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Bethe-Salpeter equation and a nonperturbative quark-gluon vertex
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A Ward-Takahashi identity preserving Bethe-Salpeter kernel can always be calculated explicitly from a
dressed-quark-gluon vertex whose diagrammatic content is enumerable. We illustrate that fact using a vertex
obtained via the complete resummation of dressed-gluon ladders. While this vertex is planar, the vertex-
consistent kernel is nonplanar and that is true for any dressed vertex. In an exemplifying model the rainbow-
ladder truncation of the gap and Bethe-Salpeter equations yields many results- egd p-meson masses,
that are changed little by including higher-order corrections. Repulsion generated by nonplanar diagrams in the
vertex-consistent Bethe-Salpeter kernel for quark-quark scattering is sufficient to guarantee that diquark bound
states do not exist.
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[. INTRODUCTION wherem(¢) is the renormalized current-quark mass at the
scalel: Z,m({)=2Z,mgy, with Z, the renormalization con-
Dynamical chiral symmetry breakinPCSB) and con-  stant for the scalar part of the quark self-energy. At one loop
finement are keystones in an understanding of strong intefn perturbation theory
action observables and their explanation via a nonperturba-
tive treatment of QCD. The gap equatifi]

m(¢)= 4

(I[¢/ A gep)) ™™

where m is the renormalization-group-invariant current-
quark mass,y,,=12/(33-2N;) is the leading-order mass
(1) anomalous dimension, fdd; active flavors; and\ ocp is the
N;-flavor QCD mass scale.
Since QCD is an asymptotically free theory the chiral

is an insightful tool that has long been used to explore themit is unambiguously defined bgh=0 [3], which can be
connection between these phenomena and the long-range bgmlemented in Eq(1) by applying[4]

havior of the interaction in QCO?2]. In this equation:

D,.(k) is the renormalized dressed-gluon propagator, Zo(L2A?)mgy(A)=0, A>{. 5)
I'%(qg;p) is the renormalized dressed-quark-gluon vertex, . _ o -

mgy is the A-dependent current-quark bare mass that apThe formation of a gap, described by EQ), is identified
pears in the Lagrangian, atj@:fAd“q/(Zw)“ represents a With the appearance of a solution for the dressed-quark
translationally invariant regularization of the integral, with ~Propagator in whichm(¢)~0(14%)#0; i.e., a solution in
the regularization mass scale. The quark-gluon-vertex anyhich the mass function is power-law suppressed. This is
quark wave function renormalization constag(¢?,A2) DCSB. It is impossible at any finite order in perturbation
andZ,(¢2,A?), respectively, depend on the renormalizationtheory and entails the appearance of a nonzero value for the

A
S(p) '=Z,(iy-p+ mBM)+ZIJq gsz(p_Q)

a

X?Y#S(Q)Fi(%p),

point and the regularization mass scale. vacuum quark condensa{tg]
The solution of Eq(1) is the dressed-quark propagator, N
which takes the form —(@)3= lim Z4(¢2 AP)Ntrp fq @), ©®
A—o

S(p)~*=iy-pA(p?,¢?)+B(p* ¢%)
where tp identifies a trace over Dirac indices alone and the
_ 1 superscript “0” indicates the quantity was calculated in the
C2(p2,2) chiral limit.

It is apparent that the kernel of the gap equation is formed
and is obtained by solving the gap equation subject to th&om a product of the dressed-gluon propagator and dressed-
renormalization condition that at some large, spaceftke ~ quark-gluon vertex. The kernel may be calculated in pertur-

bation theory but that is inadequate for the study of intrinsi-
S(p)_l|p2:§2=iy~ p+m({), 3 cally nonperturbative phenomena. Consequently, to make

[iy-p+M(p? 3], )
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model-independent statements about DCSB one must emrables. In our simple model it, like the vertex, can also be
ploy an alternative systematic and chiral symmetry preservebtained via an algebraic recursion relation, complete and in
ing truncation scheme. a practical closed form. In Sec. IV we also study the bound
One such scheme was introduced in RBl. Its leading-  state equations in a number of meson channels, and derive
order term is the rainbow-ladder truncation of the DSE’s andand solve the analogous equation for diquark channels. Sec-
the general procedure provides a means to iderdifyiori,  tion V is a summary.
those channels in which that truncation is likely to be accu-
rate. This scheme underlies the successful application of a
renormalization-group-improved rainbow-ladder model to Il. A DRESSED-QUARK-GLUON VERTEX
flavor-nonsi_ngl_et pseudoscalar me_s@m]wnd vector mesons The truncation scheme introduced in R may be de-
[6-9], and indicates why the leading-order truncation is in-g iheq as a dressed-loop expansion of the dressed-quark-
adequate for scalar. mesons and flavor-singlet pseudoscalajg,on vertices that appear in the half amputated dressed-
[10]..The systematic nature ?f the scheme has also ma ark-antiquarkor -quark-quark scattering matrixS?K, a
possible a proof of Goldstone’s theorem in QCE). renormalization-group invariant, wheré is the dressed-
In quantitative applications, however, the 'ead'”g'orderquark-antiquark(or ~quark-quark scattering kernel. All

term alone has been used almost exclusively: R8f1jare ot fynctions involved thereafter in connecting two par-

exceptions but they consider just the next-to-leading-ordefi,,ar quark-gluon vertices artelly dressed The effect of

term. Hence one goal of our study is a nonperturbative Veriz..s truncation in the gap equation, EL), is realized

fication of the leading-order truncation's accuracy. hrough the following representation of the dressed-quark-
One element of the gap equation’s kernel is the dresse jluon vertexi 2 = (i/2)\2T ,=12T , :
® M me

gluon propagator, which in Landau gauge can be written

K.k,
k2

d(k*,¢%)

D, (k)= =

Suv—

1 (A
: ) erﬂ(k=p):7ﬂ+2—,\lcﬁgDpa(p—l)ypS(IJrk—p)

It has been the focus of DSE stud{d<] and lattice simula-
tions [13,14, and contemporary analyses suggest that
d(k?,£%)/k? is finite, and of @1 GeV ?), at k?=0. How-
ever, this behavior is difficult to reconcile with the existence XY S(p=1) Yo T3, (1, =K k=p)+[---].
and magnitude of DCSB in the strong interaction spectrum @)
[15]: it is a model-independent result that a description of
observable phenomena requires a kernel in the gap equation
with significant integrated strength on the domakd  HereI'¢is the dressed-three-gluon vertex and it is apparent
=1 Ge\? [16]. The required magnification may arise via an that the lowest order contribution to each term written ex-
enhancement in the dressed-quark-gluon vertex but, hithertlicitly is O(g?). The ellipsis represents terms whose leading
no calculation of the vertex exhibits such behavia7].  contribution is O¢?); e.g., the crossed-box and two-rung
Hence another aim of our study is to contribute to the storglressed-gluon ladder diagrams, and also terms of higher
of nonperturbative information about this vertex. leading order.

