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Bethe-Salpeter equation and a nonperturbative quark-gluon vertex
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A Ward-Takahashi identity preserving Bethe-Salpeter kernel can always be calculated explicitly from a
dressed-quark-gluon vertex whose diagrammatic content is enumerable. We illustrate that fact using a vertex
obtained via the complete resummation of dressed-gluon ladders. While this vertex is planar, the vertex-
consistent kernel is nonplanar and that is true for any dressed vertex. In an exemplifying model the rainbow-
ladder truncation of the gap and Bethe-Salpeter equations yields many results; e.g.,p- andr-meson masses,
that are changed little by including higher-order corrections. Repulsion generated by nonplanar diagrams in the
vertex-consistent Bethe-Salpeter kernel for quark-quark scattering is sufficient to guarantee that diquark bound
states do not exist.
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I. INTRODUCTION

Dynamical chiral symmetry breaking~DCSB! and con-
finement are keystones in an understanding of strong in
action observables and their explanation via a nonpertu
tive treatment of QCD. The gap equation@1#

S~p!215Z2~ ig•p1mBM!1Z1E
q

L

g2Dmn~p2q!

3
la

2
gmS~q!Gn

a~q,p!, ~1!

is an insightful tool that has long been used to explore
connection between these phenomena and the long-rang
havior of the interaction in QCD@2#. In this equation:
Dmn(k) is the renormalized dressed-gluon propaga
Gn

a(q;p) is the renormalized dressed-quark-gluon vert
mBM is the L-dependent current-quark bare mass that
pears in the Lagrangian, and*q

L
ª*Ld4q/(2p)4 represents a

translationally invariant regularization of the integral, withL
the regularization mass scale. The quark-gluon-vertex
quark wave function renormalization constantsZ1(z2,L2)
andZ2(z2,L2), respectively, depend on the renormalizati
point and the regularization mass scale.

The solution of Eq.~1! is the dressed-quark propagato
which takes the form

S~p!215 ig•pA~p2,z2!1B~p2,z2!

5
1

Z~p2,z2!
@ ig•p1M ~p2,z2!#, ~2!

and is obtained by solving the gap equation subject to
renormalization condition that at some large, spacelikez2

S~p!21up25z25 ig•p1m~z!, ~3!
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where m(z) is the renormalized current-quark mass at t
scalez: Z4m(z)5Z2mBM , with Z4 the renormalization con-
stant for the scalar part of the quark self-energy. At one lo
in perturbation theory

m~z!5
m̂

~ ln@z/LQCD# !gm
, ~4!

where m̂ is the renormalization-group-invariant curren
quark mass,gm512/(3322Nf) is the leading-order mas
anomalous dimension, forNf active flavors; andLQCD is the
Nf-flavor QCD mass scale.

Since QCD is an asymptotically free theory the chi
limit is unambiguously defined bym̂50 @3#, which can be
implemented in Eq.~1! by applying@4#

Z2~z2,L2!mBM~L![0, L@z. ~5!

The formation of a gap, described by Eq.~1!, is identified
with the appearance of a solution for the dressed-qu
propagator in whichm(z);O(1/z2)Þ0; i.e., a solution in
which the mass function is power-law suppressed. This
DCSB. It is impossible at any finite order in perturbatio
theory and entails the appearance of a nonzero value for
vacuum quark condensate@3#

2^q̄q&z
05 lim

L→`

Z4~z2,L2!NctrDE
q

L

S0~q,z!, ~6!

where trD identifies a trace over Dirac indices alone and t
superscript ‘‘0’’ indicates the quantity was calculated in t
chiral limit.

It is apparent that the kernel of the gap equation is form
from a product of the dressed-gluon propagator and dres
quark-gluon vertex. The kernel may be calculated in per
bation theory but that is inadequate for the study of intrin
cally nonperturbative phenomena. Consequently, to m
©2002 The American Physical Society03-1
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model-independent statements about DCSB one must
ploy an alternative systematic and chiral symmetry prese
ing truncation scheme.

One such scheme was introduced in Ref.@5#. Its leading-
order term is the rainbow-ladder truncation of the DSE’s a
the general procedure provides a means to identify,a priori,
those channels in which that truncation is likely to be ac
rate. This scheme underlies the successful application
renormalization-group-improved rainbow-ladder model
flavor-nonsinglet pseudoscalar mesons@4# and vector mesons
@6–9#, and indicates why the leading-order truncation is
adequate for scalar mesons and flavor-singlet pseudosc
@10#. The systematic nature of the scheme has also m
possible a proof of Goldstone’s theorem in QCD@3#.

In quantitative applications, however, the leading-ord
term alone has been used almost exclusively: Refs.@8,11# are
exceptions but they consider just the next-to-leading-or
term. Hence one goal of our study is a nonperturbative v
fication of the leading-order truncation’s accuracy.

One element of the gap equation’s kernel is the dress
gluon propagator, which in Landau gauge can be written

Dmn~k!5Fdmn2
kmkn

k2 Gd~k2,z2!

k2
. ~7!

It has been the focus of DSE studies@12# and lattice simula-
tions @13,14#, and contemporary analyses suggest t
d(k2,z2)/k2 is finite, and of O~1 GeV22), at k250. How-
ever, this behavior is difficult to reconcile with the existen
and magnitude of DCSB in the strong interaction spectr
@15#: it is a model-independent result that a description
observable phenomena requires a kernel in the gap equ
with significant integrated strength on the domaink2

&1 GeV2 @16#. The required magnification may arise via a
enhancement in the dressed-quark-gluon vertex but, hith
no calculation of the vertex exhibits such behavior@17#.
Hence another aim of our study is to contribute to the st
of nonperturbative information about this vertex.

In Sec. II we briefly recapitulate on the truncation sche
of Ref. @5#. Then, using a simple confining model@18#, we
demonstrate that an infinite subclass of contributions to
dressed-quark-gluon vertex: the dressed-gluon ladders,
be resummed via an algebraic recursion relation, which p
vides a closed form result for the vertex expressed solel
terms of the dressed-quark propagator. This facilitates a
multaneous solution of the coupled gap and vertex equat
obtained via the infinite resummation, as we describe in S
III. While the algebraic simplicity of these results is peculi
to our rudimentary model, we anticipate that the qualitat
behavior of the solutions is not.

In Sec. IV we describe the general procedure that ena
a calculation of the Bethe-Salpeter kernel for flavo
nonsinglet mesons that is consistent with the fully resumm
dressed-gluon-ladder vertex. The kernel is itself a resum
tion of infinitely many diagrams; and it isnot planar, an
outcome necessary to ensure the preservation of W
Takahashi identities. This kernel is the heart of the inhom
geneous vertex equations and associated bound state
tions whose solutions relate to strong interaction obs
06520
m-
v-

d

-
a

-
lars
de

r

r
i-

d-

t

f
ion

to,

e

e

e
an

o-
in
i-

ns
c.

e

es
-
d
a-

d-
-
ua-
r-

vables. In our simple model it, like the vertex, can also
obtained via an algebraic recursion relation, complete an
a practical closed form. In Sec. IV we also study the bou
state equations in a number of meson channels, and de
and solve the analogous equation for diquark channels. S
tion V is a summary.

