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Mean field study of the quadrupole-octupole degree of freedom in thepdf boson model
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We present a mean field study of the quadrupole-octupole degree of freedom in collective nuclei within the
framework of thespdf-boson model. For realistic choices of the Hamiltonian parameters, the ground state of
the system is shown to remain axially symmetric, which considerably simplifies the mean field treatment. The
critical point for the onset of octupole deformation in quadrupole deformed systems is identified in the
parameter space and importance of the parity projection in this process is emphasized. A systematic survey of
excitation energies and electric transitions for one-phonon states is given, which will provide useful guidance
for detailed studies of negative parity states within $fpad -boson model.
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. INTRODUCTION r3Ys,, the dipole collectivity embodied by the boson is

. ] ) ) not associated with'Y,,,, which corresponds to the spuri-
The low-lying negative parity states in even-even collec-o,s center of mass motion. Rather it arises from coherent

tive nuclei are described in terms of the octupole degree of,any-hody correlations in the intrinsic wave function under
freedom(see Refs[1-3] for reviews. From the early stages, strong quadrupole and octupole fields].

the octgpolg degree ?jf Tg&dorz hbas beer|1. incorppralted in the Application of the ensuingpdf-IBM formalism has been
interacting boson mode ) [4] by coupling a single oc- limited in practice due to a number of problems. The first is

tgpolg,f bos_on to thgsd—boson systenis]. Becauge of s the excessive number of parameters in the model; the most
simplicity, this formalism has been very popular in applica-

tions of the IBM to negative parity states and continues togenerglspdf—lBl\/! Hamiltonian W|th'one- and Fwo-body n-
provide a useful framework for analysis of octupole vibra- teractions contains 53_terms. Thls_ dras_tlc increase in the
tions in deformed nucleisee Refs[6—8] for systematic number of parameters is accompanled with a reduced sgt of
studie$. However, due to the weak coupling assumption in-2vailable data for negative parity states. Thus for practical
herent in the truncation of the basis to a sinfteson, it is applications, it is essential to find a much reduced parameter
limited to a description of octupole vibrations and the for- Set that still describes the basic features of octupole excita-
malism needs to be extended to a fetl f basis for discus- tions. This is a physics problem that requires finding a mini-
sion of octupole deformations. mal Hamiltonian and relating its parameters to spectra so that
In a parallel development, the necessity of includimng an intuitive understanding of trepdf-IBM at a level similar
bosons in description of octupole deformed systems was ente that of thesd-IBM is achieved. In this respect, a mean
phasized in several studies from very different perspectivedield analysis of thespdf-IBM would be very useful. Such a
From the point of view of dynamical symmetries, the sym-study has been carried out previously using theé3ihtrin-
metry group of thesdf-boson system (13) does not contain  sic states with a quadrupole-plus-octupole HamiltoriE.
SU(3), the limit associated with deformed systems, butHowever, problems with self-consistency, lack of single-
U(16) of the spdfboson system dod$8]. In the SUJ) limit boson energies and enforcement of the(Blparameters
of thespd fIBM, the p andf bosons are treated on an equal limits the utility of this study for the above purpose.
footing and have degenerate energies. Further evidence for A second problem in application of trepdfIBM arises
inclusion of p bosons emerged from microscopic studiesfrom the diagonalization of the Hamiltonian in the falbd f
where both the positive paritg-D and negative parity?-F space, which is too large to carry out without truncation. This
pair structure of the nuclear wavefunction were analyzeds more of a technical nature and can be overcome using
[10,11. The probability of theP pair was found to be com- angular momentum projected mean field the[d$], which
parable to that of th& pair in deformed actinidegll]. Fi-  leads to a M expansiorf17,18. However, because projec-
nally, phenomenological studies revealed that using thd&on is quite a laborious procedure, a simpler strategy would
spdfIBM resulted in an improved description of negative be to first study the general features of the model using the
parity states, especially in regions of strong octupole collecmean field theorywithout projection, and then perform an-
tivity [12—-15. For exampleE1 transitions in Ba isotopes gular momentum projection for the purpose of detailed com-
could be described well only with the inclusignbosons parisons with spectra.
[14]. It is important to emphasize that while the quadrupole Due to their hindered accessibility, data on octupole exci-
and octupole collectivities represented by thandf bosons tations used to be quite meager compared to the quadrupole
are with respect to the single particle operato%zM and ones. This situation has changed dramatically in recent years
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with the a}rr.ival of they—ray arrays. The negative-parity spec- - gdﬁd+ Spﬁp+ sfﬁf— KzQ O- Klb D- K3()‘ 0,
tra in actinide nuclei Rn, Ra, and Th have been greatly ex- 3
tended using they-ray arrays Eurogam and Gammasphere

[19-21]. These new data, in turn, provide fresh challengesvhere the quadrupole, dipole, and octupole operators are de-
for collective models, for example, description of the conjec-fined as

tured transition from octupole vibrational to octupole de- _ _

formed shapes in actinidd®2]. Another challenge for the  Q,=[s"d+d"s]?)+ y4[d"d]{?

theory is to accommodate th€”=3" band in the same L _ _
energy regime{ 1.5 MeV) as the other one-phonon bands. + X Axp PTT+ D1+ x [P 1+ X[ 11102},
Due to lack of observation, th€™=3" bands in deformed ~ ~ 3 L
nuclei had been assumed to lie at much higher energies iD,=[s"p+p's]V+ y,[d"p+pTd]V+ xi[d T+ 7]V,
previous systematic studig6—8|. The recent observation of

this band at 1571 keV in®®y [23] calls for re-examination @& —[sf+ £18])+ x4[d"p+pTd] P+ yo[dF + 1A,
of these IBM fits to the negative-parity bands in rare earths (4)
and actinides.

