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Q? independence ofQF,/F,, Poincareinvariance, and the nonconservation of helicity
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Arelativistic constituent quark model is found to reproduce the recent data regarding the ratio of proton form
factors, F»(Q?)/F,(Q?). We show that imposing Poincaiavariance leads to substantial violation of the
helicity conservation rule, and an analytic result that the f&$i@Q?)/F1(Q?) ~ 1/Q for intermediate values of
Q%
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. INTRODUCTION with momentum transfeq”=(p’ — p)*, Q?>= —q? andJ* is

taken as the electromagnetic current of free quarks.@or

The recent discoveryl,2] that the ratio of proton form =0 the form factors; and xF, are, respectively, equal to
factors Gg /Gy falls linearly with Q?, the ratioQF,/F;  the charge and the anomalous magnetic momentunits of
reaches a constant value forR?<6 GeV?, and the plans e and e/M,, and the magnetic moment ig=F,(0)

[3] to make measurements up@=9 Ge\?, have focused + xF,(0)=1+ «. The Sachs form factors are defined as
attention on understanding nucleon structure. The constant

nature of the ratioQF,/F; contrasts with the prediction 2

from perturbative QCI)4] thatQ?F,/F, should be constant Ge=Fi—z«F2  and Gu=F;+«F,. 2
[5]. While this latter ratio could be achieved when experi- N

ments are pushed to higher valuesQ, it is worthwhile to The evaluation of the form factors is simplified by using

obtain a deeper understanding of the present results. In p
ticular, the perturbative result is based on the notion th
hadron helicity is conserveld] in high momentum transfer
exclusive processes, so that it becomes interesting to und
stand why this conservation does not seem to be applicabl
The qualitative nature of the experimental results wer
anticipated or reproduced by several model calculation?
[7-10], with that of Ref,[7] based on the work of Schlumpf a
[11-13 being the earliest. The implementation of relativity
is an important feature of each of these calculations, so it is 1
natural to seek an understanding of the form factors in terms F1(Q%)====(N,T|37IN,T)
of relativity. Our purpose here is to examine the model of 2P
Ref. [7], with the aim of highlighting the essential features and
that cause the ratiQF,/F, to be constant.

e so-called Drell-Yan reference frame in whigh=0 so
a{hathzqqu. This means that the plus components of the
é?ycleon momentdand also those of the struck constituent
guark) are not changed by the absorption of the incoming
hoton

If light-front spinors for the nucleons are used, the form
ctors can be expressed simply in terms of the plus compo-
nent of the currenfl4]:

We proceed by presenting definitions and kinematics rel- —2My
evant for a light-front analysis in Sec. Il. The relevant fea- Q«kF,(Q?%)= 2P+ (N,TI3IN, 1). ®))
tures of our relativistic constituent quark model are displayed
in Sec. lll. The essential reason for the constant rati

Orhe form factors are calculated using the “good” component

QF,/F, is discussed in Sec. IV, and elaborated upon NUGE the current,J*, to suppress the effects of quark-pair

merically in Sec. V. The paper is concluded with a briefterms.
summary. It is worthwhile to compare the formalism embodied in
Eqg. (3) with the nonrelativistic quark model formalism in
which Gg andG,, are the Fourier transforms of the ground
The electromagnetic current matrix element can be writstate matrix elements of the quark charf®;_; s;6(r
ten in terms of two form factors taking into account current—r;)] and magnetization =;_; f&;/2m;) 5(r —r;)] density
and parity conservations: operators. At high momentum transfer one needs to account
b for the influence of the motion of the proton on its wave
(N.A"p’[J#IN,xp) function. Since the charged quarks of the initial proton state
o kF,(Q2?) (or final state, or both initial and final stajeare moving,
=u, (p")| F1(Q? y’“-l—Tla"‘”(p' —p),[u(p), charge and magnetic effects are correlated in a manner con-
N sistent with relativity. It is necessary to maintain this relativ-
(1) istic connection, which is lost in the nonrelativistic quark

