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Proton-deuteron elastic scattering from 2.5 to 22.7 MeV
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We present the results of a calculation of differential cross sections and polarization observables for proton-
deuteron elastic scattering, for proton laboratory energies from 2.5 to 22.7 MeV. The Paris potential param-
etrization of the nuclear force is used. As solution method for the charged-composite particle equations the
“screening and renormalization approach” is adopted which allows one to correctly take into account the
Coulomb repulsion between the two protons. Comparison is made with the precise experimental data of Sagara
et al. [Phys. Rev. (50, 576 (1994)] and of Sperisoret al. [Nucl. Phys.A422, 81 (1984)].
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[. INTRODUCTION tion operators have been proven by Alt, Sandhas, and Ziegel-
mann[14] to possess compact kernels for all energies in a
Calculation of proton-deuteromp¢l) scattering represents special class of functiongsee also Ref[6]). That is, these
one of the most challenging remaining tasks in few-bodyequations are amenable to stardard solution methods, thereby
nuclear physics. The interest arises from two sources. Firsyjelding the physical amplitudes for all reactions which are
the richness and precision of the available experimental dataossible in such a system, at all energies. If, however, all
on many observables with which to compare with is certairthree particles are chargédith charges of equal sigronly
to lead to more stringent tests of nuclear potential modelsomewhat limited information is available as yet. Indeed, if
than neutron-deuterom(l) scattering with its much smaller the three-body energy is negative, i.e., below the three-body
and much less precise database. Secondly, the necessityttweshold, the Faddeev equations have been reformulated in
include the Coulomb interaction in a way that is both math-such a way that the kernels of the new equations possess
ematically correcand practical has been, and still is, one of compact kernel§15,16. For positive energies compactness
the outstanding theoretical tasks. could be proven only for the kernels of certain integral equa-
Of the several approaches that have been proposed to takiens for effective-two-body transition amplitudes, i.e., for
into account Coulomb interactions in charged-composite paramplitudes which describe all possible binairdy.e.,
ticle reactions, only two have reached the status to permifin-)elastic and rearrangement collisions, or quite generally
concrete numerical calculations. The most obvious oneso-called 2-2] reactiong 17,18 (this proof holdsa fortiori
namely, to work with the Schoinger (see Refs[1-4], and if only two particles are charged and one is neuytrahe
references thereinor equivalently differential Faddeev- formulation of analogously modified integral equations with
Merkuriev equations5-7] in coordinate space, requires compact kernels for breakup {23) or even 3—3 processes
knowledge of the complete boundary conditions, in order tds still lacking.
guaranteauniquenes®f the solution. Below the three-body A practical solution method for the aforementioned equa-
threshold when only two-cluster channels are open, this pretions for effective-two-body transition amplitudes has been
sents no difficulty. However, above that threshold the comdeveloped in Refs[14,19,2Q (see also the revieW21]).
plete boundary condition to be imposed in the region wheretarting from screened, and thus short-ranged, Coulomb po-
all three particles eventually become asymptotically freetentials, the usual short-range equations are solved by stan-
[8—11 has, to our knowledge, not yet been implementeddard methods. The physical amplitudes corresponding to un-
satisfactorily in any solution scheme. screened Coulomb potentials are then recovered by
Based on momentum-space three-body Faddé&gyor  numerically performing a limiting procedure in suitably
Alt-GraBberger-Sandha@®GS) [13] equations, mathemati- renormalized quantities. Details can be found in Refs.
cally well defined integral equations for charged-compositg21,22. This approach has been applied with great success to
particle reactions have been derived for two cases. If one ahe calculation of differential cross sections fod elastic
the three particles is uncharged and the others have chargssattering 22,23 (see also Ref.21], and references thergin
of equal sign, the AGS equations for the three-body transiand to fivefold differential cross sections fpd breakup
[24-26 in various kinematic configurations, with due ac-
count of the Coulomb interactiofbut employing simple
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sults for many more energies will be presented and comparethe correspondingl’ operator is given as solution of the

with experimental data. usual Lippmann-Schwinger equation with the full interaction
The plan of the paper is as follows. In Sec. Il we give avff),

brief recapitulation of the most important aspects of the

screening and renormalization method. Section Il then con- ~(R) _ /(R L \(RA ~(R)

tains results for differential cross sections and various polar- Ta™(2) = VeV Go(2a) T (2). ©

ization observables. The final section contains our conclug, clarity

sions. In the Appendix the explicit expressions for the; '

partial-wave decomposed effective potentials are collecte

As usual we choose units such thiatc=1.

