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Q2 independence ofQF2 ÕF 1, Poincaré invariance, and the nonconservation of helicity
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A relativistic constituent quark model is found to reproduce the recent data regarding the ratio of proton form
factors, F2(Q2)/F1(Q2). We show that imposing Poincare´ invariance leads to substantial violation of the
helicity conservation rule, and an analytic result that the ratioF2(Q2)/F1(Q2);1/Q for intermediate values of
Q2.
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I. INTRODUCTION

The recent discovery@1,2# that the ratio of proton form
factors GE /GM falls linearly with Q2, the ratio QF2 /F1
reaches a constant value for 2<Q2<6 GeV2, and the plans
@3# to make measurements up toQ259 GeV2, have focused
attention on understanding nucleon structure. The cons
nature of the ratioQF2 /F1 contrasts with the prediction
from perturbative QCD@4# thatQ2F2 /F1 should be constan
@5#. While this latter ratio could be achieved when expe
ments are pushed to higher values ofQ2, it is worthwhile to
obtain a deeper understanding of the present results. In
ticular, the perturbative result is based on the notion t
hadron helicity is conserved@6# in high momentum transfe
exclusive processes, so that it becomes interesting to un
stand why this conservation does not seem to be applica

The qualitative nature of the experimental results w
anticipated or reproduced by several model calculati
@7–10#, with that of Ref.@7# based on the work of Schlump
@11–13# being the earliest. The implementation of relativi
is an important feature of each of these calculations, so
natural to seek an understanding of the form factors in te
of relativity. Our purpose here is to examine the model
Ref. @7#, with the aim of highlighting the essential featur
that cause the ratioQF2 /F1 to be constant.

We proceed by presenting definitions and kinematics
evant for a light-front analysis in Sec. II. The relevant fe
tures of our relativistic constituent quark model are display
in Sec. III. The essential reason for the constant ra
QF2 /F1 is discussed in Sec. IV, and elaborated upon
merically in Sec. V. The paper is concluded with a br
summary.

II. DEFINITIONS AND KINEMATICS

The electromagnetic current matrix element can be w
ten in terms of two form factors taking into account curre
and parity conservations:

^N,l8p8uJmuN,lp&

5ūl8~p8!FF1~Q2!gm1
kF2~Q2!

2MN
ismn~p82p!nGul~p!,

~1!
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with momentum transferqm5(p82p)m, Q252q2 andJm is
taken as the electromagnetic current of free quarks. ForQ2

50 the form factorsF1 andkF2 are, respectively, equal to
the charge and the anomalous magnetic momentk in units of
e and e/MN , and the magnetic moment ism5F1(0)
1kF2(0)511k. The Sachs form factors are defined as

GE5F12
Q2

4MN
2 kF2 and GM5F11kF2 . ~2!

The evaluation of the form factors is simplified by usin
the so-called Drell-Yan reference frame in whichq150 so
that Q25q'

2 q1
2 . This means that the plus components of t

nucleon momenta~and also those of the struck constitue
quark! are not changed by the absorption of the incom
photon.

If light-front spinors for the nucleons are used, the for
factors can be expressed simply in terms of the plus com
nent of the current@14#:

F1~Q2!5
1

2P1 ^N,↑uJ1uN,↑&

and

QkF2~Q2!5
22MN

2P1 ^N,↑uJ1uN,↓&. ~3!

The form factors are calculated using the ‘‘good’’ compone
of the current,J1, to suppress the effects of quark-pa
terms.

It is worthwhile to compare the formalism embodied
Eq. ~3! with the nonrelativistic quark model formalism i
which GE andGM are the Fourier transforms of the groun
state matrix elements of the quark charge@( i 51,3eid(r
2r i)# and magnetization@( i 51,3(ei /2mi)d(r2r i)# density
operators. At high momentum transfer one needs to acco
for the influence of the motion of the proton on its wa
function. Since the charged quarks of the initial proton st
~or final state, or both initial and final states! are moving,
charge and magnetic effects are correlated in a manner
sistent with relativity. It is necessary to maintain this relat
istic connection, which is lost in the nonrelativistic qua
©2002 The American Physical Society05-1
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model. The use of light-front dynamics, concomitant w
Eq. ~3!, is a particularly convenient way to handle the moti
of the initial and final states. This is because the proton w
function, a function of internal relative coordinates, is t
same in any reference frame.

