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Proton-deuteron elastic scattering from 2.5 to 22.7 MeV
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We present the results of a calculation of differential cross sections and polarization observables for proton-
deuteron elastic scattering, for proton laboratory energies from 2.5 to 22.7 MeV. The Paris potential param-
etrization of the nuclear force is used. As solution method for the charged-composite particle equations the
‘‘screening and renormalization approach’’ is adopted which allows one to correctly take into account the
Coulomb repulsion between the two protons. Comparison is made with the precise experimental data of Sagara
et al. @Phys. Rev. C50, 576 ~1994!# and of Sperisonet al. @Nucl. Phys.A422, 81 ~1984!#.
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I. INTRODUCTION

Calculation of proton-deuteron (pd) scattering represent
one of the most challenging remaining tasks in few-bo
nuclear physics. The interest arises from two sources. F
the richness and precision of the available experimental
on many observables with which to compare with is cert
to lead to more stringent tests of nuclear potential mod
than neutron-deuteron (nd) scattering with its much smalle
and much less precise database. Secondly, the necess
include the Coulomb interaction in a way that is both ma
ematically correctand practical has been, and still is, one
the outstanding theoretical tasks.

Of the several approaches that have been proposed to
into account Coulomb interactions in charged-composite p
ticle reactions, only two have reached the status to pe
concrete numerical calculations. The most obvious o
namely, to work with the Schro¨dinger ~see Refs.@1–4#, and
references therein! or equivalently differential Faddeev
Merkuriev equations@5–7# in coordinate space, require
knowledge of the complete boundary conditions, in order
guaranteeuniquenessof the solution. Below the three-bod
threshold when only two-cluster channels are open, this
sents no difficulty. However, above that threshold the co
plete boundary condition to be imposed in the region wh
all three particles eventually become asymptotically f
@8–11# has, to our knowledge, not yet been implemen
satisfactorily in any solution scheme.

Based on momentum-space three-body Faddeev@12# or
Alt-Graßberger-Sandhas~AGS! @13# equations, mathemati
cally well defined integral equations for charged-compos
particle reactions have been derived for two cases. If on
the three particles is uncharged and the others have cha
of equal sign, the AGS equations for the three-body tran
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tion operators have been proven by Alt, Sandhas, and Zie
mann @14# to possess compact kernels for all energies i
special class of functions~see also Ref.@6#!. That is, these
equations are amenable to stardard solution methods, the
yielding the physical amplitudes for all reactions which a
possible in such a system, at all energies. If, however,
three particles are charged~with charges of equal sign! only
somewhat limited information is available as yet. Indeed
the three-body energy is negative, i.e., below the three-b
threshold, the Faddeev equations have been reformulate
such a way that the kernels of the new equations pos
compact kernels@15,16#. For positive energies compactne
could be proven only for the kernels of certain integral eq
tions for effective-two-body transition amplitudes, i.e., f
amplitudes which describe all possible binary@i.e.,
~in-!elastic and rearrangement collisions, or quite gener
so-called 2→2# reactions@17,18# ~this proof holdsa fortiori
if only two particles are charged and one is neutral!. The
formulation of analogously modified integral equations w
compact kernels for breakup (2→3) or even 3→3 processes
is still lacking.

A practical solution method for the aforementioned equ
tions for effective-two-body transition amplitudes has be
developed in Refs.@14,19,20# ~see also the review@21#!.
Starting from screened, and thus short-ranged, Coulomb
tentials, the usual short-range equations are solved by s
dard methods. The physical amplitudes corresponding to
screened Coulomb potentials are then recovered
numerically performing a limiting procedure in suitab
renormalized quantities. Details can be found in Re
@21,22#. This approach has been applied with great succes
the calculation of differential cross sections forpd elastic
scattering@22,23# ~see also Ref.@21#, and references therein!
and to fivefold differential cross sections forpd breakup
@24–26# in various kinematic configurations, with due a
count of the Coulomb interaction~but employing simple
models of the nuclear interaction only!.

Recently we have communicated the first successful
culation of proton-deuteron scattering observables for
Paris potential using this same approach@27,28#. Here, re-
©2002 The American Physical Society13-1
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sults for many more energies will be presented and comp
with experimental data.

The plan of the paper is as follows. In Sec. II we give
brief recapitulation of the most important aspects of
screening and renormalization method. Section III then c
tains results for differential cross sections and various po
ization observables. The final section contains our con
sions. In the Appendix the explicit expressions for t
partial-wave decomposed effective potentials are collec
As usual we choose units such that\5c51.

II. FORMALISM

For the convenience of the reader we briefly recapitu
the basic equations@14,21#.

