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Correlation search for coherent pion emission in heavy ion collisions
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The methods allowing us to extract the coherent component of pion emission conditioned by the formation
of a quasiclassical pion source in heavy ion collisions are suggested. They exploit a nontrivial modification of
the quantum statistical and final state interaction effects on the correlation functions of like and unlike pions in
the presence of the coherent radiation. The extraction of the coherent pion spectrum*fremand 7= 7~
correlation functions and single-pion spectra is discussed in detail for large expanding systems produced in
ultrarelativistic heavy ion collisions.
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[. INTRODUCTION ing energy(see., e.g., Ref2)).!

Typically, however, the transferred momenta are sufficient

. . .. for substantiatecoil effects and the excitation of the nucleus
The hadronic observables, such as single- or multiparticle” .
: : : or its breakup. Then, due to a smatiherence length- 1/ q],
hadron spectra, play an important role in the studies of ul- . ; .
T . - the nucleus does not participate in the collision as a whole
trarelativistic heavy ion collisions. However, these observ- . - .
and one can consider the+ A collision as an incoherent

ables contain rather indirect information on the initial stage o .
. . . . §uperposmon of elementary hadron-nucleon scatterings cor-
of the collision process since the particle interactions resul

in substantial stochastization and thermalization of a systerrrﬁehsg?gglljrl‘t?n;o é?;sdsorsnegt?(?r?eiss g;gegﬁ,rgﬁlg;dtiz c;fut:]eolf g?g'

during its evolution._ Nevertheless, the final_ hadronic Stat(?'noduli squared of the amplitudégrobabilities at each of
can carry some residual signals 0'.( the earlier stages of thﬁﬁe possible scattering poinignlike coherent scattering,
particle prodgctlon process. A partial coherence of the Proyhen the individual amplitudes are summed firéts a re-
duced pions is assumed to be one of the important examplegyj¢ the particles are produced in chadtiwwoherent states.

The first systematic study of co_hgrent processes in high | ot us come back to the production of particlesg.,
energy hadron-nucleush-A) collisions was based on piong in the processes of nonelastic coherent scattering at
Glauber theory1]. In this theory, then+A collision is con-  small transferred momenta. Since the nucleus is not excited
sidered as a process of subsequent scatterings of the projeg-these processes and manifests itself as a quasiclassical
tile on separate nucleons of the nucleus; the projectile enetbject, one can describe particle production using the quan-
gies are assumed to be much higher than the inverse nucletian field model of interaction with a classical souf&g. It
radius E,>1/R), thus allowing to consider a linear projec- is well known that the interaction with a classical source
tile trajectory inside the nucleugikonal approximation If results in the production of bosons in coherent statds
the scattering process occurred with almost no recoil of thdhese states minimize the uncertainty relation and, so, are
nucleus nucleons, i.e., with neitnessesof the individual  the closest to classical ongédhis is the main physical link
scatterings, then thie+ A collision should be described by a between the processes of coherent scattering and particle
coherent superposition of the elementary hadron-nucleoRroduction in coherent states. _
scattering amplitudes. Such a type of collision is called co- !N heavy ion collisions at high energies, the average mul-
herent scattering. Since the nucleus in coherent scatterifiPlicities are quite high, e.g., several thousands of pions can

does not change its state, it manifests itself just as a particl SHFI)éoduced at r_rrﬁxmall R_elatms?cl Heavyt Io?h Collider
with some form factor. In the oscillator approximation, the ) energies. The inclusive particle spectra thus repre-

nucleus form factor can be represented by a Gaussiar?‘ent natural characteristics of these processes. A convenient
exp(—o2R2/4). The coherent processes are essential only fOV\'/ay to account for the coherent properties of these processes

I ta t terred f th ectile had o th Consists of a model description of particle emission, rather
small momenta transierred irom the projectile hadron 10 ey, iy yetailed evaluation of the contributing amplitudes.

nucleus:|g|<1/R. Then, one can neglect the recoil energy the Gyulassy-Kauffmann-WilsonGKW) model [8] is an

and consider the nucleus as a whole during the scatteringxamme of such an approach. The model assumes that all
process. There is a kinematic limitation of the minimal lon-

gitudinal momentum transfefg,| min=(M?—md)/(2|py|), re-

quired to produce a particle or a group of particles of the lye are grateful to V. L. Lyuboshitz for drawing our attention to
invariant masdV. The vanishing ofq,| min with the increas-  this important point and for an interesting discussion.

ing energy explains why the coherent processes can tak€Thecoherent statehave been introduced and studied in detail by
place only at high enough energies. It is worth noting that theslauber5]. The concept of coherent states was then applied to pion
total coherent cross section does not die out with the increagroduction in high energy processes in R¢6-8].
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pions are radiated by classical currefésurces which are  to the strengthening of the coherent component conditioned
produced in some space-time region during the collision proby the ground statéuasiparticle vacuuprdecay[16]. Since
cess. The corresponding density matrix is constructed by awhe DCC appears relatively latat the end of the hadroniza-
eraging over the unobservable positions of the centers dfon stage, the coherent radiation could partially survive and
individual sources. The pion spectra then effectively contairbe observed.
both chaotic and coherent components. In fact, the chaotic The coherent emission manifests itself in a most direct
component dominates in the case of a large emission regioway in the inclusive correlation functio€(p,q) of two
while, in the opposite limit of very small space-time extentidentical bosons in the region of very sm¢q|; p=(p;
of this region, almost all pions are produced in the coherent- p,)/2,q=p,— p,. In case of only chaotic contribution, the
state. This seems to be rather general result: if the distanc@stercept of the quantum statisticéDS) Bose-Einstein part
between the centers of pion sources are smaller than the typif the correlation functiorCqs(p,0)=2 [17] while, in the
cal wavelength of the quantthe source sizethe substantial presence of the coherent radiati@ys(p,0)<2. Generally,
overlap of the wave packets leads to the strong correlationgie coherence means strong phase correlations of different
(indistinguishability between the phases in pion wave func- radiation components. In Refl9], a simple quantum-
tions and, thus, to the coheren@;10]. mechanical model of the phase-correlated one-particle wave
Recently, the coherence of multipion radiation in high en-packets with different radiation centers has been considered.
ergy heavy ion collisions was studied within the GKW model|n such a casécorresponding to indistinguishable correlated
in Ref. [11]. In the model, due to the longitudinal Lorentz emitting centers the emission amplitudé\(p) averaged
contraction of the colliding nuclei, almost all pions producedoyer the event ensemble is not equal to zéA(p))+#0, and
with small transverse momenfg<1/R in central nucleus- the QS correlation function intercef@og(p,0)<2. In the
nucleus collisions are emitted coherently, and their momensecond quantization representatignore adequate for pro-
tum spectra are determined by the system’s space-time e¥esses of multiboson productiprthe analogous results take
tent. Clearly, the coherence of pions can be destroyed bjlace for inclusive averages of the quantum field operators:
pion rescatterings. Nevertheless, the duration of hadron f0R‘a(p)>¢0,CQs(p,O)<2, provided the radiation has a non-
mation may happen to be long enough to allow a considerzerocoherent-stateomponent. The latter represents a super-
able part of the coherent pions to escape from the interactioposition of the states of all possible boson numbers at fixed
zone without rescatteringdsL1]. However, as noted in Ref. phase relations.
[11], one can expect a strong suppression of the GKW |n practice, most of the correlation measurements are
mechanism of coherent pion production if quark-gluondone withchargedparticles. However, charged bosons can-
plasma were created: the hadronization then occurs in a thefiot form the usual coherent state since it obviously violates
mal quark-gluon system and hadrons are produced in thghe superselection rule. To overcome this difficulty, the gen-
chaotic state only. Note that clear signals of the thermalizagralized concept of charge-constrained coherent states should
tion and collective flows, observed at CERN SPS and RHIGye used[7,8,18. Nevertheless, the correlations of charged
energies(see, e.g., Refs[12,13, and references thergin posons are usually described with the help of ordingt
point to strong rescattering effects and may reflect also thgharge-constrainedcoherent state§19,20 (see, however,
importance of the quark-gluon degrees of freedom. Refs.[21,27)). Our treatment of two-pion correlations takes
The new physical phenomena, expected in RHIC angnto account the restrictions imposed by the superselection
Large Hadron Collider experiments with heavy ions, are asryle and is based on the density matrix formalism.
sociated with the creation of quasimacroscopic, very dense The density matrix approach gives the possibility to de-
and hot systems. In such systems, the deconfinement phasgribe, in a natural way, the chaotic radiatitie initial state
transition and the restoration of the chiral symmetry arethen corresponding to a local-equilibrium statistical operator
likely to happen, possibly leading to creation of the newof quasiparticle excitationsand coherent emissiofarising
states of matter: quark-gluon plasif@GP and disoriented  duye to the interaction with a classical soUrcEhis approach
chiral condensatéDCC). In the latter case, another possibil- can easily incorporate also the squeeze-state component of
ity for the coherent pion radiatiofabove the thermal back- pjon radiation[23], appearing due to the modification of the
ground appears. If the DCC were created at the chiral phasgnergy spectrum of quasipions as compared with that of free
transition, a quasiclassical pion field,; forms the ground pions[24]. The density matrix formalism is also simply re-
state of the system. The subsequent system decay is accotated with the Wigner function description of the multipar-
panied by a relaxation of the ground state to normal vacuunticle phase space and its evolution governed by the relativis-
Such a process can be described by the quantum field mod&t transport equatiori25], representing very useful tools
of interaction with a classical sourdsee, e.g., Refl14]),  with a clear classical limit. Recent development of the clas-
and results in the coherent pion radiation. One of the generaical current approach to multiparticle product[@3,19 has
conditions of the ground state rearrangement and formatiomade it closer to the density matrix formalism; particularly,
of the quasiclassical field is a large enough system voluméhe clasical current in momentum space has been shown to
[15]. Therefore, such a field could be generated in heavy iotbe mathematically identical with the coherent-state represen-
collisions at sufficiently high energies provided the sponta+tation of the density matrix, the latter calle®" or Glauber-
neous chiral symmetry breaking via DCC formation takesSudarshan representatifl, see also Ref.26].
place. The overpopulation of tHguasjpion medium, mak- In our approach, the superselection rule requires an aver-
ing it close to the Bose-Einstein condensation point, can leadging, in the density matrix, over all orientations of the qua-
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siclassical pion source in the isospin space. As a conserix of partially coherent pions, and calculate quantum statis-
quence, the averaged pion field vanishdsi(p))=0 tical correlations of identical and nonidentical pions. In Sec.
whereas, for identical pions, the intercepg<(p,0) is still lll, we set forth the density matrix formalism taking into
less than 2. The correlations of nonidentical pions also ap&ccount the decays of short-lived resonances and FSI of pro-