III. RELATIVISTIC CONSTITUENT QUARK MODEL
OF THE NUCLEON

We study the form factors using relativistic constitue
quark models in general, and starting with the model
Schlumpf @11–13#, in particular. Such models have a lon
history @15–17#, and many authors@18–34# have contributed
to the necessary developments. Schlumpf’s model is u
because his power-law wave functions lead to a reason
good description of the proton electromagnetic form facto
GE and GM , at all of the values ofQ2 where data were
available as of 1992@11–13#. This model uses the
Bakamjian-Thomas~BT! construction, which implies the
choice of a very specific model wave function@24,32#. The
use of a definite model allows us to gain insight, but we a
shall discuss the limitations of this approach.

We remind the reader about a few basic features of lig
front treatments in the BT approach. The light-front form
ism is specified by the invariant hypersurfacex15x01x3

5 constant. The following notation is used: A four-vectorAm

is given byAm5(A1,A2,A'), whereA6[A06A3 andA'

5(A1,A2). Light-front momenta vectors are denoted byp
5(p1,p'), with p25(p'

2 1m2)/p1 for on-shell quarks. The
three momentapi of the quarks can be transformed to t
total and relative momenta to facilitate the separation of
center of mass motion as

P5p11p21p3 , j5
p1

1

p1
11p2

1 , h5
p1

11p2
1

P1 ,

k'5~12j!p1'2jp2' , K'5~12h!~p1'1p2'!2hp3' .
~4!

It is also useful to consider the mass operator of a nonin
acting system of total momentumPm:

M0
2[ (

i 51,3
pi

2 P12P'
2 5

K'
2

h~12h!
1

k'
2 1m2

hj~12j!
1

m2

12h
,

~5!

wherem is the light quark mass, taken as the same for up
down quarks.

One may express the proton wave function in the cen
of mass frame in which the individual momenta are given

p1'5k'1jK' , p2'52k'1~12j!K' , p3'52K' .
~6!

The use of light-front variables enables one to separate
center of mass motion from the internal motion. The inter
wave functionC is therefore a function of the relative mo
mentapi ,j,h. The internal wave function of the proton de
pends on these relative momenta. One can obtain the w
function in certain special frames via a kinematic boost.
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particular, if the proton acquires a transverse momentum~is
boosted! by the absorption of a photon of momentumq
5(0,q') by the third quark, the effects of the boost are o
tained merely replacing the momentak' andK' by

k'8 5k' , K'8 5K'2hq' . ~7!

The mass operator,M08 of the boosted system is obtained b
replacingk' ,K' by the variables of Eq.~7! so that

M08
25M0

21
22hK'•q'1h2q'

2

h~12h!
. ~8!

We now turn to the construction of the nonperturbative wa
functionC. This is based on the attempt to construct a sta
described in terms of the given light-front variables, which
also an eigenstate of angular momentum@21#. We take the
proton wave function to be a product of an antisymmet
color wave function with a symmetric flavor-spin
momentum wave functionC. To understand the constructio
@21# of the relativistic wave function, it is worthwhile to sta
by considering the nonrelativistic model. Then

CNR5
1

A2
~frxr1flxl!F, ~9!

wherefr represents a mixed-antisymmetric andfl a mixed-
symmetric flavor wave function andxr,l represents mixed-
symmetric or antisymmetric spin wave functions~in terms of
Pauli spinors!. In the nonrelativistic model the wave functio
F depends on spatial variables only, and the computed f
factorsGE andGM will have the same dependence onQ2.