In this article, we present a general mean field analysis o€ompared to the three parameters ofskldBM (1), (2), the
thespdf-IBM that provides an intuitive understanding of the spdfIBM Hamiltonian (3), (4) contains 14 free parameters
qualitative features of the model. This first step will be fol- (herey_ is not free but introduced for convenienc€learly
lowed in future articles by quantitative calculations with an-this is still too many, and a further reduction in the number of
gular momentum projection, where detailed description ofparameters is desirable. The subset of the parameters are
nuclei with enhanced octupole correlations will be at-well known from previous studies, e.g., in deformed ac-
tempted. tinidesk,~20 keV, yq~—0.9[0.7 times the S(B) valug],
and e4~1.5N«k, [24]. Therefore, in the following we con-
centrate on the other parameters introduced by ple
bosons. There is sufficient data on octupole excitations to
A. Hamiltonian determine its coupling strengtky and energye; . The situ-
ation with respect to thp bosons, however, is more compli-
ated. There are ni=1" bands that one can clearly iden-

Il. FORMALISM

The general Hamiltonian in thepdfIBM contains too
many parameters to be useful in practical applications. Tq ) S ; .
come up with a simpler Hamiltonian that still contains the(.t?”(y as dipole excitations.(Recent data in Nd isotopes

. - ndicate existence of a second setkkof 0~ and 1" bands at
basic physics of the auadrupole-octuple degrees of fredf RS PECTE M Seond sevchl 2iet B

tion, a standard form for thed-IBM Hamiltonian has been tions[25]. However more work is needed to eliminate alter-

eacned Tl conans it ooson eneroy fem and the [0S SPSTALETS A1 Sl e oiteress o s
guadrupole interaction P ’ 9 P ’

has been a common practice to take the dipole parameters
Ho=e e x.0.0. 1 same as the octupole ones, i.€,= €t and.K.l:K?:. On an-
sa= £aNa~ K2Q-Q @) other extreme, the boson has been identified with the giant
R dipole resonanc¢26], which putse, around 15 MeV. In
Hereng is number operator fad bosons, and the quadrupole view of these uncertainties, we take a more flexible approach
operator, here. Rather than choosing some arbitrary values, we study
sensitivity of theE1 and other properties to variations ¢p
Aot Ate1(2) +31(2) andk; to see if the available data can be used to restrict their
=[s'd+d's], "+ xq[d'd]}", 2 " ! . . .
Q=L 1 xdddly @ range. The only condition we impose in this study is that

. ) N . €p> €; and k1< kg, in line with the stronger octupole collec-
is also used in th&2 transition operator, i.eT(E2)=e,Q, tjvity.

Whereez is the boson effective Charge. The tilde on a boson The remainingX parameters are very sensitive to inter-

operatorb,,, denotesb;,=(—1)™b,_,. The Hamiltonian band transitions and are best determined by them. For ex-
(1) contains all the dynamical symmetry limits of the IBM ample, the quoted value gf; follows almost uniquely from
and describes both spherical and quadrupole-deformed nthe y— groundE2 transitions. Since there are not sufficient
clei. data to determine all thg parameters in this way, they have
The above consideration suggests that a minimal descriggeen chosen more or less arbitrarily in the past with some
tion of the octupole degree of freedom could be obtainedyuidance from the S(3) limit (see Table). While the SU3)
using thef-boson energy term and the octupole interactionlimit provides a useful benchmark for quadrupole deformed
Increasing the strength of the latter, one can induce octupoleuclei, it is not at all clear whether this can be extended to
deformation as in the case of tlsal-IBM. Extending this  mixed parity systems. In the following sections, we will seek
argument top bosons, we propose the following minimal alternative parametrizations farwhich are physically more
Hamiltonian for thespdfIBM that has already been used to appealing.
describe the negative parity states in the actinide region The explicit form of the Hamiltoniari3) is cumbersome
[13,17 for the purpose of calculating the energy surface as it leads to
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TABLE I. The y parameters in the quadrupole, octupole, and 1
dipole operatorsy is obtained by multiplyingy with the C-G co- IN,x)=—=(b"HN0), b'= 2 X|mb|Tm, (€]
efficient given in the third column. Unless otherwise stated, the VN! Im
arameter values given in the last column are employed in all the . . .
Ealculations. g e wherex,,, are the mean fields that are to be associated with
various deformations of the system. The conden&jteon-
SU@B) adapted tains a mixture of even and odd parity terms and, therefore,
X C-G Y Y does not have a good parity. States with good parity can be
obtained using the projection operator
X4 —\J712 —\2I17 12 0.5 1
Xpf —2\715 —3r7 2\3/5 2y3/5 P.=5(1+7P), 9
Xp 3.3/5 V213 3y2/5 2\2/5 2
X :/526/_/?3 722/‘//2—\/1% ;\/‘@2 2\/\/32 where = *1 is the parity quantum number arfd is the
X? parity operator. UndeP, boson operators transform as
X5 21\5 J3/5 23/5 2,215
X1 -2h5 —\2/5 2\2/5 2\2/5 Pbl,P=(-1)'b]l,, (10
X4 J21/5 34/35 3J3/5 3\3/5
henceP acting on the condensa(8) gives
— ’ o |
a very lengthy expression. For notational convenience and PINX)=[NX"), Xj= (= 1) Xim. 1D
compact results, it will be handy to introduce a generalized, . . . —
bosopn systenb 1=0.1.2.3 y with a genericg Hamil- qumg Eqgs.(9) and(11), we obtain for the parity projection
tonian m> e of the condensatés)
1 . N ; N
~ P_IN,X)=—— Ximb + X/ b 0).
H:2| 8|”|—; KkT(k)'T(k), (5) 7-r| > ZW[(% ImPIm T % Im Im) | >
(12)

where the boson number and multipole operators are giveBinomial expanding the even and obgarts in Eq(12), it is
by easy to see that forr=+1, it has an even number of odd-
parity bosons, and forr=—1, it has an odd number of odd-
- parity bosons. Note that while the condens@geis normal-
_ + k) _ 1 (K
“I_zm: blmbim, T )_; L b; by]%. ©) ized, this is lost after parity projection. Usir@f P, the
normalization of the projected stat&2) is given by

Here the multipole parameters satigfy; =t,,; from hermi- 1
ticity. The correspondence betwegf and they parameters A, =(N,x|P_|N,x)= E(x-x)"‘(1+ atN),  r=x-xIx-X.

in Eq. (4) follows from a comparison of operators, e.gg (13
=1, tyo=x4, t110=x1, €tc. The parity of the multipole