pear to be sensitive to the presence of the quasiclassicdP'c®d pions, and calculate the corresponding correlation

source. This sensitivity arises due to properties of the genefunctions. In Sec. 1V, we discuss how to extract the coherent

alized coherent states satisfying, after the averaging over giomponent of particle radiation from the two-pion correla-

; : . . - ; on functions, particularly, in the case of large expanding
orientations of the quasiclassical source in isospin space, t séystems produced in ultrarelativiséict- A collisions. A short

superselection rule for charged part!cles_. Due to isospin .Syms'ummary and conclusion are given in Sec. V.
metry of the strong-interaction Hamiltonian, there are unique
relations for the intercept§44(p,0) of the pure QS correla- Il. QUANTUM STATISTICAL CORRELATIONS
tion functions of two pions in various charge stateg OF PARTIALLY COHERENT PIONS
=+ ,0. For example, the coherence suppressio@of de-
termines the coherence enhancementof .

The coherence phenomena can be, however, masked byS
number of effects suppressing the measured correlatio

It is well known that the description of the inclusive pion
Eectra and two-pion correlations is based on a computation
the following averagef8]:

functions. The most important among them are the decays d3N.
of long-lived particles and resonances(e.g., pr'Eni(p)zz |7(in;p,a)|?=(al(p)ai(p)),
A, K2, , 7', ...), thesingle- and two-track resolution and dp g

particle contamination. In Ref27], the method to discrimi- 6
nate between the effects of coherent radiation and decays of ® d°N;;
long-lived resonances has been proposed. The method as- ™ "2d3p,d3p,
sumes the simultaneous analysis of two- and three-particle

correlation functions of identical pions. The practical utiliza- =E 170N py, Py, )2

tion of the method is however difficult due to a low statistics P e

of near-threshold three-pion combinations and the problem N N

of the three-particle Coulomb igteraction; also, one has to =(aj (p1)aj(p2)ai(p1)a;j(p2)),
account for the superselection rdl&herefore, in the present o

work we will restrict ourselves to the consideration of two-  C (P:@)=1j(P1,P2)/Mi(P1IN;(P2),  @p=m?+ p?,

particle correlation functions. (1)

In addition to QS, the correlations of particles with small \yhere77in; p, ) is the normalized invariant production am-
relative velocities are also influenced by their final state injityde. The summation is done over all quantum numbers
teraction(FSI). The effect of the latter on two-particle corre- of other produced particles, including integration over their
lations is well understood and introduces no principle Pmb‘momentaaf(p) anda;(p) are, respectively, the creation and
lems. It is important that the correlations in different two- gnpjnilation operators of asymptotically free pioins =,0;
pion systems are influenced by the QS, FSI, and coherengge pracket( . ..) formally corresponds to the averaging
effects in a different way. This offers a possibility to dis- over some density matrix)(f|. Special attention is required
criminate different effects suppressing the measured correldor the production of particles with nearby velocities which
tion functions and so to extract the coherent contributiorcan be strongly influenced by particle interaction in the final
using correlation functions of like and unlike pions measuredstate. In this section, we concentrate mainly on quantum sta-
at small relative momenta. tistical correlations ignoring, for a while, the effects of reso-

In the paper we study the influence of the coherent piomance decays and FSI.
radiation on the behavior of pion inclusive spectra and two- Let us suppose that the density matrixis a statistical
pion correlation functions and, based on it, develop the metheperator describing the thermal hadronic system in a pre-
ods for the extraction of the coherent component above thdecaying state on a hypersurface of the thermal freeze-out
chaotic background. Despite the fact that we associate the;:t=t;(x). After the thermal freeze-out the system is out of
coherent radiation with the formation of the DA@s the local thermal equilibrium but still can be in a predecaying
most probable mechanism of the coherence in ultrarelativistinteracting state. In fact, the complete dec@eglecting the
tic A+ A collisions, our results are rather general. Actually, long-time scale forcgshappens at some finitasymptotic
they are based on the general properties of the coherent piaimest, <. Then the formal solution of the Heisenberg
radiation: the quasiclassical nature of the coherent piomquation for the pionic annihilatiofcreation) operators at
source and the constraints imposed by the charge superselehis post-thermal freeze-out stage has the form
tion rule.

In Sec. Il, we consider a general form of the density ma-

=n;;(P1,P2)

“For a spacelike hypersurface; [an example iso;=t(x)
=(7?+X}ne) M2 in the Bjorken hydrodynamic model with the
3The latter problems are absent for neutral pions. However, suffiproper expansion time], the use of the covariant Tomonaga-
ciently accurate measurements of neutral pion correlations are pra&chwinger formalism gives the same result with the substitution
tically out of the present experimental possibilities. —t(x).
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i qm(Ptoud) =[ @ qm(P.te) +di(P,te toyp) Je ' pllour 1), ticle radiation> We will neglect the rescatterings at the post-
(2  thermal freeze-out stage, i.e., pdiqm(p,ts,tou)~0, and
approximately describe the production of coherent pions at
) this stage by the quantum field model of the interaction with
It formally corresponds to the sum of the general solution ofy ¢jassical sourcg3]. Then, there is a well known linear
the free(homogeneoysHeisenberg equation of motion for re|ationship between the annihilati¢ereation operators di-
the pionic field(first term, and a particular solution of the a4onalizing the pion field Hamiltonian at the timgsand
complete (inhomogeneoys Heisenberg equation with a (i==,0):
source(second term The valued;(p,t;,t,,) depends onthe °“ '
actual form of the source term in' the Heisenberg equation'ai,qm(prtout):[ai,qm(pvtf)+eidcoh(p,tf ,tout)]e*iwp(tourtf),
The decay of the system at this stagest<t,,;, can be (4)
accompanied by the coherent pion radiation due to the modi-
fication of hadron properties in a hot and dense hadronitvhere thec-value quantitydg(p,ts,tou) depends on a
environment or due to some peculiarities of the phase tranmechanism and the rate of the classical field décay.
sition from QGP to hadron gas, e.g., the formation of DCC. The operatorsa;(p) of the asymptotic free pion field
In both cases, almost noninteracting quasiparticle excitationgvith the origin of the time coordinate shifted to the pdipt
could be formed above a rearranged ground statenden-  are connected with the operatogs 4 (p,t) taken at the

sate”). asymptotictimest,, by the relation30]
In the systems containing the DCC, the appearance of the ooty
quasiclassical pion fieldr, (corresponding to the density of a(p) = poePoloua gr(Pitou),  Po=wp.  (5)

virtual pionic e_xcnatlons of th? guasipionic vacu_)uat the Equations(4) and(5) allow to calculate the mean values of
thermal stage is usually described in the mean field approxi- ¥ .
(p) for eache orien-