In Sec. Il we briefly recapitulate on the truncation scheme The expansion 08?K just described, with its implications
of Ref. [5]. Then, using a simple confining moddlg], we  for other n-point functions; e.g., the dressed-quark-photon
demonstrate that an infinite subclass of contributions to th&ertex, yields an ordered truncation of the DSEs that, term-
dressed-quark-gluon vertex: the dressed-gluon ladders, cdy-term, guarantees the preservation of vector and axial-
be resummed via an algebraic recursion relation, which provector Ward-Takahashi identities, a feature exploited in Ref.
vides a closed form result for the vertex expressed solely i3] to prove Goldstone’s theorem. Furthermore, it is readily
terms of the dressed-quark propagator. This facilitates a skeen that inserting Eq8) into Eq. (1) provides the rule by
multaneous solution of the coupled gap and vertex equationghich the renormalization-group-improved rainbow-ladder
obtained via the infinite resummation, as we describe in Sedruncation [4,6—9 can be systematically improved. It
[1. While the algebraic simplicity of these results is peculiar thereby facilitates an explicit enumeration of corrections to
to our rudimentary model, we anticipate that the qualitativethe impulse current that is widely used in calculations of
behavior of the solutions is not. electroweak hadron form factof8].

In Sec. IV we describe the general procedure that enables
a calculation of the Bethe-Salpeter kernel for flavor-
nonsinglet mesons that is consistent with the fully resummed
dressed-gluon-ladder vertex. The kernel is itself a resumma- We cannot say anything about a complete resummation of
tion of infinitely many diagrams; and it isot planar, an the terms in Eq(8). However, we are able to contribute to
outcome necessary to ensure the preservation of Waraspects of the more modest problem obtained by retaining
Takahashi identities. This kernel is the heart of the inhomo-only the sum of dressed-gluon ladders; i.e., aspects of the
geneous vertex equations and associated bound state equwartex depicted in Fig. 1. This infinite subclass of diagrams is
tions whose solutions relate to strong interaction obseri/N. suppressed.

N (A,
X ‘)//,LS(I)‘)/(T—’_ ?ﬁ g DU-/O-(I)DT/T(I +k—p)

A. Resumming dressed-gluon ladders
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_ 1A
F,ud(er!p*):Zl l'y/.L+€J| Dpo’(p_l)’)/pS(IJr)
Lik,p) = + + Feo

X, (1 1 )S(1-) ve 11)

with v =v+ 1P, wherev=I,p, etc., is any four vector, but
FIG. 1. Integral equation for a planar dressed-quark-gluon Verysing Eq.(9) this simplifies to
tex obtained by neglecting contributions associated with explicit
gluon self-interactions. Solid circles indicate fully dressed propaga- 1
tors. The vertices are not dressed. I',(p)= 7ﬂ+§ Y, S(PIT .(P)S(P) ¥, (12

1. A model where the additional factor of 3/4/8 cf. 1/6 owes itself to

To simplify our analysis and make the key elements transthe combined operation of th& function and the longitudi-
parent we employ the confining model introduced in Ref.nal projection operator. Inserting E(L0) into Eq.(12) one
[18], which is defined by the following choice for the finds a,=0 and hence the solution of E€L2) simplifies
dressed-gluon line in Fig. 1:

I ,(p)=ai(p?)y,+axp?)y-pp,—as(pip,. (13

2 KKy 402 .
D, (K)=9"D ., (K)=| 6,,— 2 (2m)*G26%Kk). (9) We re-express this vertex as
Plainly, G, measured in GeV, sets the model's mass-scale and I.(p)=2 Tl(p) (14)
i=0

henceforth we sef=1 so that all mass-dimensioned quan-
tities are measured in units ¢t In the following, since the N
model is ultraviolet-finite, we usually remove the regulariza- P o N
tion mass scale to infinity and set the renormalization con- :izzo [a1(P%) vt aa(p?)y- PP~ az(P)ip,]. (15
stants equal to one.

_ The model defined by Eq9) is a precursor to an effica- \yhere the superscript enumerates the order of the iterate:
cious class of models that employ a renormalization-groupri=o is the bare vertex
improved effective interaction and whose contemporary ap- “
plication is reviewed in Refd.19,2(. It has many positive =1  a=0=al: (16)
features in common with that class and, furthermore, its par- e 2 s
ticular momentum dependence works to advantage in reduc‘r-i=1
ing integral equations to algebraic equations that preserve tt}x__ea (12 to obtain the one-rung dressed-gluon correction
character of the original equation. Naturally, there is a draw-;Z,"" : ) . '
back: the simple momentum dependence also leads to some: is the result of insertind’, =, and is therefore the

model-dependent artifacts, but they are easily identified an§¥o-rung dressed-gluon correction; etc. .
hence are not cause for concern. Now a simple but important observation is that each iter-

ate is related to its precursor via the following recursion re-
lation:

is the result of inserting this into the right-hand side of

2. Planar vertex

The general form of the dressed-quark gluon vertex in- 1“"J‘ii+1(p+ ,pf);:|ar‘+1(p+ Po)
volves twelve distinct scalar form factors but using E9). g .
that part of this vertex which contributes to the gap equation

A
has no dependence on the total momentum of the quark- =f Dlw(p—u)IbyMS(uQIa
antiquark pair; i.e., only’ ,(p):=T",(p,p) contributes. This u
\c/:vc;ir:z|derably simplifies the analysis since, in general, one can XFL(U+ u)S(u)IPy, (17)

. which is depicted in Fig. 2. Using E@9) this simplifies to
T ,.(P) = a1(p2) ¥, ax(p?)y- PP, — as(pA)ip,, P J 9 E® P

. ) 1 '
+ay(pDiy,yp, (10 L, P) =5 7.S(PTL(P)IS(P) Y, (18)

but it does not restrict our ability to address the questions we o _ _
raised in the Introduction because those amplitudes whicAnd substituting Eq(15) into Eq. (18) yields (5= p?)
survive are the most significant in the dressed-quark-photon

vertex [7] and it is an enhancement in the vicinity pf ay (s)

=0 that may be important for a realization of DCSB using +10e) . i+1gy | _ . i

an infrared-finite dressed-gluon propagdtbs]. @79 ai2+1( ) O(s:AB)E(9), (19
The summation depicted in Fig. 1 is expressed via az ~(s)
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1
B(s)=m+ ——[B(4a,+Sa,) —SAas]. 25
(9)=m+ —[Bl4artsar) ~shas]. (29

Obviously, Egs.(24), (25), completed using Eq922),
form a closed, algebraic system. It can easily be solved nu-
merically, and that procedure yields simultaneously the com-
plete gluon-ladder-dressed vertex and the propagator for a
quark fully dressed via gluons coupling through this nonper-
turbative vertex.

We note here that in the chiral limit a realization of chiral

FIG. 2. Recursion relation for the iterates in the fully resummedSymmetry in the Wigner-Weyl mode is always possible. This

dressed-gluon-ladder vertex, Ed.7): filled circles denote a fully
dressed propagator or vertex. Using E®), p=Kk, and this relation
is expressed by Ed18).