. . . _ k . .
terms in Eq.(5) is restricted tor=(—1)", which are physi-  Herer gives a measure of the mixing between the even- and
cally the most important ones. Fbr-1,2,3 anck=1,2,3 the  oqq-parity bosons. Far=1, the ground state corresponds to
Hamiltonian (5) is equivalent to that of Eq(3). As in the 4 condensate of the even-parity bosons only. With decreasing
sd-IBM, we choose the electric transition operators consisy mixture of the odd-parity bosons in the condensate in-

tent with the Hamiltoniar(5), (6), i.e., T(EK) =&, T creases, becoming an equal mixturerat0. With further
We also introduce a dimensionless parameter set that r@aquction inr, the odd-parity bosons start dominating the
flects the dominance of the quadrupole interaction condensate, reaching the opposite limit of a condensate of
the odd-parity bosons at=—1. Thus for weakly coupled
m=€/Nky, {=xrilks. () octupole vibrations ~1, and the limitr —0 corresponds to

the onset of stable octupole deformation.
This way one can factor ot and «, from the energy ex-
pressions, and the latter can be determined from_ the qverall C. Energy surface and axial symmetry
scale of the spectrum. The above parametrization will be o _ )
particularly useful in discussion of shape-phase transitions |he €nergy surface of the Hamiltoniah) with parity
and systematic studies of observables because the results vRfic/ection is given by
be independent ol and «». 1
E.(X)= ./\7<N'X|H P.IN,x)
B. Intrinsic state and parity projection 7

The ground state of a generalized boson system | =i[(N,x|H|N,x)+7-r<N,x|H|N,x’)]. (14)
=0,1,2,3... can bewritten as a boson condensgfY] 2N
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The matrix elements in Eq14) can be evaluated using bo- [
son calculus, yielding 100 ]

N2K2 [
E (X)= ———————{(X-X) 2, 7| Xim|? 05 ]

(1+7rrN)(x-x)2| o 7P| ;

N—1/_ 1)l i
X[1+7r (=1)] 2 0.0F ]

DY - =1
_2 5k[|Ak,u|2+7TrN 2|Ak#|2]Ja (15 0.5[ & Axial symmetry ]
(37 :

where we have used the dimensionless parameters intro- p 03

duced in Eq.(7). The quadratic forms\,,, in Eqg. (15) are s p
defined by S U B
-1.0 -0.5 0.0 0.5 1.0
Akﬂz%‘zﬂ (iminfk) (= 1) "ty XX -, (16) x-

FIG. 1. Regions of axial symmetry in trepdfIBM parameter
space. The lines, from top to bottom, correspond to fixed octupole
strengths with{3=«3/x,=0.1, 0.4, 0.7, and 1.0, respectively. For
parameter values below each line the boson system remains axially
symmetric while above the line it becomes nonaxial.

andA{szkM(x,x’). In deriving Eq.(15), we have ignored

the 1N correction terms in the two-body part in the spirit of
the large N interpretation of the energy surface. This is
equivalent to using the normal ordered forms of the multi-

pole interactions. The result without parity projection can becorrespond to different values 6= x5/ x,, which is varied

obtaingd from Eq..(15) by ignoring the parity projected from 0.1 (top line) to 1.0 (bottom ling in steps of 0.3. The

terms, €., by set.t|r'1gr=0. regions below the lines correspond to parameter values lead-
Finding the minimum of the energy surfa¢es) for a ing axially symmetric mean fields. Thus, as long @sis

general condensate is a rather difficult problem. In th egative, the system remains axially symmetric, regardless

spd+IBM, there are (21 +1)=16 mean fields which o¢ipe e parameters. Notice that with increasiagthe
could, in general, be complex. In order to mgke progress, 't.'ﬁnes quickly converge towardgs=0 line, andy_ has a
'ﬁ(s)igrtg)?lo:)?errﬁdl'jscii;h:yg%rg?s z;)r]: dmsﬁ;lsiféild;réznt]zem\;ar_'%;ather marginal effect on the results. As seen from Table |, a

X s o " hegativeys value naturally occurs in the limit. In the
start with, we can setyg,=1 from the normalization condi- 9 X3 y 38)

. . . following, we will stick to the negativeg; values and present
tion. Unll_ke t_he q“?‘dfPPQ'e deformatlon,_there aré no spacq, o reasons in the next sections why this choice is more
symmetries in the intrinsic frame for a mixed parity system.

The only other symmetry one can invoke is time reversa physpal as well as bemg more conven.|ent. .

. . B Mo : " While our focus in this work is on axially symmetric sys-
Wh'Ch glvesx,m—(—;) X|"m- This reduces the numbe'r of tems, Fig. 1 also indicates that nonaxial shapes can be easily
independent mean fields by h_alf to three reg) and siXx  ,piqined in thespd fIBM using the basic Hamiltoniar3)
complexx;, with m>0. In fact, in all our test runs the real with positive y values. This in contrast to thed-IBM
Where introduction of higher order interactions is necessary
in order to induce nonaxial shapes.

. . ) The proof of axial symmetry brings in an enormous sim-

From experimental observations, axial symmetry appearsjisication to the mean field problem, which we exploit in the
to be maintained to a good approximation in the grouncks|;oying to get a better understanding of the model param-
states of deformed nuclei. In ts8HIBM, axial symmetry is  gterg The ground state of the boson system is still given by
well known to be preservel@7], and we expect that this will 0 condensatés) but with the sum restricted to the=0
also hold true in realistic cases of ts@d+IBM. We have yormg only. Henceforth, we will suppress the 0 subscript for
che_cked this conjecture using the explicit form' of the Hamil- ., enience and denote the mean fieldschyWhen x, is
tonian(3). The energy surface of the Hamiltonié®) can be ot 15 1 from normalization, it is customary to denote the
wo_rked out from the EXpressions given in EGES) ar_ld_(16) remaining mean fields bg,=x,. We follow this practice in
by inserting the appropriate Clebsch-Gordan coefficients. Falis work. It should be noted that the IBM deformation pa-

a given parameter set, the a}bsolute.m|n|mur_n of the energ ametersB, are different from their geometrical model coun-
surface is determined numerically using the simplex metho rparts. Since they represent only the deformation associ-

"’!”d the nqture of the solutio(!ise., whether axjally SYMMet- e with the valence nucleons, they are typically a factor of
ric or noy is noted. We consider variations in three param-5_, larger than the liquid drop valug27]

eters that are expected to play a role in octupole deformation,
namely,xs, x3, andy_ . The othery values are taken from
Table | and for the rest we usg;=15, 7,=1.5, #3=3,
£,=0.1. The results of this study covering a wide range of For axially symmetric systems, the variational problem
the parameter values are summarized in Fig. 1. The linefor a given multipole interactionH, = — i, T®.T® s

with the observation28] that only real mean fields are
needed in the intrinsic frame.