; _ : the asymptotic operatoig (p) and a;
mation as ;¢ (X)=m(X)— 7 qm(X), where the field i o 1A .
i qm(X) corresponds to the quciclsipion guantum excitationg2t'o" of the quasipion vacuum applying Tthe thermal Wick
above the temporary vacuum background.(x) (the order theorem to the operatorai_,qm(p,tf) and a; qr(p.ty). The
parameter Assuming the isotopic symmefry of the Lagrang- Gaussian form of the Sta'FIStICE;'.ll opgratng guarfintees that
ian such as in the sigma modeke, e.g., Ref28]), we have (a,qm(P:t1))e=0 for any fixed isospin orientatios of the
i 1(X) = €7 (X), wheree is a randomly oriented unit vec- duasiparticle vacuum. Then,
tor, =1, in the three-dimensional isospin space. Then, for

T T _ _

eache orientation of the quasipionic vacuum at the thermal (a/(p1)aj(P2)ai(P1)a)(P2))e

freeze-out, the free quasipion?slm are distributed according =(aiT(pl)ai(p1)>e(ajT(p2)aj(p2)>e

to the Gibbs local-equilibrium density matrpx, above the + +

quasipionic vacuum. After the thermal freeze-out, when the + 8ij[(af (p2)ai(p1))«ai (P1)ai(p2))e
decay of such a thermal system happens, the quasipion ot t

masses approach the usual free particle values and the con- (@i (p1))e(ai (P2))@i(P1))e(@i(P2))el.
densate(the temporarydisorientedvacuun) tends to relax (6)

back to the normal vacuum by emitting physical pions in
coherent states—the vacuum for quasiparticles becomes Hgre
coherent state for free particles. The latter process is similar,
to particle radiation by a classical source. (@i

(P1)ai(p2))e=(al (P ai(p2))en+ (@l (p1))e(ai(P2))e,
Then the “source” term in Eq(2) takes on the form ()

where the irreduciblétherma) part of the two-operator av-

di(pvtf :tout):di,qm(pvtf vtout) +eidcoh(p:tf vtout)v erage
(al(p1)ai(P2))en= VP10P2ol &) qm(P1.t1) & qm(P2.tr))e
) sing ., @ t3)
€y=CO0s/0, e, =——e" 7,
° T2

SSqueeze-state components can arise also in a strongly inhomoge-
neous thermal boson system for particles with wavelengths larger
than the system’s homogeneity lengi8]. Below we will assume
the pion Compton wavelength to be much smaller than the typical

where d; qm(P,ts,tou) and edeon(p.ts,tou) are g- and
c-value quantities, respectively. While the total humber of
pions of momentunp radiated by a classical source is fixed system lengths of homogeneitg.g., hydrodynamical lengthst

by |deon(P,ts ,tou[)|2., the distribution of radiating pions i the thermal freeze-out hypersurface.

isospace is determined by the orientation of the veetove 8t follows, from the continuity of the complete field;(x) and its
supposee is independent ok. We further assume that the derivative att=t,, that, for a fast freeze-outt{,,—t;—0), the
quasipion masses at the thermal freeze-out are near thgantity qoy(p.t;.tou) is directly associated with the strength of
physical massm;(t;) =m,,=m, neglecting a possible mass the pion condensate. On the other hand, an adiabatically slow
shift which can generate squeeze-state components in pawitch-off of the classical source yieldsg(p,ts ,tou)=~0 [3].
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does not depend o&f and Theobservablegion field is related to the ensemble of events
only, so the corresponding complete averages of the asymp-
(ai(p))e=gd(p)=¢ VPoeon(Pits tour)- (99  totically free operators vanish, for exampléa,+(p))

_ _ _ =(4m) " fdQ(e){a,+(p))e=0. The averages of these op-
One can introduce the one-particle Wigner functi@b]  erators also vanish for charge-constrained coherent pion
states |c), the states of a fixed electric charge and
fo(x,p)=(2 —3J d*a’ 8(g’ - p)eld’ isospin—so called generahzed coherent stfe8,18. This
ei(X:P)=(2m) a’5(a’-p) means that the density matrix can be represented as a
weighted sum of the projection operatdi®)(c| of these
states.
To illustrate this statement, let us consider a simple arti-
ficial case of only two sorts of oppositely charged bosons in
Pt ei(X,p)=0 (11) one mode. Then the usual coherent statgg, A==, are

x(al(p+q'/2ai(p—q'/2)e, (10

satisfying the relation

and describing the phase-space density of the noninteractin 0

A
pions att=t,, or, in covariant formalism, at=o,,, %ah>:exq_%|a>\|2)zo (n|—)1/2|n>\>’ alay)=ala),
=toui(X); hereo,, is a space-time hypersurface where the '
interactions are “switched off” and particles can be consid- 12 —tin "
ered as free. From Eq10), we get Iny)=(n)"Y4a)"0y), [ay,a,,]1=d\,

_ - *ig
(al(pDai(p2))e= |  do,pHfei(x,p)e 19, ax=|ale™'?. (16)
Tout

These states represent superpositions of the states with dif-
d=p1—P2, P=(p1+p,)/2. (120  ferent charges and so violate the superselection rule. The
charge-constrained coherent statg) of charged quanta
Using Egs.(7), (9), and (12), one can split the Wigner With a zero total charge may be obtained by projecting this

function into the chaotic¢h) and coherentdoh) compo-  state out from the charge-unconstrained two-component co-
nents: herent statéa | )|« ) [18]:

fei ’ =fc p)+ izfco ,P)- 13 1 27
(R e el Teortxp) 19 co)= 5= . dglar)le)

Integrated overr,,,;, these components determine the opera-

tor averagesa; (p1)a;(p2))en and (af (p1))e(a;(P2))e. re- = |af?
spectively: =exp(—|a|2)rzo o In,yn_). (17)
(al(py)ai(p2))en= da#p“e*‘q'xfch(x,p), One may see that the zero charge sfatp represents a
Tout superposition of the states with the same chaftgéth equal
. 5 numbers of particles and antiparticlend thus satisfies the
(& (p1)e@i(p2))e=|e|*d* (p1)d(p,) superselection rule. Similarly, the density matrix

=le Zf do,pte 9% (X,p). ~ 1 (2=
&), doupre earxp) p=5= ] Tadlala ya-la |
(14
=exp(—2|al?)

