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The highly deformed nucleus“°Ca in the fusionlike deformation valley
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The potential barriers governing the evolution of the doubly magic nuctéDa have been determined
within a rotating liquid drop model including a proximity energy term, the two-center shell model, and the
Strutinsky method. In addition to the quasispherical ground state, the macromicroscopic deformation and
rotational energies generate a second highly deformed minimum where superdeformed and highly deformed
states may survive. The predicted characteristics roughly agree with the recently observed data on superde-
formed rotational bands ifi°Ca.
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Superdeformed rotational bands have been observed re- The validity of the combination of this GLDM and quasi-
cently[1] in “°Ca. The high spin states were populated viamolecular shapes has been proved by its efficiency to repro-
the reaction?®Si(*°“Ne,2x)*°Ca with an effective beam en- duce reasonably well most of the fusif8i, fission[11,13,
ergy of 80 MeV. The measured quadrupole moment for traneluster[14], and « [15] emission data without changing the
sition between states with spin from 716to 24 is  parameters. As an example, the barrier height for the evapo-
1.80" 332 eb; the excitation energy varying from 22.1 MeV ration of a particles from the rotating compound nucleus
to 5.6 MeV and the moment of inertia being around ?°Pb at 22 mean angular momentum has been determined
872 MeV 1. Superdeformed rotational states have beernecently[16] experimentally as being 18.0 MeV. The GLDM
also observed in neighboring nucléAr [2] and *Ni [3]  gives 16.8 MeV while the standard optical model leads to
as well as highly deformed bands #Ni [3,4], 5Zn [5], 20.1 MeV. Vaz and Alexandefl7] obtained, respectively,
0Nd [6], and Dy [7]. 19.9 and 17.4 MeV for cold and hot nuclei.

In the present study the purpose is to determine the In this fusionlike deformation valley, the barrier top cor-
I-dependent potential barriers governing the evolution of gesponds to two-body configurations and the selected one-
rotating doubly magic nucleué’Ca within a macromicro- body shape sequence does not play a main role to determine
scopic energy. Within such an approach, shape Sequencﬂ'ga barrier height. This justifies the use of a one parameter
must be selected. The geometrical characteristics deducétgpendent shape sequence.
from the experimental datémainly the moment of inertia  Within this GLDM [8] the macroscopic energy of a de-
and quadrupole momerere not sufficient to unambiguously formed nucleus is defined as
discriminate between the different possible shape sequences.

Nevertheless, for light nuclear systems, most studies con- E=Ey+EstEctEx+tEo- @

clude that the compound nucleus scission and saddle shapfggr one-body shapes, the volurfie, surfaceEs and Cou
- ' , s i,

look like two close, almost spherical fragments. Conse- ) .
quently, a quasimolecular shape already defined to descrit!gmb Ec energies are given by

the fusion valley[8] has been retained. In this shape se- Ey=—15.4941—1.82)A MeV, )
guence, the deformation path leads from the sphere to two
tangent spherical nuclei assuming the rapid formation of a Eg=17.94391—2.612)A2%(S/4mR%) MeV, )

deep neck in a one-body compact shape while keeping al-

most spherical ends; the two spherical fragments going away
later. Ec=0.6e%(Z%/Ry) X 0.5J [V(0)IV,][R(6)/Ry]3sinodé.
The macroscopic deformation energy has been calculated ()

within a generalized liquid drop modéGLDM) taking into
account both the proximity energy in the neck or the gaps is the surface of the one-body deformed nucleus larsd
between the fragments and an accurate radius. The shell gfe relative neutron excesg(6) is the electrostatic potential

fects have been derived within two approaches._ The first ongt the surface anu'o the surface potentia| of the Sphere_
uses the two-center shell model and the Strutinsky method For separated spherical fragments

[9]. The second one is a simpler algebraic approach derived

from the droplet model formulagl0,11 and from an idea Evip=—15.494(1-1.89A,;+(1-1.85)A,] MeV,
and microscopic calculations of Kenberg[12] according to 5)
which the nuclear interaction responsible for the proximity

energy in the neck strongly mixes and perturbs the single- Eg;,=17.9439(1—2.612)A2°+(1—2.62)A3"®] MeV,
particle states and therefore weakens the shell effects. (6)
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Ecio=0.6e?Z3/R, +0.6e?Z5/R,+ €22, Z,Ir,  (7)
100
whereA;, Z;, R;, andl; are the masses, charges, radii, and
relative neutron excesses of the fragmentbging the dis- 80
tance between the mass centres.
The radiusR, of the parent nucleus has been chosen as

