q2+ mj‘Tw2>, (39

VT:_

1 L(q)

Wr=- > 2 V5= 1536:2m2 2t

4gA(7m +—q

7
2 2
=+ 769 )+W '

(39

+4mj‘Tw2) 3205/ m

gaL(q)

LS=4772—M'2\If;1T (40)

i 400-2
(32q MW )

L(q)

L™ 256m2M 2L

16g5| m2 +

3
2 5
8q>

+3gA

11
~gal 4miw~ 2——q —9m? ) WZ}, (41

oL ™

gaL(a)

(42

32m2MEfL”

In the above expressions, we have replacedphelepen-
dence used in Ref12] by a k? dependence applying the
(on-shel) identity

1
p2=Zq2+ k2. (43

We=— ﬁ[g,«sm +502)+w?], (32
We=— % 5= %{gi(laﬂ% 70%) - w?],

(33

vLs=8W?—j§fiw2L(q>, (34)

Ls=— %[gwm +50%)+w?]. (35

2. Two-loop contributions

The two-loop contributions are quite involved. In Fig. 3,

(c) 1M, corrections These are relativistic My, correc-  we attempt a graphical representation of this class. The gray
tions of the leading-order 2-exchange diagrams. Typical disk stands for all one-looprN graphs which are shown in
examples for this large class are shown in rows 3—6 of Figsome detail in the lower part of the figure. Not all of the
2. This time, there is no correction from the iterated OPEnumerous graphs are displayed. Some of the missing ones
Eq. (64), since the expansion of the factbri/E, does not are obtained by permutation of the vertices along the nucleon
create a term proportional toMg, . The total result for this line, others by inverting initial and final states. Vertices de-
class is[12] noted by a small dot are from the leading-orady Lagrang-
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-~ . K
Q4 ) (> @‘*:: FIAME(14+203) — p*(1+503) 1
(N°LO) | wt2x  u? 54 1302
XIn— =+ 75(5+130%)
L SO S SR Tl —2m2(1+ 2g§)] (46)
S =R RS SO O and
- ImW®) (i )= — 2x fldx[gz(zmz—;f)
uR® SO S S ¢ 3u(8mf2)3 ) HEA
buti +2(g%— 1) k®?]] —3x2%?
FIG. 3. Two-loop 2r-exchange contributions at fourth order. 9a K K
Basic notation as in Fig. 1. The oval stands for all one-ladyp
graphs some of which are shown in the lower part of the figure. The KX+ M2+ k 232
solid square represents vertices proportional to the L&Gsghich + 6Kx\/m + k2x?In
are introduced by the third-order Lagrangidt®), Eq. (13). More My
explanations are given in the text. 2
402 2,2 2 M
+gA(M —2K°X —Zmﬂ.) g‘i‘m
ian L’Sf,ﬂ Eq. (8), except for the 4 vertices which are from
£ "Eq. (2). The solid square represents vertices propor- m2 |32 kx+\mi+ k%2
tional to the LECgd; which are introduced by the third-order -1 prvel L m, '
LagrangianZ (3}, Eq. (13). Thed; vertices occur actually in
one-loopNN diagrams, but we list them among the two-loop (47)
NN contributions because they are needed to absorb diver-
gences generated by one-loaN graphs. Using techniques Lo @)/ (b)/;
from dispersion theory, Kais¢d 1] calculated the imaginary IMV(ip)=ImVsT(in) +imVsi(in)
parts of theNN amplitu_des, qua(iy) and_ Im_Wa(i,u), = u’lm V(i)
which result from analytic continuation to timelike momen- X @), X (),
tum transferq=iu—0" with u=2m_. We will first state =p MV (ip) + pmVy(in)  (48)
these expressions and, then, further elaborate on them:
with
3ga(p®—2m?)
IMVe(ip)=— —— T (m2—2u?)
mu(4f;) N
22— 42 wt2m Im V(i ) = w2im VP (i )
x| 2m_+ —— n ”) 2 3
” 2 -2 3gpmk” (1 - =
a p e === 7 f dx(1—x?)(dq4—dys)
167t Jo
+4gimw<2mi—u2)}, (44) 49)
ImWe(iw) =ImWE(iw) +ImW(in), 45  and
with . .
IMm V& (i ) = u?Im VP (i )
2
Im W@ (i )= f 2 29A/J« 1 me
mWe(in) m dX[gA( m ) = dX(l x?)| — 5 K2X2
+2(gf\—1)f<2x2](96772f2[(2m2—,u.2) . mi 3’2| KX+ M2+ kX
g 7T -1+ )
K2X? n m, '
X (dq+dj) — 2k?x?d3+ 4m?ds] (50)
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Im Wi 1) = w2 ImWer(i )