energy-dependent two-body operators, when read
n the two-particle space, are characterized by a hat. More-
ver,z, denotes the energy in subsystemThe fact that the
potential is a sum of two terms, see E8), carries over to

the transition operatai5):
Il. FORMALISM

For the convenience of the reader we briefly recapitulate TP(2,)=6,5T5(z,)+ TR 2,). (6)
the basic equationd4,21]. A
Here,T?(za) the pure screened Coulomb transition operator
A. Notation for the pair of protons 1 and 2. The so-called Coulomb-

Consider three distinguishable particles with masse@Od'f'ed short-range transition operafbiR(za) 'S given as

m,, v=1,2,3. Moreover, two of them, say particles 1 and 2,

are supposed to be charged, with charggande,, satisfy- TSNz =[1+ 8,3T5(2) Go(2,) 1157 2,)

ing e;e,>0. We use the standard notation: on a one-body - ap

quantity an indexx characterizes the particke, on a two- X[1+6,3G0(23) T5(2z3) ], (7)
body quantity the pair of particleg y), with 8, y# «, and

finally on a three-body quantity the two-fragment partition 1SRz =VS+V36R(z,)VS. (8)

a+(By) describing free particlesx and the bound state

(By). Throughout we work in the total center-of-mass sys-For the particle pair 8+ y), the free two-body resolvent is

tem. Jacobi coordinates are introduced as follokysis the denoted byGo(z,) = (z,— K2/2u,) ~* and the full resolvent
relative momentum between particlgg and y, and u, 0% 5 @« e

; b
=mgm, /(mz+m,) their reduced mass argj, denotes the y
relative momentum between particte and the center of A (R) ) (R -1
mass of the pair@8y), the corresponding reduced mass being Gy (24) = (2, = Ky2pm o= V,”)
defined ad ,=m,(mg+m,)/(m,+mgz+m,). =(Za—Ki/2Ma—V§— 5a3V§)71- 9)

The Hamiltonian of the three-body system is

We point out that if there exists a bound state of energy

> B,<0 in subsystemea, the correspondingT operator

H:H0+V:H°+§1 Vo, @ T®(z,), and hence alsd5Rz,), must have a pole of the
form
with
" Za*’BaA za"Ba V(R)| ¢a><¢a|V(R)
2 2 TPz ~ TRz ~ — —, (10
Ho=K2%2u,+Q2/2M,, 2 z,— B,

being the free three-body Hamiltoniait,, and Q, are the ~Where|y,) is the appropriate bound state wave function.
momentum operators with eigenvaluks and q,,, respec- Generalization to several bound states is obvious.
tively.
The two-body interaction in subsysteinhas the general B. Equations for the three-body arrangement operators
form The AGS three-body transition operatb{3(z) which

leads from a partitiorw+ (B,vy) of the three particles to a
VIR =vS+5 VR, (3)  partition B+ (e, ) is defined as a solution of

wherevi is the “short-range”(i.e., nuclear part and _ S
US(2)=6,4G0 {(2)+ 2, 8., TR(2)Go(2)UR(2).
v=1

VE(r) = ?e*”“ (4) 1D

Here, Eaﬁzl—éaﬁ is the anti-Kronecker symbol and
the Coulomb potential which for practical reasons we asGy(z)=(z—H,) ! the resolvent of the three-free particle
sume to be exponentially screened, with screening reljius HamiltonianH,,.
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The splitting (6) of the subsystem amplitudes induces a T (a0 E+10) = lim Z‘”z(q )T(R)(qa,qﬁ,
corresponding spllttlng of the three-body operatUrfgg)(z) R0
Define new operatorE;l (2) as solutions of the same AGS +i0)2Z; 1,2( A an
equations(11) but with only the Coulomb part of the sub- R \dp)-
system amplitudes in the kernels Details of this procedure are described below.
3
U53(2)=3aﬁ661(2 E Z)G (z2)U B(Z) D. Special case: separable nuclear interactions
N As mentioned in the Introduction, in principle the coupled
equationg11), with R set equal to infinity, for the three-body
operatorsU ,4(z) could be solved as they stand. But the
presence of the highly singular Coulonib matrix in the
kernel is certain to present formidable numerical difficulties.
(R) S R We, therefore, have adopted another solution strategy.
B (2)=UZs2)+ 2 Ua(2)Go(2)ToR2)Go(2UR(2).  Namely, we use separable approximations of the origioal
(13) cal or nonlocal nucleon-nucleon potentials. That is, we as-
sumeV? to be represented as a sum of separable terms