The relativistic generalization of Eq.~9! is

C~pi !5u~p1!u~p2!u~p3!c~p1 ,p2 ,p3!, ~10!

where pi represents space, spin, and isospin indices:pi
5pisi ,t i and repeated indices are summed over. The spin
u are canonical Dirac spinors:

u~p,s!5
p”1m

AE~p!1m
S xs

Pauli

0
D , ~11!

with the isospin label suppressed.
The completely symmetric nature of the space-spin-fla

wave function is preserved by using@21#

c~p1 ,p2 ,p3!5F@ ū~p1!Gū2
T~p2!ū3~p3!uN~0!

1ū~p1!Gm,aū2
T~p2!ū3~p3!G̃n,auN~0!gmn#

~12!

G[2
1

A2

11b

2
g5Cit2 , Gm,a[

1

A6
gmCitat2 ,

~13!

G̃n,a[
11b

2
gng5ta ,
5-2
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Q2 INDEPENDENCE OFQF2 /F1, POINCARÉ. . . PHYSICAL REVIEW C 65 065205
where the charge-conjugation matrixC[ ig2g052 ig5s2.
Note that if one takes the nonrelativistic limit of Eq.~12! by
taking pi→(m,0'), one gets Eq.~9! for the spin-isospin
dependence.

The general properties~based on symmetries! of the wave
function of Eq.~12! are now specified. This wave function
also expressed in terms of relative momentum variab
Thus our wave function maintains the remarkable feat
about the light-front approach that one is able to write
wave function of the proton in a manner that is independ
of the inertial reference frame. This wave function is also
eigenstate of the spin operator, that is defined in terms of
Pauli-Lubanski vectorW and the nucleon mass operatorM.
The squares ofW and M are two Casimir operators of th
generators of the Poincare´ group. A nice discussion of the
relevant formalism is presented in Ref.@33#. The feature that
the wave function is an eigenstate of spin is the essen
ingredient that leads to the numerical results presented
low. See Ref.@34# for a critique of the procedure.

A. Wave function F

All that remains prior to numerical evaluation is
specify the wave functionF. This must be chosen as a fun
tion of M0 to fulfill the requirements of spherical and pe
mutation symmetries. We take this to be of a power-l
form:

F~M0!5
N

~M0
21b2!g

, ~14!

which depends on two free parameters, the constituent q
mass and the confinement scale parameterb. Schlumpf’s
parameters areb50.607 GeV,g53.5, and the constituen
quark mass,m50.267 GeV. It is worthwhile to review
Schlumpf’s motivation for these parameters@11#. The power
falloff is chosen to reproduce the highQ2 behavior of the
wave functions. In particular, the data forGM(Q2) @35# was
well described up to a value ofQ2530 GeV2, with
Q4GM(Q2) approximately constant forQ2 greater than
about 10 GeV2. The form factor (QF2) is an integral over
four perpendicular components of momentum variab
times the product of the wave functions, which varies a
power of perpendicular momentum variables as to the po
of 22g527. At high Q2, one finds roughly thatQF2
;Q4/Q7, so GM;1/Q4. Thus the powerg is fixed by the
high Q2 behavior of GM . The remaining parameterb is
determined mainly by the charge radius of the proton. At l
Q2, the value ofb controls the momentum of the quark
The size of the system is~via the uncertainty principle! of
order (p/b)'1 fm. Schlumpf’s work shows that these p
rameters lead to an excellent description of many baryo
properties@11–13#.