II. A DRESSED-QUARK-GLUON VERTEX

The truncation scheme introduced in Ref.@5# may be de-
scribed as a dressed-loop expansion of the dressed-qu
gluon vertices that appear in the half amputated dress
quark-antiquark~or -quark-quark! scattering matrix:S2K, a
renormalization-group invariant, whereK is the dressed-
quark-antiquark ~or -quark-quark! scattering kernel. All
n-point functions involved thereafter in connecting two pa
ticular quark-gluon vertices arefully dressed. The effect of
this truncation in the gap equation, Eq.~1!, is realized
through the following representation of the dressed-qua
gluon vertexiGm

a 5( i /2)laGm5 l aGm :

Z1Gm~k,p!5gm1
1

2Nc
E

l

L

g2Drs~p2 l !grS~ l 1k2p!

3gmS~ l !gs1
Nc

2 E
l

L

g2Ds8s~ l !Dt8t~ l 1k2p!

3gt8S~p2 l !gs8Gstm
3g ~ l ,2k,k2p!1@•••#.

~8!

HereG3g is the dressed-three-gluon vertex and it is appar
that the lowest order contribution to each term written e
plicitly is O(g2). The ellipsis represents terms whose lead
contribution is O(g4); e.g., the crossed-box and two-run
dressed-gluon ladder diagrams, and also terms of hig
leading order.

The expansion ofS2K just described, with its implications
for other n-point functions; e.g., the dressed-quark-phot
vertex, yields an ordered truncation of the DSEs that, te
by-term, guarantees the preservation of vector and ax
vector Ward-Takahashi identities, a feature exploited in R
@3# to prove Goldstone’s theorem. Furthermore, it is read
seen that inserting Eq.~8! into Eq. ~1! provides the rule by
which the renormalization-group-improved rainbow-ladd
truncation @4,6–9# can be systematically improved.
thereby facilitates an explicit enumeration of corrections
the impulse current that is widely used in calculations
electroweak hadron form factors@8#.

A. Resumming dressed-gluon ladders

We cannot say anything about a complete resummatio
the terms in Eq.~8!. However, we are able to contribute t
aspects of the more modest problem obtained by retain
only the sum of dressed-gluon ladders; i.e., aspects of
vertex depicted in Fig. 1. This infinite subclass of diagrams
1/Nc suppressed.
3-2
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1. A model

To simplify our analysis and make the key elements tra
parent we employ the confining model introduced in R
@18#, which is defined by the following choice for th
dressed-gluon line in Fig. 1:

Dmn~k!ªg2Dmn~k!5S dmn2
kmkn

k2 D ~2p!4G 2d4~k!. ~9!

Plainly,G, measured in GeV, sets the model’s mass-scale
henceforth we setG51 so that all mass-dimensioned qua
tities are measured in units ofG. In the following, since the
model is ultraviolet-finite, we usually remove the regulariz
tion mass scale to infinity and set the renormalization c
stants equal to one.

The model defined by Eq.~9! is a precursor to an effica
cious class of models that employ a renormalization-gro
improved effective interaction and whose contemporary
plication is reviewed in Refs.@19,20#. It has many positive
features in common with that class and, furthermore, its p
ticular momentum dependence works to advantage in re
ing integral equations to algebraic equations that preserve
character of the original equation. Naturally, there is a dra
back: the simple momentum dependence also leads to s
model-dependent artifacts, but they are easily identified
hence are not cause for concern.

2. Planar vertex

The general form of the dressed-quark gluon vertex
volves twelve distinct scalar form factors but using Eq.~9!
that part of this vertex which contributes to the gap equat
has no dependence on the total momentum of the qu
antiquark pair; i.e., onlyGm(p)ªGm(p,p) contributes. This
considerably simplifies the analysis since, in general, one
write

Gm~p!5a1~p2!gm1a2~p2!g•ppm2a3~p2!ipm

1a4~p2!igmg•p, ~10!

but it does not restrict our ability to address the questions
raised in the Introduction because those amplitudes wh
survive are the most significant in the dressed-quark-pho
vertex @7# and it is an enhancement in the vicinity ofp2

50 that may be important for a realization of DCSB usi
an infrared-finite dressed-gluon propagator@15#.

The summation depicted in Fig. 1 is expressed via

FIG. 1. Integral equation for a planar dressed-quark-gluon v
tex obtained by neglecting contributions associated with exp
gluon self-interactions. Solid circles indicate fully dressed propa
tors. The vertices are not dressed.
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Gm~p1 ,p2!5Z1
21gm1

1

6El

L

Drs~p2 l !grS~ l 1!

3Gm~ l 1 ,l 2!S~ l 2!gs ~11!

with v65v6 1
2 P, wherev5 l ,p, etc., is any four vector, bu

using Eq.~9! this simplifies to

Gm~p!5gm1
1

8
grS~p!Gm~p!S~p!gr , ~12!

where the additional factor of 3/4~1/8 cf. 1/6! owes itself to
the combined operation of thed function and the longitudi-
nal projection operator. Inserting Eq.~10! into Eq. ~12! one
finds a4[0 and hence the solution of Eq.~12! simplifies

Gm~p!5a1~p2!gm1a2~p2!g•ppm2a3~p2!ipm . ~13!

We re-express this vertex as

Gm~p!5(
i 50

`

Gm
i ~p! ~14!

5(
i 50

`

@a1
i ~p2!gm1a2

i ~p2!g•ppm2a3
i ~p2!ipm#, ~15!

where the superscript enumerates the order of the iter
Gm

i 50 is the bare vertex

a1
051, a2

0505a3
0 ; ~16!

Gm
i 51 is the result of inserting this into the right-hand side

Eq. ~12! to obtain the one-rung dressed-gluon correctio
Gm

i 52 is the result of insertingGm
i 51 , and is therefore the

two-rung dressed-gluon correction; etc.
Now a simple but important observation is that each it

ate is related to its precursor via the following recursion
lation:

Gr
a; i 11~p1 ,p2!ª l aGr

i 11~p1 ,p2!

5E
u

L

Dmn~p2u!l bgmS~u1!l a

3Gr
i ~u1 ,u2!S~u2!l bgn , ~17!

which is depicted in Fig. 2. Using Eq.~9! this simplifies to

Gr
i 11~p!5

1

8
gmS~p!Gr

i ~p!S~p!gm ~18!

and substituting Eq.~15! into Eq. ~18! yields (s5p2)

ai 11~s!ªS a1
i 11~s!

a2
i 11~s!

a3
i 11~s!

D 5O~s;A,B!ai~s!, ~19!

r-
it
-
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O~s;A,B!5
1

4

1

~sA21B2!2

3S 2~sA21B2! 0 0

2A2 sA22B2 2AB

4AB 4sAB 2~B22sA2!
D .

~20!

Now it is clear that Eqs.~13!, ~15!, ~19! entail

a5S (
i 51

`

O i D a05
1

12Oa0, ~21!

where the last step is valid whenever an iterative solution
Eq. ~11! exists, and defines a solution otherwise, so that, w
D5sA2(s)1B2(s),

a15
4D

114D
,

a25
28A2

112~B22sA2!28D2

112D

114D
,

a35
28AB

112~B22sA2!28D2
. ~22!

We have thus arrived at a closed form for the gluo
ladder-dressed quark-gluon vertex of Fig. 1; i.e., Eqs.~13!,
~22!. Its momentum-dependence is determined by that of
dressed-quark propagator, which is obtained by solving
gap equation, itself constructed with this vertex. Using E
~9! that gap equation is

S~p!215H ig•p1m1gmS~p!Gm~p!,

ig•p1m1Gm~p!S~p!gm
~23!

and substituting Eq.~13! this gives

A~s!511
1

sA21B2
@A~2a12sa2!2Ba3#, ~24!