A. Notation

Consider three distinguishable particles with mas
mn , n51,2,3. Moreover, two of them, say particles 1 and
are supposed to be charged, with chargese1 ande2, satisfy-
ing e1e2.0. We use the standard notation: on a one-bo
quantity an indexa characterizes the particlea, on a two-
body quantity the pair of particles (b1g), with b,gÞa, and
finally on a three-body quantity the two-fragment partiti
a1(bg) describing free particlesa and the bound state
(bg). Throughout we work in the total center-of-mass sy
tem. Jacobi coordinates are introduced as follows:ka is the
relative momentum between particlesb and g, and ma
5mbmg /(mb1mg) their reduced mass andqa denotes the
relative momentum between particlea and the center of
mass of the pair (bg), the corresponding reduced mass be
defined asMa5ma(mb1mg)/(ma1mb1mg).

The Hamiltonian of the three-body system is

H5H01V5H01 (
n51

3

Vn , ~1!

with

H05Ka
2/2ma1Qa

2/2Ma ~2!

being the free three-body Hamiltonian.Ka and Qa are the
momentum operators with eigenvalueska and qa , respec-
tively.

The two-body interaction in subsystema has the genera
form

Va
(R)5Va

S1da3V3
R , ~3!

whereVa
S is the ‘‘short-range’’~i.e., nuclear! part and

V3
R~r !5

e1e2

r
e2r /R ~4!

the Coulomb potential which for practical reasons we
sume to be exponentially screened, with screening radiuR.
06461
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The correspondingT operator is given as solution of th
usual Lippmann-Schwinger equation with the full interacti
Va

(R) ,

T̂a
(R)~za!5Va

(R)1Va
(R)Ĝ0~za!T̂a

(R)~za!. ~5!

For clarity, energy-dependent two-body operators, when r
in the two-particle space, are characterized by a hat. Mo
over,za denotes the energy in subsystema. The fact that the
potential is a sum of two terms, see Eq.~3!, carries over to
the transition operator~5!:

T̂a
(R)~za!5da3T̂3

R~za!1T̂a
SR~za!. ~6!

Here,T̂3
R(za) the pure screened Coulomb transition opera

for the pair of protons 1 and 2. The so-called Coulom
modified short-range transition operatorT̂a

SR(za) is given as

T̂a
SR~za!5@11da3T̂3

R~za!Ĝ0~za!# t̂a
SR~za!

3@11da3Ĝ0~z3!T̂3
R~z3!#, ~7!

t̂a
SR~za!5Va

S1Va
SĜa

(R)~za!Va
S . ~8!

For the particle pair (b1g), the free two-body resolvent is
denoted byĜ0(za)5(za2Ka

2/2ma)21 and the full resolvent
by

Ĝa
(R)~za!5~za2Ka

2/2ma2Va
(R)!21

5~za2Ka
2/2ma2Va

S2da3V3
R!21. ~9!

We point out that if there exists a bound state of ene
Ba,0 in subsystema, the correspondingT operator
T̂a

(R)(za), and hence alsoT̂a
SR(za), must have a pole of the

form

T̂a
(R)~za! '

za→Ba

T̂a
SR~za! '

za→Ba Va
(R)uca&^cauVa

(R)

za2Ba
, ~10!

where uca& is the appropriate bound state wave functio
Generalization to several bound states is obvious.

B. Equations for the three-body arrangement operators

The AGS three-body transition operatorUab
(R)(z) which

leads from a partitiona1(b,g) of the three particles to a
partition b1(a,g) is defined as a solution of

Uab
(R)~z!5 d̄abG0

21~z!1 (
n51

3

d̄anTn
(R)~z!G0~z!Unb

(R)~z!.

~11!

Here, d̄ab512dab is the anti-Kronecker symbol an
G0(z)5(z2H0)21 the resolvent of the three-free partic
HamiltonianH0.
3-2
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The splitting ~6! of the subsystem amplitudes induces
corresponding splitting of the three-body operatorsUab

(R)(z).
Define new operatorsUab

R (z) as solutions of the same AG
equations~11! but with only the Coulomb part of the sub
system amplitudes in the kernels

Uab
R ~z!5 d̄abG0

21~z!1 (
n51

3

d̄anTn
R~z!G0~z!Unb

R ~z!.

~12!

ThenUab
(R)(z) andUab

R (z) are related via

Uab
(R)~z!5Uab

R ~z!1 (
n51

3

Uan
R ~z!G0~z!Tn

SR~z!G0~z!Unb
(R)~z!.

~13!

An important practical simplification arises if only tw
particles are charged as it happens in the present case
Eqs.~12! can be solved explicitly to yield

Uab
R ~z!5 d̄abG0

21~z!1 d̄3ad̄b3T3
R~z!. ~14!

As a consequence, Eqs.~13! with ~14! areexact.

C. Physical transition amplitudes

Let the initial channel stateuca&uqa& be given as the prod
uct of the bound state wave functionuca& ~belonging to the
binding energyBa) of the pair (b,g), and the plane wave
uqa& describing the free motion of particlea relative to the
center of mass of this pair. Analogously for the outgoi
channel state. Then the plane-wave matrix element

T a,b
(R) ~qa ,qb8 ;E1 i0!5^qau^cauUab

(R)~E1 i0!ucb&uqb8 &
~15!

is the physical transition amplitude for screened Coulo
potentials, provided the incoming and the outgoing ene
are related to the energy parameterE via the energy-shel
relation

E5Ea5qa
2/2Ma1Ba5Eb5qb8

2/2Mb1Bb . ~16!