(12)
ThenU{()(2) andUZ4(2) are related via

3

An important practical simplification arises if only two

. . . N
particles are charged as it happens in the present case. For,

a

S_
Egs.(12) can be solved explicitly to yield Va_m;ﬂ | Pam)X ol @ anl - (18)
USB(Z) IEaBGS Y(2) +§3a§/33T§(Z)- (14) Here, the indexn of the (nucleaj form factor| ¢ ) not only
characterizes the complete set of quantum numbers which
As a consequence, EqL3) with (14) areexact uniguely characterizes a given state of the particle pdiut

also enumerates the number of terms per fixed set of quan-

tum numbers, i.e., the rank. It will be specified later. Note

that this assumption does not represent a loss of generality as
Let the initial channel statey,)|q,) be given as the prod- any given short-range potential can be approximated in a

uct of the bound state wave functidit,) (belonging to the form similar to Eq.(18), to any desired degree of accuracy.

binding energyB,) of the pair (3,v), and the plane wave Let us introduce the Coulomb-modified form factor

|q.) describing the free motion of particle relative to the

center of mass of this pair. Analogously for the outgoin _ SR\ A

channel state. Then the FE)Iane—waveg mat?/ix element oo [Gam) =[1+ 943T3(22) Go(2a) ]| @) (19

C. Physical transition amplitudes

(R) b i (R) which differs from the nuclear form factor only for thep
Twﬂ(qa'qB’E+'O)_<q“|<‘/’“|U (E+'O)|"bl3>|qﬁ> subsystem characterized by=3. Although |gsm) will,
( therefore, depend on the screening radiuhis dependence

will, however, not be indicated explicitly. Then
is the physical transition amplitude for screened Coulomb PHCILY-

potentials, provided the incoming and the outgoing energy

N
are related to the ener aramekewvia the energy-shell A
relation wP ¥ Tz = ; 190m A (2)(Daml (20)

a

E=E,=q3/2M,+B,=Ez=q;%/2Mz+Bsz. (16)  with the elements of the matrik(P(z,) being solutions of

In order to extract the desired amplitude pertaining to un- 1 ()

screened Coulomb potentials the on-shell amplitude amn(Za) =N a,mn

7"(d,.03;E+i0) has to be multiplied by appropriate N, ) i
renormalization factorsZ, 3°(d,) and Z;#’(q,) which are + 2 N el Pl Go(Za) 190n) A (2,).
uniquely determined by the special choice of screening func- pr=1

tion, and the limitR—« has to be performed: (21
B, Y)m (8:%)m (8,7)n FIG. 1. Graphical representation of the effec-

tive potential (26). The first diagram represents

T the three termsv(n?)/(f)lnz;vﬁ, depending on
VB whether both form factors are purely nuclear

(open semicirclesor either one of them is Cou-
o lomb modified.

064613-3



ALT, MUKHAMEDZHANOV, NISHONQOV, AND SATTAROV PHYSICAL REVIEW C 65 064613

In channels where a bound state exi§tsour case the 2_.2) collisions. The matrix elementg(qa|TEyF§r)1,ﬁn(E
deuteron for whicha# 3) it must be ascertained that the +i0)|q’ﬁ> in which the form factors in the initial and final
corresponding subsystefmatrix T, or equivalently the  state correspond to bound states and hence satisfy a condi-
appropriate element of the matri(® , shows the pole be- tion of the type(22), coincide on the energy shell6) with
havior (10). This is guaranteed if the form factor which rep- the physical amplitude€l5).
resents the bound state and is called, kay;)=|g.1) since It is now an easy task to derive equations o) 5,(2).

a# 3, satisfies Sandwiching Eqs(11) betweern(g,m| and|gg,) yields the
coupled, multichannel, Lippmann-Schwinger—type equations

Go(Ba)l9a1) = Go(B)lpar) = ¥a),  a#3. (22
TR n(D=V (0 gnl2)
E. Off-shell equations for transition amplitudes