O(s:A,B) ! !
Su ] = T 5 5 5
4 (sA2+B?)?
—(sA?+B?) 0 0
X 2A2 SA?—B? 2AB
4AB 4sAB 2(B%?—sA?)
(20
Now it is clear that Eqs(13), (15), (19) entall
a= 5‘, O'| a’= Lao (21
= 1-0°

where the last step is valid whenever an iterative solution of

realization is expressed via t®@=0 solution of the gap
equation, which from Eqg22), (25) is evidently always ad-
missible form=0.

[Il. SOLUTIONS OF THE GAP AND VERTEX EQUATIONS
A. Algebraic results

Before reporting results obtained via a numerical solution
we consider a special case that signals the magnitude of the
effects produced by the complete resummation in Fig. 1; i.e.,
we focus on the solutions at=0. In this instance Eq4$22)
give, with Ag=A(0), By=B(0),

(s=0) 4B2
ay(s=0)=—,
' 1+4B2

8A3  2B3+1
(4B2+1)22B2-1’

ay(s=0)=

Eq. (11) exists, and defines a solution otherwise, so that, with

A=sA?(s)+B?(s),

4A

SRS

B —8A? 1+2A
1+2(B2-sA?)—8A2 1+4A"

A

B —8AB
1+2(B2—sA?) —8AZ

a3 (22)

We have thus arrived at a closed form for the gluon-

ladder-dressed quark-gluon vertex of Fig. 1; i.e., EHG8),

8A,B, 1

as(s=0)= .
3 4B2+1 2B2—1

(26)

Substituting these expressions, E25) becomes

168,

Bo=m+
° 4B2+1

(27)
and in the chiral limit this yields
1
BO=§\/1—5~1.94, (28)

which makes plain that the model specified by ). sup-

(22). Its momentum-dependence is determined by that of th@orts a realization of chiral symmetry in the Nambu-
dressed-quark propagator, which is obtained by solving th&oldstone mode; i.e., DCSB. The value in Eg8) can be
gap equation, itself constructed with this vertex. Using Eqcompared with that obtained using the bare vertex; i.e., the

(9) that gap equation is

iy-p+m+y,S(p)l,(p),

“i=d 23
P iy prmermspry, P
and substituting Eq(13) this gives
1
A(s)=1+ w[A(Zal—Saz)—Bagﬂ, (24

leading-order term in the truncation of R€E: B")=2, to
see that the completely resummed dressed-gluon-ladder ver-

tex altersBy by only —3%.

Similarly, Eq.(24) becomes

8A,
4BZ+1

Ap=1+ , (29)

1+
253—11

which using Eq.(28) gives
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26 10000
Ao=15~1.78. G Bare
------ oo,

1000 F!ecuesive

This, too, may be compared with the leading-order result

AP)=2. Again the resummation does not materially affect

the value: here the changes13%. A
Inserting Eqs(28), (30) into Egs.(26) one finds

(s) 100

10

15
a;(0)=75~0.94, cf. 10,

1
1.x10¢  0.0001 0.01 1 100 10000
S

1
@2(0)= 7550~ 0-12, cf. 0.0, FIG. 3. Numerical solution of Eq32): solid line; see the solu-
tion obtained with the bare vertex: dotted line; and the one-loop
corrected vertex: dashed line.

1
a3(0)= —=~0.26, cf. 0.0, (31) 5
V15 Ka=7<2. (35)

where the last, comparative column lists the values for th%vidently in the chirally symmetric case too, the ladder-
leading-order(bare vertex. It is evident that the solution of dressed \,/ertex reduces the magnitude of the éolution.

Eq._ (11) obtained _using an infrared amplified effec_tive inter- - These features are apparent in the complete numerical so-
action, Eq.(9), which supports DCSBand also confinement | ion of Eq. (32), which is depicted in Fig. 3. Furthermore,
[21]), does not exhibit an enhancement in a neighborhood ofe gluon-ladder-dressed vertex, Ej3), obtained with this
p>=0. This provides an internally consistent picture: asplution does not exhibit an enhancement.
dressed-quark-antiquark scattering kernel, whose embedding

in the gap equation already possesses sufficient integrable 2. Nambu-Goldstone mode
strength, does not additionally magnify itself. In Sec. A we described features of the Nambu-
Goldstone mode solution of the gap equation, whp%e 0
B. Numerical results properties are smoothly related to those of the& 0 solu-
_ tion, as is also the case in QQR2]. A complete solution is
1. Wigner-Weyl mode only available numerically and our calculated results for the
The B=0 solution of Eq.(25) is always admitted when dressed-quark propagator and gluon-ladder-dressed vertex

m=0. In that case Eq(24) becomes are depicted in Figs. 4—6.

It is apparent from the figures that the complete resumma-
tion of dressed-gluon ladders yields a result for the dressed-

A(s)=1+ 8A(s) (32) quark propagator that is little different from that obtained
1+4sA%(s) 1-4sA(s) |’ with the one-loop-corrected vertex; and there is no material

difference from the result obtained using the zeroth-order

of which there is no closed-form solutiofit is a quintic  Vertex. Asingle, exemplary quantification of this observation
equation forA(s). ] is provided by a comparison between the valuesMdfs

However, using the bare vertex one finds a chiral limit=0)=B(0)/A(0) calculated using vertices dressed at differ-

solution: A©)(s) = \2/s for s~0. We therefore suppose that St O"ders:
in the neighborhood =0 Eq.(32) admits a solution of the

form Si—onl, N=0 N=1 N=2 N=oc0
12 M(0) 1 1.105 1.115 1.117
Ka
As—o(S)= ( ?) : (33 (36)
Similar observations apply to the vertex itself. Of course,
Substituting this into Eq(32) yields there is a qualitative difference between the zeroth-order ver-
tex and the one-loop-corrected result; ;0 in the latter
16 1—2ka case. However, once that effect is seeded, the higher-loop

(39 corrections do little.

T 1+4kp 1—dk,s’

3. Vertex ansatz
which ha§ two solutlon%A=§/4_, 5/4. The requiredphysi- In the absence of a nonperturbatively dressed quark-gluon
cal) solution of Eq.(32) satisfiesA(s) — 1. Therefore vertex a number of phenomenological DSE studies have em-

sA2(s)—sA_, from above and hence the physical branchployed an ansatz, which is based on a nonperturbative analy-
of the solution is described by sis of QED and, in particular, is constrained by the vector

065203-5



A. BENDER, W. DETMOLD, A. W. THOMAS, AND C. D. ROBERTS PHYSICAL REVIEW G5 065203

2.5 . : 2.5

1.5 1.5

Recursive

Recursive

2 4 -4 -2 0 2 4
s

FIG. 5. The dressed-quark propagator can be writgp)
=—iy-poy(s)+ag(s). Here we plot 4(S), 20<(S) obtained
with m=0.023, cf. the results obtained with the zeroth-order vertex:
dotted line; and the one-loop vertex: dashed line. Clearly, the ana-
Iytic properties of the dressed-quark propagator are qualitatively
unaffected by our dressing of the vertex.