In order to extract the desired amplitude pertaining to
screened Coulomb potentials the on-shell amplitu
T a,b

(R) (qa ,qb8 ;E1 i0) has to be multiplied by appropriat
renormalization factorsZa,R

21/2(qa) andZb,R
21/2(qb8 ) which are

uniquely determined by the special choice of screening fu
tion, and the limitR→` has to be performed:
06461
or,
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Ta,b~qa ,qb8 ;E1 i0!5 lim
R→`

Za,R
21/2~qa!T a,b

(R) ~qa ,qb8 ;E

1 i0!Zb,R
21/2~qb8 !. ~17!

Details of this procedure are described below.

D. Special case: separable nuclear interactions

As mentioned in the Introduction, in principle the couple
equations~11!, with R set equal to infinity, for the three-bod
operatorsUab(z) could be solved as they stand. But th
presence of the highly singular CoulombT matrix in the
kernel is certain to present formidable numerical difficultie
We, therefore, have adopted another solution strate
Namely, we use separable approximations of the original~lo-
cal or nonlocal! nucleon-nucleon potentials. That is, we a
sumeVa

S to be represented as a sum of separable terms

Va
S5 (

m,n51

Na

uwam&la,mn̂ wanu. ~18!

Here, the indexm of the~nuclear! form factoruwam& not only
characterizes the complete set of quantum numbers w
uniquely characterizes a given state of the particle paira but
also enumerates the number of terms per fixed set of qu
tum numbers, i.e., the rank. It will be specified later. No
that this assumption does not represent a loss of generali
any given short-range potential can be approximated i
form similar to Eq.~18!, to any desired degree of accurac

Let us introduce the Coulomb-modified form factor

ugam&5@11da3T̂3
R~z3!Ĝ0~z3!#uwam& ~19!

which differs from the nuclear form factor only for thepp
subsystem characterized bya53. Although ug3m& will,
therefore, depend on the screening radiusR this dependence
will, however, not be indicated explicitly. Then

T̂a
SR~za!5 (

m,n51

Na

ugam&D̂a,mn
(R) ~za!^gamu, ~20!

with the elements of the matrixD̂a
(R)(za) being solutions of

D̂a,mn
(R) ~za!5la,mn

1 (
m,n51

Na

la,mm^wamuĜ0~za!ugan&D̂a,nn
(R) ~za!.
c-
s

ar
-

FIG. 1. Graphical representation of the effe
tive potential ~26!. The first diagram represent
the three termsVmama ,nbnb

(R)(0,1,2) , depending on
whether both form factors are purely nucle
~open semicircles! or either one of them is Cou
lomb modified.
3-3
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In channels where a bound state exists~in our case the
deuteron for whichaÞ3) it must be ascertained that th
corresponding subsystemT matrix T̂a

(R) , or equivalently the

appropriate element of the matrixD̂a
(R) , shows the pole be

havior ~10!. This is guaranteed if the form factor which re
resents the bound state and is called, say,uwa1&[uga1& since
aÞ3, satisfies

Ĝ0~Ba!uga1&5Ĝ0~Ba!uwa1&5uca&, aÞ3. ~22!

E. Off-shell equations for transition amplitudes

Consider the quantities

T am,bn
(R) ~z!:5^gamuG0~z!Uab

(R)~z!G0~z!ugbn&. ~23!

They are effective-two-body transition operators which
only in the space spanned by the momentum eigenstatesuqa&
between the two fragments and describe all binary~so-called
06461
t

2→2) collisions. The matrix elementŝ qauT am,bn
(R) (E

1 i0)uqb8 & in which the form factors in the initial and fina
state correspond to bound states and hence satisfy a c
tion of the type~22!, coincide on the energy shell~16! with
the physical amplitudes~15!.

It is now an easy task to derive equations forT am,bn
(R) (z).

Sandwiching Eqs.~11! between^gamu and ugbn& yields the
coupled, multichannel, Lippmann-Schwinger–type equati

T am,bn
(R) ~z!5V am,bn

(R) ~z!

1 (
g,d51

3

(
i , j 51

Ng

V am,g i
(R) ~z!G0;g i ,d j

(R) ~z!T d j ,bn
(R) ~z!.

~24!

The effective arrangement potentialsV am,bn
(R) (z) are defined

as
-
.

t-
FIG. 2. Proton-deuteron~solid
lines! differential cross section for
several projectile energies. Ex
perimental data are from Refs
@31, 32#. For comparison also the
results for neutron-deuteron sca
tering ~dashed lines! are given.
3-4
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FIG. 3. Nucleon vector ana
lyzing power Ay . Notation as in
Fig. 2.
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t
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the
V am,bn
(R) ~z!:5^gamuG0~z!Uab

R ~z!G0~z!ugbn&

5 d̄ab^gamuG0~z!ugbn&

1dabd̄a3^wamuG0~z!T3
R~z!G0~z!uwan&

1 d̄abd̄a3d̄b3^wamuG0~z!T3
R~z!G0~z!uwbn&

~25!