FIG. 2. Recursion relation for the iterates in the fully resumm
dressed-gluon-ladder vertex, Eq.~17!: filled circles denote a fully
dressed propagator or vertex. Using Eq.~9!, p5k, and this relation
is expressed by Eq.~18!.
06520
f
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e
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B~s!5m1
1

sA21B2
@B~4a11sa2!2sAa3#. ~25!

Obviously, Eqs.~24!, ~25!, completed using Eqs.~22!,
form a closed, algebraic system. It can easily be solved
merically, and that procedure yields simultaneously the co
plete gluon-ladder-dressed vertex and the propagator f
quark fully dressed via gluons coupling through this nonp
turbative vertex.

We note here that in the chiral limit a realization of chir
symmetry in the Wigner-Weyl mode is always possible. T
realization is expressed via theB[0 solution of the gap
equation, which from Eqs.~22!, ~25! is evidently always ad-
missible form50.

III. SOLUTIONS OF THE GAP AND VERTEX EQUATIONS

A. Algebraic results

Before reporting results obtained via a numerical solut
we consider a special case that signals the magnitude o
effects produced by the complete resummation in Fig. 1;
we focus on the solutions ats50. In this instance Eqs.~22!
give, with A05A(0), B05B(0),

a1~s50!5
4B0

2

114B0
2

,

a2~s50!5
8A0

2

~4B0
211!2

2B0
211

2B0
221

,

a3~s50!5
8A0B0

4B0
211

1

2B0
221

. ~26!

Substituting these expressions, Eq.~25! becomes

B05m1
16B0

4B0
211

~27!

and in the chiral limit this yields

B05
1

2
A15'1.94, ~28!

which makes plain that the model specified by Eq.~9! sup-
ports a realization of chiral symmetry in the Namb
Goldstone mode; i.e., DCSB. The value in Eq.~28! can be
compared with that obtained using the bare vertex; i.e.,
leading-order term in the truncation of Ref.@5#: B0

(0)52, to
see that the completely resummed dressed-gluon-ladder
tex altersB0 by only 23%.

Similarly, Eq. ~24! becomes

A0511
8A0

4B0
211

F11
1

2B0
221

G , ~29!

which using Eq.~28! gives

d

3-4
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A05
26

15
'1.73. ~30!

This, too, may be compared with the leading-order res
A0

(0)52. Again the resummation does not materially affe
the value: here the change is213%.

Inserting Eqs.~28!, ~30! into Eqs.~26! one finds

a1~0!5
15

16
'0.94, cf. 1.0,

a2~0!5
221

1800
'0.12, cf. 0.0,

a3~0!5
1

A15
'0.26, cf. 0.0, ~31!

where the last, comparative column lists the values for
leading-order~bare! vertex. It is evident that the solution o
Eq. ~11! obtained using an infrared amplified effective inte
action, Eq.~9!, which supports DCSB~and also confinemen
@21#!, does not exhibit an enhancement in a neighborhoo
p250. This provides an internally consistent picture:
dressed-quark-antiquark scattering kernel, whose embed
in the gap equation already possesses sufficient integr
strength, does not additionally magnify itself.

B. Numerical results

1. Wigner-Weyl mode

The B[0 solution of Eq.~25! is always admitted when
m50. In that case Eq.~24! becomes

A~s!511
8A~s!

114sA2~s!
F11

1

124sA2~s!
G , ~32!

of which there is no closed-form solution.@It is a quintic
equation forA(s).#

However, using the bare vertex one finds a chiral lim
solution:A(0)(s)5A2/s for s'0. We therefore suppose tha
in the neighborhood ofs50 Eq.~32! admits a solution of the
form

As;0~s!5S kA

s D 1/2

. ~33!

Substituting this into Eq.~32! yields

15
16

114kA

122kA

124kA
, ~34!

which has two solutionskA53/4, 5/4. The required~physi-

cal! solution of Eq. ~32! satisfiesA(s) →
s→`

11. Therefore
sA2(s)→sAs;0

2 from above and hence the physical bran
of the solution is described by
06520
lt
t

e

of

ing
le

t

kA5
5

4
,2. ~35!

Evidently, in the chirally symmetric case too, the ladde
dressed vertex reduces the magnitude of the solution.

These features are apparent in the complete numerica
lution of Eq. ~32!, which is depicted in Fig. 3. Furthermore
the gluon-ladder-dressed vertex, Eq.~13!, obtained with this
solution does not exhibit an enhancement.

2. Nambu-Goldstone mode

In Sec. III A we described features of the Namb
Goldstone mode solution of the gap equation, whosep2.0
properties are smoothly related to those of themÞ0 solu-
tion, as is also the case in QCD@22#. A complete solution is
only available numerically and our calculated results for
dressed-quark propagator and gluon-ladder-dressed ve
are depicted in Figs. 4–6.

It is apparent from the figures that the complete resumm
tion of dressed-gluon ladders yields a result for the dress
quark propagator that is little different from that obtain
with the one-loop-corrected vertex; and there is no mate
difference from the result obtained using the zeroth-or
vertex. A single, exemplary quantification of this observati
is provided by a comparison between the values ofM (s
50)5B(0)/A(0) calculated using vertices dressed at diffe
ent orders:

( i 50,NGm
i N50 N51 N52 N5`

M (0) 1 1.105 1.115 1.117

~36!

Similar observations apply to the vertex itself. Of cours
there is a qualitative difference between the zeroth-order
tex and the one-loop-corrected result:a2,3Þ0 in the latter
case. However, once that effect is seeded, the higher-
corrections do little.

3. Vertex ansatz

In the absence of a nonperturbatively dressed quark-gl
vertex a number of phenomenological DSE studies have
ployed an ansatz, which is based on a nonperturbative an
sis of QED and, in particular, is constrained by the vec

FIG. 3. Numerical solution of Eq.~32!: solid line; see the solu-
tion obtained with the bare vertex: dotted line; and the one-lo
corrected vertex: dashed line.
3-5



a

si

n
e
d
lc

el
l

tion

,

,

ice

th
he

ex:
na-
ely

A. BENDER, W. DETMOLD, A. W. THOMAS, AND C. D. ROBERTS PHYSICAL REVIEW C65 065203
Ward-Takahashi identity and the requirement of multiplic
tive renormalizability@23#. That vertex has been used@24#
with the model interaction of Eq.~9! in which its form is
expressed via

a1~s!5A~s!, a2~s!52
dA~s!

ds
, a3~s!52

dB~s!

ds
. ~37!

The functions defined by these expressions, calculated u
the self-consistent solutions determined in Ref.@24#, are de-
picted in Fig. 7. They bear little resemblance to the functio
obtained systematically via the resummation of dress
gluon ladders, an outcome that could be anticipated base
the difference between the dressed-quark propagator ca
lated herein and that in Ref.@24#. This finding does not in-
validate the ansatz nor its use in modelling QCD but mer
shows that the ansatz cannot be a sum of dressed-gluon
ders alone.

FIG. 4. Upper panel:A(s), M (s) obtained withm50 ~solid
line!. Lower panel:A(s), M (s) obtained withm50.023 ~solid
line!. All dimensioned quantities are expressed in units ofG in Eq.
~9!. A fit to meson observables requiresG'0.5 GeV and hence this
value of the current-quark mass corresponds to'10 MeV. In both
panels, for comparison, we also plot the results obtained with
zeroth-order vertex: dotted line; and the one-loop vertex: das
line.
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IV. BETHE-SALPETER EQUATION

The renormalized homogeneous Bethe-Salpeter equa
~BSE! for the quark-antiquark channel denoted byM can
compactly be expressed as

@GM~k;P!#EF5E
q

L

@K~k,q;P!#EF
GH@xM~q;P!#GH , ~38!

whereGM(k;P) is the meson’s Bethe-Salpeter amplitudek
is the relative momentum of the quark-antiquark pair andP
is their total momentum;E, . . . ,H represent color, flavor
and spinor indices and

xM~k;P!5S~k1!GM~k;P!S~k2!. ~39!