D. Eigenmode conditions
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equivalent to the eigenmode condition for the operdtét.  of octupole over dipole collectivity, the §B) values lead to
Hence, the effect of a particular multipole interaction on thex;>x3. Amore realistic parametrization that we adapt here is
intrinsic StatebT, which is not so easy to surmise from the obtained by S|mp|y interchanging the Va|uesx(afandxf in
energy surfac€l15), can be simply obtained from the eigen- Taple I, which gives the same,_ but with the mean fields
mode condition defined by interchanged, that i&_=(0,0,4/2,13). In general, one can
[TEO bT=x,b' 17 always sety_=\,, /\,_ in the quadrupole operat@d) so
0 K= that sd and pf sectors simultaneously satisfy E@O0). In
Using Eq.(6) in the commutator one obtains an eigenvaluerea"StiC parametrizations, howeve(D,'Q interaction alone
equation for the mean fields should lead to a quadrupple d_eformatlon onIy._ qu the quad-
rupole parameters used in this warkable ), this imposes
— the condition|y_|<0.9.
> g =N (18) Next consider the eigenmode condition for the octupole
. operator, which leads to the eigenvalue equation

The eigenvalues. correspond to the extremum values of

the energy surface, given g, )= — NZ)\ﬁ to leading order 0O 0 0 1

. Xo Xo

in N. Here(and on they parameters, see Tablglar denotes - —

Clebsch-Gordan weighted parameters, that is, 0 0 Xz xa||x _\ X2 (22)
. 0 x4 0 0]|x 3oxy |
tyji=(jOI0[KO)ty;, . (19 -

1 y; 0 O X3 X3

We consider the eigenmode condition for each of the mul-
tipole operators in Eq4) to see their effect on the conden-

sate. For the quadrupole operator, Efg) can be written Notice that the structure of E(R2) is completely opposite to

that of Eq.(20), with zero block diagonal terms and nonzero

explicitly as off diagonal terms. This leads to a mixing of positive and
negative parity mean fields in the intrinsic state which was
0 1 0 0 X X . . : . LT
_ 0 0 not possible with @ - Q interaction. The discriminant of Eq.
T xa 0 0 1fx, X2 (22) is quadratic in\3
— — :)\2 y (20)
0 O Xp pr Xl Xl
0 0 or il |% X3 N (G xsi+ DN+ xs2=0, (23

where we have sey_=1 for simplicity and grouped the \\hich has the solutions
even and odd parity mean fields separately for clarity of
demonstration. The block diagonal form of EO) shows
that theQ- Q interaction does not mix the positive and nega-
tive parity bosons. In general, there are two solutions of Eq.
(20), one associated with the positive parity mean fields and
the other with the negative parity ones

1, — — —
N=5 D+ xs" 1= VOG+ X3+ 1)2—4x32],

[ M1 (G-
1 — = y —— 1 —
o+ =5lxa* Vx3+41, x,=(11,,0,0), X3 X3h3

DI (24)

1 - Using the SW3) values from Table | givesk§:(9
M- =5xpt X1 N (Xp—Xx0) "+ 4xpil, +/33)/10=1.474 andx=(1,0.839,0.478,1.214). Thus the
octupole interaction leads to an enhanced octupole deforma-
_ T tion as expected. Unlike in other cases, the(@Uensor
X-=(0,0,1(A2— = xp)/ Xp1), @D operator here results in irrational eigenvalues, and further the

wherex=(Xq,X»,X;,X3) as above. For a prolate shape, thatpd coupling is stronger than thid coupling (y3> x3). In

we assume in this work, the signs in Eq(21) minimize the  the realistic se{Table ), we interchange these two values
energy and maximize the quadrupole momege below.  which sorts out both of these problems, givi)q@: 8/5 and
When\;,>\,_, the ground state is a condensatesaf  x=(1,,/3/2,,/3/20,J/8/5). Note that forys<0 (x3>0), the
bosons, and when, . <\,_ itis a condensate gff bosons.  mean fields in Eq(24) are coherent with those obtained from
The case\,, =\, corresponds to the critical point in be- the quadrupole interaction, which reinforces the axial sym-
tween. We have chosen the relative scale factor inthe  metry in the combined Hamiltonian. Positiyg values, on
sector of the S(B) quadrupole parametef$able )) such that  the other hand, lead to conflicting signs in the mean fields,
Ao =X,_ =12 in this limit. Then, an arbitrary combination giving rise to the nonaxial shapes.

of the solutions<, = (1,1/2,0,0) andk_=(0,0,/3,y2) satis- Finally, the eigenmode condition for the dipole operator
fies Eq.(20). Note that contrary to the expected dominancegives
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0O 0 1 O X X effect on the quadrupole moment itself, the resulting mean
R — 0 0 fields lead to cancellations in the octupole moment, reducing
0 0 x1 xi||x X2 the effectiveness of the octupole interaction. The choice of
1 y, 0 O X1 X1 negative s (x3>0), required for axial symmetry, is also
— X X seen to maximize the octupole moment.
0 x; 0 O s 8 The static moment associated with a particular multipole

interaction T. T® follows trivially from the eigenmode

The structure of Eq(25) is very similar to that of Eq(22), condition (18) as

and one obtains the same equation Xqras for\3 in Eq.
(23 ywth all the sub_scnpts 3 replaced by 1. The mean field To=NA=NB,, (29)
solutions are thus given by
1 where B8,=\\ used in the last step follows from EqR1),
N2=Z 324 24 1+ (24 2+ 1)2— 4y 2], (24), (26). Thus the static moments are simply proportlona'l
=3t \/(Xl 't =4 to the corresponding deformation parameter when the Hamil-
o tonian is restricted to a certain multipolarity.
NM—1  xi(A2-1) With parity projection, the multipole matrix element in