5:(
i 50

4

V am,bn
(R)( i ) . ~26!

They are depicted in Fig. 1. Note that on account of
definition ~19! the first term in Eq.~25!, and hence also in
Fig. 1, comprises actually three different contributions, e
merated byi 50,1,2, depending on whether both form fa
tors are purely nuclear or either one of them is Coulo
modified. The plane wave matrix elements of the effect
propagatorsG0;an,bn

(R) (z) are given as
06461
e

-

b
e

G0;an,bn
(R) ~qa ,qb8 ;z!5dabd~qa2qa8 !D̂a,nm

(R) ~z2qa
2/2Ma!.

~27!

F. Angular momentum decomposition

For various reasons we found it more convenient not
work with the isospin formalism. Hence we use the follow
ing angular momentum coupling for a given channela: sb

1sg5Sa , La1Sa5Ja , sa1Ja5Sa , la1Sa5J. Here,sn

denotes the spin of particlen, La is the relative orbital an-
gular momentum,Sa is the total spin, andJa is the total
angular momentum of particlesb and g; moreover,la de-
notes the relative orbital angular momentum of particlea
and the pair (bg), and finallyJ is the total angular momen
tum of the three-body system.

In order to simplify the notation, in the following explici
subsystem indices on partial-wave projected genuine t
body quantities and channel indices on effective two-bo
quantities are omitted. Let the partial wave expansion of
3-5
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FIG. 4. Deuteron tensor ana
lyzing poweriT11. Notation as in
Fig. 2.
d

nd

the
short range interaction~18! between particlesb and g be
given as

Va
S~p,p8!54p (

Ja ,MJa
,Sa

(
La ,La85uJa2Sau

uJa1Sau

Y
LaSa

JaMJa~ p̂!

3V
LaL

a8

S,JaSa~p,p8!@Y
L

a8Sa

JaMJa~ p̂8!#†, ~28!

with

V
LaL

a8

S,JaSa~p,p8!5 (
na ,na851

NJaSa

wLana

JaSa ~p!l
LanaL

a8n
a8

JaSa w
L

a8n
a8

JaSa ~p8!.

~29!

Here, Y
LaSa

JaMJa( p̂)5(MLa
MSa

C
LaMLa

SaMSa

JaMJa YLaMLa
( p̂)xSaMSa

,

NJaSa is the rank of the separable expansion in the two-bo
06461
y

channela with fixed Ja and Sa , wLana

JaSa (p) are the corre-

sponding form factors which are chosen real, a

l
LanaL

a8n
a8

JaSa 5l
L

a8n
a8Lana

JaSa are the~real! potential strengths. The

Coulomb-modified form factors are

gLana

JaSa ~p!5FwLana

JaSa ~p!

1da3

1

2p2E0

`dp8p82T̂3L3

R ~p,p8;z3!wL3na

J3S3 ~p8!

z32p82/2m3

G ,

~30!

whereT̂3L3

R is the screened partial wave CoulombT matrix.

With these definitions the plane wave matrix elements of
Coulomb-modified short-rangeT operator take the form
3-6
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FIG. 5. Deuteron tensor ana
lyzing powerT20. Notation as in
Fig. 2.
s

ls

^puT̂a

SR~za!up8&54p (
Ja ,MJa

,Sa ,La ,La8
Y

LaSa

JaMJa~ p̂!

3@Y
L

a8Sa

JaMJa~ p̂8!#† (
na ,na851

NJaSa

gLana

JaSa ~p!

3D̂
LanaL

a8n
a8

(R)JaSa ~za!g
L

a8n
a8

JaSa ~p8!. ~31!

The matrix elementsD̂
LanaL

a8n
a8

(R)JaSa (za) are obtained as solution

of

D̂
LanaL

a8n
a8

(R)JaSa ~za!5l
LanaL

a8n
a8

JaSa 1(
La9

(
ka ,ka851

NJaSa

l
LanaL

a9ka

JaSa

3^w
L

a9ka

JaSa uĜ0~za!ug
L

a9k
a8

JaSa &D̂
L

a9k
a8L

a8n
a8

(R)JaSa ~za!.

~32!
06461
After partial-wave decomposition the effective potentia
with given J and parityp for a transitiona(bg)→b(ga)
can likewise be written as a sum of five terms

V mama ,nbnb

(R)Jp
~qa ,qb8 ;z!5(

i 50

4

V mama ,nbnb

(R)Jp( i ) ~qa ,qb8 ;z!,

~33!

where

V mama ,nbnb

(R)Jp( i ) ~qa ,qb8 ;z!