_ G Am [, p?
- w(4f,)° T 4
mt+2m

”+(1+2g,§)um,,}, (51)

w

X1In
m—2m

where k= \[u?/4—mZ,

We need the momentum-space amplitudégq) and

PHYSICAL REVIEW C 66, 014002 (2002

gawzL(q)

v (dy4—dys) (59)

1
V@ (q)=— ;v(;)(q>= —

and
2q* f Im VP (i)

1
(b) —_ D -1 7
Vi(q)= qzvs (q)= e MM3(M2+q2),
(60)

W,(q) which can be obtained from the above expressions by

means of the dispersion integrals:

29° (= Im Ve o(in)
Ves(@)=—— - Mﬁ (52
2q% (= Im V(i
V(g = m Vile) (53

7 Jom, " p3 ()

and similarly forWc g 1.

1
Wr(q)=— ?WS(Q)
gaw?A(q)
ZM[WZA(q) +2m,(1+293)]. (61

We were able to find analytic solutions for all dispersion
integrals exceptv®® andV{® (andVv{’). The analytic solu-
tions hold modulo polynomials. We have checked the impor-

We have evaluated these dispersion integrals and obtairfance of those contributions where the integrations have to be

3gAW?A(q)

=W{<mi+2q2>[2mw+’v"v2A<q>]

Ve(9)
+4gam, W}, (54)

We(q) =W (q)+ W) (q) (55)

with

L
W)=

2gaw?
18432741° I

( 1927%f2w?dj

+[6gaw?— (ga—1)w?]

3
—5(GA-Dw

x| 3847212 [WA(d; +d,) + 4mZds]

+L(q)[4m2(1+2g3)+q%(1+503)]

2
—(%(5+13g§)+8m§7(1+2gi)>] (56)
and
2q° (= Im WE(in)
b) L -~ 7
W(q)=—— s S
V(@) =V& () +VP(q)
1 1 (a) (b)
== Vs @=" V@ +V(@]. (69
with

performed numerically. It turns out that the combined effect
onNN phase shifts fronw® , v{?)  andv®) is smaller than
0.1° inF andG waves and smaller than 0.01° khwaves, at
Tiab=300 MeV (and less at lower energlesThis renders
these contributions negligible, a fact that may be of interest
in future chiralNN potential developments where computing
time could be an issue. We stress, however, that in all phase
shift calculations of this papépresented in Sec. IV, below
the contributions fromW® | VI? andVv® are always in-
cluded in all fourth-order results.

In Egs.(56) and(59), we use the scale-independent LECs,

Ei, which are obtained by combining the scale-dependent
onesd;(\) with the chiral logarithmus Im@,./\) or, equiva-

lently, d;=d{(m,). The scale-dependent LE@&(\) are a
consequence of renormalization. For more details about this
issue, see Ref22].

IV. NN SCATTERING IN PERIPHERAL PARTIAL WAVES

In this section, we will calculate the phase shifts that re-
sult from theNN amplitudes presented in the previous sec-
tion and compare them to the empirical phase shifts as well
as to the predictions from conventional meson theory. For
this comparison to be realistic, we must also include the
one-pion-exchange amplitude and the iterated one-pion ex-
change, which we will explain first. We then describe in
detail how the phase shifts are calculated. Finally, we show
phase parameters férand higher partial waves and energies
below 300 MeV.

A. OPE and iterated OPE

Throughout this paper, we consider neutron-protop)(
scattering and take the charge dependence of OPE due to
pion-mass splitting into account, since it is appreciable. In-
troducing the definition
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1 gf\ (;1. a(;z,a Pauli principlg imply that only five of the 16 helicity ampli-

V. (m)=— Rove et (620  tudes are independent. For the five amplitudes, we choose
(2m)” 4f7 g*+m7 the following set:
the charge-dependent OPE fop scattering is given by Ti(p,p)=(++|T(p,p)|++),
Vopelp',P) == V(M) +(—1)' 12V (m,-), (63 T3(p.p)=(++[T(p.p)| = —),
wherel denotes the isospin of the two-nucleon system. We Tg(p,p)z<+ —|Tp,p) |+ -),
usem_o=134.9766 MeV andn -=139.5702 Me\26].
, Tgfcagiﬁséiti\rlztiig gPE generates the iterative part of the Ta(p,p)=(+—|T(p,p)|— +),
™ ’
2 Ve 5o §'.5) Ta(p.p)=(++|T(p.p)|+-). (68)
S, - N ,VorelP ,P")Vopd P70
Vori(p',p)==| d°p s where + stands for+ 3 and where the repeated argument
Ep p2—p"?+ie

64) (p,p) stresses the fact that our consideration is restricted to
the on-shell amplitude. The following linear combinations of

where, forM, we use twice the reduced mass of the protorh€licity amplitudes will prove to be useful:
and neutron,