II. DEFINITIONS AND KINEMATICS
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model. The use of light-front dynamics, concomitant with particular, if the proton acquires a transverse momentsm
Eq.(3), is a particularly convenient way to handle the motionboosted by the absorption of a photon of momentugn
of the initial and final states. This is because the proton wave=(0,q,) by the third quark, the effects of the boost are ob-
function, a function of internal relative coordinates, is thetained merely replacing the momerka andK, by
same in any reference frame.
ki=k , Ki=K —nq,. (7)
I1l. RELATIVISTIC CONSTITUENT QUARK MODEL
OF THE NUCLEON The mass operatol of the boosted system is obtained by

) L _ replacingk, ,K, by the variables of Eq(7) so that
We study the form factors using relativistic constituent

quark models in general, and starting with the model of —29K, -q, + 7°q?
Schlumpf[11-13, in particular. Such models have a long M62=M§+ 1= (8
history[15—17, and many authorgl 8—34 have contributed K "

to the necessary developments. S_chlumpfs model is use\q/e now turn to the construction of the nonperturbative wave
because his power-law wave functions lead to a reasonablf)(J

dd ot f th ; lect tic f fact nctionW. This is based on the attempt to construct a state,
good description ot the proton elec rog‘agne IC Torm 1aclorSye g criped in terms of the given light-front variables, which is
Gg and Gy, at all of the values ofQ“ where data were

: ) also an eigenstate of angular moment[2i]. We take the
available as of 1992[11-13. This model uses the '9 gu L]

. . S proton wave function to be a product of an antisymmetric
Bakamjian-Thomas(BT) construction, which implies the co 16 wave function with a symmetric  flavor-spin-
choice of a very specific model wave functif@4,32. The

shall discuss the limitations of this approach. I N
; . _ nsidering the nonrelativistic model. Then
We remind the reader about a few basic features of I|ght-by considering the nonrelativistic mode €

front treatments in the BT approach. The light-front formal- 1

ism is specified by the invariant hypersurfa)cé=x°+x3 WNR="_ (¢ x,+ oxn) P, (9)

= constant. The following notation is used: A four-vecfgt \/5

is given byA*=(A",A7,A,), whereA*=A+ A% andA _ _ . .
=(A',A?). Light-front momenta vectors are denoted py Where¢, represents a mixed-antisymmetric apga mixed-
=(p*,p,), withp = (pf +m?)/p™ for on-shell quarks. The symmetric flavor wave function ang, , represents mixed-
three momenta; of the quarks can be transformed to the Symmetric or antisymmetric spin wave functia(is terms of
total and relative momenta to facilitate the separation of thé>auli spinors In the nonrelativistic model the wave function

center of mass motion as ® depends on spatial variables only, and the computed form
factorsGg andG,, will have the same dependence QA.
P pi+ps The relativistic generalization of E¢9) is
P=p;+p2tps, &= Frph? n= pt '
P17Pe W(p)=U(PU(P)U(P3)#(P1.P2.P3),  (10)

Ki=(1=8p1=¢€P2, Ki=(1=7(P1+P2) =731 - \where p, represents space, spin, and isospin indiqes:
( =p;S;, 7; and repeated indices are summed over. The spinors

It is also useful to consider the mass operator of a nonintel &€ canonical Dirac spinors:

acting system of total momentufr*: pauli

J’_
K2 K2 +m? m?2 u(p,s)='é—m Xs , (12
M= po Pr-pio—t 4 L, VE(p)+m1 0
i3 T onp(l-n) nél-¢6€ 1-9

(5)  with the isospin label suppressed.
_ _ The completely symmetric nature of the space-spin-flavor
wheremis the light quark mass, taken as the same for up ang,ave function is preserved by usifigl]

down quarks.
One may express the proton wave function in the center l//(pl,pz,ps)=¢[U(p1)Fa'zr(pz)U::,(p3)UN(0)
of mass frame in which the individual momenta are given by