In Eq. ~38!, which is depicted in Fig. 8,K is the fully ampu-
tated dressed-quark-antiquark scattering kernel. The cho

@K~k,q;P!#EF
GH5Dmn~k2q!@ l agm#EG@ l agn#HF , ~40!

e
d

FIG. 5. The dressed-quark propagator can be writtenS(p)
52 ig•psV(s)1sS(s). Here we plot 4sV(s), 2sS(s) obtained
with m50.023, cf. the results obtained with the zeroth-order vert
dotted line; and the one-loop vertex: dashed line. Clearly, the a
lytic properties of the dressed-quark propagator are qualitativ
unaffected by our dressing of the vertex.

FIG. 6. a i , i 51,2,3, calculated withm50.023. These func-
tions calculated at one-loop~dotted line! and two-loop~dashed line!
are also plotted for comparison. The results obtained withm50 are
little different.
3-6
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yields the dressed-gluon ladder-truncation of the BSE, wh
provides the foundation for many contemporary, fie
theory-based phenomenological studies of meson proper
see, e.g., Refs.@25#.

A. Vertex-consistent kernel

The preservation of Ward-Takahashi identities in tho
channels related to strong interaction observables requir
conspiracy between the dressed-quark-gluon vertex and
Bethe-Salpeter kernel@5,26#. We now describe a systemat
procedure for building that kernel.

As described, e.g., in Ref.@26#, the DSE for the dressed
quark propagatorS is expressed via

dG@S#

dS
50, ~41!

whereG@S# is a Cornwall-Jackiw-Tomboulis–like effectiv
action. The Bethe-Salpeter kernel is then obtained via
additional functional derivative:

KEF
GH52

dSEF

dSGH
. ~42!

Herein the self-energy is given by the gap equation,
~23!, and the recursive nature of the dressed-gluon-lad
vertex entails that thenth order contribution to the kernel i
obtained from then-loop contribution to the self energy:

Sn~p!52E
q

L

Dmn~p2q!l agmS~q!l aGn
n~q,p!. ~43!

FIG. 7. a i , i 51,2,3, calculated from Eqs.~37! using the
dressed-quark propagator solutions obtained in Ref.@24#.

FIG. 8. Homogeneous BSE, Eq.~38!. Filled circles: dressed
propagators or vertices;K is the dressed-quark-antiquark scatteri
kernel. A systematic truncation ofS2K is the key to preserving
Ward-Takahashi identities@5,26#.
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SinceGm(p,q) itself depends onS then Eq.~42! yields a sum
of two terms

@Kn~k,q;P!#EF
GH5Dmn~k2q!@ l agm#EG@ l aGn

n~q2 ,k2!#HF

1E
l

L

Dmn~k2 l !@ l agmS~ l 1!#EL

3
d

dSGH~q6!
@ l aGn

n~ l 2 ,k2!#LF . ~44!

Here, in addition to the usual effect of differentiation, th
functional derivative addsP to the argument of every quar
line through which it is commuted when applying the pro
uct rule. NB. Dmn also depends onS because of quark
vacuum polarization diagrams. However, as noted in R
@5#, the additional term arising from the derivative ofDmn

does not contribute to the BSE kernel for flavor nondiago
systems, which are our focus herein, and hence is negle
for simplicity. It must be included though to obtain a kern
adequate for an analysis of problems such as theh-h8 mass
splitting, for example.

Now, introducing@xM(q;P)#GH , the BSE becomes

GM~k;P!5E
q

L

Dmn~k2q!l agm@xM~q;P!l aGn~q2 ,k2!

1S~q1!LMn
a ~q,k;P!#, ~45!

where we have used Eq.~14! and defined

LMn
a ~q,k;P!5 (

n50

`

LMn
a;n~q,k;P!, ~46!

with

@LMn
a;n~ l ,k;P!#LF5E

q

L d

dS~q6!GH

3@ l aGn
n~ l 2 ,k2!#LF@xM~q;P!#GH . ~47!

Equation~45! is depicted in Fig. 9. The first term is in
stantly available once one has an explicit form forGn

n . To
develop an understanding of the second term, which is id
tified by the shaded box in the figure, we employ the rec
sive expression for the dressed-quark-gluon vertex, Eq.~17!,
with p5k, P5 l 2k, to obtain an inhomogeneous recursio
relation forLMn

a;n :

FIG. 9. BSE expressed in Eq.~45!, which is valid wheneverGm

can be obtained via a recursion relation.
3-7
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LMn
a;n~ l ,k;P!5E

q

L

Drs~ l 2q!l bgrxM~q;P!l a

3Gn
n21~q2 ,q21k2 l !S~q21k2 l !l bgs

1E
q

L

Drs~k2q!l bgrS~q11 l 2k!l a

3Gn
n21~q11 l 2k,q1!xM~q;P!l bgs

1E
q8

L

Drs~ l 2q8!l bgrS~q18 !

3LMn
a;n21~q8,q81k2 l ;P!S~q28 1k2 l !l bgs .

~48!

Equation~48! is illustrated in Fig. 10 and, combined wit
Figs. 2, 9, this discloses the content of the vertex-consis
Bethe-Salpeter kernel: namely, it consists of a countable
finity of contributions, an infinite subclass of which a
crossed-ladder diagrams and hence nonplanar. It is clear
everyn.0, vertex-consistent kernel must contain nonpla
diagrams. Charge conjugation can be used to expose a
grammatic symmetry in the Bethe-Salpeter kernel, which
the procedure we used, e.g., to obtain Eq.~23!. ~The steps
and outcome described here formalize the procedure il
trated in Fig. 1 of Ref.@5#.!

At this point if Gn
n and the propagator functions:A, B, are

known, thenLMn
a , and hence the channel-projected Beth

Salpeter kernel, can be calculated explicitly. That needs to
done separately for each channel because, e.g.,LMn

a depends
on xM(q;P).

To proceed we observe that the Bethe-Salpeter ampli
for a p meson is

Gp
j ~k;P!5I ct

jg5@ i f p
1 ~k2,k•P;P2!1g•P fp

2 ~k2,k•P;P2!

1g•kk•P fp
3 ~k2,k•P;P2!

1smnkmPn f p
4 ~k2,k•P;P2!#, ~49!

where I c is the identity in color space~mesons are colo
singlets! and$t j ; j 51,2,3% are the Pauli matrices. This illus
trates the general structure of meson Bethe-Salpeter am
tudes, which hereafter we express via

GM~k;P!5I c(
i 51

NM

G i~k;P! f M
i ~k2,k•P;P2!, ~50!

whereG i(k;P) are the independent Dirac matrices requir
to span the space containing the meson under considera

FIG. 10. Recursion relation forLMn
a;n , Eq. ~48!. We label the

diagrams on the right-hand side, from left to right, asG1 , G2 , L.
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~Subsequently, to simplify our analysis, we focus onNf52
and assume isospin symmetry. There is no impediment
principle, to a generalization.!