X=| l—=—\,—= (26)  Eq.(27) becomes
X1 X1Mh1
Substituting the S(B) values above, we obtamf=9/5 and k" =[NaN] 1/2<vi|Pngk)Pw'|NvX>
x=(1,/2,31/5,/6/5). Compared to the octupole interaction, [14(—1)kma']
the dipole interaction leads to a more even distribution = [(NXTEIN, %)
among the various deformations. AN N

The mean field solutions obtained from the eigenmode () /
conditions clearly demonstrate the basic incompatibility m(NXTo?[N.x")] (30

among the various multi_pole interactions. For examp_le, iNeor = 7', Eq. (30) gives essentially the same result as Eq.
the quadrupole S(3) solutionsx;>Xo andx, >x3, Which is  >7) tor even multipoles, but it vanishes for odd ones. To

opposite to that obtained in the octupole (SUcase. Thus  giscyss the odd-multipole moments, one can either use Eq.

mixing of the two quadrupole solutions, and x_ in a (27) or introduce transition moments by
guadrupole-plus-octupole Hamiltonian, as is done in Ref.

[16]_, cannot yield a consistent solution for the mean fields. T =[1-rN]" 21, (31)
While independent variation of three mean fields is consid-

erably more complicated to handle analytically, this can bevhereT,, are given in Eq(28). When there is a substantial

easily achieved using numerical techniques. mixture of odd-parity bosons in the ground state1, and
the two results are seen to merge. We will consider both
E. Multipole moments options in discussing octupole moments.
In the intrinsic frame, the static moment associated with a
mu'tip0|e Operatoﬂ'(k) iS given by I1l. SHAPE-PHASE TRANSITIONS
(k) Shape-phase transitions in tlse-IBM has been well
(N, X|TEYIN,x) — T . ;
TKOZ—ZNE tjiXiX - (27) studied in earlier work$27,29. For comparison purposes
(N,X|N,x) il we summarize the results for spherical to quadrupole-

) deformed shape transition here. The energy surface of the
In terms of the mean fieldgs=(1,81,82,83), the quadru- Hamiltonian (1) is given by
pole, octupole and dipole moments have the particular forms

2 2\ 2
N _ _ _ _ _ 2. | 12B2 2B2+ xaB2
Qo= (282 XaB3+ X (2xpiB1Bst XpB+ XD, EedB)"Nwa T\ T || 32
2N o . where 7, was introduced in Eq(7). Variation of Eq.(32)
OOZH[BB+X3BZﬂ3+Xéﬁlﬁ2]! with respect tg3, gives a fourth degree polynomial equation

N _ Bal ma(1+ B3) —2(2++ xaB2) (1+ xaB2— B3)]1=0.
Dozﬁ[31+Xll3132+Xiﬁzﬁ3]- (28 (33

. o ] . _The critical point for the phase transition from spherical to
There is some arbitrariness in the choice of phases in thgyadrupole-deformed shape is given by

SU3) limit. We have fixed the signs of the parameters in

Table | such that all the terms in E(R8) add coherently to

yield the maximum moments. For example, in most previous Na=4+x5, Of k= =
work the opposite sign fog,; was used. While this has no N(4+ xg)

€d

(34)
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At the_critical point, the sphericald,=0) and deformed N2k, . 5 )
(B2= x4/2) minima coexist, both having the energy=0. Esai(B2.83) = (1+B2?+53?)2[(1+ﬁ2+ﬂ3)(7’2'82+ 73P3)
Note that with angular momentum projection, one obtains

the same leading order expression for the energy surface as —(2Bo+ xaB3+ x1B3)?— 4¢5(Bs
in Eqg. (32) [30]. Thus restoration of the broken rotational o
invariance causes only a small change of ordé it the + x3B8283)%]. (37)

shape-phase diagram. ) o )
As shown in Ref.[31], shape-phase transitions in the Setting the derivatives dEqs with respect toB, and 35 to

sf-IBM are very similar to those in thed-IBM if one ig- ~ Z€ro, we find for the extremum conditions

nores parity projection. For a Hamiltonian consisting of one- > 5 5 ) -

body energy and octupole interaction, the critical point for B2(1+ B2+ B3)[ 72+ (72— 73) B3] —4{3B3(1+ x3B2)

the onset of octupole deformation occurs = e;/4N, — 2 2 — o, — 5

which is the same as E@4) if we setyy=0 (the difference XIxa(1= B2+ B3) =221 = 2(2B2+ xaB2+ X1/3)

. ¥ . —_ _

is due to the lack _qf g'f term in the octupolg operator X[ (14 xaBa)(1+ B2 — Ba( o+ x1BHDT=0, (39

because it has positive parityThis well-known picture for

shape-phase transitions, however, completely changes after

2, 2 B 24 PRY
parity projection(PP), with the critical point moving toxs Pal (11 B2+ B[ nat (13— 12) B2l = 4La(1+ XaP2)

=0 [31]. In the following, we generalize this result to the X(1+ B2— B2)+2(2B-+ v.B2+ v. B2
sdf- andspdfIBM. That is, we show that the onset of the (157~ B3)+ 2(2B2* Xab2+ x1h3)
octupole deformation is immediate in the presence of any X[232+;dﬁ§—;f(1+ﬁg)]}=0- (39

octupole strength£;# 0) regardless of whether the system
is quadrupole dgforme_d or not. For this purpose we use thRlote that Eq(39) has the formB;(C,85—Co)=0. Thus it
axially symmetric version of the energy surfadé), which  has either the trivial solutiof8;=0, in which case the en-

can be written as ergy minima correspond to those Bf4 as discussed above,
or B§=CO/02, which could lead to an octupole deformed
E+(B1.82.83) minimum. Substituting this value o83 back in Eq.(38)
N2 3 Ie:i\lds to an 8th dr(]agree p(r)llynomial equatil(l)rﬁm which (\j/ve
_ 2 ) 2 N—1/_ 1, will not pursue here. What we are really interested in is
B (1+ 7rV)(x-x)? [ (X X).; mpill+ (=1 finding the critical point for the onset of octupole deforma-

tion, which can be determined without explicitly solving for

5 N_2n12 5 5 B, and 8. At the critical point, the octupole deformed solu-
= (At 71 “Agg) — {1AT— {3A%1 (39 tion coexists with the vibrational ongg¢=0) with a vanish-
ingly small B3. Thus the condition for criticality is simply

where x=(1,81,8,,83) and the dimensionless parametersglven byCo=0, which can be written from Eq39) as

introduced in Eq(7) are employed. The quadratic forms in

— 2 2_ 2 o 2
Eq (35) have the explicit forms CO_(1+:82)[772B2 773(1_'—:82)—’_453(1—’_)(3:82) ]