+U(P)T#“U3(P2)Us(Pa) T “Un(0)g,,]
P =k +EK, pa=—k +(1-HK,, p3 =—K,. ! 2l N "
(6) (12)

The use of light-front variables enables one to separate the 11+ 1
center of mass motion from the internal motion. The internal '=—— - vsCity, I'*%=-—=vy*Cirt,7y,
wave functionV is therefore a function of the relative mo- V2 V6

mentap; ,£, . The internal wave function of the proton de- (13
pends on these relative momenta. One can obtain the wave I:V,a:H_ﬁ v
function in certain special frames via a kinematic boost. In — 2 VT
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where the charge-conjugation matiG=iy?y°=—iyso>. (14). The relative momenta of the initial and final wave func-

Note that if one takes the nonrelativistic limit of Ed.2) by  tions are given by Eq¥6)—(8). Here we take the quarks to

taking p;—(m,0,), one gets Eq(9) for the spin-isospin be elementary particles, so that the operdfoiis the opera-

dependence. tor y* times the charge of the quarks. The definition of the
The general propertigbased on symmetrigsf the wave calculation is now complete, and we could proceed immedi-

function of Eq.(12) are now specified. This wave function is ately to obtain numerical results. However, the necessary

also expressed in terms of relative momentum variablescomputations may be simplified by making a unitary trans-

Thus our wave function maintains the remarkable featurdormation that replaces the Dirac spinors of Et) by light-

about the light-front approach that one is able to write thefront spinors:

wave function of the proton in a manner that is independent

of the inertial reference frame. This wave function is also an )

eigenstate of the spin operator, that is defined in terms of the uL(p.A)=—=v

Pauli-Lubanski vectoW and the nucleon mass operatdr 2p

The squares oW and M are two Casimir operators of the ) o )

generators of the Poincagroup. A nice discussion of the T_he use of these+sp|nors simplifies the evaluation of the ma-

relevant formalism is presented in RE33]. The feature that rix elements ofy™ becaus¢5]

the wave function is an eigenstate of spin is the essential _

ingredient that leads to the numerical results presented be- u (p,p Ny u(ptp,N)=28,p". (16)

low. See Ref[34] for a critique of the procedure.

Pauli

X\
0

+

(15

One then uses the completeness relation 1

A. Wave function ® =Exu,_(p,>\)U,_(p,)\)/2m, for each of the three quarks in
Eq. (10), to obtain the light-front representation for the wave

All that remains prior to numerical evaluation is to -
P function:

specify the wave functiod. This must be chosen as a func-
tion of My to fulfill the requirements of spherical and per- N o
mutation symmetries. We take this to be of a power-law (i) = UL(Pe, M) UL(P2, A2) UL (P3.As) Y (py ')")’(17)
form:

~ ) Y (Pi M) =[UL(P1 A )U(PLS)I[UL(P2 A2)U(P2.S7)]
Mg+ %" X[U(P3,\3)U(P3,$9)]4(P1.P2.Pa).  (18)

which depends on t\{vo free parameters, the constituent quarfe emphasize that the wave functions of EGS) and(17)
mass and the confinement scale paramg@eiSchlumpf's  represent the same quantity. We have simply used a unitary
parameters ar@@=0.607 GeVy=3.5, and the constituent transformation that simplifies the calculation of the matrix
quark mass,m=0.267 GeV. It is worthwhile to review glement of the operatoy™. The coefficients of the unitary
Schiumpf’s motivation for these parametgtd]. The power  transformation are the same as a transformation introduced
falloff is chosen to reproduce the high? beh?wor of the  py Melosh[36]. For us, there is no dynamical significance in
wave funct|_ons. In particular, the datazf_GrM(Q ) \[}35] Was e The notatior(\;| R §,(pr)|s)= UL (P A U(P; »S1), with

ng deszcrlbed up to Ia value OQf_320 GeV, Wgh INi),|siy as Pauli spinors, is simply a convenient abbrevia-
Qb M(Q7) ag’pro;(m;ate yf constant .OQ greaterl than tion. Since canonical Dirac spinors are well knolgiven in
about 10 GeV. The form factor QF») is an integral over Eqg. (11)], the light-front spinors are also conventional and

times the product of the wave functions, which varies as %;Zr%min tlr?altz a(19), itis a matter of algebra to show, for

power of perpendicular momentum variables as to the power
of —2y=—7. At high Q?, one finds roughly thaQF, . —
~Q%Q7, 50Gy~1/Q* Thus the powery is fixed by the (M3l Rm(Pa)[s3)=uL(Ps.A3)u(ps,S3)