5(
k

Ak
( i )~qa ,qb8 !Rmama ,nbnb

( i )k ~qa ,qb8 ;z!, ~34!

ma51, . . . ,NJaSa, nb51, . . . ,NJbSb. The multi-indicesma
andnb are defined asma5( l a , sa , Sa , Ja , La , Sa , sb ,
3-7
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FIG. 6. Deuteron tensor ana
lyzing powerT21. Notation as in
Fig. 2.
te

bed

n

-

of
sg) andnb5( l b , sb , Sb , Jb , Lb , Sb , sg , sa). Finally, for
the contributions withi 50,1, and 2,k[L is a single index
while for i 53 and 4 it is a multi-indexk[(L1L2f ). The
explicit expressions for the functionsAk

( i )(qa ,qb8 ) and
Rmama ,nbnb

( i )k (qa ,qb8 ;z) can be found in the Appendix.

Thus, we have to solve the following coupled set of in
gral equations (E1ªE1 i0):

T mama ,nbnb

(R)Jp
~qa ,qb8 ;E1!

5V mama ,nbnb

(R)Jp
~qa ,qb8 ;E1!1(

g
(

tg ,tg8
(

tg ,tg8
E

0

`dqg9qg9
2

2p2

3Vmama ,tgtg

(R)Jp
~qa ,qg9 ;E1!D̂

LgtgL
g8t

g8

(R)JgSg ~E12qg9
2/2Mg!

3T t
g8t

g8 ,nbnb

(R)Jp

~qg9 ,qb8 ;E1!. ~35!
06461
-

The meaning of the various indices has been descri
above.

In general, the physical T-matrix element
T l inS in ,l outSout

(R)Jp
(qa ,qb8 ;E1) which describes the transitio

from channela, where the particle pair (b,g) is a deuteron
state withJin51 which is not explicitly indicated, the rela
tive orbital momentum of between particlea and deuteron is
l in and the total channel spin isS in , to channelb where the
particle pair (a,g) is in a deuteron state (Jout51) and the
channel orbital angular momentum and spin arel out and
Sout, respectively, can be calculated from the solutions
Eq. ~35! as

T l inS in ,l outSout

(R)Jp
~qa ,qb8 ;E1!

5 (
mamanbnb

dJa1dJb1d l a l in
dSaS in

3d l b l out
dSbSout

T mama ,nbnb

(R)Jp
~qa ,qb8 ;E1!. ~36!
3-8
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FIG. 7. Deuteron tensor ana
lyzing powerT22. Notation as in
Fig. 2. Data from Ref.@32#.
he
l-
at

om
e

m-

ius
ay

ort-

the

m-
lcu-
Switching off the short-range interactions will reduce t
coupled equations~35! to those pertaining to the partia
wave decomposed screened center-of-mass Coulomb sc
ing amplitude

T l inS in ,l outSout

R,Jp
~qa ,qb8 ;E1!5dabd l inl out

dS inSout
d~qa2qb8 !

3
p

iM aqa
~e2is l in

R (qa)21!,

~37!

wheres l
R(q) are the screened Coulomb phase shifts. Fr

these two amplitudes the Coulomb-modified short-rangT
matrix follows directly as

T l inS in ,l outSout

~SR!Jp
~qa ,qb8 ;E1!5T l inS in ,l outSout

(R)Jp
~qa ,qb8 ;E1!

2T l inS in ,l outSout

R,Jp
~qa ,qb8 ;E1!.

~38!
06461
ter-

The unscreening procedure is now performed in the a

plitude ~38!. We multiply T l inS in ,l outSout

(SR)Jp
(qa ,qb8 ;E1) by the

renormalization factorsZa,R
21/2(qa) andZb,R

21/2(qb8 ) and repeat
the calculation with increasing value of the screening rad
R until the result has become independent of it. In this w
we end up with the unscreened Coulomb-modified sh
range amplitude

T l inS in ,l outSout

~SC!Jp
~qa ,qb8 ;E1!

5 lim
R→`

Za,R
21/2~qa!T~SR!Jp

l inS in ,l outSout

3~qa ,qb8 ;E1!Zb,R
21/2~qb8 !. ~39!

Finally, summing up the partial wave series and adding to
result the analytically known~unscreened! center-of-mass
Coulomb scattering amplitude yields the final reaction a
plitudes from which the various observables can be ca
lated. We emphasize once more that solution of Eq.~35!
3-9
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yields, after execution of the unscreening procedure as
scribed above, charged-composite particle transition am
tudes which are exact for a nuclear potential of the form~18!.

III. RESULTS

As mentioned in the Introduction, the first theoretica
satisfactory calculations ofpd elastic scattering above th
breakup threshold@23,22# and of pd breakup@24–26# em-
ployed rather simple ansatz for the nuclear interaction.
spite of this limitation at least semiquantitative agreem
with experimental differential cross sections for elastic sc
tering and for fivefold differential cross sections for deuter
breakup in various kinematic situations could be achiev
However, for a more detailed comparison with experimen
data, in particular for polarization observables, more sop
ticated nuclear potential models must be used. For this
son we have performed calculations with the realistic P
potential. First results have been published recently@27,28#.
Here, we present some extended calculations of differen
cross sections and various polarization observables for e
tic pd scattering.