OTJETi_TJ’
2M M
- p7n_ i S S S
My M+ M, 938.9182 MeV, (65) 3

e S S M

andE,=M%+pZ. 1t 12

The T matrix considered in this study is UPI=TI4+ T2,
T(P'.P)=VorelP':P)+Varit(P'.P) + Vau,ine (B'.P), SSTI=2T2, 69)

(66)
_ More common in nuclear physics is the representation of
where Vs, i refers to any or all of the contributions pre- 4 nycleon states in terms of dhSJIM) basis, whereS
sented in Sec. Ill. In the calculation of the latter contribu-yanotes the total spitt, the total orbital angular momentum

tions, we use the average pion masg=138.039 MeV 414 the total angular momentum with projectioh In this
and, thus, neglect the charge dependence due to pion-mass.ic e will denote theT-matrix elements byTJS
splitting. The charge dependence that emerges from irreduc- ;. ' L7L

e 21 exchange was ivestigated in REE9] and found o (i SEECET, TWEst B SORERY TO 02 FEE,
be negligible for partial waves with=3. y 9 y

tion:
_ ) Spin singlet
B. Calculating phase shifts
J0 _

We perform a partial-wave decomposition of the ampli- Tyy="T. (70
tude using the formalism of Refs30—32. For this purpose,
we first represenfl(p’,p), Eq. (66), in terms of helicity
states yieldingp’ N\ 4| T|PA1\,). Note that the helicity\; =117 (72
of particlei (with i=1 or 2 is the eigenvalue of the helicity
operatori o - p; /|p;| which is + 1. Decomposition into an-
gular momentum states is accomplished by

Uncoupled spin triplet

Coupled triplet states

1
o Tiygo1= [IP2T9+ (I+1)%4T7+ 233 +1)%°T7],
(MAZIT(p",p)NaN2) TR 2041
+1 3 1
:277‘[71 d(COSQ)d)\l_)\Z’Ai_)\é(a) Tg:}rl’JJrl:m[(J_i_l)lZTJ+J34TJ_2 J(I+ 1)55TJ],

X(P'MAITIPAIN2), (67) 1
T3t 10+1= 5377 W@+ DT =3T9) 4577,

where# is the angle betweeﬁ’ andﬁ anddfn’m,(a) are the

conventional reduced rotation matrices which can be ex-
pressed in terms of Legendre polynominBlgcosé). Time-
reversal invariance, parity conservation, and spin conservaFhe matrix elements for the five spin-dependent operators
tion (which is a consequence of isospin, conservation and thiwvolved in Eq.(16) in a helicity state basis, Eq$67), as

Tj-li—l,J—l'szl—l,J-#l' (72
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well as in|LSJIM) basis, Eq(72), are given in Sec. IV of
Ref. [32]. Note that, for the amplitude§): 13+1 and
TJ+1J 1, We use a sign convention that differs by a factor
(—1) from the one used in Ref32].

We consider neutron-proton scattering and determine the

c.m. on-shell nucleon momentupusing the correct relativ-
istic kinematics:

M3T an(Tiap+2Mp)
(Mp+M)2+2T;5M

2:

(73

where M;=938.2720 MeV is the proton massM,
=0939.5653 MeV the neutron maz6], andT,,;, the kinetic
energy of the incident nucleon in the laboratory system.

The on-shellS matrix is related to the on-shell matrix

by

S (Tiap) =61 +2i 7.5 (p,p), (74)

with
75 (p, p)——EE—pﬂL(p p). (75)

For an uncoupled partial wave, the phase shiﬁt?{T,ab)
parametrizes the partial-way®matrix in the form

S5 (Tiap) = 73X(T1a b)eZI 3 M), (76)
implying
tan 2898(T,p) = 2 Rer35(p,p) . 7
1-2Im735(p.p)
The real parameten](T,,;,), which is given by
7 Tiap) = [S)3(Tian), (78)

tells us to what extent unitarity is observédeally, it should
be unity).

For coupled partial waves, we use the parametrization in-

troduced by Stapgt al. [33] (commonly known as “bar”
phase shiftsbut we denote them simply # and ¢;):

v 5

((77 )22 0 )( coS2; isin zeJ)

0 (7,1)1/2@51 i sin2e; coOs 2,
(7]{)1/2ei5“]_ 0

where the subscript +” stands for “J+1” and “ —" for

“J—1"and where the superscri@=1 as well as the argu-

mentT,,, are suppressed. The explicit formulas for the re-

sulting phase parameters are

PHYSICAL REVIEW C 66, 014002 (2002

Im(S2. . /cos 2¢;)

tan28, =——
~ ReS)./cos 2%;)

(80)
—-is) _

C0S 2|’

tan 2e;= (81

7= (82)

The parameters’. and7’. are always real, while the mixing
parametere; is real if 7;9:= 1 and complex otherwise.