IV. BETHE-SALPETER EQUATION

The renormalized homogeneous Bethe-Salpeter equation
(BSE) for the quark-antiquark channel denoted bl can
compactly be expressed as

Recursive

0—4 -2 0 2 4 . = A . GH .
[Tm(K;P)lge= fq [K(k,a:P)IEe[ xm(a:P) lgH. (39

s

FIG. 4. Upper panelA(s), M(s) obtained withm=0 (solid
line). Lower panel:A(s), M(s) obtained withm=0.023 (solid
line). All dimensioned quantities are expressed in unitg af Eq.
(9). Afit to meson observables requir6s-0.5 GeV and hence this
value of the current-quark mass corresponds-t® MeV. In both
panels, for comparison, we also plot the results obtained with the e .
zeroth-order vertex: dotted line; and the one-loop vertex: dashed xm(K:P)=S(k: )y (k;P)S(k-). (39

line. In Eq. (38), which is depicted in Fig. & is the fully ampu-
tated dressed-quark-antiquark scattering kernel. The choice
Ward-Takahashi identity and the requirement of multiplica-

whereT",(k;P) is the meson’s Bethe-Salpeter amplitudle,
is the relative momentum of the quark-antiquark pair &nd
is their total momentumE, ... ,H represent color, flavor,
and spinor indices and

tive renormalizability[23]. That vertex has been us¢a4] [K(Kk,a;P)IEF =D, (k= [1?y,Jecl1?Y,Jue . (40)
with the model interaction of Eq9) in which its form is
expressed via 1
als) |
08|
dA(s dBs)y 1k
a1()=A(s), a2<s>=2d—(s), as(s) =2 d(s ! @) O 2o
i(S) Recursive
04k a3(8)
The functions defined by these expressions, calculated usin
the self-consistent solutions determined in R2#], are de- 02l
picted in Fig. 7. They bear little resemblance to the functions
obtained systematically via the resummation of dressed-

gluon ladders, an outcome that could be anticipated based o -4
the difference between the dressed-quark propagator calcu-
lated herein and that in Ref24]. This finding does not in- FIG. 6. a;, i=1,2,3, calculated witrm=0.023. These func-
validate the ansatz nor its use in modelling QCD but merelyions calculated at one-loggotted ling and two-loop(dashed ling
shows that the ansatz cannot be a sum of dressed-gluon lagte also plotted for comparison. The results obtained mith0 are
ders alone. little different.
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- —— B®
a1(s)=A(S)
ol T 2(s) =) +
""""" as(s) Y] ! Y]
Ty
1 - ~
@ -7 = FIG. 9. BSE expressed in E¢5), which is valid whenevel’ ,
s -7 ) can be obtained via a recursion relation.
o
L Sincerl’ ,(p,q) itself depends oSthen Eq.(42) yields a sum
-1 . of two terms
2L - . P w KA P)IEF =D, (k= a)[1*7,]ecl1°0(A- k) e

s

A
FIG. 7. «;, i=1,2,3, calculated from EQqs37) using the +j| Dﬂv(k_l)[|a7#5(|+)]EL

dressed-quark propagator solutions obtained in .
yields the dressed-gluon ladder-truncation of the BSE, which [T k) 1e. (49
provides the foundation for many contemporary, field-

theory-based phenomenological studies of meson properties, . . . .
see, Z.g., Ref£25]. 9 prop Here, in addition to the usual effect of differentiation, the

functional derivative add® to the argument of every quark
line through which it is commuted when applying the prod-
uct rule. NB.D,, also depends ors because of quark
The preservation of Ward-Takahashi identities in thosevacuum polarization diagrams. However, as noted in Ref.
channels related to strong interaction observables requires[&], the additional term arising from the derivative D,
conspiracy between the dressed-quark-gluon vertex and thaoes not contribute to the BSE kernel for flavor nondiagonal
Bethe-Salpeter kern¢b,26]. We now describe a systematic systems, which are our focus herein, and hence is neglected
procedure for building that kernel. for simplicity. It must be included though to obtain a kernel
As described, e.g., in Reffi26], the DSE for the dressed- adequate for an analysis of problems such asjthg’ mass
quark propagatoS8is expressed via splitting, for example.
Now, introducing[ xm(4;P)]gn . the BSE becomes

" Sen(a-)

A. Vertex-consistent kernel

ST[S]
?:O, (41) A
FM<k;P>=Jq D (k= 12y, (@I (- k)

whereI'[S] is a Cornwall-Jackiw-Tomboulis—like effective

actiqn. The Be.the-SaIpt_eter' kernel is then obtained via an +S(q.)AZ (q.k P)], (45)
additional functional derivative:
oH S er where we have used E(l4) and defined
KEr=— 5Sen” (42 ]
Herein the self-energy is given by the gap equation, Eq. f,.,,(q,k;P)=n§O rin(a,k; P), (46)

(23), and the recursive nature of the dressed-gluon-ladder
vertex entails that thath order contribution to the kernel is with
obtained from then-loop contribution to the self energy:

A a;n . A 4
2”(P)=—L Du(p— )%y, S(@)I*T}(q,p). (43 [AMV(l-k,F’)]LF:L 5S(0-)on

X[ = k) Telxm(a;PYIgn - (47)

Equation(45) is depicted in Fig. 9. The first term is in-
s / Ty stantly available once one has an explicit form fd}. To
develop an understanding of the second term, which is iden-
FIG. 8. Homogeneous BSE, E¢38). Filled circles: dressed tified by the shaded box in the figure, we employ the recur-
propagators or vertices is the dressed-quark-antiquark scattering Sive expression for the dressed-quark-gluon vertex(EQ,
kernel. A systematic truncation @K is the key to preserving With p=k, P=1—k, to obtain an inhomogeneous recursion
Ward-Takahashi identities, 26]. relation for A§;":
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(Subsequently, to simplify our analysis, we focusNp=2
and assume isospin symmetry. There is no impediment, in
principle, to a generalization.

The result of substituting E¢50) into the right-hand side
(RHS) of Eq. (45) can be expressed in the compact form

FIG. 10. Recursion relation foA{;", Eq. (48). We label the
diagrams on the right-hand side, from left to right,&s G., L. f="Hf=(H,+H)f, (51

A wheref is a column vector composed of the scalar functions:
Aﬁﬂ(l,k:PFJ D, (1 =)y, xm(q;P)I? fi="Fy- Here H, is the go_ntribution from th_e first term on

q the RHS in Eq(45) and it is aNy, X Ny matrix wherein the
elements of rowj-are obtained via that Dirac trace projection
which yieldsf}, on the LHS; i.e., forP; such that

A .
+ [ Dty s, -k = o[ P, (52
q

XT07Yg-,q- +k=1)S(q_+k—1)IPy,

XT3(q, +1— K, 02 xw(9: PPy, then, using 2= —C,(R)=—3 for SU(N.=3),

A
PjJ’I Dyu(k=1)y,S(1+)

* 4
+fq,Dpo(|_q’)|b7pS(q;) [Hl]],kfk:_gtrD

XAENHq',q" +k—1;P)S(q" +k—1)IPy,.
(48

X G (1;PYS( )T (1 ko) [l (121 - P; P2).