We suppose that the system has zaveragecharge and "
calculate the observables averaging over the random orienta- >
tion of the quasipion vacuum in the isospin spfdé)(e) n1=0 =0 n3=0 ny=0 (N1 ) ¥4 n,1) ¥4 ny!) 3,1 )12
=d cosfda]:

0 [ 0

||t n2+natng

X 80—y ng—ng N1+ N2, - )(N3 1 [(Ny - | (18)
— — -1
(.. )=Sp...p)=(4m) fdQ(e)( D describes the mixture of the charge-constrained coherent
states|c,,):

5(477)71‘[ dQ(e)Spl .. .pe). (15

[

IAFH_E_,W |Cn><cn|v (19

’Such a dependence could take place if the mass shift were non-
zero and dependent on tkeprientation of the quasipion vacuum. Where|c,) is the coherent state of charge

"
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e=exp—le) S S 6 o ap=at=@m) [ 40 [ do,pit )
ni=0 HZ:O d p
|a|”1+“2ei¢(n1*n2)
1/2 |nl,+>|n2,*>' (20) :f do—p,p'uf(xrp)a

(nyHM2(nyt)
f(x,p)ZfCh(X,p)-l—%fcoh(x,p), (22)

While, in our example, the system described by the densit)évhere we have used the equality=# L[ dQ(e)|e|?=1/3.

matrix;)l (tjoes not have a definite charge, the average chargqote that the coherent part of the single-pion spectrum is
is equal to zero:

d®Neon  dN

- w =wp—-G(p)
Spp(ala,—a'a_)]=0. (22) P d% P dp
d®N¢p 1
Note that the expectation values of the annihilation operators =w) &p D(p)= §f do,p*feon(X,p)

in the corresponding coherent states are nonzero,

{(ay]|ay|ay)=a, , while Sp(pa,)=0. 1 )
Continuing the discussion of coherent pion production, =§|d(p)| ' (23

we will assume the density matrjx, of a Gaussian-type in

terms of the quasiparticle annihilatidiereation operators ~Where the functions5(p) and D(p) measure the coherent

a; qm(P,ts), related to the free particle operators according tofraction:

Egs. (4) and (5). Then, similar to the above example, this 1

density matrix can be expressed throqgh the projection op- b BN §f do,,p“f con(X,P)

erators on the usual charge-unconstrained coherent states (p)= (p) _ con/@"P _

the free pion field. Averaging,. over all directions of the 1+D(p)  d3N/d®p u

isovectore according to Eq(15), we finally get the density f do,p"f(x,p)

matrix p in the form of a weighted sum of the projection

operators on the charge-constrained coherent states describ- Ef d pr

ing, in agreement with the superselection rule, the system of dNgon/d3p  3J 97wP cor(%:P)

a fixed average chardle. P)=—3 35
d°N¢p/d
e’ @P fdoﬂp“fch(x,p)

(24)

The expressions for pion spectra in Ed) thus contain
the averaging over the direction of the isovec®wrAs a
result, the single-pion spectra are independent of pion The coherence influences also the quantum statistical
charges = +,0: (without FS) correlation functions:

(4m) L f d(e)al(pyal(py)a(py)a;(p))e

Cds(p.a) = ' @9
((477)‘1J dQ(e)<a?(p1)ai(p1)>e)((477)‘1J dQ(e)(a(p2)aj(p2))e)
Taking into account Eq€6)—(9) and(24) and the equalitiep; ,=p=* /2, we get
Cgs(p,CI): 1+(9(|eiej|?) —1— 6;)G(p1) G(p2) + 5;j{coL aX12))’
=[1+D(py)] 1+D(p2)] {1+ D(p1)+D(p2) +9(|eig|*)D(p1)D(p2)
+ 8ij{c0gqX12)) chl 1+ D(p1,P2) + D(p2,p1) 1}, (26)

8We do not consider here the squeeze states of the density matrix conditioned by a possible mass shift of quasiparticles. Note, however, that
charged pions have no squeeze-state components af2&Ry
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where the quasi-averageos@x,))’ =(codq(x;—x»)])’" is
defined as

(codqxgp)’

f 0o, (x0)0ar, (%) PAP¥T (x4, D) (X, P)COK G02)

f ng',L(Xl)dSO'V(Xz) prPaf (X, p1) f(X2,P2)
27

and similarly, with the substitutionf—f.,, the quasi-
average(cos@x») ) .pn; the function

D(pl,pz)zs
J

1 .
_f do-ll«p'ufcoh(xa p)e—lq-x

do,p“fen(x,p)e 19

1
) gd*(pl)d(pz)
(a(p)ai(p2)yen’
D(p,p)=D(p). (28)
Note that
(codqxy))’
=G(p1)G(p2)

1+D(p1'p2)+D(p2’pl)<cos{ X0o))!
[1+D(p)I[1+D(py] 03P en

_1+D(py1,p2) + D(P2,P1) + D(P1,P2) D(P2,P1)
[1+D(py)][1+D(p2)]

X (€O qX12) ) ch-

Calculating the averages

(29

<|eiej|2>:(477)_lf dQ(e)legl?, (30)

1 2 1
<|eO|4>:§’ <|e:|4>:<|e+e—|2>:1_5, (Ieoei|2>:E,
(31

we get for the intercepts of the QS correlation functions,

4 1
Cgs(P.0=2-£G%p), Cgayp.0)=2-G(p),
+— 1 2 +0 2 2
(32)

Particularly, it follows from Eqs(32) that the decay of the

PHYSICAL REVIEW &5 064904

charged pions, the latter effect being by a factor of 4 smaller.
For G?(p) =1, the intercepts in Eq$32) coincide with those
found in Ref.[31] in the case of a strong pion condensation.
Our results, however, differ from the intercepts found in the
model[21,22 of pion emission in a pure quantum state, the
charge-constrained coherent state. They are recovered only
for large average numbers of coherent pions. One can then
replace the canonical ensemble corresponding to the pure
quantum state with a fixed charge, by the grand canonical
one, described by the density matrix of the ensemble with a
fixed averagecharge. For ultrarelativistid\+ A collisions,
the inclusive description based on the grand canonical en-
semble is a fairly adequate approach, allowing to built ex-
plicitly the density matrix for a mixture of thermal and
charge-constrained coherent radiations and make some cal-
culations analytically.

One can check that the intercepts, as well as the QS cor-
relation functions at ang, satisfy the relatiori32]

Cs +Cos =CstCoe. (33)

This relation follows from the assumed isotopically unpolar-
ized pion emission. It is valid also for the complete correla-
tion functions(with FSI), except for the region of very small
|g| where the correlation functions of charged pions are
strongly affected by the isospin nonconserving Coulomb in-
teraction.

Note that the correlation functions, as well as their QS
parts, satisfy the usual normalization conditiGfp,q)—1
at large|q| provided that the coherent part of the Wigner
density vanishes with the increasifjg= q/2| faster than the
chaotic one, i.e.5(p=q/2)—0 at large|q|.

To get some insight into a possible behavior of the rela-
tive coherent contributios(p), consider the situation when
the system decays during a rather short titg,—t;—0,
and the partialat a fixede) average of the pion annihilation
operator has a simple Gaussian form:

(ai(p))e~exp — RZ,p?). (34)

According to Eq.(14), the corresponding Wigner density

feon(X,p)~exp( — 2R2,,p?>— X2I2R2 ), (35)

so the parameteR.,;, determines not only the spectrum, but
also the characteristic radius of the region of the instanta-
neous coherent pion emission in accordance with the mini-
mized uncertainty relatiod\xAp=7#/2. Let us assume a
similar Gaussian parametrization of the chaotic component

guasipion vacuum suppresses the correlation functions aif the Wigner density in the nonrelativistic momentum re-
identical charged pions and enhances the one of nonidenticglon:

064904-7
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fch(x,p)~exp(—2R$p2—x2/2R§h), (36) expect the effective radius for the coherent radiati®gy,,,

close to that for the thermal emissioR.,. Generally, in
whereR;=(4mT) 2 measures the characteristic size of thedynamical models, the effective radius varies with the mo-
single-pion emitteheat de Broglie lenghandR.,=Rt is  mentump and characterizes the size of the homogeneity
the characteristic radius of the region of the chaotic piorregion—the region of a substantial density of the pions emit-
emission. In the considered rare gas limit, we then get théed at the freeze-out time with three-momenta in the vicinity
correlator of p. In this case, both the coherent and chaotic radii practi-
, - cally coincide with the homogeneity length of the system.

(coggx1o))cn=exp(—Rq%), (87 AssumingR.op~R.,, we haveD(p;,p,)~D(p,p)=D(p)

. and, according to Eq29),
where R=(R?,— R2)Y?~R_, representgin the absence of g to Eq29)

the coherent contributionthe usual interferometry radius.