We used the Paris potential in thePEST1form @29#. S and
P waves were included in thepp and thenp spin singlet
channels, and the coupledS-D waves in thenp spin triplet
channel. This leads to maximally 29 coupled integral eq
tions to be solved. The number of total angular momenta
the pd system was chosen so high that stable results fo
observables were obtained. It was found thatJ517/2 suf-
fices for the lower energies, andJ519/2 for the two highest
energies, for the level of accuracy aspired to.

In order to perform the unscreening of the resulting a
plitudes numerically, repeated solution of the integral eq
tions ~35! with and without the nuclear interaction is re
quired, with the screening radiusR increased until the right-

FIG. 8. ‘‘Sagara discrepancy’’ as function of the proton labo
tory energy. Open squares: Ref.@31#, black squares: present calcu
lation.
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hand side of Eq.~39! becomes independent of it. We foun
thatR5625 fm was considered enough for all practical pu
poses. But, as has been intensively discussed in Ref.@22# the
convergence becomes the faster and, therefore, less ex
sive in CPU time to achieve the higher the energy is.

When calculating the effective potentials~34! and effec-
tive free Green functions~32! we have made only one ap
proximation. Namely, as indicated in the explicit expressio
given in the Appendix, we have used the Born approximat
for the pp CoulombT matrix. As has been shown in Re
@30#, when the range of the form factors is of typical nucle
size, this approximation is accurate to a few percent for
energies and scattering angles~in contrast to the atomic cas
where it typically fails by several orders of magnitude!. And
since the Coulomb interaction modifies the purely nucl
pd phase parameters by at most 10%, the error introduce
this approximation is therefore estimated to be well bel
the 1% level.

In Fig. 2 we present differential cross sections for prot
laboratory energies from 2.5 to 22.7 MeV. For comparis
the corresponding results fornd scattering are included. In
spection reveals that very good agreement with the exp
mental data of Sagaraet al. @31# and of Sperisonet al. @32# is
achieved, except at the lower energies where our calculat
slightly overestimate the data. For the vector analyzing po
ers depicted in Fig. 3 the reproduction of the data is mu
less satisfactory. In particular, at the lower energies the m
mum of the vector analyzing power is strongly underes
mated. This is the so-called theAy puzzle which has been
with us for a long time in neutron-deuteron scattering and
also present in thepd reaction as already noted in Ref.@1#.
In spite of a variety of speculations regarding its origin a
remedy~see, e.g., Refs.@35–37#, and references therein!, at
present no satisfactory solution to this problem is availab
But it appears that the failure of the theory to reproduce
experimental maximum disappears at higher energies, a
expense of an increasing discrepancy in the minimum aro
100°. A similar situation occurs foriT11 as can be inferred
from Fig. 4. Experimental tensor polarizationsT20,T21, and
T22 where available are reasonably well reproduced
our calculations as can be seen from Figs. 5–7. For all
servables presented the modifications due to the Coulo
interaction are rather strong at the lower energies but ev
tually become small although not negligible at the high
energy. We mention that our results are rather close to th
of Ref. @2#.

In Ref. @31# it was pointed out that apparently the magn
tude of the experimental differential cross section minimu
differed appreciably from theoretical results. In fact, the re
tive differenceDminª(s theor

min 2sexp
min)/sexp

min was found to be
rather large and positive at low energies, to change s
around 5 MeV and to become negative large at higher e
gies, reaching - 25% at 18 MeV. Explanation of such
strong, and strongly energy dependent, effect seemed t
very difficult. It was therefore suggested that there exi
another real discrepancy, later termed ‘‘Sagara discrepan
between experiment and theory, in addition to theAy puzzle.
This inference was, however, not very compelling as the t
oretical calculations used for comparison had actually b

-
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performed fornd scattering, with only a very rough accou
of Coulomb effects. The existence of such an ener
dependent discrepancy was later corroborated by calcula
employing several ‘‘realistic’’ nuclear potentials but aga
relying on the same approximation for including Coulom
effects @33#. Thus, in both calculations it was ignored th
this Coulomb correction method had already been dem
strated in@23# to be generally unsatisfactory and, in additio
to lead to a rather strong energy dependence of the failur
particular in the cross section minimum. A further attem
@34# to explain this effect byD-isobar induced three-bod
forces ignored Coulomb effects altogether~but gave sizable
corrections particularly for higher energies not conside
here!.