53
Equation(48) is illustrated in Fig. 10 and, combined with ®3

Figs. 2, 9, this discloses the content of the vertex-consistent 'H, represents the contribution from the second term, to
Bethe-Salpeter kernel: namely, it consists of a countable inwhich we now turn. In mesonic channels the color structure
finity of contributions, an infinite subclass of which are of A% is simple:

crossed-ladder diagrams and hence nonplanar. It is clear that

everyn>0, vertex-consistent kernel must contain nonplanar Sh=12AY,, (54)
diagrams. Charge conjugation can be used to expose a dia-

grammatic symmetry in the Bethe-Salpeter kernel, which iecauseyy 1. andI®13°=12/(2N,). The other part of the
the procedure we used, e.g., to obtain E2B). (The steps direct product is a matrix in Dirac space that can be decom-
and outcome described here formalize the procedure illugaosed as follows:

trated in Fig. 1 of Ref[5].)

At this point if ') and the propagator function; B, are Na
known, thenA$,,, and hence the channel-projected Bethe- ?szgl ALK P)gy (1, k:P) (59
Salpeter kernel, can be calculated explicitly. That needs to be
done separately for each channel because, &g, depends Ny Nwo
on xw(q;P). :;1 21 BNk P)gh(1,k; P), (56)
=4 <

To proceed we observe that the Bethe-Salpeter amplitude

for a = meson is T :
m where the sum ovef implicitly expresses an integral over

FLT(k;P)zlchys[if}T(kz,k-P;P2)+y-PffT(k2,k~P;P2) the relative momentum appearing inyw;: {95:A

=1,...N,} are the independent Dirac matrices required to
+ y-kk- Pfi(kz’k. P;P?) completely describé\},,, whose form and number are de-

termined by the structure ofyy, Ns=Ny; and
+0,,K,Pf (K k- P P?)], (49 {B(PY):r=1,... N,} are the associated scalar coefficient

) ) o functions.(We subsequently suppress momentum arguments
wherel, is the identity in color spacémesons are color and integrations for notational ease.

Singleté and{Tl;j = 1,2,3} are the Pauli matrices. This illus- Using Eq(55), the recursion relation of Eq48) trans-
trates the'general structure of meson Bethe-Salpeter amplistes into a relation fof 7;i=\, ... N,}. To obtain that
tudes, which hereafter we express via relation one first isolates these functions via trace projec-
tions. That can be achieved by using any complete set of
projection operatorP,.,;i=1,... N,}, in which case
one has

\IV]
Tu(k;P)=1.>, Gi(k;P)fy(K3k-P;P?), (50
=1

; (57)

whereG'(k;P) are the independent Dirac matrices required n_
Br=[M]trep

L \epy Agn
to span the space containing the meson under consideration. AviEMy

8i

065203-8



BETHE-SALPETER EQUATION AND A . .. PHYSICAL REVIEW 5 065203

where tgp identifies a trace over color and Dirac indices. amplitude. Note, too, that there is no sum over iterates in this
[NB. The optimal choice of projection operators would yield equation: it isg from Eq.(62) which appears.

[M],\'= 6\, @S We assumed, e.g., in E§2).] We subse-

quently adopt a compact matrix representation of &4): B. Solutions of the vertex-consistent meson Bethe-Salpeter

B=MT™, (58) equation
To elucidate the content of the BSE just derived we return
where 8" is a column vector wittN, entries. to the algebraic model generated by Ef). In this case
ReplacingA ;" on the RHS in Eq(57) by the RHS of Eq.  solutions of the BSE are required to have relative momentum
(48) and using the distributive property of the trace operak=0 so that Eq(50) simplifies to

tion, one obtains N<Ny,

T'=Ga " t+LB" Y, (59) T'w(P)= El GI(P)fi(P?) (64)

whereG describes the contributions to the trace from the first
two terms in Fig. 10,G; ,, which are determined by the
dressed-quark-gluon vertex and thus proportionabfo?,
andL represents the contribution from the last terfn,Us-

and Eq.(51) is truly algebraic; i.e., there are no implicit
mtegratlons Furthermore, the kerﬂeI=H(P2); e, itisa
matrix valued function oP2 alone, and therefore the mass

ing Eq. (59), Eq. (58 becomes Mﬁ of any bound state solution is determined by the condi-
tion
n__ n—-1 n-1
FeMIGat b (©0 de{H(P?) ~1[pz. 2 _o=0, 65
(We reiterate thaM, G, andL are all functionals ofy,, and
hence are different for each meson channel. which is the requirement for any matrix equati¢ix=x, to
It is evident that Eq(60) entails have a nontrivial solution: it is the characteristic equation.
o NB. If no solution of Eq.(65) exists then the model doesn't

produce a bound state in the channel under consideration.

B"=[ML]"B%+ 20 [ML]MGa" 171
=

1. 7r-meson
n—-1 . . .
_ 2 [MLIMGO"™ 100, 61) N In our algebraic model, becauke- 0, Eq.(49) simplifies
i=o
where O resolves the dressed-quark-gluon-vertex recursion, I (P)=ye[if1(P?)+ - Pfy(P?)], (66)

as we saw with our simple dressed-gluon model in connec- ) )

tion with Eq. (19), and the first term vanishes becay8®  where P is the direction-vector associated wih) P?=1,

=0 by definition, Eq.(47). and for the projection operators of EG2) we choose
Finally, the complete BSE involves the sum expressed

in Eq. (46), which is determined b i 1 .
(49 Y Pi=- g5 Pa=37-Prs. ®7)

© n-1

ML]MGO" 17140
2 > [ML]
n=1j=0

|I
ﬁM |

The vertexA 2" transforms as an axial-vector and its form
is therefore spanned by twelve independent Dirac ampli-

8

0 1 1 tudes. However, since the relative momentum is required to
IZ [ML]' MGE Old @ =y MG 5« vanish, that simplifies and we have
(62 ASD=12ys BI(P?)y,+ B3(P?)y- PP+ B3(PH)P,
and this, via Eq(55), completely determines the second term +B5(P?)y,y-P], (68)

in Eq. (45) so that we can complete E(h1) with
R and an obvious choice for the projection operators of Eq.
D,,(k—1) S