2
The coherent fractio(p)=D(p)/[1+D(p)] and (cogqxyp)) ~ FED) p+[;/;)l]3[(1pi]D(p— )
d®Ngon/d® ,
D(p)= 3&3'0 X (COLqX12) o, (39)
d°N¢n/d°p
1 One can see thdtosx,,) )’ ~{cos@x) )¢, at smallg| or,
=| do, p*feon(X,P) in the case of a small coherent contributiDifp)<1. Note
3 WP eon(X,p in th f Il coh ibuti
— ~eX|:[—2(R§0h— R%)pz]. that in the opposite cas®(p)>1, a decrease of the corre-

lation function towards unity with the increasing is con-
ditioned by the chaotic componeftos@x;,) )., starting at
38) g°~R™2In D%(0) — 4p?. At smallerg? values, the behavior of
the correlation function is essentially flatter due to thee-
We see thaG(p)—0 at large|p| on a reasonable condition pendence of the denominator in E®9). For the extreme
Reon™>Ry. case of a pure coherent radiati@(p) -~ [G(p)—1], the
In fact, since the quasiclassic@oherent pion emission function (cos@x;,))’ tends to unity at ally irrespective of
is conditioned by the decay of a thermal system, one maghe assumptiomR.,n~Re¢n:

| do,prtacep)

f 00, (X0) 00, (X0) PP con(XeP) fon( X2, P)COS 02
(cot a1z — 1. (40
f d3o-ﬂ(xl)d30-,,(x2) PLP2Tcon(X1,P1) feon(X2,P2)

The last equality in Eq(40) follows from the definition(14)  small momentum region of a characteristic widthR)2*
of the coherent Wigner function, both the nominator and de—~ 20— 10 MeV/c (see Fig. L

nominator in Eq(40) being equal tdd(p,)d(p,)|?. Experi-
mentally, the approach to such an extreme regime can disy, ~ppe| ATION FUNCTIONS AFFECTED BY FINAL
play itself as a tendency of the intercepts of the QS

. . . STATE INTERACTION AND COHERENCE
correlation functions to the values defined by E@2) at

G.(E.)_’l' anql asa.\flatterlm_?_hof Ithe QS .co.rrelatg)n functlonfs In ultrarelativistic A+ A collisions, free hadrons appear
within a growingq interval. The latter mimics a decrease of qiny ot the late stage of the evolution after the system

interferometry radii; of course, it does not mean that the reaéxpands and reaches the thermal freeze-out. After the hydro-

size of the system tends to zero. , dynamic tube decays and produces final particles and reso-
+Th+e effect+ of coherent radiation on pion spectra anthances, particles still appear from resonance decays. Thus,
"7 and 7"~ correlation functions is demonstrated in more than half of pions produced in h|gh energy heavy ion
Figs. 1-3 for different ratio®,=D(0)(Ry/Rcon)° of the  collisions is of the resonance origin. As a consequence, the
total numbers of coherent and chaotic pions. The plots corpion spectra and correlations are influenced by resonance
respond to simple Gaussian Wigner functid@s) and(36)  production and decay spectra, as well as by resonance life-
with Ry=(4mT) ¥2~0.72 fm (T=0.135 GeV and R,,, times. Particularly, the pions from the decays of long-lived
=Ry,=5 fm. Under the assumption of a common source ofresonances do not contribute to QS and FSI correlations and
coherent and chaotic pions in ultrarelativistic heavy ion col-thus suppress the correlation functiGt(p,q); we will con-
lisions, characterized by a typical radis-5—10 fm, the  sider this suppression in the next section.
coherent component in the spectra is concentrated in a rather However, even after the therméiydrodynamig¢ system
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FIG. 1. The single-pion momentum specttiN/d3p calculated
for different ratiosD,,, of the total numbers of coherent and chaotic _.
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FIG. 3. The pure QS correlation functiofs(p,q) calculated
for 7% 7~ pairs atp=0 GeVkt for the same conditions as in
Fig. 1.

pions, assuming the Gaussian parametrization of the Wigner densi-9"

ties in Egs. (35 and (36) with Ry=(4mT) ¥2~0.72 f . . -
leg 1'g5 gzv() gnglg E—g% :V_'5 fnT] (Thr220|id dottedmdgs,h particle spectra, we will assume sufficiently small phase-
=u. coh™ Reh™ : ) ’ -

dotted, and dashed curves correspon®{g=0, 0.01, 0.1, and 1,

respectively. The overall normalization is arbitrary.

space density of the produced particles and use the FSI
theory in the two-body approximatiof8,33,34 for pions,
neglecting the FSI of resonances.

and short-lived resonances decay, the particles in nearb hThe ;'ngrlﬁ'p'%n spectrum in Ed1) then remains un-

phase-space points continue to interact. Due to a large effeC: ang;e WI e tl € dtwo-plon 0|:1€forhpa]!rs containing no

tive emission volume in heavy ion collisions, the particle Pions from long-lived sourcgsakes the form

interaction in the final state is usually dominated by the long- 4°N

range Coulomb forces. To calculate the FSI effect on t\No-wplwpzo|3 digi if d*k, d%k,d%k, %K}
P107P2

2.00 —

x(a (ky)af (ky)ai(ky)aj(ky))
X ®§ M (kg ko) D8 U* (K1 k), (4D)

where the nonsymmetrized Bethe-Salpeter amplitude

160 —| Ok, k) =DDU* (K, k) in a four-momentum repre-

P1P2 P1P2
= sentation is expressed through the propagators of particles
=) andj and their scattering amplitudg;; analytically contin-
S ued to the unphysical regidi$3,34,°
DY (ky, ko) = 8*(ky—p1) 8*(Ko— o)
1.20 — 1M2
i/p?
+ 6% (kytka—P1—P2)—;
= a
Fii(ky,ka3p1,P2)
X @)
; ' \ \ | ' (ki—m“—=i0)(k5—m-—i0)
0.00 0.04 0.08 0.12 0.16
q (GeV/c)

FIG. 2. The pure QS correlation functio@%«(p,q) calculated 91t is important that the relation between the production amplitude
for 7" 7% pairs atp=0 GeV/c for the same conditions as in and the operator product average, as given in(Bgis valid also at
Fig. 1. the off mass shell.

064904-9



AKKELIN, LEDNICKY, AND SINYUKOV PHYSICAL REVIEW C 65 064904

The averaging in Eq41) is performed with the help of the . , P LK — o)
statistical operatop without FSI:( ...)=Sp( .. .p). Intro- pp(X12:X1p) = (27) f d*kyd*kpe! ke Praze il =P,
ducing the Bethe-Salpeter amplitude}sgg'z‘(xl,xz) in . .
space-time representation, X (aj (ky)aj(P—ky)ai(ky)aj(P—ky)).

(48)
@2 (kg ko)

B Note that in the two-particle c.m.s., wheRe={m,,,0,0,G,
=(21-r)*8f d*x d*xoel rattew (M (x, x;), (43 q={0,2K'}, x;,={t*,r*}, the reduced Bethe-Salpeter ampli-
tude {7 * (x19) = {7 (1) at t* =t} —t3 =0 coincides
one can rewrite Eq/41) as with a stationary solutiony_«(r*) of the scattering prob-
lem having at large distance$ the asymptotic form of a
superposition of of the plane and outgoing spherical waves
J d*x,d*x,d*x;d*x) (the minus sign of the vectd™ corresponds to the reverse in
time direction of the emission proces3his amplitude can
be substituted by this solutigequal timeapproximation on

dG
pl P2 d3p d3p2

X pl(x1,%2:%} ,xg)‘lfélg' (X1,X5) condition[34] |t*|<mr*? which is usually satisfied for par-
ticle production in heavy ion collisions.
\Ifélg”*(xi,xé), (44) Since the resonances have finite lifetimes, their decay

products are created in an essentially four-dimensional
where the space-time density matp¥ is just the Fourier —space-time region. At the post-thermal freeze-out stage, the
transform of the four-operator average in E41):° resonances are usually described by semiclassical tech-
niques; they are considered as unstable particles moving

. L R along classical trajectories and decaying according to the ex-
P (X1, X25X1,Xp) = (27) f d*k,d kpd kydk; ponential law[35] (see, however, Ref§33,36,37). This ap-
proximation neglects a small correlation effect in pairs of
x elkixa+ikpxog—ikixg —ikyx; unlike pions appearing due to QS correlations of identical
resonances. The resonances are assumed to be described ac-
x(af(ky)a] (kp)ai(k})a(k))). cording to the Gibbs density matrix prior to the thermal