R L —2(2B2+ xaB3)[2B2+ xaB3— Xx1(1+ B5)]=0.
Axo=2B2+ xdB2+ X - (2XpiB1B3T XpBit Xi1B3), (40)

A= 2/31+2;1/31[32+2;£/32,33, thing Eq.(33 i|_1 _(40) to eliminate the_r;z term_gnd reverting
ack to the original parameters, this condition can be cast
_ _ into a physically more transparent form
Azo=2B3+2x3B1B2+ 2X3B2B3, (36)
ky= | (1 B+ By x1) (2B2+ xaD)
with Aj=Ay(—x-). Note thatAj;=Aj=0 because the > (1+y58,)2/4N 2T P2 XPLEP2T XaP2) |-
hermitian conjugate of each term contributes with an oppo- (42)

site sign in odd-parity operators. -
For 8,=0, the condition(41) reduces toxs;=€;/4N, con-

sistent with thesf-IBM result. For realistic values of param-
A. sdf-IBM eters B,~1), the presence of the quadrupole deformation is

We first consider thesdf-IBM both because of its rel- seen to shift the criticak; to larger values, thus retarding the
evance p boson is presumably weakly coupjeghd also for onset of octupole deformation further compared to the
convenience(analytic solutions are still possible with two spherical case.
mean fields but not with threeThe energy surface in the Before proceeding with the parity projected case, we re-
sdf-IBM follows from Eg. (35) by settingB,=¢,=0 and mark that the same result can also be obtained by expanding
x-=1. Without PP r=0), this energy surface further sim- the energy surface arourgt=0 and examining the coeffi-
plifies to cient of theﬁg term. This method will be useful in compli-
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cated cases where manipulation of the extremum equationsi °° ' ' '
substantially more difficult. Expansion &4 in Eq. (37)

gives 061

Esa( B2.83) = Esd( B2) —N?k,Co(1+ 83) 263+ -+, < o4

(42)
0.2}

whereEgy andC, are defined in Eq9.32) and(40), respec-
tively. We see from Eq(42) that for C;<<O the energy sur- 0 . .
face is stable aB;=0 and there is no octupole deformation 0 ] e
(in the above discussion, this corresponds to the segand
solution becoming imaginayy Conversely, forCy,>0 the FIG. 2. Shape-phase diagrams depicting the onset of octupole

energy surface becomes unstableBagt=0 and the system deformation in the presence of quadrupole deformation with PP
becomes octupole deformed. Cleafly=0 corresponds to _(solid line) and without_RRdashed ling The B3 values correspond-
the critical point, leading to the characteristic flat-bottomedind t© the absolute minimum of the energy surfaces &8 and
energy surface in thg; direction. (43) are plotted againsf;= k3/«, on the left. The corresponding

We next consider the effect of PP on the octupole Shapegctupole moments calculated from Eg8), together with the tran-

phase transition. Thed f-IBM energy surface withr=+ 1 sition moment from Eq(31) (dotted ling, are shown on the right.

's given by to the cancellation between the unprojected ardependent
2, I terms. A more direct way to see the effect of PP is to expand
= 2 24 32 the sdf-boson condensate
E+Sdf(BZlB3) (1+rN)(1+B§+B§)Zl(1+B2+B3)
3 (s™+ Bodi+ Bt HN
XE 77|:B|2[1+rN_1(_1)|] :(ST+BZdT)N+N(ST_’_BZdT)Nle fT
=2 0 0 3'0

— 5 — _ +(LU2N(N=1)(s"+ Bd)N"2(BsfH)2+ - -, (49

(2Bt xSt XiBP TV (28, (AN 2o (Bsto

and look at the overlaps of various terms. Denoting the states

+ xaBo—xi1B2)2—4¢4(Ba+ x- )21, in the expansion by theif boson numbemn;, the leading
Xab2~ X1 3(Bst xaP2Ps contribution to the one-body terms comes from thel) m.e.