4
[Holj f=— §UD P, |

PLom e P =By P
A ;v:_’yV’VS’ Aﬂ_;V:_ vY V5,
X 7,191,k P)BY(1LK; P) |l (P?), =" 16 4
(63) 1. 1 .
PR o= 2P 7s: Piﬂ;fl—sv'%ys- (69
which we have now demonstrated is calculable in a closed
form. [Recall that the sum ovek implicitly expresses an It can now be shown thab,=0 in Eq.(59): G, is the

integral over the relative momentum in the Bethe-Salpetesum of two terms, the first and second in E48), and using
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2 TABLE |. Calculatedw and p meson masses, in GeV, quoted
with G=0.48 GeV, in which casen=0.023 G=11 MeV. (In the
notation of Ref[5], this value ofG corresponds t@=0.96 GeV) n

is the number of dressed-gluon rungs retained in the planar vertex,
see Fig. 1, and hence the order of the vertex-consistent Bethe-

f Salpeter kernel: the rapid convergence of the kernel is apparent in
% the tabulated results.
]
___________ Bare ME:O Mﬂ:l ME:Z MC‘:oc
——————— 1 loop
- — = 2Ioop. w, m=0 0 0 0 0
Recursive m, m=0.011 0.152 0.152 0.152 0.152
—_4 L
- -2 9 2 4 p,m=0 0.678 0.745 0.754 0.754

p, m=0.011 0.695 0.762 0.770 0.770

FIG. 11. Characteristic polynomial obtained in the chiral limit
from the vertex-consistent BSEs for theandp mesons: the pion is
plainly massless. The function obtained using 0.023, which cor- 2. p meson
responds to~=10 MeV, is almost indistinguishable on the scale of

this figure. The complete form of the Bethe-Salpeter amplitude for a

vector meson in our algebraic model is

Eq. (9) and recalling that this model forces the relative mo- ~

mentum to vanish in the bound state amplitude, these two ~ I')(P)=y- " (P)f{(P?) +0,,e5(P)P,f5(P?). (73
terms are equal in magnitude but opposite in sign because

the projection operators are axial vector in charadtdt.  This expression, which only has two independent functions,
leading order this result expresses an exact cancellation b&s much simpler than that allowed by a more realistic inter-
tween one of the one-loop vertex corrections and theaction, wherein there are eight terms. Nevertheless().
crossed-box term in Fig. 1 of Ref5].) G,=0 is a conse- retains the amplitudes that, in more sophisticated studies, are
quence of the fact that under charge conjugation,(1,k;P) found to be dominanf6]. In Eq. (73), {ez(P);)\= -1,0,
transforms according to + 1} is the polarization four vector

A (=K =1P)'==A_(1k;P), (70 P-eM(P)=0, V\; (P)-&"'(P)=6™". (79

where (- - -)! denotes matrix transpose, coupled with the re-Here the projection operators of EG2) are
sult that Eq.(9) enforcesk=0=1 in the BSE. It is not a

general feature of the vertex-consistent Bethe-Salpeter ker- 1 1
nel. _ Pi=137 €'(P), Pi=50.,e(P)P,. (79
It is plain from Egs.(55), (62) that G,=0 entails 1 1

2 =0 (72) To solve the vertex-consistent BSE we need to calculate
A/"j‘;”(eh,P), which is defined in Eqg48) and depends on the
and hence the complete vertex-consistent pion BSE is simplethe-Salpeter amplitude in E(.3). We have from Eq(54)
f=H,f; i.e., that

I'7(P)==%,SQI'(P)S(-Q)I',(-Q,~Q), (72 AR (e PY=12A7,(\P), (76)

with Q=P/2, and the dressed-quark propagator and dressegmnd in our algebraic model the Dirac structure is completely
quark gluon vertex calculated in Sec. Il B 2. expressed through

The characteristic polynomial obtained from E@2) is
plotted in Fig. 11: the zero gives the pion's mass, &),

n o/ _\ _ pn N n \; B n P AD
which is listed in Table I. Figure 11 provides a forthright Ap(€.P)=B,u(P)e, + Ba(P)eiy P+ By(Pliy-€'P,

demonstration that the pion is massless in the chiral limit. +B",(P)o \(P)P y

This is a model-independent consequence of the consistency P4 apta BTy

between the Bethe-Salpeter kernel we have constructed and + 8" (P)ic. A (PP P +B"(P)v- e

the kernel in the gap equation. The figure illustrates that the Brs(PI0apeal PIPPH Bys(P)y- €07,
vertex-consistent Bethe-Salpeter kernel converges just as (77

rapidly as the dressed-vertex itsétf. Fig. 6). The insensi-

tivity, evident in the table, of the pion’s mass to the order ofwhich has this simple form becaugé‘pv(e",P) cannot de-

the truncation is also explained by the fact that our construcpend on the relative momenta. In this case an obvious choice
tion preserves the axial-vector Ward-Takahashi identity. ~ for the projection operators of E¢7) is

065203-10
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pt =t NP)P
AP;V_ 4yVUaﬁEa( B

s _ a A Dy B 6 _ 1
PAP v vao-aﬁsa( P) PB’ PAP;V_ ZYV’}/ 6)\'
(78)
The substitution of Eq9.77), (78) into Eq. (57) yields

3 0 0 O -
0 3 -1 -1
1/ 0o -1 3
M=3l 0 -1 1 79
1 0 0 0 3 -1
-1 0 0 0 -1 ]

which simply expresses the fact that, e.g.,

1 :
Bou(P)=— g trep[12(3Py ,+ 7R =P )AL,
(80

The next step is a determination of the ma®@x in Eq.

PHYSICAL REVIEW 5 065203

relation from the first two terms in Fig. 10. That is achieved
by substituting Eq(76) into Eq. (48), and using Eq(9) and
its consequences this yields

[ 2[f2(P)B(Q?) +f5QA(QY)]
f4(P)QA(Q?) — f5(P)B(Q?)
—f2(P)QA(Q?) +f45(P)B(Q?)
— f8(P)QA(Q?) +f4(P)B(Q?)
0
0

2A(Q*)M,G,=

O o O O o o
O o O O O o

(81
with Q= Q%= P?/2, andA(s)=sA?(s)+B?(s) as in Eq.
(22). It is immediately apparent that the Dirac components
associated withBs, B are annihilated by this part of the
interaction. Furthermore, the complete contributiorﬂ[;bis

] H(Q%
M,G,x| a3 *(Q?) |, (82
a3 Q%

and so it is evident that the subleading Dirac components of
the dressed-quark-gluon vertex do not contribute to the
Al-related part of the vertex-consistent Bethe-Salpeter ker-
nel: they are eliminated by the last two columnsMinG,, .
(These two simplifications are a feature of our madel.