(45) freeze-out; this guarantees the chaoticity of the decay
pions?! Therefore, the pions from resonance decays do not

Separating the phase factor due to free motion of the twodestroy the structure of the decomposition of the operator

particle center-of-mass systeft.m.s): averages in Eq96) and (7) into irreducible parts based on
the thermal Wick theorem.
qfélgg(xl,xz):e*ilez(r/,é—)ii(xlz), After the production, the pions in nearby phase-space

points, chaotic as well as coherent ones, undergo a long-time
scale interaction in the final state. According to E@gl) or

(47), the intensity of FSI interaction is conditioned by the
two-particle Bethe-Salpeter amplitude®, ; (x;,xz) or

and integrating over the pair c.m.s. four coordin¥te and  ¥4(X12) and the corresponding two-particle space-time den-
X}, in Eq. (44), one can express the two-particle spectrumsity matricesp(X;,X2;X1,X3) Of pp(X12;X1,). Clearly, in the
through the reduced space-time density mapti¢x;,;x;,),  case of absent FSI, the two-pion spectrum merely reduces to
the latter depending on the pair total four-momentarand the Fourier transform o_f the space-time density matrix. It_can
the relative four coordinates of the emission points only: ~ be represented as an integral over the mean four coordinates
x=(x+x")/2 of a combination of bilinear products of single-

XlZZ%(Xl-f—Xz), X12:X1_X2, PEZp:p1+p2’
(46)

d6Nij particle cﬂaotic and coherent emission functicm;g(?,p)
@p¥py 313 and geon(X,p), respectively defined in Eqg50) and (51)
d®p,d°p,
below.
if d*x 2d4x/2pij(x ! )w(f)ij(x z)w(f)ij*(x/ ) The emission functiorg(?,p) is closely related with the
127 PPz 2l - A2 g 120 Wigner phase-space densifyx,p) at asymptotic timeg

(47) =1t,,:. Let us denote bx={t,x—(p/py)(t—1)} the space-
time point, starting from which a free particle moving with
velocity p/pg reaches a point; the portion of such particles

©For identical particles, it differs from the space-time density
matrix of Ref.[33], where the effect of QS enters through the sym-
metrization of the Bethe-Salpeter amplitudes, while here it is 'Note that the chaotization of decay pions partially happens irre-
through the Wigner decomposition of the four-operator average irspective of the form of the density matrix if pions were emitted by
Eq. (52) below. a large number of many different sorts of resonances.
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is g(?,p). Collecting all the contributiongstarting in our

PHYSICAL REVIEW &5 064904

To express the four-operator average in Ef) through
the emission functions, we can exploit the decomposition

case from the thermal freeze-out tirtyg, we have e }
similar to that in Eq.(6):

Pof (x,p) = [ AXETxxH (o)t~ TP,

(af(kyal(P—kp)ai(k])a;(P—k}))e
(49)

=(af(kpai(k}))e(a (P—kp)a;(P—k]))e
+8[(af (kpa(P—kp)a (P—kpai(k)))e

—(a/(kp)eal (P—ky))e(ai(ky))e{a(P—ky))el.
(52

whereg(x, p) = pod(t—ty)f(x,p) +s(x,p) ands(x,p)~ 6(t
—t)0(t—t;) is the density of pion emission at the post-
thermal staget>t;. Therefore we can rewrite the irreduc-
ible (therma) part of the two-operator average through the
chaotic emission function as

Using Eqgs(50) and(51) for the two-operator averages in Eq.

daﬁpﬂeiiqxfch(xyp) (52), we get

Tout

(& (ppai(pa))en=

- [ 4t guixm, (@ikai(P-ka (ke ki)

:f d9x;d%xp(e kD Xaag x4 (Ky+K))]

p=P2=(p1+p2)/2, q=p1—p2, (50

where we have used the equalifx=gx following from the X ge,j[;z P =3 (ki +kp) ]+ 5 etk xa
relationqp=qypo—qp=0. Similarly, for the coherent com-
ponent of the two-operator average at fixgdve get

(al(p1))e(@i(pa)Ye=eil2d* (p1)d(py)

X{GeilX1,p+ 3 (ky—kp)]

Xge,i[;z,p_ %(kl_ki)]_ |ei|4gcoh[;11p

—|e|? daﬂp“efiqxfcoh(x,p) +3(k1—k1)19cot X2,P— 5 (kg —k1)1}), (53
Tout _ .
- wherex,=X;—X, and
= |ei|2J' d4xe7iqxgcoh(xyp)- (51 . . o
ge,i(xak):gch(xlk)+|ei|zgcoh(xyk)- (54)

The results of Sec. Il can thus be rewritten in terms of the
emission functions in accordance with a formal substitutionAfter the averaging over the orientation of the isospin vector

[ 04, d0uP*T(x,p) = [ d*xg(x, ). e, we get

e ik xaofgx; 2 (kg +k])1g0Xp, P~ & (ky +k))]

(af (kpal(P—ky)ay(k})a(P—k}) = j dx.d%x,.
+((|eigj|? = $)9col X1, 5 (ks + k) 1gcor X2, P— 3 (ks + k1) 1}

+5i,-e‘<kl*kiP>'X12(g[71,p+%(kl—k1>]g[72,p—%<kl—k1>]

1 — —
~ g 9cotlX1,P+ 3 (ki —k1)1gcor X2, P~ %(kl—ki)]”, (59

where

9(%,K) = gen(6,K) + £ geon(X,K). (56)

Inserting expressioiis5) for the four-operator average into E@8) and, integrating in the first and second term over (
—kj) and k;+k;—P), respectively, one can rewrite the reduced space-time density matrix as
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ph(x1ziX3p) = (2m) f dfadxad " {1 927299 5% (a2 X1) X1l G(X1, P+ K) Gz, P~ )
+((|leig|?) - 5YGeon(X1,P+ K)Geon(X2,p— k) 1+ Sij el (a2t 19 541 (xyp— X15) —X12)
X[g(X1,p+ K)G(X2,P— ).~ §Gcon(X1,P+ k) eon(X2,P— k) 1} (57)

According to Eq.(47) and using the equalitwq(—;n): zp_q(;lz), the two-pion spectrum then becomes

6
_Am (2m) 4| d*,d*x,d*kd*ee’ € {[g(x1,p+ k) g(X; K)
pl p2d3p d3p 1 2 1,P g(X2,p—
+((leiej|2) = $)Geon(X1, P+ K)Geon(Xa, P— )19 (Xeot 3 )9 * (x10— 3 €)
+8;[9(X1, P+ K)G(X2,P— &) = §Tcor(X1, P+ K)Jeon(X2,P— &) T4 (X1o+ 3€) 0% (X0 S €)}
—(2m) " | A e e G50 P+ K Tena P~ )+ 3 @62, P )

X Goon(X2,P— k) + Goon(X1,P+ &) Gen(Xz,p— k)T [T (Xaot 3 €) 9™ (x1o— 3 €)
+ 8 Ozt 39 Ed (xapm 3 )]

+(|€i€j12geon(X1 P+ K)Geon(Xa,P— K) S T (Xeot 3 €) 9l 1* (X1~ 3 €)}. (58)

If the FSI were absent, i.ey " (x1,) = exp(—ig-x,5/2), one would get

d°N;;
wplwp2d3p1d3p2

= f d*x;d“X2{g(X1,P1)9(X2,P2) + (| €i€]|) = §)Dcon(X1,P1) Goon( X2, P2)

+ 8[9(X1,P)G(Xz,P) ~ §Gcon(X1,P)Geon(X2,P) 1COK AX4)}

- [ d%ala06,p0906 B2+ (e~ 51+ 8 0eonXs,P2)gean(a.P2)
+819(X1,P)g(Xz,P)COLqX12)}

- f d*%10%%, {Gen(X1,P1) Geh(X2.P2) + 5[ en(X1.P1) Goon(X2. P2) + Ueon(X1,P1) Geh(X2.P2)]

+(|€i€j12)geon(X1,P1)Geon( X2, P2) + 8 [ Gen(X1,P)Gen(X2,P) + 2Gen(X1,P) Geon( X2, P)1COLAXg2)}  (59)

and recover Eqg26) for the pure QS correlation functions. we get for the two-pion spectrum and the correlation func-