The result of substituting Eq.~50! into the right-hand side
~RHS! of Eq. ~45! can be expressed in the compact form

f5Hf5~H11H2!f, ~51!

wheref is a column vector composed of the scalar functio
f i5 f M

i . HereH1 is the contribution from the first term on
the RHS in Eq.~45! and it is aNM3NM matrix wherein the
elements of row-j are obtained via that Dirac trace projectio
which yields f M

j on the LHS; i.e., forPj such that

f M
j 5trD@PjGM#, ~52!

then, usingl al a52C2(R)52 4
3 for SU(Nc53),

@H1# j ,kfk52
4

3
trDFPjE

l

L

Dmn~k2 l !gmS~ l 1!

3G k~ l ;P!S~ l 2!Gn~ l 2 ,k2!G f M
k ~ l 2,l •P;P2!.

~53!

H2 represents the contribution from the second term,
which we now turn. In mesonic channels the color struct
of LMn

a;n is simple:

LMn
a;n5 l aLMn

n ~54!

becausexM}I c and l bl al b5 l a/(2Nc). The other part of the
direct product is a matrix in Dirac space that can be deco
posed as follows:

LMn
n 5 (

l51

NL

bl
n~ l ,k;P!gn

l~ l ,k;P! ~55!

5 (
l51

NL

(
j 51

NM

f M
j bl

j ;n~ l ,k;P!gn
l~ l ,k;P!, ~56!

where the sum overj implicitly expresses an integral ove
the relative momentum appearing inxM ; $gn

l ;l
51, . . . ,NL% are the independent Dirac matrices required
completely describeLMn

n , whose form and number are de
termined by the structure ofxM , NL>NM ; and
$bl

n(P2);l51, . . . ,NL% are the associated scalar coefficie
functions.~We subsequently suppress momentum argume
and integrations for notational ease.!

Using Eq.~55!, the recursion relation of Eq.~48! trans-
lates into a relation for$bl

n ; i 5l, . . . ,NL%. To obtain that
relation one first isolates these functions via trace proj
tions. That can be achieved by using any complete se
projection operators$PL;n

i ; i 51, . . . ,NL%, in which case
one has

bl
n5@M#ll8trCDF 1

8i
laPL;n

l8 LMn
a;nG , ~57!
3-8
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where trCD identifies a trace over color and Dirac indice
@NB. The optimal choice of projection operators would yie
@M#ll85dll8 , as we assumed, e.g., in Eq.~52!.# We subse-
quently adopt a compact matrix representation of Eq.~57!:

b n5MT n, ~58!

wherebn is a column vector withNL entries.
ReplacingLMn

a;n on the RHS in Eq.~57! by the RHS of Eq.
~48! and using the distributive property of the trace ope
tion, one obtains

T n5Ga n211Lb n21, ~59!

whereG describes the contributions to the trace from the fi
two terms in Fig. 10,G1,2, which are determined by th
dressed-quark-gluon vertex and thus proportional toan21,
andL represents the contribution from the last term,L. Us-
ing Eq. ~59!, Eq. ~58! becomes

bn5M@Ga n211Lb n21#. ~60!

~We reiterate thatM, G, andL are all functionals ofxM and
hence are different for each meson channel.!

It is evident that Eq.~60! entails

bn5@ML #nb01 (
j 50

n21

@ML # jMGa n2 j 21

5 (
j 50

n21

@ML # jMGO n2 j 21a0, ~61!

whereO resolves the dressed-quark-gluon-vertex recurs
as we saw with our simple dressed-gluon model in conn
tion with Eq. ~19!, and the first term vanishes becauseb0

50 by definition, Eq.~47!.
Finally, the complete BSE involves the sum express

in Eq. ~46!, which is determined by

b5 (
n51

`

bn5 (
n51

`

(
j 50

n21

@ML # jMGO n2 j 21a0

5(
i 50

`

@ML # iMG(
j 50

`

O ja05
1

12ML
MG

1

12Oa0,

~62!

and this, via Eq.~55!, completely determines the second te
in Eq. ~45! so that we can complete Eq.~51! with

@H2# j ,kfk52
4

3
trDFPjE

l

L

Dmn~k2 l !

3gmS~ l 1!gn
l~ l ,k;P!bl

k~ l ,k;P!G f M
k ~P2!,

~63!

which we have now demonstrated is calculable in a clo
form. @Recall that the sum overk implicitly expresses an
integral over the relative momentum in the Bethe-Salpe
06520
.
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r

amplitude. Note, too, that there is no sum over iterates in
equation: it isb from Eq. ~62! which appears.#

B. Solutions of the vertex-consistent meson Bethe-Salpeter
equation

To elucidate the content of the BSE just derived we ret
to the algebraic model generated by Eq.~9!. In this case
solutions of the BSE are required to have relative momen
k50 so that Eq.~50! simplifies to

GM~P!5 (
i 51

N,NM

G i~P! f i~P2! ~64!

and Eq. ~51! is truly algebraic; i.e., there are no implic
integrations. Furthermore, the kernelH5H(P2); i.e., it is a
matrix valued function ofP2 alone, and therefore the mas
MH

2 of any bound state solution is determined by the con
tion

det@H~P2!2I #uP21M
H
2 5050, ~65!

which is the requirement for any matrix equation:Hx5x, to
have a nontrivial solution: it is the characteristic equatio
NB. If no solution of Eq.~65! exists then the model doesn
produce a bound state in the channel under consideratio

1. p-meson

In our algebraic model, becausek50, Eq.~49! simplifies
to

Gp~P!5g5@ i f 1~P2!1g• P̂f 2~P2!#, ~66!

where P̂ is the direction-vector associated withP; P̂251,
and for the projection operators of Eq.~52! we choose

P152
i

4
g5 , P25

1

4
g• P̂g5 . ~67!

The vertexLpn
a;n transforms as an axial-vector and its for

is therefore spanned by twelve independent Dirac am
tudes. However, since the relative momentum is required
vanish, that simplifies and we have

Lpn
a;n5 l ag5@b1

n~P2!gn1b2
n~P2!g• P̂P̂n1b3

n~P2!P̂n

1b4
n~P2!gng• P̂#, ~68!

and an obvious choice for the projection operators of E
~57! is

PLp ;n
1 5

1

16
gng5 , PLp ;n

2 5
1

4
P̂ng• P̂g5 ,

PLp ;n
3 5

1

4
P̂ng5 , PLp ;n

4 5
1

16
g• P̂gng5 . ~69!

It can now be shown thatGp50 in Eq. ~59!: Gp is the
sum of two terms, the first and second in Eq.~48!, and using
3-9
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Eq. ~9! and recalling that this model forces the relative m
mentum to vanish in the bound state amplitude, these
terms are equal in magnitude but opposite in sign beca
the projection operators are axial vector in character.~At
leading order this result expresses an exact cancellation
tween one of the one-loop vertex corrections and
crossed-box term in Fig. 1 of Ref.@5#.! Gp50 is a conse-
quence of the fact that under charge conjugationLpm( l ,k;P)
transforms according to

L̄pm~2k,2 l ;P! t52Lpm~ l ,k;P!, ~70!

where (•••) t denotes matrix transpose, coupled with the
sult that Eq.~9! enforcesk505 l in the BSE. It is not a
general feature of the vertex-consistent Bethe-Salpeter
nel.

It is plain from Eqs.~55!, ~62! that Gp50 entails

Lpn
a [0 ~71!

and hence the complete vertex-consistent pion BSE is sim
f5H1f; i.e.,

Gp~P!52gmS~Q!Gp~P!S~2Q!Gm~2Q,2Q!, ~72!

with Q5P/2, and the dressed-quark propagator and dres
quark gluon vertex calculated in Sec. III B 2.