P (Mo)

high Q2 behavior ofGy,. The remaining parametes is B .

determined mainly by the charge radius of the proton. At low —(\4| M+ (1—n)My+io- (nXps3) 5.
Q?, the value of$ controls the momentum of the quarks. \/[m+(1— 7)Mo]?+ p?ﬂ

The size of the system iia the uncertainty princip)eof (19

order (w/B)~1 fm. Schlumpf’'s work shows that these pa-
rameters lead to an excellent description of many baryonic

oroperties 1113, The net result of this is that the relativistic spin effect is to

replace the Pauli spinors of E¢9) with Melosh rotation
operators acting on the very same Pauli spif@%. The
IV. THE ESSENTIAL EFFECT spin-wave function of théth quark is given by

The form factors of Eq(3) are obtained by computing the 1 0
matrix elements of the current operatbt between the ini- N=pT(n. d N=pT(n ( ) 20
tial and final states given by the wave function of E¢d€)— TP RM(p')< 0) and [1p)=R u(p) 1) 20
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This means that, for example, the spin-wave functignis  ate values ofd2. In our model, there is no basis for expect-
replaced by a momentum-dependent spin-wave functioing hadronic helicity conservation because the nonperturba-

Xy, tive wave function is a mixture of different light-front-spin
P . . . h
states, with the mixture expressed precisely in Efjg) and
(19).
1 2 .
|X5Pi) = —=|1P1LPa= 1P1TPa)| 1P3) = X5 (P1.P2))| TPs), If the value ofQ” becomes asymptotically large, the ef-
V2 fects of the nonperturbative wave function may disappear

(21) and perturbative effects, that do respect helicity conserva-
tion, could take over. But for the present, helicity nonconser-
for a spin+1/2 proton. The tern)({)e' represents the relativ- vation occurs and it will be worthwhile to consider the im-
istic generalization spin-0 wave function of the quark pairplications of this nonconservation.
labeled by(1,2). Note that the momentp; are to be ex-
pressed in terms of the relative variables,K, ,k| , andK | V. PROTON FORM FACTORS
of Egs.(4) and (7). We shall see that the important relativis-
tic effect is contained in the difference between the spinors We obtain the form factors by using the wave function of
of Eq. (20) and Pauli spinors. Eqg. (18) in Eq. (3). Our result can be expressed as
The next step is to simplify the calculation by using the
symmetry of the wave function under interchange of particle
labels to replace.the quark current 'operator by three times £1-¢) n(1—7n)
that operator acting only on the third quark. The average
charge of the third quark of the mixed-symmetric flavor X (x5 (P12 X6 (P1.P2) ) TP5IT (P3)),
wave function vanishes. This means that the second term of (22)
Eqg. (12) does not contribute to proton electromagnetic form
factors. The first term involves a mixed-antisymmetric wave d2q, dé d?K, d7
function, so the third quark carries the spin of the progap, QkF,»(Q3)=2My i_ i DI MHD (M)
of Eq. (19). However, the spin of the light-front spinar, §(1-¢) n(1—7n)
can either be the same or different fram The weighting of rel; 1 rel /
the terms can be understood readily by examining the two X (X0 (P1.P2)) | xo (P1.P2))(TP3| L (P))-
terms of the Melosh transformation of Ed.9), and consid- (23
ering the arguments of the final state wave function. The
effect of the boost is incorporated simply by using Ef.in The value ofM is obtained by using Eq8), and
the argument of the final state wave function. Thus if large
momentumQ> g is involved, both terms of the Melosh 5 [E3EE;
rotation (19) can be expected to have similar magnitudes. d(My)= M—d)(MO), (24)
In particular, the term involvingy and the spin-flip term 0
o-(nXp3) each gain a magnitude of ord€. The precise