In Fig. 8 we present the relative differenceDmin for the
cross section minimum between our theoretical results
the data of Ref.@31#. Inspection reveals that even with
correct description of the Coulomb repulsion between
protons the ‘‘Sagara discrepancy’’ survives, albeit w
greatly reduced overall magnitude as compared to the ca
lations with improper account of the Coulomb interaction.
addition, the percentage excess inDmin has become only
rather weakly dependent on energy in the range consid
~from 9.3% at 5 MeV to 6.3% at 18 MeV!, in contrast to the
original estimates@31#. It is interesting to note that for al
energies considered, our calculations yield a larger cross
tion minimum than experiment, i.e.,Dmin.0. However, be-
fore drawing any conclusions about the origin of this ov
estimation it should be kept in mind that in particular t
cross section minimum is very sensitive to the finer details
the nuclear force model. Hence, it could well be that in c
culations using higher-rank, and thus better, approximati
of the Paris~or a more modern! potential, the remaining
difference even disappears.

IV. SUMMARY

In this work we have presented the results of our calcu
tion of differential cross sections and polarization obse
ables for proton-deuteron elastic scattering in the ene
range from 2.5 to 22.7 MeV, with due allowance of the Co
lomb repulsion between the protons. The mathemat
framework for rigorously taking into account the lon
06461
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ranged Coulomb interaction in momentum space integ
equations is provided both by the screening and renorma
tion approach@14# and by the investigation of the analyticit
properties of the kernels of the pertinent equations@17,18#.
The former even provides for a practical solution sche
which has been adopted in the present work.

As input for the nuclear interaction we employed t
PEST1version of the Paris potential which is well known
represent an excellent~separable! approximation to the origi-
nal potential. The calculated differential cross sections led
a very satisfactory reproduction of the experimental da
This fact also gives rise to a decisive reduction in absol
magnitude and in its energy dependence, of the so-ca
‘‘Sagara discrepancy,’’ originally described in Ref.@31#. It
even suggests that the latter might cease to exist when m
sophisticated nuclear potential models will be used, provid
due account is made of the Coulomb interaction. For
various vector and tensor polarization observables the ag
ment is not as good, as was to be expected from the fact
a similar lack of agreement is known to occur in neutro
deuteron scattering.

In order to shed some light on the origin of the remaini
discrepancies, calculations with improved nuclear input
called for. Such research is under way.
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APPENDIX

In this appendix we present the explicit expressions
the various contributions to the angular momentum projec
effective potential. The following notations are used:@ l #
5A2l 11, @ l 2#52l 11, lab5ma /(ma1mb)51
2lba , aÞb. Moreover,eab52eba is the antisymmetric
symbol with eab511 if (a,b) is a cyclic ordering of the
indices~1,2,3!. Unit vectors are denoted by a hat,k̂5k/k.
AL
(0,1,2)~qa ,qb8 !5eab

Sa2sb2sgebg
Sb2sa2sg~21!2sg1sb1Sb1J1La1L @ l aLaSaSaJal bLbSbSbJbJ2L 2#

4p

3 (
LaLb

@La~La2La!Lb~Lb2Lb!#qa
La1Lbqb8

(La1Lb)2(La1Lb)lbg
Lalag

Lb2Lb

3A ~2La11!! ~2Lb11!!

~2La11!! ~2~La2La!11!! ~2Lb11!! ~2~Lb2Lb!11!! (
M1M2f

~21! f@M1
2M2

2f 2#

3S La2La Lb2Lb M2

0 0 0 D S La Lb M1

0 0 0 D S M1 l a L
0 0 0D S M2 l b L

0 0 0D
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3H M2 M1 f

l a l b LJ H Sb f Sa

l a J lb
J H La La2La La

Lb Lb2Lb Lb

f M2 M1

J H Sa sa Sb Lb

Ja sg Jb f

La Sa sb Sb

U1J ,

Rmam ,nbn
(0,1,2)L ~qa ,qb8 ;z!5 d̄ab

1

2E21

11

dxPL~x!3
ka

2Lakb8
2LbgLam

JaSa~ka!gLbn
JbSb~kb8 !

z2qa
2/2Ma2ka

2/2ma

, ~A1!

with ka5eab(lbgqa1qb8 ), kb85ebg(lagqb81qa), x5q̂a•q̂b8 .

AL1L2f
(3) ~qa ,qb8 !5dabdSaSb

ega
La1Lb~21!J2sa1Sa1 l a1 l b1L21 f

@ l aSaJal bSbJb fL 1
2L 2

2#

4p
A ~2Lb!!

~2~Lb2 f !!! H l a Sa J

Sb l b f J
3H Sa Ja sa

Jb Sb f J H Jb Ja f

La Lb Sa
J (

w

~2qa! f 2wq8b
wlgb

f

A~2~ f 2w!!! ~2w!!
S w lb L2

0 0 0 D S La L1 Lb2 f

0 0 0 D
3H f 2w la L2

l b w f J S l a f 2w L2

0 0 0 D (
MLa

MLb

C
f MLb

2MLa
LaMLa

LbMLb C
Lb2 f MLa

f MLb
2MLa

LbMLb C
Lb2 f MLa

L10

LaMLa , ~A2!