We note that since th& matrix is calculated perturba-
tively [cf. Eq. (66)], unitarity is (slightly) violated. Through
the parametey;;*, the above formalism provides precise in-
formation on the violation of unitarity. It turns out that for
the cases considered in this pafeamely partial waves with
L=3 andT,;,=300 MeV) the violation of unitarity is, gen-
erally, of the order of 1% or less.

There exists an alternative method of calculating phase
shifts for which unitarity is perfectly observed. In this
method—known as th&-matrix approach—one identifies
the real part of the amplitud¥ with the K matrix. For an
uncoupled partial wave, tH@matrix elemeng, is defined in
terms of the(rea) K-matrix elements; by

1+ik (p,p)

1Tk (p.p)" ®3

S(Tiap) =

which guarantees perfect unitarity and yields the phase shift

2

M
tand (Tiap) = k1(P,P) =~ 5 £ PKL(PP), (84
p

with K, (p,p)=ReV,_(p,p). Combining Eqs(74) and (83),
one can write down thel-matrix elementr, , which is
equivalent to a giverk-matrix elementx ,

KL(p p)+IKL(p p)
x2(p,p)

7(p.p)= (89

Obviously, thisT matrix includes higher orders d€ (and,
thus, ofV) such that consistent power counting is destroyed.
The bottom line is that there is no perfect way of calcu-
lating phase shifts for a perturbative amplitude. Either one
includes contributions strictly to a certain order, but violates
unitarity, or one satisfies unitarity, but includes implicitly
contributions beyond the intended order. To obtain an idea of
what uncertainty this dilemma creates, we have calculated all
phase shifts presented below both ways: usingTHmeatrix
and K-matrix approaches. We found that the difference be-
tween the phase shifts due to the two different methods is
smaller than 0.1° i andG waves and smaller than 0.01° in
H waves, atT,,=300 MeV (and less at lower energies
Because of this small difference, we have confidence in our
phase shift calculations. All results presented below have
been obtained using thiEmatrix approach, Eqg74)—(82).
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C. Results T L 7 T 1
o ) Oe, 1 F B
For the T matrix given in Eq.(66), we calculate phase 3 _‘\. 3 | 3
shifts for partial waves with.=3 andT,,,<300 MeV. At E’ oL ‘\. | ;':,
fourth order in small momenta, partial waves witk=3 do H ° 5
not receive any contributions from contact interactions and,§ - ou N2LO i
thus, the nonpolynomial pion contributions uniquely predict & [ \o‘\".h%zbo g
the F and higher partial waves. The parameters used in oul I o
H H 6 P U R R . .
calculations are shown in Tablg I. In general, we use average 0 w00 200 300 e 200 300
masses for the nucleon and pidiy andm_, as given in Lab. Energy (MeV) Lab. Energy (MeV)

Table I. There are, however, two exceptions to this rule. For

the evaluation of the c.m. on-shell momentpnwe apply — —
correct relativistic kinematics, Eq73), which involves the - 3F
correct and precise values for the proton and neutron masses 3

: g 08y no|l 2

For OPE, we use the charge-dependent expressior(6Bg. 2 .\'\,,/ ] 2
which employs the correct and precise values for the charge('g', L ® A _6_./‘ N2"°_ E
and neutral pion masses. 8 .”n,\.{ e 8

Many determinations of the LEQs andd; can be found & | "N~ N £
in the literature. The most reliable way to determine the ™[ Lo
LECs from empiricalrN information is to extract them from 0 100 200 300 o e 200 300
the 7N amplitude inside the Mandelstam triandglenphysi- Lab. Energy (MeV) Lab. Energy (MeV)

cal region which can be constructed with the help of disper-

sion relations from empiricatrN data. This method was ~Wd > )
used by Bitiker and MeiRnef27]. Unfortunately, the values laboratory kinetic energies below 300 MeV. We show the predic-
tions from chiral pion exchange to leading ord&O), next-to-

for CZ_ a'nd alld; parameters obtained in R¢27] carry un- leading order(NLO), next-to-next-to-leading ordefN2LO), and
certainties so large that the values are useless. Therefore, jay; 15 next-to-next-to-leading ordéN3LO). The solid dots and
Table I, onlyc;, c3, andc, are from Ref[27], while the  gpen circles are the results from the Nijmegen multienengy

other LECs are taken from Reff22] where themrN ampli-  phase shift analysi$34] and the Virginia Polytechnic Institute
tude in the physical region was considered. To establish gingle-energynp analysis SM9935], respectively.

link between7N and NN, we apply the values from the

aboveh determ|nat|lons .|n r?lNN ::alculatlops. I_n gehneral, W€ from intermediateA isobars and correlated 2 exchange

Choose a value that i In terms of magnifude, about ondfich &re known to be largisee, e.g. Re(3€).

standard deviation belo,vv the one from IgEi[?] With the . All past calculations oNN phase shifts in pgripheral par-
e tial waves stopped at order N2L@r lowen. This was very

exqeptlon ofcs, our resu_ltg do not depend sen.sm.vely on unsatisfactory, since to this order there is no indication that
variations of the LECs within the quoted uncertainties.