In the case of absent coherent emission, de=g.,,=0, tion
and on the usual assumptiorR{<RZ%) of sufficiently
smooth four-momentum dependence of the chaotic emissio
function gch(;, p) as compared with a shagpdependence of P pz(1|3I010|3I02
the QS and FSI correlatioridetermined by the inverse char-

d°N;;

acteristic distance between the emission pgjritee chaotic Nf A%, 0% {Jen(X1,P1) Gen(X2, P2) [ 71 (X10) |2
emission functions in Eq58) can be taken out of the inte- I

gral overk at small values ok, this integral thus being close S - (i N ()% o

to 6*(e). Choosing the momentum argumentsg, func- T 9118en(X1,P)Gen(Xz,P)¥g (a2 g (a2},
tions in accordance with E@59) for the case of absent FSI, (60)
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Cicjh~<|¢((q—)ij(;12)|2>ch+ 5ij<¢g—)ij(;12) ¢(_—q)ij*(;12)>é ’ E]__Eq.(l), c.an be expressed thrgugh the.correlat!on fur?ctlons
(61) C"(p,q) (discussed in the previous sectjaf all pion pairs
7'7! except for those containing pions from long-lived
where the averaged)., and quasi-averaged).,, are defined sources as follow§38]:

as .
CY(p.a)=n;;(p1.p2)/Ni(p1)N;(P2)
fd“Zd“YzAgch@,pl)gch@,pz) =Ai(p)Ci(p,q)+1-Ali(p), (65
(Ao O nere th i etdf(p) the f
i o (v i o (v where the suppression param p) measures the frac-
fd XlgCh(xl’pl)f dXaGen(X2,P2) tion of pion pairs containing no pions from long-lived
sources?

| a5 Agen(xs.p)gen.p)
(Aep=7——— —. (63 A”(p)=(1
fd4xlgch(xlapl)f d*X,Gcn(X2,P2)

d3N§'>/d3p)( d*N{/d®p

- - <1. (66
43N, /d3p dgNj/dgp) (68

o In the (artificial) case of an absent FSI effect, the correla-
In the case of a nonzero coherent contribution,dt?eand tion function ’éij(p'q)zcgs(p’q)’ and the averaging in

X, dispersions in the pure coherent term in E8f) are the  (cosgyx;,))’ in the QS correlation functions in Eq$26)
same (RZ,,), contrary to usually negligible/2 dispersion  should be applied only to the pion pairs containing no pions
in the pure chaotic termR$<2R§h.As for the mixed term, from long-lived sources. Then, assuming sufficiently good
the e/2 dispersion would be negligible if only the character- detector resolutiong,;;<R*, we can determine the inter-
istic sizeR¢, of the coherent source were sufficiently small; cepts C"(p,0) calculating the correlation functions &|

with the increasingR.qn, this dispersion may become ~Qqun:

important—forR.,,~ R, it amounts to about half of the;, o o

dis%ersion. Thecroehforefhthe dependence of the Bethe- C'(P:Gmin)=1+A"(P)[4j +(9(|eig|?) —1-8)G*(p)].
Salpeter amplitudes should be generally retained in these (67)
terms. The important exception is the case of practical interyy,q intercepts are lower than 2 for any system of identical
est in heavy ion collisions, when the two charged pions ar ions and they are high@iowen than 1 form " 7~ (= 7°)
created in their c.m.s. at a disltanc?D?u?h Iargerft?r%n thg/stems.

correspondings-wave scatte.ring engtfof a raction o Since the suppression parametarg) are generally dif-
and ”.‘“Ch smaller than their BOh.r radi(ef 387.'5 fm. The ferent for differepnpt pion pa?rs, e.g., due to different contribu-
two-pion FS interaction at smaffis then dominated by the tions of hyperon decays, it is impossible, using only apparent
Coulomb FSI and depends only weakly on the space-timgiecepts in Eq(67), to separate the contributions of the
separation of the emission points. In this case, coherent and long-lived sources, unless there is a known ra-

tio of the suppression parameteyép) for identical and non-

Clr= (" (xa2) |3+ 8 (9 (xa2) 1 J7* (x10) identical pions:A''(p)/A'i(p). Then, for example, from the
+(9(|eie))—1- 8)G(py) G(p) intercepts of ther™ 7" and 7"~ correlation functions,
one obtains the coherent fraction squared:
XS (X122 cons (64) .
N . ATT@[4AT () 1CT (P w1
where the averages are defined as in E6@). and(63) with G(p)= A (p) 5 A" (p) s ct( -1
the substitutiong).,—g 0Or gen— Jeon, and the relative co- P P P Amin 69)
herent contributiorG(p) in Eq. (24) with a formal substitu-
tion [, do,p*f(x,p)—[d*xg(x,p). In fact, the knowledge of the ratia' (p)/A'l (p) is not of
principal importance for the extraction of the coherent frac-
IV. EXTRACTING THE COHERENT COMPONENT tion G(p) Besides the intercepts, one can exploit alsoqhe
OF PARTICLE RADIATION dependence o€n(p,q) in a sufficiently wide interval to

follow Eq. (26), and perform simultaneous or separate fits of

Up to now, we have ignored the contributiod®("/d®p  the correlation function€'!, suitably parametrizing the cor-
arising in the pion spectra from the decays of long-lid relator (cosgx;»)) and the functionG(p+q/2). For ex-
sources such ag, ' mesons, and also the unregisteredample, one can use the usual Gaussian correlator parametri-
kaons and hyperons. The pions from these sources possesstion
no observable FSidue to the very large relative distance of
the emission poinjsas well as no noticeable interference
effect, because the corresponding correlation width is much?one can include imN{" and the corresponding suppression pa-
smaller than the relative momentum resolutipy, of a de-  rametersA'l the contribution of misidentified particles which also
tector. Therefore the measured correlation functions, defineidtroduce practically no correlation.
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<COS(QX12)>éhzeXI0(_Q§R§_Q§R§_Q§R§) (69  the g dependence ofcos(x,))cn and G(p=q/2). Indeed,
one can perform the fits according to EG&2) in an interval
in the longitudinally comoving system in which the pion of q,<|g/<R™! guaranteeing(cos@x))'~1 and G(p; -
pair is emitted transverse to the collision axip €0). ~G(p). The q dependence of the correlation functions is
The components of the vector are chosen parallel to the then uniquely determined by the known functiokg |a|k*)
collision axis @=longitudina), parallel to the vector gnd A.(—lalk*), and the three fitted paramete@(p),
p: (x=outward, and perpendicular to the production plane A ==(p) andA*~(p). Of course, such an analysis requires

(z,x) of the pair (/=sideward. Assuming the same radii yery good detector resolution and its good understanding.
also for the coherent emission region, and a transverse ther- Note that Egs.(72) are not applicable for very small

mal law exp{-m/T) for the chaotic radiation with the tem- _1 ) as well as for large sources. In the former case one

peratureT (m; is the pion transverse massve can param-  paq g account for the strong FSI, in the latter for the finite-
etrize the coherent fractio(p) similar to Eq.(38) for the  gj;e Coulomb effects. For ultrarelativistic heavy ion colli-

nonrelativistic case witf16] sions, the strong FSI effect on two-pion correlation functions
m is negligible for like charge pions and smé few percent

D(p):D(O)exp{ _2< (p)2(R)Z(Jr p§R§+ p§R§)+ ?‘) } for u_nlike pions. The Coulomb finite—s_izg effects can be ap-

proximately taken into account, substituting the Gamow fac-

(70 tor Ac(ak*) in Eq. (17) by the finite-size Coulomb factor

and use Eq(39) to calculate(cosx,))’. A (ak*,(r*)/a) [39]. The latter represents a simple function
The presence of the FSI effect introduces the additignal ©f the argumentsak* and(r*)/a, where(r*) is the mean
dependence of the correlation functions and thus improvesglistance of the pion emission points in the pair c.m.s., corre-
in principle, the accuracy of the extraction of the coherensponding to a given momentump. Particularly,
contributionG(p). Consider, for example, only the effect of A,=A (ak*)[1+2(r*)/a] atk* <~1Kr*).
the Coulomb FSI and assume that the emission functions, The dependence of the Coulomb factor on the unknown
deh @and geon, are localized in the regions of characteristic parameter (r*) somewhat complicates the model-
sizes much smaller than the two-pion Bohr radiusg independent method for the extraction of coherent compo-
=387.5 fm so that the modulus of the nonsymmetrized Counent G(p) exploiting only the correlation functions in the
lomb wave function can be substituted by its value at zeraegion of very small relative momenta. Now, the simulta-
separation. As a result the Coulomb effect factorizes in aneous analysis of the correlation functions of like and unlike
form of the so called Gamow or Coulomb factag(ak*) charged pions is required because their separate analysis