- 60

Ro=(1.28AY%—0.76+0.8A" ) fm. (8) §;

L
This later formula often used only to determine the proximity 0Lz
energy allows one to take into account the experimentally s
observed increase of the ratig= R,/AY® with the mass; for 20 | .
example,r,=1.126 fm for “°Ca. The radius of the frag- ,lo |
ments is determined assuming volume conservation. 0 | 4
For comparison, in the RLDM and RFRM approaches ‘ | 0 | |

[18,19 the reduced radius, is, respectively, 1.225 fm and 3 4 5 7 8 9 10

1.16 fm with no mass dependence while the surface coeffi- r(fm)

cienta takes the values 17.94 MeV. and 21.13 MeV. FIG. 1. For symmetric deformations dfCa, sum of the mac-
The surface energy terifis takes into account only the oseopic deformation and rotational energies as functions of the

surface tension forces in a half space and does not includggyjar momentum#( unit) and the distance between the mass
the contribution due to the attractive nuclear forces betweegenters. The vertical dashed line indicates the separation into two

the surfaces considered in a neck or a gap between separaigfherical nuclei.
fragments. The nuclear proximity energy tey allows one

to take into account these additional surface effects whentf\d d it has b h that tive t ising f
neck or a gap appears. This term is essential to descri tﬁ eed, It has been shown hat corrective terms arising from

smoothly the one-body to two-body transition via quasimo-the Orbital motion and the spin degrees of freedom roughly
lecular shapes. For example, at the contact point betweefNCel each other, particularly at large deformations.
two spherical Ne nuclei the proximity energy reaches The |-dependent macroscopic potential barriers against
—22.2 MeV, symmetric decay are displayed in Fig. 1 for f#€a nucleus.

The macroscopic barriers for tH&?Dy, %Ni, and “Cr nu-
clei have been previously studi¢#0,21].

In all cases the proximity energy introduces an inflection
in the potential energy curve preventing the separation of the
h is the transverse distance varying from the neck radius orascent fragments. The two tangent sphere configuration is
zero to the height of the neck bord@:.is the distance be- reached before crossing the barrier, the top of which corre-
tween the opposite surfaces in consideration lrtbe sur-  sponding to two separated spheres maintained in unstable
face width fixed at 0.99 fmd is the proximity function. The  equilibrium by the balance between the attractive nuclear
surface parametey is the geometric mean between the sur-forces and the repulsive Coulomb ones. The centrifugal
face parameters of the two fragments: forces can remove these potential pockets only for very high

5 > _ angular momenta due to the high curvature and high values
y=0.951%/(1-2.81)(1-2.8;) MeVfm % (10 of ?he moment of inertia at the gbarrier top. ’
In this GLDM the surface diffuseness is not taken into ac- !N the successfull experimeftt] the chosen beam energy
count and the proximity energy vanishes when there is n&llowed one to pass thedependent fusion barriers until

EN(r)=2yJhmaXCD[D(r,h)/b]thdh. (9)

min

neck as for an ellipsoid for example. 307—35: and consequently to populate all the states present
All along the deformation path the rotational energy hasn the potential wells. To determine the most suitable beam
been determined within the rigid body ansatz energy and to calculate the fusion cross sections, analytical
formulas have been proposed recerith2] for the fusion
Eot=n21(1+1)/21, . (1)  barrier heightsE,s -0 and positionRy,s—o.

Z.Z
2.138&,7,+59.427AY%+ AY®) - 27.07 Ir( Al,gl ;1,3
1 tA;
Efusi—o (MeV)=—19.38+ , (12
fusi=o ( (A3 AY3)[2.97-0.1211Z,Z,)]
3.94
Riusi—o (fm)=(A1P+A}3) 1.908-0.0857 INZ,Z,) + 5 —— } (13
142
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They reproduce accurately the GLDM predictions and the experimental data. Here a new formula that drhdepémelent
fusion barrier heights is proposed.