Consider the quantities + y;jl i]z:l VR (2GR, 5T R,0(2).
TR 50(2):=(9aml Go(DU (D) Go(2)|gpn).  (23) (24

They are effective-two-body transition operators which act
only in the space spanned by the momentum eigengties The effective arrangement potentiars‘a?’ sn(2) are defined
between the two fragments and describe all binaogcalled as

’;(5\300
g -
Q
g
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il
~N
5
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= 2001
0]
~ .
Q FIG. 2. Proton-deuterofsolid
f; line9) differential cross section for
c several projectile energies. Ex-
gwo« perimental data are from Refs.
S [31, 32. For comparison also the
results for neutron-deuteron scat-
tering (dashed linesare given.
m
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(R)
V am,Bn

(2):=(Uum| Go(2)UR 4(2)Go(2)| 9 gn)

P m(z—da/2M,,).
:Eaﬁ<gam| GO(Z) | g,Bn>

(27)

G 0T 0312 = Sp0(0e— Q) A
+ 5a,85a3<<Pam|Go(Z)T§(Z)Go(Z)|<Pan> F. Angular momentum decomposition
+ Sup8a3dp3( Panl Go(2) T5(2) Go(2)| ¢ n)

For various reasons we found it more convenient not to

work with the isospin formalism. Hence we use the follow-
(25 ing angular momentum coupling for a given chanaels,
A +5,=S,, Lo+S,=3,, S, t3,=2,, l,+2,=J. Here,s,
—- (R)(i)
= 2}0 v RO (26)

denotes the spin of particle, L, is the relative orbital an-
gular momentumsS, is the total spin, and, is the total

angular momentum of particle8 and y; moreover,l, de-

They are depicted in Fig. 1. Note that on account of thenotes the relative orbital angular momentum of partiele
definition (19) the first term in Eq(25), and hence also in and the pair 8v), and finallyJ is the total angular momen-

Fig. 1, comprises actually three different contributions, enutum of the three-body system.
merated byi=0,1,2, depending on whether both form fac-

In order to simplify the notation, in the following explicit
tors are purely nuclear or either one of them is Coulombsubsystem indices on partial-wave projected genuine two-
modified. The plane wave matrix elements of the effectivebody quantities and channel indices on effective two-body
propagatorgiy,, s,(z) are given as

quantities are omitted. Let the partial wave expansion of the
064613-5
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0.04 1

0.03 1

iT,y,

0.02 1

0.01 1

0.06 -

iT,,

0.02

FIG. 4. Deuteron tensor ana-
lyzing poweriT,,. Notation as in
Fig. 2.

60 120 60 120
O.m (degrees) O.m (degrees)

vvvvv

short range interactioil8) between particlegs and y be
given as

|‘]CY+S(¥|
J M ~
Vip.p)=4m > > V()
‘]LY’MJHVSLY LalL;yzl‘](y_Sal a~a
S,.J4Sy ’ JU(MJ[, ~n\1t
XV PRI g DT (28)
with
NYaSa
S,J,S, _ J4Su J4Sa J4Sa
VLaL' (plp,)_ Z L (’DLaVa(p))\L v L,V,qDL/V/(p,).
a Vo V= a @ o w a a

(29)

‘]aMJH o) ‘JaMJY ~
Here, Vs’ (p)*EMLHMSHCLQMLQSaMSaYLaMLH(p)XSaMSH1

60 120
B.m. (degrees)

channela with fixed J, and S, cpi“syﬂ(p) are the corre-

sponding form factors which are chosen real, and
Jasa _ ‘](xsa H
)\LQVHL;V;—AL;V;LHVH are the(real) potential strengths. The

Coulomb-modified form factors are

9" (P)=| ¢, (P)
1 (=dP' P TR (PP 20 (p)
+5a372f ’2 ’
27<Jo Z3— P24

(30

where'AI'gFfL3 is the screened partial wave Coulombmatrix.
With these definitions the plane wave matrix elements of the

N’«S is the rank of the separable expansion in the two-bodyCoulomb-modified short-rang€ operator take the form

064613-6
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0.02
3
-0.02
0.05
5 FIG. 5. Deuteron tensor ana-
] lyzing powerT,q. Notation as in
-0.05 1 Fig. 2.
""" R R T R T
O.m. (degrees) 0.m. (degrees) O.m. (degrees)
A I My~ After partial-wave decomposition the effective potentials
TSRz, |p')=4 o« S : -
(i “R( o)) =4m E yLaSa (P) with given J and parity s for a transitiona(By)— B(y«a)