(43 (e (1|n¢|1)), which goes ag3. However, after PP, odd;
terms are projected out, so the leading term has to come from
As the extremum conditions lead to unwieldy expressionsthe (2-2) m.e., which goes aﬁg. A similar argument applies
we follow the second method here to find the critical pointto the quadrupole m.e. In contrast, the leadiagua) con-
and expand the energy surfacé3d) around B;=0. After  tributions to the octupole term come from ttie 1) and(0-2
some algebra, we obtain to leading orderdf + 2-0) m.e., and PP blocks only the first one, leaving the
second one inta¢tvhich explains the 1/2 reduction in the
E. sat( B2, 83) = Esd( B2) — 2N2k3(1+ B2 “2(1+ x33,)2p%  termin Eq.(44) compared to Eq42)]. Thus the net effect of
PP is to lift the obstruction of the one-body and quadrupole
LR (44)  interaction terms in the Hamiltonian against the formation of
an octupole deformed system. In the absence such resistance,
Comparing Eq(44) with Eq. (42), we see that contributions even the slightest octupole perturbation is sufficient to de-
from the positive parity operators to tlﬁ term have all  form the system.
disappeared after PP, leaving behind only the octupole term. We summarize the results of this section with a shape-
Obviously, for any finite octupole strengiy>0, the system phase diagram shown in Fig. 2. On the left, {Bg values
has an octupole deformation. The inescapable conclusion isbtained from the absolute minimum of the energy surface
that PP has a drastic effect on the onset of octupole deformavith and without PP are plotted agaiidst= x5/ x,, while the
tion moving the required octupole strength from a finitefigure on the right shows the corresponding octupole mo-
value to zero, that is, the critical point occurskat=0 after  ments obtained from E(28). Here they parameters are
PP. taken from Table I, and the others arg;=1.5, 73=3.
Because this is a somewhat surprising result whose deriAjithout PP, a sharp shape-phase transition to octupole defor-
vation from Eq.(43) is not so transparent, we expand on it amation is seen to occur at the critical point given by Ed4).
little. Comparing Eq.(37) with Eq. (43), it is seen that the After PP, the critical point moves ta;=0 and the sharp
matrix elementgm.e) of the positive parity operators have transition is replaced by a smoothly varying curve. Note that
all acquired am-dependent term after projection whereasthere is a very close correlation between fevalues and
such a term is missing in the m.e. of the negative paritythe static octupole moments. Thus the exact proportionality
octupole operator. Disappearance of the m.e. of the positiviound between the two quantities for a particular multipole
parity operators from th@3 term in Eq.(44) is precisely due Hamiltonian[see Eq.(29)] is more or less preserved in the
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more general case, confirming the interpretation of fhe (i) B>=AC>0: Increasing the octupole and dipole
mean field as the octupole deformation parameter. The trarstrengths while reducing the one-body energies will eventu-
sition octupole momentdotted ling, on the other hand, de- ally change the sign of the discriminant. The energy surface
viates from the static one for smgd; and does not provide then has a saddle shape and unstable against deformation in
a reliable measure of the octupole deformation in this regionthe 8,-85 plane. The absolute minimum of the energy occurs
We remark that the concept of mean field is useful onlyat a point with3,>0 and/orB;>0. This region of the pa-
when the symmetries broken in the intrinsic frame do notrameter space complements the cé$eand corresponds to
have an appreciable effect on the calculated values of physthe octupole/dipole deformed phase.
cal quantities. Breaking of the rotational symmetry is such an (i) B>~ AC=0: The surface defined by this condition in
example. As pointed out earlier, one obtains the same energite parameter space clearly defines the critical region be-
surface to leading order iN with and without angular mo- tween the vibrational and deformed phases. We will not dis-
mentum projection. Thus the mean field results obtained ircuss further the implications of the critical condition on the
the intrinsic frame are accurate to ordeN1/As demon- model parameters and derive relations among them for the
strated here, in mixed parity systems the mean field resultsnset of octupole/dipole deformation because, as is shown
without PP are dramatically different from those with PP.below, this is a chimerical phase transition that disappears
Therefore mean field studies of mixed parity systems shouldfter PP.
be carried out with PP, otherwise one is likely to obtain er- To see the effect of PP on the shape-phase transition, we
roneous results especially at small octupole deformations. expand thespdf-IBM energy surfacg35) with 7= +1 for
small 8, and B3

E+Sde(Bl 1ﬁ2 1B3)

The previous result on the onset of octupole deformation

B. spdf-IBM

can be extended to trepdfIBM in a straightforward man- =Eqoq(B2) — 2N2kp(1+ B2) “2{Z1[(1+ x182) Br

ner, though the algebra is considerably more involved. The _ _ _

energy surface in thepd -IBM without PP is obtained from +X1B2B3)+ Lal x3BaBrt (1+ x3B2) Bl + -+ -}
Eq. (35 by settingm=0. Because the analysis of the extre- (48)

mum conditions is quite complicated, we directly expand this
energy surface for smaB; and 85, keeping only the qua- Comparing Eq.(48) with Eqg. (46), it is seen that contribu-

dratic terms tions from all the positive parity operators have vanished
after PP, and only the dipole and octupole interaction terms

Espad B1:82,B3) are left behind at the quadratic level. It is clear from E§)
- that th ce of any nonzero strength of the dipole or

=Eqd(B2) + N2ip(1+ B3) " 2([ ma(1+ B3) — m283 oo hresen Y one ) i

octupole interactions will cause an instability in the energy

+2(28-+ v 8921+ B 1=2v (28-+ vB2)v. surface ajB,;= B3=0, leading to a dipole/octupole deformed
(282 xaB2)(1+ B2) X-(2B2% xaB2)Xp system. The direction of deformation in ti$g-B5 plane de-

—451(1+;1ﬂ2)2—4§3(;é,32)2],35 pends on the relative strengths of the dipole and octupole
- . interactions. In realistic cases, the octupole interaction is
—{2X_(2/82+Xd,8§))(pf+4[§1(1+X1/82)X1 much stronger and, therefore, the system will mainly deform

_ along the B3 axis. Thus the results presented for the
+L3(1+ X3B2) X51B2) 2183+ [ ma(1+ B3) — 125 sdf-IBM in Fig. 2 provide an approximate picture for the

— 5 21 e — phase transition in thepd fIBM as well.
T2(2B2+ xaB2)“(1+ B3) " —2x-(2Bo+ xaB2) X+

—40(X1B2)°— 41+ xsBo) 1B+ -).  (46)
So far we have discussed the ground state properties of
In order to facilitate the discussion of shape-phase transitiormixed parity systems with and without PP. However, most of

IV. ONE-PHONON BANDS

we rewrite this energy surface as the data on octupole deformation are obtained from the ex-
5 5 citation of collective negative parity bands. Here we derive
Espaf B1,82.83) =Esd B2) +AB1+2BB1 B3+ CR3+ - -, expressions for the excitation energies and transition

(47) strengths for the negative-parity bands. Assuming axial sym-

. metry, the one-phonon bands can be written as
where the coefficient®, B, andC can be read off from Eq.

(46). The behavior of the quadratic forfd7) is determined
by the sign of its discriminant. |y =[(N=1)!11"(b")N"*b}|0), b&:El Yikbik
(i) B2—AC<O0: the energy surface has a bowl shape in (49)
the B4-B3 plane. When the quadrupole interaction dominates
(or »>1 and »3>1), both A and C are positive ang3;  whereK=0, 1, 2, 3 for thespd fIBM, andy,x are the mean
= B53=0 is the absolute minimum of the energy. So this re-fields to be determined from the variation of the respective
gion of the parameter space corresponds to the octupol&and energies. The normalization of the parity-projected one-
dipole vibrational phase. phonon bands is given by
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1 N1 N1 ’ with the prime denoting a parity transformed mean field in
Nk =(bklP | by = 5 (x-0"y- Yt 7™y v the above forms| = (—1)'x,

(50

Here the prime on mean fields denotes parity transformation A|;=Z (jOI0[KO) tyjix; x|
as in Eq.(11). For K#0, orthogonality of the one-phonon it
bands with the ground band is implicit but this is not so for
K=0, and needs to be enforced by the condition
A= (jKI— K[KO)tyj1YikYik »