In Figs. 4—6, we show the phase-shift predictions for

FIG. 4. F-wave phase shifts of neutron-proton scattering for

neutron-proton scattering iR, G, andH waves for labora- A t ]
tory kinetic energies below 300 MeV. The orders displayed o 21 G4 1 5
are defined as follows. 8 5L ﬁ/gﬁgt& 3
(i) Leading orderLO) is just OPE, Eq(63). £ ° 1 £
(i) Next-to-leading ordefNLO) is OPE plus iterated ‘g 1} o/ _~-Nwo 2
OPE, Eq.(64), plus the contributions of Sec. IllAsecond & ¢ gt 10 g
orden, Eqgs.(17) and(18). 051 /6(( ]
(iil) Next-to-next-to-leading ordefdenoted by N2LO in oo L . 1 . 6L
the figure$ consists of NLO plus the contributions of Sec. 0 100 200 300 0 100 200 300
Il.B (third orde, Egs.(21)—(26). Lab- Eneray (eV) kab. Energy (MeV)
(iv) Next-to-next-to-next-to-leading ordefdenoted by
N3LO in the figureg consists of N2LO plus the contributions or " 3 L]
of Sec. Ill C(fourth ordey, Eqgs.(29), (30), (31)—(35), (36)— - G4 NaL —
(42), and (54)—(61). To this order, the phase shifts have § ™[ a .?Ni'ag g
never been calculated before. £ o™ ] £
It is clearly seen in Figs. 4-6 that the leading order 2 g T s 1%
exchangéNLO) is a rather small contribution, insufficientto 2 ,/° |l £
explain the empirical facts. In contrast, the next order I /’
(N2LO) is very large, several times NLO. This is due to the oodT L . . . . .
m7NN contact interactions proportional to the LEGsthat 0 1L°g . 200 M3°° 0 ‘L°g c 200 M33°
are introduced by the second order Lagrangiaf , Eq.(9). 2. Eneray (Me) 2b- Energy (MeV)
These contacts are supposed to simulate the contributions FIG. 5. Same as Fig. 4, but f@& waves.
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T T T T T T T T T T T T T T
06 - 3 X oe 1 -
° H4 N2Lo . F3 4r
? ..l 3 o3t Tt g0
s 04 s £ Ro S L\ S 5l
£t g 04r s 1 £ 2F Ve 1 £ 7
& 08 g & & Q . & )
3 - 2 g |
2 12 8 o2f i’/ . g 4l o £
a | a a 0 N3LO RS
-1.6 /. S
- NLO oenp®™ L . 1 . 1 6 P N TR T oeP—L . 1.1
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Lab. Energy (MeV) Lab. Energy (MeV) Lab. Energy (MeV) Lab. Energy (MeV)
T T T T T T T —
04 3F
F3 g T oe, 3 3
3 g 03 g 1o N3LO] §
£ . = £ A .~ Bonn £
‘é’ ‘g 0.2 & ol 3 il ) 5
] & 2 ., ® 9 o 8
F £ 5 . [ J s
o o 01 S £
4 **.. OPE
%0 100 200 300° 000 200 00 EPPTEEEe——— : .
0 100 200 300 0 100 200 300
Lab. Energy (MeV) Lab. Energy (MeV) Lab. Energy (MeV) Lab. Energy (MeV)
FIG. 6. Same as Fig. 4, but fét waves. FIG. 7. F-wave phase shifts of neutron-proton scattering for

. . . laboratory kinetic energies below 300 MeV. We show the results
the chiral expansion will ever converge. The novelty of the one-pion exchang@PB and one- plus two-pion exchange as
pres_ent Work_ls the caIcuIauo_n of phase Sh'_fts to N3Q_I.h1e predicted byyPT at next-to-next-to-next-to-leading ord@t3LO)
details of which are shown in the AppengibXComparison  ang by the Bonn full model36] (Bonn). Empirical phase shifts
with N2LO reveals that at N3LO a clearly identifiable trend (sojig dots and open circless in Fig. 4.

towards convergence emerg@sgs. 4—6. In G (except for

°Gs, problem that is discussed in the AppendandH  nhigher orders in chiral perturbation theory®T) may create
waves, N3LO differs very little from N2LO, implying that some repulsion, moving the Bonn and the chiral predictions
we have reached convergence. Al$B; and *F, appear ayen closer togethdB8].