IV. THE ESSENTIAL EFFECT

The form factors of Eq.~3! are obtained by computing th
matrix elements of the current operatorJ1 between the ini-
tial and final states given by the wave function of Eqs.~10!–
06520
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~14!. The relative momenta of the initial and final wave fun
tions are given by Eqs.~6!–~8!. Here we take the quarks t
be elementary particles, so that the operatorJ1 is the opera-
tor g1 times the charge of the quarks. The definition of t
calculation is now complete, and we could proceed imme
ately to obtain numerical results. However, the necess
computations may be simplified by making a unitary tran
formation that replaces the Dirac spinors of Eq.~10! by light-
front spinors:

uL~p,l!5
p”1m

A2p1
g1S xl

Pauli

0
D . ~15!

The use of these spinors simplifies the evaluation of the
trix elements ofg1 because@5#

ūL~p1,p8,l8!g1uL~p1,p,l!52dll8p
1. ~16!

One then uses the completeness relation
5(luL(p,l)ūL(p,l)/2m, for each of the three quarks i
Eq. ~10!, to obtain the light-front representation for the wa
function:

C~pi !5uL~p1 ,l1!uL~p2 ,l2!uL~p3 ,l3!cL~pi ,l i !,
~17!

cL~pi ,l i ![@ ūL~p1 ,l1!u~p1 ,s1!#@ ūL~p2 ,l2!u~p2 ,s2!#

3@ ūL~p3 ,l3!u~p3 ,s3!#c~p1 ,p2 ,p3!. ~18!

We emphasize that the wave functions of Eqs.~13! and~17!
represent the same quantity. We have simply used a un
transformation that simplifies the calculation of the mat
element of the operatorg1. The coefficients of the unitary
transformation are the same as a transformation introdu
by Melosh@36#. For us, there is no dynamical significance
this. The notation̂l i uR M

† (pi)usi& i[ūL(pi ,l i)u(pi ,si), with
ul i&,usi& as Pauli spinors, is simply a convenient abbrev
tion. Since canonical Dirac spinors are well known@given in
Eq. ~11!#, the light-front spinors are also conventional a
are given in Eq.~15!, it is a matter of algebra to show, fo
example, that

^l3uR M
† ~p3!us3&5ūL~p3 ,l3!u~p3 ,s3!

5^l3uFm1~12h!M01 i s•~n3p3!

A@m1~12h!M0#21p3'
2 G us3&.

~19!

The net result of this is that the relativistic spin effect is
replace the Pauli spinors of Eq.~9! with Melosh rotation
operators acting on the very same Pauli spinors@21#. The
spin-wave function of thei th quark is given by

u↑pi&[R M
† ~pi !S 1

0D and u↑pi&[R M
† ~pi !S 0

1D . ~20!
5-3
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This means that, for example, the spin-wave functionxr is
replaced by a momentum-dependent spin-wave func
uxr

relpi&,

uxr
relpi&5

1

A2
u↑p1↓p22↓p1↑p2&u↑p3&[ux0

rel~p1 ,p2!&u↑p3&,

~21!

for a spin11/2 proton. The termx0
rel represents the relativ

istic generalization spin-0 wave function of the quark p
labeled by~1,2!. Note that the momentapi are to be ex-
pressed in terms of the relative variablesk' ,K' ,k'8 , andK'8
of Eqs.~4! and~7!. We shall see that the important relativi
tic effect is contained in the difference between the spin
of Eq. ~20! and Pauli spinors.

The next step is to simplify the calculation by using t
symmetry of the wave function under interchange of parti
labels to replace the quark current operator by three tim
that operator acting only on the third quark. The avera
charge of the third quark of the mixed-symmetric flav
wave function vanishes. This means that the second term
Eq. ~12! does not contribute to proton electromagnetic fo
factors. The first term involves a mixed-antisymmetric wa
function, so the third quark carries the spin of the proton,s3,
of Eq. ~19!. However, the spin of the light-front spinorl3
can either be the same or different froms3. The weighting of
the terms can be understood readily by examining the
terms of the Melosh transformation of Eq.~19!, and consid-
ering the arguments of the final state wave function. T
effect of the boost is incorporated simply by using Eq.~7! in
the argument of the final state wave function. Thus if la
momentumQ@b is involved, both terms of the Melos
rotation ~19! can be expected to have similar magnitud
In particular, the term involvingM0 and the spin-flip term
s•(n3p3) each gain a magnitude of orderQ. The precise
terms are given in the following section. Thus spin-flip a
non-spin-flip terms of Eq.~19! are comparable.