=|z,/;g°“'(0)|2 (see, e.g., Ref8)): yields the coherent contributio®(p) up to a correction
(r*)/a only. As for the method based on a fit in a wiftg
E(p,q)=Ac(ak*)CQS(p,q), interval, the quantityr*) being a unique function of the
parameters characterizing the emission density actually rep-
A(X)=(2m/x)/[exp2m/x)—1], (77 resents no new free parameter. Particularly, for a universal

anisotropic Gaussiart distribution of the chaotic and coher-
wherek* =[q*|/2 is the momentum of one of the two pions ent emission functions, the quantify*) can be expressed
in their c.m.s. For the correlation functions of lika£[a|)  analytically through the Gaussian interferometry refiji,
and unlike @=—|al) charged pions, we get R,, andR: =M;/MR, (M andM; are the two-pion effec-
tive and transverse masses, respectjviglythe case of prac-
1+{cogqxy))’ tical interest, wherRy =R ~R, [39].
In practice, however, the Gaussian parametrization of the
relative distances between the emission points may happen
+[1-A"(p)], to be insufficient. Particularly, it can lead to apparent incon-
sistencies in the treatment of QS and FSI effects because the
latter is more sensitive to the tail of the distribution of the

C™=(p.a)=A""(p)Ac(|alk*)

4
—gG(p+q/2)G(p—q/2)

C™ (p,a)=A""(p)A(—|alk*) relative distances. If, for example, thé& distribution was
1 represented by a sum of two Gaussians with essentially dif-
X| 1+ EG(p+q/2)G(p—q/2)} ferent mean squared radii, th& “tail,” determined by the
larger Gaussian radius, would influence the observed corre-
+[1-A""(p)]. (72) lation functions in different ways. For identical pions, the

“tail” results in an additional rather narrow peak in the QS
Similar to the case of absent FSI, we can again use the pa&orrelation function; however, this “tail” would show up
rametrizationg69), (70), and the relatiori39), and fit, simul-  only as a suppression of the correlation function if the peak
taneously or separately, the correlation functions of like andvere concentrated aj=q,,, or if one measured a given
unlike charged pions according to Eqg2). Moreover, the projection of the correlation functiofe.g., in theqg;q. direc-
known g dependence of the Gamow factors allows to sepation) fixing others @,nq andd,,y in the interval exceeding
rate the coherent fractio@(p) from the suppression param- the width of the narrow peak. At the same time, tfie'tail”
eter A(p) in a model-independent way, without exploiting would influence Coulomb correlations at smg#t g, Since
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the long-distance nature of Coulomb forces leads to the ob- 43Ny, 1 d3N..

servable effect conditioned by the “tail” up to* ~|a|. In prwE—w(p)F:wp . G(p) VA== (p).
such a situation, one can no more rely on the equality be- d®p 3 d°p

tween(r*)qs, determined by the interferometry radii, and (74)

the characteristic sizér* ). determining the Coulomb FSI _ )
effect. Generally, one has to introduce also different suppresth€ coherent part of the Qbservezd spectra is thus directly
sion parameters Ags<Ac corresponding 1o (r*)os connected with the _|ntenS|t}d(p)| of the quasiclassical
<(r*)¢. Equationg72) for the correlation functions of like SOurce of coherent pions.
and unlike charged pions, with the substitution of the
gamow factorA.(ak*) by the finite-size Coulomb factor V. CONCLUSIONS
A (ak* (r*)/a) [39], are then modified to the form ) ) ) _ o
Using the density matrix formalism, satisfying the re-
quirements of the isospin symmetry and the superselection
C(p.a)=Ags (PA(lalk* (r*)5s/lal) rule for generalized coherent states, and accounting for the
final state interaction in the two-body approximation, we

, 4 have developed methods allowing one to study the coherent
X|(codax))’ — G(p+al2)G(p—a/2) component of pion radiation which, in heavy ion collisions,
is likely conditioned by formation of a quasiclassical pion
+AZT(P)A(lalk* (r*)c*/|a]) source.
Y These methods are based on a nontrivial modification of
+[1-Ac(P)], the effects of quantum statistics and final state interaction on

two-pion correlation functiongncluding those of nonidenti-
cal pions in the presence of a coherent pion radiation gen-

C+_(p,q)=A5§(p)ﬂc(—|al k*,—(r*>55/|a|) erated by the decay of the quasipionic ground st&ten-
1 densate}. It has been shown that the combined analysis of
X=G(p+a/2)G(b—a/2)+ A~ (p)A the correlation functions of like and unlike pions gives the
S (P+a/2G(p—a/2)+Ac (PIA. possibility to discriminate between the suppression of the

_ _ like-pion correlation functions conditioned by the coherent
X(=lalk*, =(r*)¢c " /la) +[1-A ™ (p)]. pion component and that due to the decays of long-lived
(73)  sources.
The methods allowing to extract the coherent pion com-
ponent from=* 7~ and ==« correlation functions and
To simplify the analysis, one can neglect a small differencesingle-pion spectra have been discussed in detail for large
between the suppression paramet&gss and A due to the  expanding systems produced in ultrarelativistic heavy ion
tail of the r* distribution and also neglect a presumably collisions. For such systems, the two-pion final state interac-
small difference betweefr*)== and(r*)" . tion is dominated by the Coulomb one and plays an impor-
Note that at SPS and RHIC energies the effect of strongant role in this analysis, allowing one to determine the co-
FSlonw*a™~ correlations is still quite noticeable and, when herent fraction using a suitable model for the coherent and
neglected, it can lead to a suppression of a fitte) * = by  chaotic emission functions and fitting the corresponding cor-
~50%. Also, due to a substantial inaccuracy of the Coulombyelation functions. For rough estimations the procedure can
factorz\c(ak* ,(r*)/a) near the tailing poink* ~ 1/r*), the be substantially simplified accounting for the finite-size Cou-
parametergr*)** and(r*)*~ can be, respectively, overes- lomb effects in an approximate analytic foifi39].
timated and underestimated if the fitted region was not suf- Finally, the coherent fractions extracted from the correla-
ficiently wide. Further, in the case of different chaotic andtion analysis, combined with the single-pion spectra, give us
coherent emission volumes, one has to use finite-size Coihe possibility to determine the spectrum of the coherent pion
lomb factors with differen{r*) in the chaotic, coherent, and radiation above the thermal background and, therefore, to
mixed terms. All these problems can be overcome exploitingstimate the quasipionic condensate at the predecaying stage
the exact formulas for the two-pion wave functiofis the ~ of the matter evolution and discriminate between possible
equal time approximationand calculating the correlation Mechanisms of coherent production in ultrarelativiséic
functions according to the approximate Ef4). To control ~ +A collisions.
the systematic errors due to the smoothness assumption in
Eq. (64), one can give up this assumptitat least in the pure
coherent termand check the results using instead the gen-
eral expression for the two-pion spectrum in Esg). This work was supported by French-Ukrainian Grant No.
After the extraction of the fraction(p) andA ™" (p) or  Project 8917, by the Ukrainian-Hungarian Grant No. 2M/
A~ 7(p), one can obtain the coherent part of the measured25-99, by the Ukrainian-German Grant No. 2M/141-2000,
single-pion spectra,d*N . /d®p. Using Eq.(66), and sub- and by the GA Czech Republic Grant No. 202/01/0779. We
stituting d®N/d3p— (d®N. /d®p—d®NU/d%p) in Eq. (24),  gratefully acknowledge Barbara Erazmus and Edward Sarki-
one gets syan for the interest in this work and fruitful discussions.
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