The final element we require is the mattix in Eq. (59);
i.e., the contribution to the kernel from the last term in Fig.
10. That is obtained by substituting E(/6) into the last

(59), which gives the contribution to the kernel's recursionterm of Eq.(48), which gives

[2A 0 0 0 0 2A
0 -—-A 0 —2A 0 0
0 0 2Q°A’-B?] 2B?> -2QAB —2QAB
ANML,=l 0 0 0 A 0 o | (83
0 0 0 0 0 0
0 0 0 0 0 0

where the argument of each function ®% e.g., B

AD (" P)= B0 (P)es+ Bho(P)eriy- P+ Bls(P)iy- €'P,

=B(Q?). In our representatioM L, does not exhibit an

explicit dependence ofi ,(P). That dependence is acquired

through the recursion relation sinﬁprG as is appar-

ent from Eq.(60). where theg]', i=1, ... ,4 areobtained from Eq(62) using
Note that this part of the kernel also annihilates the Dirache elements calculated above.

components associated wiBfs, B)s in A7.,(\,P). Hence Putting all this together we have the complete vertex-

the active form of the vertex is consistent BSE for thge meson

+B4(P) 0, 5en(P)P4Y, (84)
-
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T3(P)= =%, S(QT(P)S(-QI',(-Q,~Q) The analog of Eq(38) is
— 7, S(Q)A, . (€";P), (85)

with the dressed-quark propagator and dressed-quark gluon
vertex calculated in Sec. Il B 2, and,,(0,0;P) obtained
from Egs. (46), (55), (62 using the matrices displayed
above.
The characteristic polynomial obtained from E85) is P — .pyat _

plotted in Fig. 11. Its zero gives themeson mass and that is Xo(@:P)=S(a.)Tp(a:P)S(—a-) ®7
listed in Table I. The tabulated values demonstrate that thgin
rainbow-ladder truncation underestimates the result of th
complete calculation by<10% (i.e., the calculation per-
formed using the fully-resummed dressed-gluon-ladder verd
tex) and simply including the consistent one-loop corrections —
to the quark-gluon vertex and Bethe-Salpeter kernel reduces K(k,a;P)EF=D,u(k= 1%y, ]ecl 1%7,) Tue  (88)

that discrepancy te=1%. Furthermore, it is clear that at ev- | .
ery order of truncation the bulk af, is obtained in the yields the dressed-gluon ladder-truncation of the BSE.

A
[[o(k;P)]ge= fq [K(k,a;P)IEF xp(a;P)lgH. (86)

wherek is the relative momentum of the quark-quark pair
andP is their total momentum, as before, and

o(q;P) the_putative diquark’'s Bethe-Salpeter ampli-

ude. In this cas& is the fully amputated dressed-quark-
uark-scattering kernel, for which

chiral limit, which emphasizes that thep mass splitting is Inspection of the general structure Kfreveals that, fol-
driven by the DCSB mechanism. lowing our ordering of diagrams, it can be obtained directly
from the kernel in the meson BSE via the replacement

3. Scalar and axial-vector mesons
S(k) 12y, —[7,2S(=K)1' (89

in each antiquark segment &f which can be traced unam-

In a simple constituent-quark picture, the ground state
scalar and axial vector mesons are angular-momeritum

:1. eiggn states. This qualitative feature _is expressed in theBiguously from the external antiquark line of the meson’s
Poincare covariant Bethe-Salpeter amplitudes through theBethe-SaIpeter amplitude

presence Of. materially |mportant relative-momentum- The appearance here of a matrix transpose makes the defi-

dependent. Dirac components; e.g., Réf7]. However, the nition of a modified Bethe-Salpeter amplitud29] useful:

model defined by Eq(9) forces meson Bethe-Salpeter am-

plitudes to be independent of the constituent’s relative mo- CiL-pPY._ . t

mentum and, owing primarily to that, the rainbow-ladder o(kiP)=To(kiP)C, 0

truncation of the model generates neither scalar nor ‘?‘Xial\?vhere C=1y,7, is the charge conjugation matrix, from

vector meson bound statg$8]. We have found, unsurpris- which it follows that

ingly, that improving the description of the dressed-quark-

gluon vertex and Bethe-Salpeter kernel is insufficient to YS(k:P)=S(k.)TS(k:P)S(k_) (91)

overcome this defect of the model. However, we anticipate D b '

that thesg improvements will materially alter the resylt; ‘?fusingCyLCTz —y,. Fg(k;P) satisfies a BSE whose Dirac

BSE "?‘tUd'_eS of scalar mesons that employ more realistic "Nstructure is identical to that of the meson BSE. However, its

teractions; e.g., Ref28] color structure is different, with a factor of{1?)! replacing

|2 at every gluon vertex on what was the conjugate-quark

leg. (NB. It is from this modification that the absence of
The ladder-rainbow truncation, which is obtained bydiquark bound states must arise using the dressed-ladder ver-

keeping only the first term in Eq(8), generates color- tex, if it arises at al). For example, if one has a term in the

antitriplet quark-quark(diquark bound state§29]. Such  meson BSE of the form

states are not observed in the hadron spectrum, and it was

demonstrated in Ref5] that they are not present when one 12y,SIPy,SIy,SI'wSPy,SCy,SPy, (92

employs the one-loop-dressed vertex and consistent Bethe-

Salpeter kernel. Herein we can verify that this feature perthen the related term in the equation 10§ (k;P) is

sists with the complete planar vertex and consistent kernel.

To continue, however, we must slightly modify the proce- IayMSIbyVSICyPSFgS(—Ia)tyﬂS(—Ic)typS(—Ib)tyV.

dure described above because of the color-antitriplet nature (93

of the diquark correlation(NB. Color-sextet states are not

bound in any truncation because even single gluon exchange There are three color-antitriplet diquarks and their color

is repulsive in this channel. It is for this reason, too, thatstructure is described by the matrices

color-octet mesons do not appear. Note also that the absence

of color-antitriplet diquark bound states does not preclude {(Nk=1,23A =N NA=N N0 =07, (94)

the possibility that correlations in this channel may play an

important role in nucleon structuf80] since some attraction and, as for mesons, their Bethe-Salpeter amplitudes can be

does exist, e.g., Ref31].) written as a direct product, col@ Dirac

C. Diquark Bethe-Salpeter equation
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I'5(k;P)=AST5(k;P). (95 121 8= — 41 1ok (= 1%)t= — 2)\K . (96)

For color-singlet mesons the color factor is simply the iden-n both cases the color matrix now factorizes and can
tity matrix |.. (Recall that we focus oilN;=2 and assume therefore be cancelled. Hence the rainbow-ladder BSEs
isospin symmetry. Hence the diquark’s flavor structure satisfied by the color-independent partsigf andT'S(k; P)
which is described by the Pauli matri€ in this case, can- are identical but for a 50% reduction of the coupling in
cels in the BSB. the diquark equation. This expresses the fact that ladderlike
As we observed, the rainbow-ladder diquark BSE is ob-dressed-gluon exchange between two quarks is attractive
tained by using Eq(88) in Eq. (86). Right-multiplying the  and explains the existence of diquark bound states in this
equation thus obtained bg" we find immediately that the truncation[29].
equation satisfied bYS(k;P) is the same as the rainbow- Following the above discussion it is apparent that the di-
ladder meson BSExceptthat quark counterpart of Eq498) is

A
A%D(l,k;m:fq Dol =Py, x5(a;P)T) Mg ,a- + k=D (13)'S(g_+k—=1)(1")y,
A
—fq Dyo(k=)1°y,S(q +1 = K)IPT) Y (gs + 1=k ) x5(a: P) (1P,

A
- fq,Dpa(l —a)1°,S(aL)AE) Ha',q" +k—=1;P)S(al +k=1)(1°)'y,. 97)