The importance of the spin-flip term has immediate i
plications for our problem. There is clearly a substantial a
plitude for a spin-up valence quark (s3511/2) to carry a
negative light-front spin (l3521/2). The spin of the struck
quark need not be the same as that of the proton. There
we cannot expect the hadron helicity selection rule to ap
if we use a wave function such as that of Eqs.~10!–~14!,
which is constructed to be an eigenstate of spin. Helic
conservation does not occur. This same conclusion has
obtained by Ralston and co-workers@37# using the light-
front basis, based on the presence of nonzero orbital ang
momentum. Although our spatial wave functionF corre-
sponds to quarks moving in relatives states, the use of Dira
spinors in Eq.~10! gives the same helicity nonconservatio
as that of Ref.@37#. In particular, the lower components o
the Dirac spinors contain the nonzero orbital angular m
mentum present in the light-front basis. Thus we support
statements of Ref.@37# that helicity nonconservation is a
important effect. We also note that Braunet al. @38# argue
that soft nonfactorizable terms in the wave function, w
helicity structure similar to ours, are important at interme
06520
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ate values ofQ2. In our model, there is no basis for expec
ing hadronic helicity conservation because the nonpertu
tive wave function is a mixture of different light-front-spi
states, with the mixture expressed precisely in Eqs.~17! and
~18!.

If the value ofQ2 becomes asymptotically large, the e
fects of the nonperturbative wave function may disapp
and perturbative effects, that do respect helicity conser
tion, could take over. But for the present, helicity noncons
vation occurs and it will be worthwhile to consider the im
plications of this nonconservation.

V. PROTON FORM FACTORS

We obtain the form factors by using the wave function
Eq. ~18! in Eq. ~3!. Our result can be expressed as

F1~Q2!5E d2q'dj

j~12j!

d2K'dh

h~12h!
F̃†~M08!F̃~M0!

3^x0
rel~p18 ,p28!ux0

rel~p1 ,p2!&^↑p38u↑~p3!&,

~22!

QkF2~Q2!52MNE d2q'dj

j~12j!

d2K'dh

h~12h!
F̃†~M08!F̃~M0!

3^x0
rel~p18 ,p28!!ux0

rel~p1 ,p2!&^↑p38u↓~p3!&.

~23!

The value ofM08 is obtained by using Eq.~8!, and

F̃~M0![AE3E12E1

M0
F~M0!, ~24!

E15A k'
2 1m2

4j~12j!
, E125

K'
2 14E1

21h2M0
2

2hM0
,

~25!
E35M02E12.

Numerical evaluations of these equations for large value
Q2 were presented in Ref.@7#. Our aim here is to understan
the essential features of the differentQ2 dependence ofF1
andF2. The expressions for the form factors differ only b
the presence of the last factor^↑p38u↓p3&, or ^↑p38u↑p3&, with
F1 depending on the non-spin-flip term andF2 on the spin-
flip term @39#. To proceed we evaluate these overlaps, us
the Melosh transformations withp3'52K' , and p3'8
52K'1hq' . One computes the product of the matric
RM(p38)R M

† (p3). The upper diagonal element~non-spin-flip
term! appears in the expression forF1, and the upper off-
diagonal element~spin-flip term proportional tos) deter-
minesF2. The evaluation is simplified by realizing that inte
gration overd2K' causes terms linear in the component
K , which are perpendicular toq in order to vanish.