fully converged. In®F, and °F3, N3LO differs noticeably The 27-exchange contribution to théN interaction can
from N2LO, but the difference is much smaller than the oney|sp pe derived fronempirical #N and 7 input using dis-

between N2LO and NLO. This is what we perceive as &ersjon theory, which is based upon unitarity, causatitya-

trend towards convergence. . . L .
: . t nd crossin mmetry. The amplit i
In Figs. 7-9, we conduct a comparison between the prel-ytICI y), and crossing symmetry. The amplitu&— 7 is

dictions from chiral one- and two-pion exchange at N3LO — — — —

and the corresponding predictions from conventional mesor r 1G
theory (curve “Bonn”). As representative for conventional B2} 4 1 % i
meson theory, we choose the Bonn meson-exchange mod@& v .
for the NN interaction[36], since it contains a comprehen- "5") r.ﬁ ;E,
sive and thoughtfully constructed model forr2exchange. g 1r ,’./ ope ] 8 i
This 27 model includes box and crossed box diagrams with & oS g OPE
NN, NA, andAA intermediate states as well as directr A~ Bonn
interaction inS and P waves(of the w7 system consistent oen® L . 1 . . - ; ; N

. o ) . 0 100 200 300 0 100 200 300
with empirical information frommN and 77 scattering. Be- Lab. Energy (MeV) Lab. Energy (MeV)
sides this the Bonn model also includespulsive w-meson
exchange and irreducible diagrams of and p exchange — N
(which are also repulsiyeln the phase-shift predictions dis- r 3G
played in Figs. 7-9, the Bonn calculation includes only the 5 | 4 Bomni B
OPE and 2r contributions from the Bonn model; the short- 2 o230l 3
range contributions are left out to be consistent with the chi-g 9//' g -
ral calculation. In all waves showith the usual exception g ,| ot 1 8
of 3Gg), we see, in general, good agreement between N3LCE W £-
and Bonn[37]. In 3F, and 3F5 above 150 MeV and irfF, e
above 250 MeV the chiral model to N3LO is more attractive oes™— . 1+ . 1 . -
than the Bonn 2z model. Note, however, that the Bonn ° » Eni‘r’gy o) ° » Eni?gy o)
model is relativistic and, thus, includes relativistic correc- ' '
tions up to infinite orders. Thus, one may speculate that FIG. 8. Same as Fig. 7, but f@& waves.
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' 3 ] that theory. Contact terms of sixth order are effective in

" = o5l H4 waves. In summary, the remaining small discrepancies be-
g g / z°fg tween the N3LO predictions and the empirical phase shifts
% % oal ///./90 E may be straightened out in fifth or sixth order pPT.
3 3 5 ]
£ £ o2f /,s’/ - V. CONCLUSIONS AND FURTHER DISCUSSION

om’\»./f ] We have calculated the phase shifts for peripheral partial

0 100 200 300 0 100 200 300 waves (=3) of neutron-proton scattering at fourth order
Lab. Enetgy (MeV) Lab. Ehetgy (MeV)

(N3LO) in xPT. The two most important conclusions from
this study are the following.

(i) At N3LO, the chiral expansion reveals a clearly iden-
tifiable signature of convergence.

g o 1 g (i) There is good agreement between thi.® predic-

£ o4 1l £ tion and the corresponding one from conventional meson
‘; ‘§ theory as represented by the Bonn full mof&s)].

£ o8 1l 8 Besides the above fundamentally important statements,

our study has also some more specific implications. A con-

N3LO L. .
troversial issue that has recently drawn a lot of attentiti

\’oBonn

qob— 1 1 . ¥OpE a L . .
0 lgg Enz:rm (Mzet)a 0 1._:?, Enigﬂ (Mzgf)’ is the question whether the LECs extracted frarl are
- Energy Enerey consistent witiNN. After discussing dispersion theory in the
FIG. 9. Same as Fig. 7, but fot waves. previous section, one may wonder how this can be an issue