Rmam ,nbn
(3)L1L2f

~qa ,qb8 ;z!5dabd̄a3

1

8p2E21

11

dx2PL2
~x2!Vg

(R)~Da8 !FLamLbn f
JaSaJbSb~qa ,qb8 ;z! ~A3!

with

FLamLbn f
JaSaJbSb~qa ,qb8 ;z!5E

0

` dkk21Lb2 fgLam
JaSa~k!

z2qa
2/2Ma2k2/2ma

E
21

11dx1PL1
~x1!gLbn

JbSb~ uDa1ku!uDa1ku2Lb

z2qb8
2/2Mb2~Da1k!2/2mb

. ~A4!
ta
sio
tia
fo

o-

al-

ed

ntial
-
t
be
Here

Da85qa2qb8 , Da52lgbDa8 , x25q̂a•q̂b8 , x15q̂•D̂a .

In order to increase the numerical accuracy it is advan
geous to extract, in the deuteron channel, from expres
~A3! the pure screened center-of-mass Coulomb poten
For this purpose we only have to take into account that
n5m andqa5qb8 , i.e., Da5Da850, the only nonvanishing
element of expression ~A2! is AL1L20

(3) (qa ,qb8 )

5dL10dL2l a
/4p. Hence, in the deuteron channel we intr

duce forqa5qb8 the short-hand notation

FLamLbn0
JaSaJbSb~qa ,qa ;z!516p3F̄JaSaLamn~qa ;z!, ~A5!

with

F̄JaSaLamn~qa ;z!

55
1

~2p!3E0

` k2dkgLam
JaSa~k!gLan

JaSa~k!

~z2qa
2/2Ma2k2/2ma!2

deuteron channel,

0 elsewhere.

~A6!
06461
-
n
l.
r

The requirement that the deuteron wave function be norm
ized to unity implies(LamnF̄JaSaLamn(qa ;Ea)51. Conse-

quently, expression~A3! for R(3) can be rewritten as

Rmam ,nbn
(3)L1L2f

~qa ,qb8 ;z!

5dabd̄a3H 4pF̄JaSaLamn~qa ;z!VgL2

(R) ~Da8 !

1
1

8p2E21

11

dx2PL2
~x2!Vg

(R)~Da8 !

3@FLamLbn f
JaSaJbSb~qa ,qb8 ;z!216p3F̄JaSaLamn~qa ;z!#J .

~A7!

Here, VgL2

(R) is the partial-wave projection of the screen

Coulomb potential. Thus, Eq.~A7! is in a numerically con-
venient form: the screened center-of-mass Coulomb pote
which in the limitR→` gives rise to the troublesome ‘‘Cou
lomb singularity’’ is explicitly extracted in the simple firs
term, while in the second term which in general has to
3-12
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computed numerically the latter does not longer occur. As
additional bonus the decomposition~A7! provides us with
the possibility to use the same set of coupled equations~35!
to find screened center-of-mass pure Coulomb scattering
plitude. One simply has to switch off all nuclear interaction
keep as effective potential only the first term of Eq.~A7!,
.

.

06461
n

m-
,

and replace the effective free Green functionD̂
LgnL

g8n8

(R)JgSg (E1

2qg9
2/2Mg) by the free ‘‘proton-point deuteron propagato

1/(E12Bd2qg9
2/2Mg), where Bd is the deuteron binding

energy.
Finally,
AL1L2f
(4) ~qa ,qb8 !5ega

La1Sa2sb2sgebg
Lb1Sb2sa2sg~21!J1Sb1sb12sg1 l a1Lb1 l b1L21 f

3
@ l aSaJaSal bSbJbSbL 1

2fL 2
2#

4p

A~2Lb!!

@2~Lb2 f !#! H Sa sa Sb Lb

Ja sg Jb f

La Sa sb Sb

U1J H Sb f Sa

l a J lb
J

3(
w

~2qa! f 2wq8b
wlgb

f 2wlga
w

A@2~ f 2w!#! ~2w!!
S w lb L2

0 0 0 D S La L1 Lb2 f

0 0 0 D H f 2w la L2

l b w f J S l a f 2w L2

0 0 0 D
3 (

MLa
MLb

C
f MLb

2MLa
LaMLa

LbMLb C
Lb2 f MLa

f MLb
2MLa

LbMLb C
Lb2 f MLa

L10

LaMLa , ~A8!

Rmam ,nbn
(4)L1L2f

~qa ,qb8 ;z!5 d̄abdg3

1

8p2E21

11

dx2PL2
~x2!E

0

`dkaka
21Lb2 fgLam

JaSa~ka!

z2qa
2/2Ma2ka

2/2ma

3E
21

11dx1PL1
~x1!v (R)~ka8 ,ka ,x1 ,k̂a8•q̂!gLbn

JbSb~ uka1qu!uka1qu2Lb

z2qb8
2/2Mb2~ka1q!2/2mb

, ~A9!

where q5(2lgbqa1lgaqb8 ), ka85(qb81lbgqa), x25q̂a•q̂b8 , x15 k̂a•q̂, and v (R)(k8,k,x,y)

51/A(k821k212k8kxy11/R2)224k82k2(12x2)(12y2).
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,
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