The characteristic polynomial obtained from Eq.~72! is
plotted in Fig. 11: the zero gives the pion’s mass, Eq.~65!,
which is listed in Table I. Figure 11 provides a forthrig
demonstration that the pion is massless in the chiral lim
This is a model-independent consequence of the consist
between the Bethe-Salpeter kernel we have constructed
the kernel in the gap equation. The figure illustrates that
vertex-consistent Bethe-Salpeter kernel converges jus
rapidly as the dressed-vertex itself~cf. Fig. 6!. The insensi-
tivity, evident in the table, of the pion’s mass to the order
the truncation is also explained by the fact that our constr
tion preserves the axial-vector Ward-Takahashi identity.

FIG. 11. Characteristic polynomial obtained in the chiral lim
from the vertex-consistent BSEs for thep andr mesons: the pion is
plainly massless. The function obtained usingm50.023, which cor-
responds to'10 MeV, is almost indistinguishable on the scale
this figure.
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2. r meson

The complete form of the Bethe-Salpeter amplitude fo
vector meson in our algebraic model is

Gr
l~P!5g•el~P! f 1

r~P2!1smnem
l ~P!P̂n f 2

r~P2!. ~73!

This expression, which only has two independent functio
is much simpler than that allowed by a more realistic int
action, wherein there are eight terms. Nevertheless, Eq.~73!
retains the amplitudes that, in more sophisticated studies
found to be dominant@6#. In Eq. ~73!, $em

l (P);l521,0,
11% is the polarization four vector

P•el~P!50, ;l; el~P!•el8~P!5dll8. ~74!

Here the projection operators of Eq.~52! are

P 1
l5

1

12
g•el~P!, P 2

l5
1

12
smnem

l ~P!P̂n . ~75!

To solve the vertex-consistent BSE we need to calcu
Lrn

a;n(el,P), which is defined in Eq.~48! and depends on the
Bethe-Salpeter amplitude in Eq.~73!. We have from Eq.~54!
that

Lrn
a;n~el,P!5 l aLrn

n ~el,P!, ~76!

and in our algebraic model the Dirac structure is complet
expressed through

Lrn
n ~el,P!5br1

n ~P!en
l1br2

n ~P!en
lig• P̂1br3

n ~P!ig•elP̂n

1br4
n ~P!sabea

l~P!P̂bgn

1br5
n ~P!isabea

l~P!P̂bP̂n1br6
n ~P!g•elgn ,

~77!

which has this simple form becauseLrn
n (el,P) cannot de-

pend on the relative momenta. In this case an obvious ch
for the projection operators of Eq.~57! is

TABLE I. Calculatedp and r meson masses, in GeV, quote
with G50.48 GeV, in which casem50.023 G511 MeV. ~In the
notation of Ref.@5#, this value ofG corresponds toh50.96 GeV.! n
is the number of dressed-gluon rungs retained in the planar ve
see Fig. 1, and hence the order of the vertex-consistent Be
Salpeter kernel: the rapid convergence of the kernel is appare
the tabulated results.

MH
n50 MH

n51 MH
n52 MH

n5`

p, m50 0 0 0 0
p, m50.011 0.152 0.152 0.152 0.152

r, m50 0.678 0.745 0.754 0.754
r, m50.011 0.695 0.762 0.770 0.770
3-10
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P Lr ;n
1 5

1

4
en

l , P Lr ;n
2 52

i

4
g• P̂en

l ,

P Lr ;n
3 52

i

4
P̂ng•el,

P Lr ;n
4 5

1

4
gnsabea

l~P!P̂b ,

P Lr ;n
5 52

i

4
P̂nsabea

l~P!P̂b , P Lr ;n
6 5

1

4
gng•el.

~78!

The substitution of Eqs.~77!, ~78! into Eq. ~57! yields

Mr5
1

2 3
3 0 0 0 1 21

0 3 21 21 0 0

0 21 3 1 0 0

0 21 1 1 0 0

1 0 0 0 3 21

21 0 0 0 21 1

4 ~79!

which simply expresses the fact that, e.g.,

br1
n ~P!52

1

8
trCD@ l a~3PLr ;n

1 1PLr ;n
5 2PLr ;n

6 !Ln
a;n#.

~80!

The next step is a determination of the matrixGr in Eq.
~59!, which gives the contribution to the kernel’s recursi
d

ra

06520
relation from the first two terms in Fig. 10. That is achiev
by substituting Eq.~76! into Eq. ~48!, and using Eq.~9! and
its consequences this yields

2D~Q2!MrGr53
2@ f 1

r~P!B~Q2!1 f 2
rQA~Q2!# 0 0

f 1
r~P!QA~Q2!2 f 2

r~P!B~Q2! 0 0

2 f 1
r~P!QA~Q2!1 f 2

r~P!B~Q2! 0 0

2 f 1
r~P!QA~Q2!1 f 2

r~P!B~Q2! 0 0

0 0 0

0 0 0
4

~81!

with Q5AQ25AP2/2, andD(s)5sA2(s)1B2(s) as in Eq.
~22!. It is immediately apparent that the Dirac compone
associated withbr5

n , br6
n are annihilated by this part of th

interaction. Furthermore, the complete contribution tobr
n is

MrGr3F a1
n21~Q2!

a2
n21~Q2!

a3
n21~Q2!

G , ~82!

and so it is evident that the subleading Dirac component
the dressed-quark-gluon vertex do not contribute to
Ln

a-related part of the vertex-consistent Bethe-Salpeter k
nel: they are eliminated by the last two columns inMrGr .
~These two simplifications are a feature of our model.!

The final element we require is the matrixLr in Eq. ~59!;
i.e., the contribution to the kernel from the last term in F
10. That is obtained by substituting Eq.~76! into the last
term of Eq.~48!, which gives
4D2MrLr53
2D 0 0 0 0 2D

0 2D 0 22D 0 0

0 0 2@Q2A22B2# 2B2 22QAB 22QAB

0 0 0 D 0 0

0 0 0 0 0 0

0 0 0 0 0 0
4 , ~83!
x-
where the argument of each function isQ2; e.g., B
5B(Q2). In our representationMrLr does not exhibit an
explicit dependence onGr(P). That dependence is acquire
through the recursion relation sincebr

1}MrGr , as is appar-
ent from Eq.~60!.

Note that this part of the kernel also annihilates the Di
components associated withbr5

n , br6
n in Lr;n

a (l,P). Hence
the active form of the vertex is
c

Lrn
n ~el,P!5br1

n ~P!en
l1br2

n ~P!en
lig• P̂1br3

n ~P!ig•elP̂n

1br4
n ~P!sabea

l~P!P̂bgn , ~84!

where theb i
n , i 51, . . . ,4 areobtained from Eq.~62! using

the elements calculated above.
Putting all this together we have the complete verte

consistent BSE for ther meson
3-11



lu

d

is
th
th

e
n
c
-

at

he
th
m

-
o

e
ia
-
rk
t

at
o
i

by

w
e
th
e
ne
e
tu
t
n
a
en
d
a

ir

li-
k-

tly

-
n’s

defi-

c
its

ark
of
ver-

e

lor

n be

A. BENDER, W. DETMOLD, A. W. THOMAS, AND C. D. ROBERTS PHYSICAL REVIEW C65 065203
Gr
l~P!52gmS~Q!Gr

l~P!S~2Q!Gm~2Q,2Q!