in the year of 2002. In the early 1970s, the Stony Brook

constructed frommN—aN and #N—a7wN data using [42,39 and the Pari$43,40Q groups showed independently
crossing properties and analytic continuation; this amplitudehat #N and NN are consistent, based upon dispersion-
is then “squared” to yield the\jﬁampmude which is related theoretic calculations. Since dispersion theory is a model-
to NN by crossing symmetr|39]. The Paris group40] pur- independent approach, the finding is of general validity.
sued this path and calculatétN phase shifts in peripheral Therefore, if 30 years later a specific theory has problems
partial waves. Naively, the dispersion-theoretic approach i¥vith the consistency ofrN and NN, then that theory can
the ideal one, since it is based exclusively on empirical inOnly be wrong. Fortunately, we can confirm th@T for 7N
formation. Unfortunately, in practice, quite a few uncertain-andNN does yield consistent results, as we will explain now
ties enter into the approach. First, there are ambiguities in thi& more detail.
analytic continuation and, second, the dispersion integrals The reliable way to investigate this issue is to use an
have to be cut off at a certain momentum to ensure reasor@Pproach that does not contain any parameters except for the
able results. In Ref[36], a thorough comparison was con- LECs. This is exactly true for our calculations since we do
ducted between the predictions by the Bonn model and thBot use any cutoffs and calculate thematrix directly up to
Paris approach and it was demonstrated that the Bonn pré well-defined order. We then vary the LECs within their
dictions always lie comfortably within the range of uncer- one-standard-deviation range from theN determinations
tainty of the dispersion-theoretic results. Therefore, there iécf. Table ). We find that these variations do not create any
no need to perform a separate comparison of our chirg@ssential changes of the predicted periphiifdiphase shifts
N3LO predictions with dispersion theory, since it would not Shown in Figs. 4-9, except fa;. Thus, the focus is ong.
add anything that we cannot conclude from Figs. 7-9. We find thatc;= — 3.4 GeV !is consistent with the empiri-

Finally, we like to compare the predictions with the em- cal phase shifts as well as the results from dispersion theory
pirical phase shifts. & (except®Gs) andH waves there is and conventional meson theory as demonstrated in Figs.
excellent agreement between the N3LO predictions and thé—9. This choice forc; is within one standard deviation of
data. On the other hand, i waves the predictions above its 7N determination and, thus, the consistencyndd and
200 MeV are, in general, too attractive. Note, however, thalNN in xPT at fourth order is established.
this is also true for the predictions by the Bomrt 27 In view of the transparent and conclusive consideration
model. In the full Bonn model, alstrepulsiveé « and mp presented above, it is highly disturbing to find in the litera-
exchanges are included which bring the predictions to agredure very different values foc, allegedly based upoNN.
ment with the data. The exchange abaneson or combined In Ref. [21], it its claimed that the valuec;=—5.08
mp exchange are B exchanges. Three-pion exchange oc-+0.28 GeV ' emerges from the worlgp data below 350
curs first at chiral fourth order. It has be investigated byMeV, whereas Ref[41] asserts that;=—1.15 GeV ! is
Kaiser[9] and found to be totally negligible, at this order. implied by theNN phase shifts. The two values differ by
However, 37 exchange at fifth order appears to be sizablgmore than 400% which is reason for deep concern.
[10] and may have an impact dhwaves. Besides this, there In Fig. 10, we show the predictions at fourth order for the
is the usual short-range phenomenologyyT, this short-  three values foc; under debate. We have choséh, as a
range interaction is parametrized in terms of four-nucleorrepresentative example of a peripheral partial wave since it
contact termgsince heavy mesons do not have a place inhas a rather large contribution fromrZexchange. Moreover,
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8 — T T the Nijmegen analysis. In fact, the Nijmegesspace cutoff
3 . -5.08 of r=1.4 fm is equivalent to a momentum-space cutbff
- F / 1 ~m, which is bound to kill the Zr exchange contribution
4 / (which has a momentum-space range of 2and largey. To
6 - . — revive it, unrealistically large parameters are necessary.
/ The motivation underlying the value fai advocated in
L / . Ref. [41] is quite different from the Nijmegen scenario. In
. Ref.[41], c; was adjusted to thB waves ofNN scattering,
which are notoriously too attractive. With their choicg=
—1.15 GeV'!, the D waves are, indeed, about right,
L . / . whereas theF waves are drastically underpredicted. This
! /% violates an important rulefhe higher the partial, the higher
the priority. The reason for this rule is that we have more
o trust in the long-range contributions to the nuclear force than
././v - 1é i in the short-range ones. The+2= contributions to the
nuclear force rule th& and higher partial waves, not tlz
0.),Q¢1 S T B waves. IfD waves do not come out right, then one can think
0 100 200 300 400 of plenty of short-range contributions to fix it. F and
Lab. Energy (MeV) higher partial waves are wrong, there is no fix.
) o In summary, a realistic choice for the important LELis
FIG. 10. One- and two-pion-exchange contributions at fourth_3 4 Gev'! and one may deliberately assign an uncer-

. . ! :
ordiLto the t'): 4 phase Sh'ﬂtstfo,:hthree dlffe(;ent fhmces T’f th?ﬂ"EC tainty of +=10% to this value. Substantially different values
Cs. TNE NUMDETS given nextfo the curves denote e valuas i — are nrealistic as clearly demonstrated in Fig. 10.

units of GeV -~ used for the respective curvéall other parameters

as in Table ). For comparison, we also show the OPE contributrion

Phase Shift (deg)
F =Y
T
~
|

o
|

\ -

>
!
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This fact makes’F, special for the discussion af.