To be definite, we takeq' to lie along thex direction, so
that we find
5-4
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^↑p38u↑p3&5
@m1~12h!M0#@m1~12h!M08#1K'

2 2hQKx

A$@m1~12h!M0#21K'
2 %$@m1~12h!M08#21~K'2hq'!2%

^↑p38u↓p3&5
hQ@m1~12h!M0#1~12h!~M082M0!Kx

A$@m1~12h!M0#21K'
2 %$@m1~12h!M08#21~K'2hq'!2%

. ~26!
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We may understand the qualitative nature of the ra
@QF2(Q2)#/@F1(Q2)# using the notion that the value ofQ
5Aq'

2 can be much larger than the typical momenta, of
der of b5560 MeV, which appear in the wave functio
Then forQ@b, we may approximate Eq.~8! by

M08'QA h

12h
, ~27!

and take the terms of the bracketed expressions of Eq.~26!,
which are proportional toQ as dominant. Using Eq.~27! in
Eq. ~26!, and keeping only the terms proportional toQ, de-
fines an approximation~valid for very large values ofQ2) to
the form factors that we denote asF1,2

As . Then we see tha
each ofF1

As andQF2
As contains an explicit factor ofQ, and

QkF2
As

F1
As

'2MN

^h@m1~12h!M0#1Ah~12h!Kx&

^2Kx1@m1~12h!M0#Ah/~12h!&
,

~28!

where the expectation value symbols abbreviate the op
tion of multiplying by the remaining factors of Eqs.~22! and
~23! ~without approximation! and performing the necessa
six-dimensional integral. The termsh,M0 ,Kx can be antici-

FIG. 1. Model calculation of Eqs.~22!, ~23!, and ~26! ~solid
lines! vs the approximation Eq.~28! ~dashed lines!.
06520
o

-

a-

pated to have an expectation value independent ofQ2, so the
ratio is anticipated to be constant.

The exact model calculation and the approximation~28!
are compared in Fig. 1. Equation~28! qualitatively repro-
duces the constant nature of the ratio and its value. Thus
constant nature of the ratio is understood from the proper
of the Melosh transformation, which here embodies the re
tivistic effects.

Equation ~28! represents a simple quick argument th
gives a constant ratio. But this is only a rough approximat
because each ofF1,2 is overpredicted by about 40%. Numer
cal work shows that neglecting the terms proportional toKx
in both the numerator and denominator of Eq.~28! leads to a
different approximation:

QkF2
As

F1
As

'
^h@m1~12h!M0#&

^@m1~12h!M0#Ah~12h!&
, ~29!

which, as shown in Fig. 2 leads to an even better reprod
tion of the model results forF1 andF2.

Equation~29! is a better approximation because the ter
involving Kx cancel against terms involving the differenc
betweenM08 and its approximation~27!. Thus it seems tha
values ofQ2 going up to 20 GeV2 are not large enough to
allow one to completely neglect other terms, and theref
also not large enough to extract the asymptotic behavior

FIG. 2. Model calculation of Eqs.~22!,~23!, and ~26! ~solid
lines! solid vs the approximation Eq.~29! ~dashed lines!.
5-5
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This feature of not reaching asymptotic values ofQ2 may
be understood by examining the dependence of the i
grands of Eqs.~22! and~23! on the value ofh. We may write

F1,2~Q2!5E
0

1

dhI 1,2~h,Q2!, ~30!

and determine the important regions by examin
I 1,2(h,Q2). As shown in Figs. 3 and 4 the important cont
butions occur for a very narrow band of values close to

FIG. 3. Important region of integration forF1, Eq. ~30!. The
curves show the derivative of I 1 for values of Q2

52,4,6,8,10 GeV2, with the larger values occurring for the small
values ofQ2.

FIG. 4. Important region of integration forF2, Eq. ~30!. The
curves show the derivative of I 1 for values of Q2

52,4,6,8,10 GeV2, with the larger values occurring for the small
values ofQ2.
06520
e-

1

2h5x350.145. The sharp peaking is maintained for all
the values ofQ2 considered here, and is a central reason
the qualitative success of the approximations~28! and ~29!.
The small factor 12h multiplies the large factorQ appear-
ing in Eq. ~27!, and suppresses the dominance of the ter
proportional toQ. The integrands peak atx350.15, a small
value ~compared to 0.33, expected if each quark were
carry the same momentum! that indicates the presence o

FIG. 5. The effect of varying the parameterg that governs the
power of the falloff of the wave function of Eq.~14!. The curves for
F2 are labeled by the value ofg53.5 that is the correct model valu
~solid! or g53.9 ~dashed!.