2gmS~Q!Lrm~el;P!, ~85!

with the dressed-quark propagator and dressed-quark g
vertex calculated in Sec. III B 2, andLrm(0,0;P) obtained
from Eqs. ~46!, ~55!, ~62! using the matrices displaye
above.

The characteristic polynomial obtained from Eq.~85! is
plotted in Fig. 11. Its zero gives ther-meson mass and that
listed in Table I. The tabulated values demonstrate that
rainbow-ladder truncation underestimates the result of
complete calculation by&10% ~i.e., the calculation per-
formed using the fully-resummed dressed-gluon-ladder v
tex! and simply including the consistent one-loop correctio
to the quark-gluon vertex and Bethe-Salpeter kernel redu
that discrepancy to&1%. Furthermore, it is clear that at ev
ery order of truncation the bulk ofmr is obtained in the
chiral limit, which emphasizes that thep-r mass splitting is
driven by the DCSB mechanism.

3. Scalar and axial-vector mesons

In a simple constituent-quark picture, the ground st
scalar and axial vector mesons are angular-momentumL
51 eigen states. This qualitative feature is expressed in t
Poincare´ covariant Bethe-Salpeter amplitudes through
presence of materially important relative-momentu
dependent Dirac components; e.g., Ref.@27#. However, the
model defined by Eq.~9! forces meson Bethe-Salpeter am
plitudes to be independent of the constituent’s relative m
mentum and, owing primarily to that, the rainbow-ladd
truncation of the model generates neither scalar nor ax
vector meson bound states@18#. We have found, unsurpris
ingly, that improving the description of the dressed-qua
gluon vertex and Bethe-Salpeter kernel is insufficient
overcome this defect of the model. However, we anticip
that these improvements will materially alter the results
BSE studies of scalar mesons that employ more realistic
teractions; e.g., Ref.@28#.

C. Diquark Bethe-Salpeter equation

The ladder-rainbow truncation, which is obtained
keeping only the first term in Eq.~8!, generates color-
antitriplet quark-quark~diquark! bound states@29#. Such
states are not observed in the hadron spectrum, and it
demonstrated in Ref.@5# that they are not present when on
employs the one-loop-dressed vertex and consistent Be
Salpeter kernel. Herein we can verify that this feature p
sists with the complete planar vertex and consistent ker
To continue, however, we must slightly modify the proc
dure described above because of the color-antitriplet na
of the diquark correlation.~NB. Color-sextet states are no
bound in any truncation because even single gluon excha
is repulsive in this channel. It is for this reason, too, th
color-octet mesons do not appear. Note also that the abs
of color-antitriplet diquark bound states does not preclu
the possibility that correlations in this channel may play
important role in nucleon structure@30# since some attraction
does exist, e.g., Ref.@31#.!
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The analog of Eq.~38! is

@GD~k;P!#EF5E
q

L

@K̄~k,q;P!#EF
GH@xD~q;P!#GH , ~86!

wherek is the relative momentum of the quark-quark pa
andP is their total momentum, as before, and

xD~q;P!5S~q1!GD~q;P!St~2q2! ~87!

with GD(q;P) the putative diquark’s Bethe-Salpeter amp
tude. In this caseK̄ is the fully amputated dressed-quar
quark-scattering kernel, for which

K̄~k,q;P!] EF
GH5Dmn~k2q!@ l agm#EG@~ l agn! t#HF ~88!

yields the dressed-gluon ladder-truncation of the BSE.
Inspection of the general structure ofK̄ reveals that, fol-

lowing our ordering of diagrams, it can be obtained direc
from the kernel in the meson BSE via the replacement

S~k!l agm→@gml aS~2k!# t ~89!

in each antiquark segment ofK, which can be traced unam
biguously from the external antiquark line of the meso
Bethe-Salpeter amplitude.

The appearance here of a matrix transpose makes the
nition of a modified Bethe-Salpeter amplitude@29# useful:

GD
C~k;P!ªGD~k;P!C†, ~90!

where C5g2g4 is the charge conjugation matrix, from
which it follows that

xD
C~k;P!5S~k1!GD

C~k;P!S~k2!, ~91!

usingCgm
t C†52gm . GD

C(k;P) satisfies a BSE whose Dira
structure is identical to that of the meson BSE. However,
color structure is different, with a factor of (2 l a) t replacing
l a at every gluon vertex on what was the conjugate-qu
leg. ~NB. It is from this modification that the absence
diquark bound states must arise using the dressed-ladder
tex, if it arises at all.! For example, if one has a term in th
meson BSE of the form

l agmSlbgnSlcgrSGMSlagmSlcgrSlbgn ~92!

then the related term in the equation forGD
C(k;P) is

l agmSlbgnSlcgrSGD
CS~2 l a! tgmS~2 l c! tgrS~2 l b! tgn .

~93!

There are three color-antitriplet diquarks and their co
structure is described by the matrices

$l`
k ;k51,2,3:l`

1 5l7,l`
2 5l5,l`

3 5l2%, ~94!

and, as for mesons, their Bethe-Salpeter amplitudes ca
written as a direct product, color̂ Dirac
3-12
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GD
C~k;P!5l`

k Gqq
C ~k;P!. ~95!

For color-singlet mesons the color factor is simply the ide
tity matrix I c . ~Recall that we focus onNf52 and assume
isospin symmetry. Hence the diquark’s flavor structu
which is described by the Pauli matrixt2 in this case, can-
cels in the BSE.!

As we observed, the rainbow-ladder diquark BSE is o
tained by using Eq.~88! in Eq. ~86!. Right-multiplying the
equation thus obtained byC† we find immediately that the
equation satisfied byGD

C(k;P) is the same as the rainbow
ladder meson BSEexceptthat
06520
-

,

-

l aI cl
a52 4

3 I c→ l al`
k ~2 l a! t52 2

3 l`
k . ~96!

In both cases the color matrix now factorizes and c
therefore be cancelled. Hence the rainbow-ladder BS
satisfied by the color-independent parts ofGM andGD

C(k;P)
are identical but for a 50% reduction of the coupling
the diquark equation. This expresses the fact that ladder
dressed-gluon exchange between two quarks is attrac
and explains the existence of diquark bound states in
truncation@29#.

Following the above discussion it is apparent that the
quark counterpart of Eq.~48! is
used to
Eq.
LDn
a;n~ l ,k;P!5E

q

L

Drs~ l 2q!l bgrxD
C~q;P!Gn

n21~q2 ,q21k2 l !~ l a! tS~q21k2 l !~ l b! tgs

2E
q

L

Drs~k2q!l bgrS~q11 l 2k!l aGn
n21~q11 l 2k,q1!xD

C~q;P!~ l b! tgs

2E
q8

L

Drs~ l 2q8!l bgrS~q18 !LDn
a;n21~q8,q81k2 l ;P!S~q28 1k2 l !~ l b! tgs . ~97!

The factorization of the color structure observed in the ladderlike diquark BSE persists at higher orders and can be
obtain a recursion relation for the diquark kernel analogous to that depicted in Fig. 10. Indeed, a consideration of~97!
reveals that in general one can write

LDn
a;n~ l ,k;P!5L1n

n ~ l ,k;P!l al`
k 1L2n

n ~ l ,k;P!l`
k ~ l a! t, ~98!

where in this direct productL1n
n andL2n

n are Dirac matrices. Defining

T n
L;nl`

k
ª l aLDn

a;n52
2

3
@2L1n

n 2L2n
n #l`

k

5H 2
5

9Eq

L

Drs~ l 2q!grxqq
C ~q;P!Gn

n21~q2 ,q21k2 l !S~q21k2 l !gs

2
1

9Eq

L

Drs~k2q!grS~q11 l 2k!Gn
n21~q11 l 2k,q1!xqq

C ~q;P!gs2E
q8

L

Drs~ l 2q8!grS~q18 !