Figure 10 reveals that the chiralm2exchange depends
most sensitively orcs. It is clearly seen that the Nijmegen APPENDIX. DETAILS OF FOURTH-ORDER
choicecz=—5.08 GeV ! [21] leads to too much attraction, CONTRIBUTIONS TO PERIPHERAL PARTIAL-WAVE

while the valuec;=—1.15 GeV ?, advocated in Ref41], PHASE SHIFTS

is far too small(iin terms of magnitudesince it results in an The fourth order consists of very many contributicn
almost vanishing Z-exchange contribution—quite in con- Sec. |11 C and Figs. 2 and)3Here, we show how the various
trast to the empiricaNN facts, the dispersion-theoretic re- contributions of fourth order impadiN phase shifts in pe-
sult, and the Bonn model. ripheral partial waves. For this purpose, we display in Fig. 11
One reason for the difference between the Nijmegen valughase shifts for four important peripheral partial waves:
and ours could be that their analysis is conducted %O\ namely,*F3, 3Fs, °F,, and3Gs. In each frame, the follow-
while we go to NLO. However, as demonstrated in Figs. ing individual fourth-order contributions are shown.
4—6, N°LO is not that different from RLO and, therefore, (i) c2 graph, first row of Fig. 2, Eqs29) and (30), de-
not the main reason for the difference. More crucial is thepgted tl)y “c2” in Fig. 11.

fact that, in the Nijmegen analysis, the chiratr-2xchange (i) c¢; /My, contributions(denoted by “c/M”), second row
potential, represented as a locadpace function, is cut off at  of Fig. 2, Eqs.(31)—(35).
r=1.4 fm (i.e., it is set to zero for=<1.4 fm) [44]. This (iii) 1/M§ corrections“1/M2” ), rows 3—6 of Fig. 2, Egs.

cutoff suppresses the72 contribution, also, in peripheral (36)—(42).

waves. If the 2r potential is suppressed by phenomenology, (iv) Two-loop contributions without the terms propor-

then, of course, stronger values foy are necessary, result- . T ko m Ve ; ;
ing in a highly model-dependent determination @ For tional tod; (“2-L" ): Fig. 3, but without the solid square, Egs.

example, if we multiply all noniterative 2 contributions by ~ (®4—(61), but with alld;=0. ,

exd —(p?"+p’ 2)/AZ with A~400 MeV andn=2, then (V) TVEHOOp contributions including the terms propor-
with c;=—5.08 GeV ! we obtain a good reproduction of tional tod; (denoted by “d” in Fig. 13: Fig. 3, Egs.(54)—

the peripheral partial-wave phase shifts. Note that (61) with thed; parameters as given in Table I.

~400 MeV is roughly equivalent to a-space cutoff of Starting with the result at N2LO, curvé), the individual
about 0.5 fm, which is not even close to the cutoff used inN3LO contributions are added up successively in the order
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given in parentheses next to each curve. The last curve in thisnd repulsive in®Gg. The latter is the reason for the over-
series, curveb), is the full N3LO result. compensation of thei2 graph by thec; /My contribution in

The ci2 graph generates large attraction in all partial waves>Gs which is why the final N3LO result in this partial wave
[cf. differences between curvés) and(2) in Fig. 11]. This ~ comes out too repulsive. One can expect thdd l/correc-
attraction is compensated by repulsion from théM dia-  tions that occur at fifth or sixth order will resolve this prob-
grams, in most partial waves; the exception'B; where  lem.

c;/My adds more attractiofcurve (3)]. The 1M2 correc- Before finishing this appendix, we like to point out that

tions [difference between curve@®) and (4)] are typically ;pgrrfrtzzleprplagléhstﬁgifolts's gg?ivegaggggﬁss 'LT;Y ﬂa&)ear

small. Finally, the two-loop contributions create substantlalphase shifts are about one order of magnitude smaller than
1 3 1 _
repulsion in"F3 and *Gs which brings” F5 into good agree- 0" 1 "6t of the othe6 phases. Thus, in absolute

ment with the data while causing a discrepancy ¥@. In terms, the discrepancies seen3@5 are small. In a certain

°F3 and °Fy, there are large cancellations between thegoned \e are looking at “higher-order noise” under a mag-
“pure” two-loop graphs and thed; terms, making the net nifying glass. Second, théGs partial wave contributes 0.06
two-loop contribution rather small, MeV to the energy per nucleon in nuclear matter, the total of

A pivotal role in the above game is played Ws, Eq.  which is —16 MeV. Consequently, small discrepancies in
(33), from thec; /My group. This attractive term receives a the reproduction ofGg by aNN interaction model will have
factor of 9 in 1F 3, a factor ( 3) in 2G5 and a factor of 1in  negligible influence on the microscopic nuclear structure pre-
3F, and 3F,. Thus, this contribution is very attractive fif;  dictions obtained with that model.
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