J, M;,S,,L,,L" : . ) .
@ e a can likewise be written as a sum of five terms

NJaSe
‘JaM ~ JaSa
XY 01T 2 gl (p)
S v vy=1 VO g GarOfi2)= E VO (G U12),
R)J,S,
XA g ). (3D (33
The matrix eIementA L, ,(za) are obtained as solutions where
of
(R)JI™(i) '
N‘] Vma,u.a,nﬁvﬁ(qalqﬁ!z)
(R)J S
(Y,(Y, )\(Yd’”_{_ )\(YCY” — K I .
L(yVa/La oz( ) a aLa @ ? g—l a aLg @ 2 A(I)(Qa: B)R(I) ,nﬁyﬂ(qa’qﬁvz)l (34)
oSa (R)J,S,
X<(PL// |GO(Za)|gL// />AL// "'y /(Za)- is 3.5 - )
aaa Me=1, .. NeZe, po=1 ... N6, The multi-indicesm,,

(32 andng are defined as, (Ia, wr 2ar Jar Loy Sus Sg,
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FIG. 6. Deuteron tensor ana-
lyzing powerT,;. Notation as in
Fig. 2.

22.7 MeV

|
[
[
[

120

o (degrees)

.....

I '12I0' o
.m. (degrees)

léOIHI'

em. (degrees)

s,) andng=(lg, sg, 245, Jg, Lg, Sg, S,, S,). Finally, for ~ The meaning of the various indices has been described

the contributions witi =0,1, and 2,x=L is a single index above.

while for i=3 and 4 it is a multi-indexc= (Elﬁzf) The In  general, the physical T-matrix element
explicit expressions for the functlonﬁ\ (qa,qﬁ) and T(IF:)Jm Omzom(qa,qg;a) which describes the transition
RS, o ngr{dadg;2) can be found in the Append|x from channela, where the particle pair4,y) is a deuteron

Thus, we have to solve the following coupled set of inte-State withJ,,=1 which is not explicitly indicated, the rela-

gral equationsk , :=E+i0):

tive orbital momentum of between partickeand deuteron is
l;» and the total channel spin 1;,, to channelB where the
particle pair @,v) is in a deuteron stateJ§,~=1) and the
channel orbital angular momentum and spin &g and

(R)J™ . . i
Tmaua,nﬁvﬂ(qa'qB'E+) > out» respectively, can be calculated from the solutions of
Eq. (39 as
R (g g EN4S S S ~dgya’? -
Matta N7 Aol = ty.t' 77-7; o 27 TI(II:)E\?n outzout(q"“qﬁ’ +)
(R)J,S, "
XV 17 (GO E +>A (B qj2/2M.,) = 2 818,005,
Y map.anBVB
(R . )
XT 20 g (A3 01E)- 39 X810y 35 g5 oo g (GO EL). (36)
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-0.01 A
8
=
-0,03 -
-0.03 -
Pg FIG. 7. Deuteron tensor ana-
lyzing powerT,,. Notation as in
~0.071 Fig. 2. Data from Ref[32].
-0.05
8
=
-0.15 1

60 120 60 120 60 120
8.m. (degrees) Ocm. (degrees) O.m. (degrees)

Switching off the short-range interactions will reduce the The unscreening procedure is now performed in the am-

coupled equationg35) to those pertaining to the partial- pjitude (38). We multiply T(S nr (4a.0a};E=) by the

wave decomposed screened center-of-mass Coulomb scatter- 1/2) >inlourou U2 1
ing amplitude renormalization factor, (qa) and Z; r(q,) and repeat

the calculation with mcreasmg value of the screening radius
™ R until the result has become independent of it. In this way
R,J ’. — _ !
Tzt o a5 E+) = Oapdiy, O3, 3, 0(da—dp) we end up with the unscreened Coulomb-modified short-
range amplitude
(€271 (9 — 1),