3F1

9
L1n

n21~q8,q81k2 l ;P!2
5

9
L2n

n21~q8,q81k2 l ;P!GS~q28 1k2 l !gsJ l`
k , ~99!

T n
R;nl`

k
ªLDn

a;n~ l a! t52
2

3
@2L1n

n 12L2n
n #l`

k

5H 1

9Eq

L

Drs~ l 2q!grxqq
C ~q;P!Gn

n21~q2 ,q21k2 l !S~q21k2 l !gs

1
5

9Eq

L

Drs~k2q!grS~q11 l 2k!Gn
n21~q11 l 2k,q1!xqq

C ~q;P!gs1E
q8

L

Drs~ l 2q8!grS~q18 !

3F5

9
L1n

n21~q8,q81k2 l ;P!2
1

9
L2n

n21~q8,q81k2 l ;P!GS~q28 1k2 l !gsJ l`
k , ~100!
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then

L1n
n 52

1

2
@T n

L;n12T n
R;n#, L2n

n 52
1

2
@2T n

L;n1T n
R;n#.

~101!

NB. The first lines in each of Eqs.~99!, ~100! prove that
there is no mixing between color-antitriplet and color-sex
diquarks, whose color structure is described by the six s
metric Gell-Mann matrices.

We can now write the vertex-consistent BSE for the col
antitriplet diquark channels@cf. Eq. ~45!#:

Gqq
C ~k;P!52

2

3 (
n50

` E
l

L

Dmn~k2 l !

3gm@xqq
C ~ l ;P!Gn

n~ l 2 ,k2!2S~ l 1!T n
L;n~ l ,k;P!#.

~102!

It is straightforward to verify that this equation reproduc
the diagrams considered explicitly in Ref.@5#.

Having factorized the color structure, the summation
pearing in the first term of Eq.~102! yields the dressed ver
tex we have already calculated. One proceeds with the
ond term by analogy with Eq.~55! and observes that th
matrix-valued functionsL1,2 can be decomposed:

L in
n 5 (

l51

NLD

h il
n ~ l ,k;P!hn

l~ l ,k;P!, ~103!

where$hn
l ;l51, . . . ,NLD

% is the smallest set of Dirac ma

trices capable of expressingLDn
a;n completely, whose form

and number depend on the channel under consideration.
jection operators,P D;n

A , are easily constructed so that, wit

hªcolumn~h11, . . . ,h1NLD
,h21, . . . ,h2NLD

!, ~104!

we have

FIG. 12. The characteristic polynomial obtained usingm
50.023, which corresponds to'10 MeV, calculated for the scala
and axial-vector color-antitriplet diquark channels using the diqu
BSE, Eq.~102!.
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@hn#A5@M8#AA8trD@P D;n
A8 L In

n #, ~105!

where A,A851, . . . ,2NLD
, and I 51 for A8<NLD

and I

52 for A8.NLD
. Now the procedure of Eqs.~58!–~60! can

be repeated to arrive at

hn5M8@G8an211L8hn21#, ~106!

whereG8, L8 are natural analogs of the matrices introduc
in Eq. ~59!, and thereafter one can continue to obtain
obvious extension of Eq.~62!. This completely determines
the second term in Eq.~102! and thus we have arrived at th
vertex-consistent BSE for the color-antitriplet diquark cha
nel.

D. Solutions of the diquark equation

1. Scalar diquark

In the algebraic model specified by Eq.~9! the general
Dirac structure of aJP501 quark-quark correlation is

Gqq
01

~P!5g5@ i f 1
01

~P2!1g•P f2
01

~P2!#, ~107!

which is the same as that of the pion, for reasons which
obvious given the discussion following Eq.~90!. The char-
acteristic equation for this channel is obtained following t
method made explicit in Sec. IV B 1 and it is depicted in F
12. The existence of a bound state forn50; i.e., in the
rainbow-ladder truncation, is apparent. However, so too
the effect of the higher-order terms, which was identified
Ref. @5#: at each higher-order nonplanar diagrams in the k
nel provide significant repulsion, which overwhelms any
traction at that and preceding orders and thereby ensure
quark confinement; i.e., the absence of colored quark-qu
bound states in the spectrum. This feature is retained by
completely resummed kernel, using which, instead of a ze
the characteristic polynomial exhibits a pole: the repulsion
consummated.@This feature is not tied to the interaction i
Eq. ~9!; e.g., Ref.@32#.#

2. Axial vector diquark

The general form of aJP511 quark-quark correlation is
represented by

Gqq
11

~P!5g•el~P! f 1
11

~P2!1smnem
l ~P!P̂n f 2

11

~P2!.
~108!

Calculating the characteristic polynomial for this channel
also a straightforward application of methods already int
duced and it is plotted in Fig. 12. The features in this chan
are qualitatively identical to those of the scalar diquark.

V. SUMMARY

Using a planar quark-gluon vertex obtained through
resummation of dressed-gluon ladders we have explic
demonstrated that from a dressed-quark-gluon vertex,
tained via an enumerable series of terms, it is always p
sible to construct a vertex-consistent Bethe-Salpeter ke

k

3-14
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that ensures the preservation of Ward-Takahashi identitie
the physical channels related to strong interaction obs
ables. While we employed a rudimentary model to make
construction transparent, the procedure is general. Howe
the algebraic simplicity of the analysis is peculiar to o
model. For example, using a more realistic interaction
gap and vertex equations would yield a system of twe
coupled integral equations. Nevertheless, we anticipate
the qualitative features highlighted herein are robust.

The simple interaction we employed characterizes a c
of models in which the kernel of the gap equation has su
cient integrated strength to support dynamical chiral symm
try breaking~DCSB!. The complete ladder summation of th
interaction, calculated self-consistently with the solution
the gap equation, produces a dressed vertex that is
changed, cf. the bare vertex. In particular, it does not exh
an enhancement in the vicinity ofk250, wherek is the
momentum carried by the model dressed-gluon. In addit
the dressed-quark propagator obtained in this self-consis
solution is qualitatively indistinguishable from that obtain
using the rainbow truncation.

The vertex-consistent Bethe-Salpeter kernel is necess
nonplanar, even when the vertex itself is planar, and in
simple model it is easily calculable in a closed form: for
more realistic interaction it can be obtained as the solution
a determined integral equation. The fact that our construc
ensures the kernel’s consistency with the vertex and he
preservation of Ward-Takahashi identities is manifest in
Goldstone boson nature of pion, which is preserved ord
by-order and in the infinite resummation.

Our explicit calculations focused primarily on flavo
r-

-

n.
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nonsinglet pseudoscalar mesons and vector mesons.
found that a consistent, nonperturbative dressing of the
tex and kernel changes the masses of these meson
&10%, cf. the values obtained using the rainbow-lad
truncation. That is not the case in the pseudoscalar chann
the kernel is dressed inconsistently. Furthermore, 90% of
p-r mass splitting is already generated in the rainbow-lad
truncation, which emphasizes that this splitting is primar
driven by DCSB. The rainbow-ladder truncation is a po
approximation for flavor-singlet pseudoscalar mesons
scalar mesons. We also considered quark-quark scatte
and found that, with anything but a ladderlike verte
consistent Bethe-Salpeter kernel, diquark bound states do
exist in the spectrum.
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