d?q, dé d?K, dn . ~
Fu(Q))= [ T8 TRuDg 1B (M)

terms are given in the following section. Thus spin-flip and [ ki +m? K2 +4EZ+ 7*M3
non-spin-flip terms of Eq(19) are comparable. 1= Ngg1—¢) 127 27M,
The importance of the spin-flip term has immediate im- (25)

plications for our problem. There is clearly a substantial am-
plitude for a spin-up valence quarlsy= +1/2) to carry a
negative light-front spinX3= —1/2). The spin of the struck
qguark need not be the same as that of the proton. Therefo

we cannot expect the hadron helicity selection rule to appl . .
if we use a wave function such as that of E(E0)—(14), the essential features of the differé@f dependence of ;

which is constructed to be an eigenstate of spin. Helicity2"dF2- The expressions for the form factors differ only by
conservation does not occur. This same conclusion has bedfe Presence of the last factorps| | ps), or (1ps|Tps), with
obtained by Ralston and co-worke87] using the light- F1 depending on the non-spin-flip term akRd on the spin-
front basis, based on the presence of nonzero orbital angulfliP term [39]. To proceed we evaluate these overlaps, using
momentum. Although our spatial wave functidn corre- the Melosh transformations wittps, =—K,, and p3,
sponds to quarks moving in relatigestates, the use of Dirac = — K.+ 7d, . One computes the product of the matrices
spinors in Eq.10) gives the same helicity nonconservation Ru(P3)R (Ps). The upper diagonal elemefrion-spin-flip

as that of Ref[37]. In particular, the lower components of term) appears in the expression fér, and the upper off-
the Dirac spinors contain the nonzero orbital angular modiagonal elementspin-flip term proportional too) deter-
mentum present in the light-front basis. Thus we support theninesF,. The evaluation is simplified by realizing that inte-
statements of Ref.37] that helicity nonconservation is an gration overd?K, causes terms linear in the component of
important effect. We also note that Braenal. [38] argue K, which are perpendicular tg in order to vanish.

that soft nonfactorizable terms in the wave function, with To be definite, we take, to lie along thex direction, so
helicity structure similar to ours, are important at intermedi-that we find

E3: MO_ElZ'

r umerical evaluations of these equations for large values of
2 were presented in Ref7]. Our aim here is to understand
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[m+(1— p)Mol[m+(1— 7)M{]+K2 — QK,

(Tp3| Tps)y=

7Q[m+(1—n)M

VIIm+ (1= 7)Mol2+ K2H[m+(1— p)M {12+ (K, — 7q, )2

ol + (1= 7)(Mg—Mg)K,

(Tp3llps)y=

(26)

VIm+ (1= )Mo+ KZH[m+ (1— n)MI%+ (K, — 7a,)%}

We may understand the qualitative nature of the ratigpated to have an expectation value independe@?%fo the

[QF,(Q?)1/[F1(Q?] using the notion that the value &

ratio is anticipated to be constant.

=% can be much larger than the typical momenta, of or- The exact model calculation and the approximati28)

der of =560 MeV, which appear in the wave function.
Then forQ> B, we may approximate Ed8) by

Me~Q\/1 ) (27

and take the terms of the bracketed expressions of ),
which are proportional t&@ as dominant. Using Eq27) in
Eq. (26), and keeping only the terms proportional@p de-
fines an approximatiotvalid for very large values o?) to
the form factors that we denote Eﬁ Then we see that
each ofF}® and QF5° contains an explicit factor o, and

QkF5%® yp. {m+ (1= 7)Mol + Vn(1=7)K,)