><iM q
o Tl(licln outzou(qa'qB;E+)
(37)
T —1/2 (SRI™|

where a{(q) are the screened Coulomb phase shifts. From FL'L“WZH,R ()T linZin | out out

these two amplitudes the Coulomb-modified short-raiige

matrix follows directly as X (U, 05 Es) Z5R00)). (39

T(SR SCH qyiEL) :TI(R . (qa 05:E) Finally, summing up the partial wave series and adding to the
|n n’ ou out Irl in’ OU out

result the analytically knowr(unscreened center-of-mass
Coulomb scattering amplitude yields the final reaction am-
plitudes from which the various observables can be calcu-
(39 lated. We emphasize once more that solution of &%)

TI EII’] OU[EOUt(qa,q’B;E+).
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0.3 w w w T hand side of Eq(39) becomes independent of it. We found
thatR=625 fm was considered enough for all practical pur-
poses. But, as has been intensively discussed in[R&fthe
convergence becomes the faster and, therefore, less expen-
sive in CPU time to achieve the higher the energy is.
When calculating the effective potentiald34) and effec-
tive free Green function$32) we have made only one ap-
proximation. Namely, as indicated in the explicit expressions
given in the Appendix, we have used the Born approximation
for the pp CoulombT matrix. As has been shown in Ref.
[30], when the range of the form factors is of typical nuclear
size, this approximation is accurate to a few percent for all
energies and scattering angl@s contrast to the atomic case
where it typically fails by several orders of magnityidénd
since the Coulomb interaction modifies the purely nuclear
pd phase parameters by at most 10%, the error introduced by
this approximation is therefore estimated to be well below
-0.3 I L T T T T T T 7
5 10 15 20 the 1% level.
E (MeV) In Fig. 2 we present differential cross sections for proton
laboratory energies from 2.5 to 22.7 MeV. For comparison
FIG. 8. “Sagara discrepancy” as function of the proton labora-the corresponding results ford scattering are included. In-
tory energy. Open squares: RE31], black squares: present calcu- spection reveals that very good agreement with the experi-
lation. mental data of Sagae al.[31] and of Sperisowt al.[32] is
achieved, except at the lower energies where our calculations
yields, after execution of the unscreening procedure as deslightly overestimate the data. For the vector analyzing pow-
scribed above, charged-composite particle transition ampliers depicted in Fig. 3 the reproduction of the data is much
tudes which are exact for a nuclear potential of the f¢t8).  less satisfactory. In particular, at the lower energies the maxi-
mum of the vector analyzing power is strongly underesti-
mated. This is the so-called th®, puzzle which has been
with us for a long time in neutron-deuteron scattering and is
As mentioned in the Introduction, the first theoretically also present in thed reaction as already noted in RéL].
satisfactory calculations gbd elastic scattering above the In spite of a variety of speculations regarding its origin and
breakup threshol@23,22 and of pd breakup[24-26 em-  remedy(see, e.g., Ref§35-37, and references thergjmat
ployed rather simple ansatz for the nuclear interaction. Irpresent no satisfactory solution to this problem is available.
spite of this limitation at least semiquantitative agreemenBut it appears that the failure of the theory to reproduce the
with experimental differential cross sections for elastic scatexperimental maximum disappears at higher energies, at the
tering and for fivefold differential cross sections for deuteronexpense of an increasing discrepancy in the minimum around
breakup in various kinematic situations could be achieved100°. A similar situation occurs faifT; as can be inferred
However, for a more detailed comparison with experimentafrom Fig. 4. Experimental tensor polarizationgy, T,;, and
data, in particular for polarization observables, more sophisT,, where available are reasonably well reproduced by
ticated nuclear potential models must be used. For this reaur calculations as can be seen from Figs. 5—-7. For all ob-
son we have performed calculations with the realistic Pariservables presented the modifications due to the Coulomb
potential. First results have been published recdr@®;28. interaction are rather strong at the lower energies but even-
Here, we present some extended calculations of differentialially become small although not negligible at the highest
cross sections and various polarization observables for elagnergy. We mention that our results are rather close to those
tic pd scattering. of Ref.[2].
We used the Paris potential in thesTiform [29]. Sand In Ref.[31] it was pointed out that apparently the magni-
P waves were included in thpp and thenp spin singlet tude of the experimental differential cross section minimum
channels, and the coupl&D waves in thenp spin triplet  differed appreciably from theoretical results. In fact, the rela-
channel. This leads to maximally 29 coupled integral equative difference A in:=(0heor— Texp)/ 0oxp Was found to be
tions to be solved. The number of total angular momenta imather large and positive at low energies, to change sign
the pd system was chosen so high that stable results for athround 5 MeV and to become negative large at higher ener-
observables were obtained. It was found that17/2 suf- gies, reaching - 25% at 18 MeV. Explanation of such a
fices for the lower energies, add=19/2 for the two highest strong, and strongly energy dependent, effect seemed to be
energies, for the level of accuracy aspired to. very difficult. It was therefore suggested that there exists
In order to perform the unscreening of the resulting am-another real discrepancy, later termed “Sagara discrepancy,”
plitudes numerically, repeated solution of the integral equabetween experiment and theory, in addition to Ayepuzzle.
tions (35) with and without the nuclear interaction is re- This inference was, however, not very compelling as the the-
quired, with the screening radiiincreased until the right- oretical calculations used for comparison had actually been
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performed fomd scattering, with only a very rough account ranged Coulomb interaction in momentum space integral
of Coulomb effects. The existence of such an energyequations is provided both by the screening and renormaliza-
dependent discrepancy was later corroborated by calculatiori®n approach14] and by the investigation of the analyticity
employing several “realistic” nuclear potentials but again properties of the kernels of the pertinent equatifhig 18|.
relying on the same approximation for including CoulombThe former even provides for a practical solution scheme
effects[33]. Thus, in both calculations it was ignored that which has been adopted in the present work.
this Coulomb correction method had already been demon- As input for the nuclear interaction we employed the
strated i 23] to be generally unsatisfactory and, in addition, PEST1version of the Paris potential which is well known to
to lead to a rather strong energy dependence of the failure, irepresent an excelleféeparableapproximation to the origi-
particular in the cross section minimum. A further attemptnal potential. The calculated differential cross sections led to
[34] to explain this effect byA-isobar induced three-body a very satisfactory reproduction of the experimental data.
forces ignored Coulomb effects altogettibut gave sizable This fact also gives rise to a decisive reduction in absolute
corrections particularly for higher energies not considerednagnitude and in its energy dependence, of the so-called
here. “Sagara discrepancy,” originally described in R¢81]. It