[(1+1)
Efus) (MeV)=Egygi=0t 7. (14

1/3 1/3\2 394
0.0508\Ao(A}*+A3%)?| 1.908+ —————0.085Tn(Z1Z,)
142

Ai+A,

0.02081A3+AS3) +

The added term corresponds to the increase of the enerdgrge deformations is very poorly known even for one-body
at the barrier top due to the rotational energy. The moment odhapes. For quasimolecular shapes and particularly at the
inertia corresponds to two separated spheres and the two caspture point of the matter bridge between the fragments, it
efficients have been adjusted to take into account the shiftingg questionable to speak about nuclear orbits when there is an
of the barrier to inner positions. The accuracy of this formulaexchange of nucleons between these fragments to equilibrate
is correct for light nuclei and very good for heavy elements.the mass and charge distributions. Therefore the macromi-

The macromicroscopic potential barriers obtained by adderoscopic potential barriers shown in Fig. 3 have been deter-
ing the shell corrections given by the two-center shell modemined on the assumption that the shell effects vanish around
and the Strutinsky methof®] at the I-dependent macro- the contact point. The shell effects given by the algebraic
scopic energy are displayed in Fig. 2. An adjustment has alsapproach of the droplet modgl0,11] have been added, for
been done to reproduce the experimer@alvalue with a  one-body shapes, at the macroscopic energy given by the
corrective factor ending at the contact point between the naSLDM. They vanish relatively rapidly and &0 there is a
scent touching fragments. These shell effects generate a higitateau but not deep second minimum. The first minimum
hump relatively close to the sphere and consequently a searound the sphere disappears at the highest angular mo-
ond deformed minimum appears evena. The first mini-  menta. With increasing angular momentum, a second highly
mum remains even at high angular momenta but the secortkformed minimum appears. It becomes the lowest one also
minimum becomes the lowest one aroundi1The calcu- around 17. Its precise location is due to the shell effects but
lated quadrupole moment for transition between states witthe underlying macroscopic energy plays also an important
spins from 1@ to 2% varies from 2.58:;‘ eb at 16: to  role, particularly the inflection in the curve due to the prox-
2.28;2 eb at 25. The moment of inertia evolves from imity energy. The calculated quadrupole moment for transi-
9.7° 052 Mev™! to 9.1°3%2 Mev~! and the excitation tion between states with spins from7l@o 24 varies then
energy from 23.9 MeV to 9.7 MeV. The limits of the uncer- from 2.3°03 eb at 16: to 1.8°3 eb at 2. The moment of
tainty range correspond to the geometric characteristics dfertia evolves from 9.43%2 MeV~'t08.3'9%2 Mev ™!
the deformed nuclei located in the second potential pockeand the excitation energy from 24.3 MeV to 9.0 MeV. These
and having an energy of 0.4 MeV above the energy of theesults agree with the experimental data recently obtained on
second minimum present in this external well. this nucleus except for the excitation energy &t\®hich is

As a matter of fact, the behavior of the shell effects attoo large. After the separation point, the shell effects coming
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FIG. 2. Same as Fig. 1 but the shell effects calculated within the FIG. 3. Same as Fig. 1 but the shell effects calculated within an
two-center shell model and the Strutinsky method are added and thegebraic approacfl0] are added and the experimentalvalue is
experimentalQ value is taken into account. taken into account.
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from the two fragments have been introduced progressivelthe well around the sphere are sensitive to the prescription
starting from zero at the contact point to reach the full valueused to determine the shell effects. At intermediate spins,
at 3 fm beyond the contact point. These shell corrections aboth the shell corrections and the proximity energy contrib-

the barrier top do not play an important role to stabilize theute to form the second potential pocket while, for the highest

highly deformed system except for the highest angulaspins, the persistence of a highly deformed minimum is

momenta. mainly due to the proximity forces that prevent the negotiat-

In summary, the potential barriers governing the evolutioning of the scission barrier.

of a rotating nucleus®®Ca have been determined using a The results for the quadrupole moment, the moment of

generalized liquid drop model including the nuclear proxim-inertia, and the excitation energy agree roughly with the data
ity energy and quasimolecular shapes; the shell effects beingptained recently on the superdeformed rotational bands in
calculated within the two center shell model and, alterna-*°Ca, the predicted excitation energy for the lowest spins

tively, with an algebraic approach derived from the dropletbeing somewhat too large. New experiments are desirable to
model. The appearance of the second deformed minimurtest the predictions of highly deformed states at very high

with increasing angular momentum and the disappearance spins.
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