FAS N<—KX+[m+(1—n)Mo]m>(’28)

where the expectation value symbols abbreviate the oper
tion of multiplying by the remaining factors of Eq®2) and
(23) (without approximatioh and performing the necessary
six-dimensional integral. The termgMg,K, can be antici-

2.0 —
15
“ L
&_. L
o L
°
9 10
3 L
£ L
o -
=~ o5 |-
0.0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 5 10 15 20
2 2
Q" (GeV¥)

FIG. 1. Model calculation of Eqsi22), (23), and (26) (solid
lines) vs the approximation Eq28) (dashed lines

are compared in Fig. 1. Equatiq28) qualitatively repro-
duces the constant nature of the ratio and its value. Thus the
constant nature of the ratio is understood from the properties
of the Melosh transformation, which here embodies the rela-
tivistic effects.

Equation (28) represents a simple quick argument that
gives a constant ratio. But this is only a rough approximation
because each &, , is overpredicted by about 40%. Numeri-
cal work shows that neglecting the terms proportionak{o
in both the numerator and denominator of E2B) leads to a
different approximation:

QuF2® __ (alm+(1=n)Mo))
F2 (Im+ (1= n)MIVn(1-7n))’

which, as shown in Fig. 2 leads to an even better reproduc-
tion of the model results foF; andF.

Equation(29) is a better approximation because the terms
involving K, cancel against terms involving the difference

(29

%'etweenM{) and its approximatiori27). Thus it seems that

values ofQ? going up to 20 Ge¥ are not large enough to
allow one to completely neglect other terms, and therefore
also not large enough to extract the asymptotic behavior.

T l\ T T | T T T T | T T T T | T T T T
2.0 — \ —
L N\ J
~N

L ~ i

L A A i

[ TS LQeF/F ]

1.5 — T~ —

0] i «F ]
% - QxFo/Fy 1
S - -
Q i As 7
8 1.0 _— Q 1 L _—_
b L i
o] L i
P 05 — —
0'0 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 i
0 5 10 15 20

2 2
Q" (GeV®)

FIG. 2. Model calculation of Eqs(22),(23), and (26) (solid
lines) solid vs the approximation E¢29) (dashed lines
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LI | L | L | L | L 0.5 T T T T T T | T T T | T T T | T T T
04 — —
0.3 _ —
L P - i
- 7 3.9 =~ - -
L / ~ o 4
o~ ™ ~
[aV) - / ~ 4
54 % 02 [ [/ S~
t~y - o T~
S—r » Fof b
i
— i b
0.1 —
0 L i
0.142 0.144 0.146 0.148 0.15 0.152 0.0 ——+—- USSR K RIS S
1 0 2 4 6 8 10
- 2 2
N Q® (GeV?)

FIG. 3. Important region of integration fd¥,, Eq. (30). The
curves show the derivative ofl; for values of Q?
=2,4,6,8,10 GeV, with the larger values occurring for the smaller
values ofQ?.

FIG. 5. The effect of varying the parametgrthat governs the
power of the falloff of the wave function of E§14). The curves for
F, are labeled by the value gf= 3.5 that is the correct model value
(solid) or y=3.9 (dashegl

This feature of not reaching asymptotic value<Qsfmay o N -
be understood by examining the dependence of the inte: 7=%=0.145. The sharp peaking is maintained for all of

. the values ofQ? considered here, and is a central reason for
grands of Eqs22) and(23) on the value ofy. We may write the qualitative success of the approximatidd8) and (29).