In Fig. 8 we present the relative differends,;, for the  even suggests that the latter might cease to exist when more
cross section minimum between our theoretical results andophisticated nuclear potential models will be used, provided
the data of Ref[31]. Inspection reveals that even with a due account is made of the Coulomb interaction. For the
correct description of the Coulomb repulsion between thevarious vector and tensor polarization observables the agree-
protons the “Sagara discrepancy” survives, albeit withmentis not as good, as was to be expected from the fact that
greatly reduced overall magnitude as compared to the calc@ similar lack of agreement is known to occur in neutron-
lations with improper account of the Coulomb interaction. Indeuteron scattering.
addition, the percentage excess Ap,, has become only In order to shed some light on the origin of the remaining
rather weakly dependent on energy in the range consideretiscrepancies, calculations with improved nuclear input are
(from 9.3% at 5 MeV to 6.3% at 18 MeVYin contrast to the called for. Such research is under way.
original estimateg31]. It is interesting to note that for all
energies considered, our calculations yield a larger cross sec-
tion minimum than experiment, i.eA ,i,>0. However, be-
fore drawing any conclusions about the origin of this over- A M.M. was supported by U.S. DOE Grant No.
estimation it should be kept in mind that in particular the DE-FG05-93ER40773. M.M.N. was supported by
cross section minimum is very sensitive to the finer details oDeutscher Akademischer Austauschdienst. A.l.S. was sup-
the nuclear force model. Hence, it could well be that in cal-ported by Deutsche Forschungsgemeinschaft, Project No.
culations using higher-rank, and thus better, approximationg)SB-113-1-0.
of the Paris(or a more modermnpotential, the remaining
difference even disappears.
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APPENDIX

IV. SUMMARY In this appendix we present the explicit expressions for
In this work we have presented the results of our calculatn® various contributions to the angular momentum projected
tion of differential cross sections and polarization observ-efféctive potential. The following notations are usgdi
ables for proton-deuteron elastic scattering in the energy” V2/+1, [17]=21+1, Nap=M,/(M,+tmg)=1
range from 2.5 to 22.7 MeV, with due allowance of the Cou-—Mga: a# B. Moreover,e,;=—€g, is the antisymmetric
lomb repulsion between the protons. The mathematica$ymbol withe,z=+1 if («,) is a cyclic ordering of the
framework for rigorously taking into account the long- indices(1,2,3. Unit vectors are denoted by a hatk/k.
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4
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f M2 Ml a Sa SB EB

k, ok begl (k)G (k)