FIG. 6. The effect of varying the parameterg that governs the
power of the falloff of the wave function of Eq.~14!. The curves for
Q F2 /F1 are labeled by the value ofg53.5 ~solid! or g53.9
~dashed!. The data for 2<Q2<3.5 GeV2 are from Ref.@1#, and
those for 3.5<Q2<5.5 GeV2 are from Ref.@2#.
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end-point corrections, and a corresponding difficulty of us
simple arguments to extract asymptotic properties of fo
factors.

We also find that the computed value of the ra
QkF2 /F1 is remarkably independent of the parameters
the model. For example, Fig. 5 shows that a 10% increas
the value ofg, Eq. ~14!, causes about a 50% decrease in
computed values ofF2, but Fig. 6 shows only a 5% chang
in the ratio.

The solid curve of Fig. 6 represents our final results a
predictions for values ofQ2 that are not yet measured. Th
dashed curve of Fig. 6 is closer to the data for the ratio,
it corresponds to values ofF2 at high Q2, which are much
smaller than the data of Ref.@40#. Thus the original model of
Schlumpf seems to account for bothF1 and F2. There is a
small disagreement (;15%) with the data for the ratio,
which cannot be fixed simply by varying the paramete
This small degree of disagreement between the model
the data is remarkable because so many plausible eff
such as configuration mixing involving both quark and glu
degrees of freedom and a nonperturbativeQ2 variation of the
constituent quark masses@41# are ignored. Pion cloud effect
@42# are surely present, but these do not seem to be sig
cant for values ofQ2 greater than about 2 GeV2.

FIG. 7. HighQ2 behavior ofQkF2 /F1.
.
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tor
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We also study the behavior of the ratioQkF2 /F1 for very
large values ofQ2; see Fig. 7. The constant nature of th
ratio seen in previous figures is actually the result of a bro
maximum occurring nearQ2'10 GeV2. The ratio falls for
asymptotic values ofQ2, but not as quickly as expected@5#
from perturbative QCD,QkF2 /F1;1/Q .

VI. SUMMARY AND DISCUSSION

We have seen how a simple relativistic constituent qu
model accounts for bothGM andQF2 /F1 for values ofQ2

between 2 and 5.5 GeV2. The most relevant ingredient in
the model is its attempt to use a wave function that is Po
caréinvariant. In such wave functions the helicity conserv
tion rule is not satisfied because the nonperturbative w
function is a mixture of different spin states, as defined
Eqs. ~17! and ~18! and explained in Sec. IV. This featur
leads to an approximate analytic understanding, embodie
Eqs.~28! and~29!, thatQF2(Q2) andF1(Q2) have the same
variation with Q2. The predicted value of the ratio
QF2(Q2)/F1(Q2)'0.8 for the values ofQ2 up to 20 GeV2,
and drops slowly for larger values.

The present data set extends toQ255.5 GeV2, and its
measurement of the nonconservation of helicity has impli
tions for other exclusive processes involving protons. H
ronic helicity conservation should not be relevant if we co
sider proton-proton scattering at high momentum transf
up to 2t55.5 GeV2. This means large values of variou
analyzing powers can be expected. Perhaps the most i
esting mystery in proton-proton scattering is the large va
of ANN observed in 90° proton scattering ats'20 GeV2

@43,44#. This corresponds to2t'7 –10 GeV2. If the present
measurements are extended to values ofQ2 such as these
and if the constant nature of the ratioQF2(Q2)/F1(Q2) is
maintained, one could be able to seek an explanation of
large value of the analyzing power in terms of the nonp
turbative proton wave function.
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