1 The small factor + » multiplies the large facto® appear-

Flyz(QZ):f dnly A 7,Q?), (30 ing in Eq. (27), and suppresses the dominance of the terms
0 proportional toQ. The integrands peak a;=0.15, a small

value (compared to 0.33, expected if each quark were to

and determine the important regions by ex"’Im'n'ngcarry the same momentynthat indicates the presence of

I 1.4 7,Q?. As shown in Figs. 3 and 4 the important contri-
butions occur for a very narrow band of values close to 1 1.0

3.5

E 0.8

0.6 ]

i . ]

i = ]

| \m 0.4 —

EL' -

- O‘ ]

i 0.2 — ]

- 0.0 _I 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 I_

R A 0 2 4 6 8 10
0 2 2
0.142 0.144 0.146 0.148 0.15 0.152 Q (GeV )

1—
K FIG. 6. The effect of varying the parametgrthat governs the
FIG. 4. Important region of integration fd¥,, Eq. (30). The power of the falloff of the wave function of E§14). The curves for
curves show the derivative ofl; for values of Q2 Q F,/F, are labeled by the value of=3.5 (solid) or y=3.9
=2,4,6,8,10 Ge¥, with the larger values occurring for the smaller (dashedl The data for 2Q?<3.5 Ge\? are from Ref[1], and
values ofQ?. those for 3.5:Q?<5.5 GeV are from Ref[2].
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RN N R A R We also study the behavior of the rafop<F, /F, for very
large values ofQ?; see Fig. 7. The constant nature of the
ratio seen in previous figures is actually the result of a broad
maximum occurring nea®’~10 Ge\#. The ratio falls for
asymptotic values o®?, but not as quickly as expect¢H]
from perturbative QCDQ«F,/F;~1/Q .

VI. SUMMARY AND DISCUSSION

We have seen how a simple relativistic constituent quark
model accounts for botts,, andQF,/F, for values ofQ?
between 2 and 5.5 GéVThe most relevant ingredient in
the model is its attempt to use a wave function that is Poin-
careinvariant. In such wave functions the helicity conserva-
tion rule is not satisfied because the nonperturbative wave
r q function is a mixture of different spin states, as defined in

QxFy/Fy

0.8 == '1(10' = '2(!0' = '3(10' = '4(10' = '5(10' = Iesoo Egs. (17) and (18 gnd explaingd in Sec. IV. This featgre '
2 (GeV? leads to an approximate analytic understanding, embodied in
Q" (GeV?) Egs.(28) and(29), thatQF,(Q?) andF(Q?) have the same

variation with Q2. The predicted value of the ratio
QF,(Q?)/F1(Q?) ~0.8 for the values 0§? up to 20 GeV?,

end-point corrections, and a corresponding difficulty of usingam_jl_ﬁerogrsezleor;’;’%;?; lger?eerx\t/:rzl(jjesi.@@: 55 Ge\? and its

simple arguments to extract asymptotic properties of form > - L
factgrs 9 ymp prop measurement of the nonconservation of helicity has implica-

We also find that the computed value of the ratioions for other exclusive processes involving protons. Had-

Q«F,/F, is remarkably independent of the parameters oironic helicity conservation should not be relevant if we con-
2 1

the model. For example, Fig. 5 shows that a 10% increase iﬁider proton-proton scattering at high momentum transfers,

the value ofy, Eq. (14), causes about a 50% decrease in the P to ~t=5.5 GeV. This means large values of various

computed values df,, but Fig. 6 shows only a 5% change anquzmg powers can be expected. Pt_arhaps the most inter-
in the ratio. esting mystery in proton-proton scattering is the large value

The solid curve of Fig. 6 represents our final results an ijA‘i“z"]\' _?E_served N 9% fr(:tf'; s;:gtteerlrlg ﬁhzo Gevzt
predictions for values oQ? that are not yet measured. The 4. TNIS ctorrespont S d& dNt N | e6f. he prf;en
dashed curve of Fig. 6 is closer to the data for the ratio, puféasurements are extended to values) SZUC as 2 ese,
it corresponds to values &, at high Q2, which are much and if the constant nature of the rati@F,(Q“)/F,(Q°) is

smaller than the data of Rg¢#0]. Thus the original model of Imalntalnled, ofnehcouldlbe_ able to se_ek an explfarLatlon of the
Schlumpf seems to account for bty andF,. There is a ar%e value of the anafyzmg power in terms of the nonper-

small disagreement~15%) with the data for the ratio, turbative proton wave function.

which cannot be fixed simply by varying the parameters.
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