(0,1,2)C = 1J+1
Ry (Qe:05:2)=S455 dxP,(x)Xx , (A1)
ma,u,nﬁ (q qﬁ ) 62 _q £( Z—qi/ZMa—ki/ZMa
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Lamlp of (- 05i2)= 0 z—q3/2M ,— k22, ) - z—qp22M = (A, +K) 2
|
Here The requirement that the deuteron wave function be normal-

o R ized to unity impIiesE,_aWEJasaLaW(qa;Ea)=1. Conse-
AL=0,=0p, A,=—NypAL, Xp=0U, 0, X1=0-A,.  quently, expressionA3) for R®) can be rewritten as

In order to increase the numerical accuracy it is advanta-
geous to extract, in the deuteron channel, from expre55|onR(3)C1£zf(qmqf :2)
(A3) the pure screened center-of-mass Coulomb potential. ™« "s" b
For this purpose we only have to take into account that for
n=m andq,=qg, i.e,A,=A,=0, the onIy nonvamshmg _5a35a3{ 4AnF, sL ,“,(qa,Z)V(R) (A))

element of expression (A2) is  A@ Ezo(qa,qﬁ)
=06r,00r, l4m. Hence, in the deuteron channel we intro- 1 (+1
duce forg,=qj the short-hand notation + @fl dXzF’z:z(Xz)V(yR)(A&)

Pl o8 (de 8o D)= 167°F ) s | u(0ai12), (A5)

X[Fi iLJBVSfB(anquZ) 167T FJ S La,uv(qouz)]

with
(A7)

E.]aSaLa,u,V(qa;Z)
Here, V(R) is the partial-wave projection of the screened

1 = Kedkg (gl (k)

(277)3f0 (z—q2/12M ,— Kk?/241,,)?
deuteron channel,

0 elsewhere.

Coulomb potential. Thus, EqA7) is in a numerically con-
venient form: the screened center-of-mass Coulomb potential

(A6)  which in the limitR— gives rise to the troublesome “Cou-

lomb singularity” is explicitly extracted in the simple first
term, while in the second term which in general has to be
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computed numerically the latter does not longer occur. As aRng replace the effective free Green functi&bR)Jy,sy(a
additional bonus the decompositidA7) provides us with Ly

the possibility to use the same set of coupled equatidfs  —d;/2M,) by the free “proton-point deuteron propagator
to find screened center-of-mass pure Coulomb scattering and/(E, — Bd—q’;ZIZM ,), where By is the deuteron binding
plitude. One simply has to switch off all nuclear interactions,energy.

keep as effective potential only the first term of E47), Finally,

A,(C‘];L),sz(qa ,q,ﬁ) — G;ZJrSa*S,z;*Sye;;;*SB*Sa*Sy( _ 1)J+Sﬁ+sﬁ+25y+lQ+L3+|B+£2+f

3, S« Sp Lg

X[lazaJasa|BzﬁJBsﬁﬁifL§] Jet |00 t 14 S, f 3,
4 [2(L,—Dr| T« 77 P ., 3 g

L, S. sg 2

XE (_qa)qul\g)\fyﬁw)\\;\/a(w IB ‘CZ)(LQ El Lﬁ_f)[f_w Ia ‘C’Z}(Ia f_W EZ)

w  J[2(f—w)]i(2w)! |0 0 0/l0 0 O l, w fjlo o0 o0
LﬂML LBML LaMLa
XMLEMLﬁ CfML/,fMLaLaMLaCLB_ffALJMLﬁ—MLHCLﬁ—fMLaﬁlo’ (A8)

d kaki+ Lg— fgiZia( k,)

R(4)Llazf(q q"z)=§ s if+lde (x)fc
My ngvida T Hp o apTrig 2| o 2N L2 | z—qi/ZMa—ki/Z,ua

10X P, (k)0 Pk kg o K Q)G (k) kg o]~
X f " 5 : (A9)
-1 Z—q, 12M g—= (ko + Q) 2ug
where = (—X,50,+\,.0p), K= (a5+ N gy0a), Xo=0 0, X1=K,-q, and  v®(K' k,xy)
=1/J(K'?+k?+ 2k’ kxy—+ 1/R?)%— 4k"?k?*(1—x?) (1 —y?).
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