The factorization of the color structure observed in the ladderlike diquark BSE persists at higher orders and can be used to
obtain a recursion relation for the diquark kernel analogous to that depicted in Fig. 10. Indeed, a consideratio®0f Eq.
reveals that in general one can write

ABN1LKP)=AL(1LK P)IPAS +AS (1K PN (1), (98)
where in this direct produck], and A}, are Dirac matrices. Defining
TL'n k ajpan 2 n n k
v )\/\:ZI AD’V: - §[2A’1V_A2V])\/\
S (A C n-1
={ —§fq Dpol =) voxqq(a; P, (- ,a- +k=1)S(q-+k=1)y,

1A A
- §Jq Dpo’(k_q)’)/ps(q++l_k)rgil(q++| - k1q+)Xqu(q1P) Yo~ Jq’DPU(I _q’)’)/ps(q;)

1

X

5
AL, HA'g +k=1P) = §A2V1(q',q'+k—l;P>}S<q'+k—lm]xﬁ, (99)
2
TP =AGH(1Y) = = [ AL+ 245, IN8

11A
§f Dyl =0 7 Xqq( & PITY (A0 +k=1)S(q+k=1)y,
q

5 (A A
+§fq Dyok=)7,8(q4 +1 = KT (g +1 =K. Q ) xgo(A:P) 7o+ fq,DPUu—q’)y,,sm;)

5 1
—A2;1<q’,q'+k—l;P>—§A2;1(q’,q'+k—l:P)}S(q’ﬁk—Im]AKA, (100

X9
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[n"]A=[M']AAftrDU>é§V nl, (105)

where A,A’ = Z\IA , and =1 for A’<NA and |
=2 for A’ >NAD Now the procedure of Eq$58)— (60) can
be repeated to arrive at

A=M[G o Ly 1],

(106

whereG', L’ are natural analogs of the matrices introduced

=T} s e Bare
B ;/Iggg in Eq. (59), and thereafter one can continue to obtain an
Recursive obvious extension of Eq62). This completely determines

the second term in Eq102) and thus we have arrived at the
vertex-consistent BSE for the color-antitriplet diquark chan-
nel.

-2 0
S
FIG. 12. The characteristic polynomial obtained using
=0.023, which corresponds te10 MeV, calculated for the scalar

) _ . - ‘ D. Solutions of the diquark equation
and axial-vector color-antitriplet diquark channels using the diquark

BSE, Eq.(102. 1. Scalar diquark
In the algebraic model specified by E@) the general
then Dirac structure of a@®=0" quark-quark correlation is

+ + +
Toq(P)=7e[i 7 (P?)+y-Pf3 (PH], (107
which is the same as that of the pion, for reasons which are
obvious given the discussion following E(O0). The char-
NB. The first lines in each of Eq499), (100 prove that acteristic equation for this channel is obtained following the
there is no mixing between color-antitriplet and color-sextetmethod made explicit in Sec. IV B 1 and it is depicted in Fig.
diquarks, whose color structure is described by the six symi2. The existence of a bound state fo=0; i.e., in the
metric Gell-Mann matrices. rainbow-ladder truncation, is apparent. However, so too is
We can now write the vertex-consistent BSE for the color-the effect of the higher-order terms, which was identified in
antitriplet diquark channelef. Eq. (45)]: Ref.[5]: at each higher-order nonplanar diagrams in the ker-
nel provide significant repulsion, which overwhelms any at-
traction at that and preceding orders and thereby ensures di-
quark confinement; i.e., the absence of colored quark-quark
bound states in the spectrum. This feature is retained by the
completely resummed kernel, using which, instead of a zero,
the characteristic polynomial exhibits a pole: the repulsion is
consummated.This feature is not tied to the interaction in

_ ;[Tt;n+27§;n], ASV: _ %[271%;“_‘—7—5;”]-
(101)

ks P)——— 2 D

(k—1)

K)=S(1,)75"(1,k;P)].
(102

Xy xS -

It is straightforward to verify that this equation reproduces
the diagrams considered explicitly in REB].

Eqg. (9); e.g., Ref[32].]

2. Axial vector diquark

Having factorized the color structure, the summation ap-

pearing in the first term of Eq102) yields the dressed ver-

The general form of @°=1% quark-quark correlation is

tex we have already calculated. One proceeds with the seéepresented by

ond term by analogy with Eq55) and observes that the I

matrix-valued functions\ , can be decomposed: 2 (P )é
108

T (P)=y-(P)f (P)+0,,er(P)P,f

Nap . . . . .

AN = N kePYhMI kP Calculatmg_ the charactenst.lc polynomlal for this chanr)el is
v le ma(Lk P (LK), also a straightforward application of methods already intro-
duced and it is plotted in Fig. 12. The features in this channel

,NAD} is the smallest set of Dirac ma- are qualitatively identical to those of the scalar diquark.

(103

where{h*;:\=1, ...
trices capable of expressingg) completely, whose form
and number depend on the channel under consideration. Pro-
jection operatorsPS;V, are easily constructed so that, with

V. SUMMARY

Using a planar quark-gluon vertex obtained through the
resummation of dressed-gluon ladders we have explicitly
demonstrated that from a dressed-quark-gluon vertex, ob-
tained via an enumerable series of terms, it is always pos-
sible to construct a vertex-consistent Bethe-Salpeter kernel

mp:=columr( 7y, . .. TNy 210

'nZNAD)’ (104)
we have
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that ensures the preservation of Ward-Takahashi identities inonsinglet pseudoscalar mesons and vector mesons. We
the physical channels related to strong interaction observfound that a consistent, nonperturbative dressing of the ver-
ables. While we employed a rudimentary model to make théex and kernel changes the masses of these mesons by
construction transparent, the procedure is general. Howeves10%, cf. the values obtained using the rainbow-ladder
the algebraic simplicity of the analysis is peculiar to ourtruncation. That is not the case in the pseudoscalar channel if
model. For example, using a more realistic interaction thehe kernel is dressed inconsistently. Furthermore, 90% of the
gap and vertex equations would yield a system of twelvemr-p mass splitting is already generated in the rainbow-ladder
coupled integral equations. Nevertheless, we anticipate thatuncation, which emphasizes that this splitting is primarily
the qualitative features highlighted herein are robust. driven by DCSB. The rainbow-ladder truncation is a poor
The simple interaction we employed characterizes a clasapproximation for flavor-singlet pseudoscalar mesons and
of models in which the kernel of the gap equation has suffiscalar mesons. We also considered quark-quark scattering
cient integrated strength to support dynamical chiral symmeand found that, with anything but a ladderlike vertex-
try breaking(DCSB). The complete ladder summation of this consistent Bethe-Salpeter kernel, diquark bound states do not
interaction, calculated self-consistently with the solution ofexist in the spectrum.
the gap equation, produces a dressed vertex that is little
changed, cf. the bgre verte.x._ Ir\ particular, it does r_10t exhibit ACKNOWLEDGMENTS
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