(&gl Pl 0)=0, (51) I
which leads to the following relationship among the mean
fields: BﬁK:Z (IKIO[KK)tyjiyjkX(
X- (yo+ 7Nty =0. (52) |
For strong couplingr <1, and the orthogonality condition BL’K:% (JKI0JKK)tyjry X - (56)

reduces to the familiax-y,=0 between the ground ari
=0 bands. Then the expressi®0) also holds for the nor-

malization_qf theK=0 bands. But in general, it is modified Subtracting the ground state energy from Esg), one ob-
by an additional term tains the band-excitation energies. For Kwe 0 bands, there
1 are additional terms arising from the nonorthogonality of bo-

Noo=5(x-X)N " yo-yot+ 7Nty yh son operators as in the case of the no.rmaliza(lﬁm. These

2 terms typically introduce small corrections to the band ener-

1 gies but because they are lengthy and are not of much inter-
[(X-Yo) 2+ mrN"2(x-y5)?]t.  (53)  est, they are not given her@he energies of th& =0 bands

X:X in the next section are, of course, calculated using the full

expressions.

+

A. One-phonon band energies

The expectation value of the Hamiltoni&b) in the one- B. Electric moments and transitions
phonon band949) can be evaluated in a straightforward

manner. For th& # 0 bands, the energy expressions are rela- For even-multipole operators, the static moment of a one-
. . ; ' phonon band is given by
tively simple, given by

1
1 A (k)
k=5 {AlHP ), Tho™ 1y (el To" Pl )
Nﬂ'K g
N-1
X_XNfl _(X-X) N—1 .
S ) T TN | et S Y YA
ZN’ITK | m
—1 rarfar Nt ’A’) (57)
T [yK-yK+w(—l)'rN‘ZyK-yk]x.z] i kKT o YR YR |-
Y N-1 2(AcAr + B2y) The quadratic forms here and in the expressions below are
= KX KPIKK T 2kK given in Egs.(55) and(56). For odd-multipole operators, we
) calculate the transition moment between the positive and
+ 2N 2(ALAL+ BikBik) negative parityK bands
+E( YA+ N3y y A2 (54) +-_ ~172 (k)
ox Yk YrAE T Y YiAT) | |- To =[Nk N k] A oxlP T P i),
. . ) . 1 —
Here the various quadratic forms are defined similar to Eq. = E[/\/'+|</\[7K]*1/2()(.X)Nfl Akt o Vi YicAl.

(16), for example,
(58)

A= 2 (iK1 =K KOt ¥ixYix » _ o _

it Finally we calculate the intrinsic matrix elements for the ex-

citation of theK bands assuming the same multipole opera-

BkK:; (JKIOJKK )t Yk » (55) Eg;\si;rc])r electric transitions as those employed in the Hamil-
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10

W=7

E/Nx,

E/Nx,

FIG. 3. Dependence of the excitation energies of single-phonon
bands (in units of N«,) on the octupole boson energys
=¢g3/Nk,. On the left panel{3;=0.1 and on the right{;=1. The
other parameters arg_=0.5, »;=15, and{;=0.1.

FIG. 4. Dependence of the excitation energies of single-phonon

#KIT®|g.8) =[N W N, 122 P TP ’ bands on the octupole coupling strendt¥ 3/, for a fixed 73
(mKITiC19:9) = [NcNgs] X bl P TP+ Sg.) =3. The other parameters are the same as in Fig. 3.

N
=511+ (- <7 [N Ngs] M2 panel,{;=0.1, which represents the weak coupling of octu-
N1 N pole bosons appropriate to the rare-earth region. On the right,
X(X-X)" (B + 1 " Byk) - (59 £,=1, representing the strong coupling observed in the ac-

) tinide nuclei. Thep bosons are assumed to be weakly
Clearly only the bands withr=(— 1) have non-zero tran- coupled in these figuresy =15 andZ;=0.1). Except in the
sitions to the ground state. The result in E§9) does not a6 of extreme mixingys is seen to have no influence on
incorporate the time reversal invariance, which is importangheﬁ andy-band energies. The negative-parity bands exhibit
in comparison with experimental results in the lab frame.g jinear dependence in both cases, suggesting thabieon
This is achieved simply by multiplying the matrix elements gnergy would be best determined from their center of energy.
for K0 states by a factor of2 in Eq.(59) [32] A linear correlation between the octupole centroids and neu-

As in the case of the band-energies, there are extra termgon number has been observed in rare earths and actinides

for theK=0 bands that have not been included in the abov¢7]. Thus thef boson energies can be determined in a rather
matrix elements. Nevertheless the systematic studies in thgnique way for all nuclei with octupole excitations. Com-

next section are carried out using the full expressions. parison of the two panels indicates that increasing the octu-
pole coupling strength leads to a larger splitting among the
V. SYSTEMATIC STUDIES octupole bands. On the right pan&=0" band is seen to

n thi i i ¢ tic studi f th merge with the ground state, signalling the onset of rigid
n this section, we present systematic studies of the pac')ctupole deformation. This behavior is more likely to be in-

rameter erendence of band-excitation energies gnd rangjiced by an increase in octupole coupling rather than a re-
tion matrix elements. The results are contrasted with the exg,,tion in thef-boson energy. This is shown in Fig. 4, where

p_erimental datg _in the rare-eart_h and actinide nuclei with Fhe band-excitation energies are plotted as a functiog;of
view of determining the appropriate ranges of model paramz,. 5 fixed n3=23. With increasing(s, the octupole bosons
eters that can be employed in detailed studies of negauveS 3 3

. . ) ! steadily mix in the ground state and te=0~ band comes
parity bands in specific nuclei. The key parameters are thgOWn Forzs>1, the two bands merge and the condensate
single boson energiesy{, n3) for the p andf bosons and . . S o
their coupling strengthszt . Z.). We also consider the effect becomes a mixture of positive and negative-parity bosons. In

) . > ; . the Ra and Th nuclei, thk=0" bands do not quite merge
of y_ as it can expedite mixing of the negative parltlbosongmth the ground state banf1], indicating that{s<1 in

in the ground state band. Unless otherwise statedytpa-  these nuclei.
rameters are taken from the adapted values in Table I. The A question of considerable interest for applications of the
d-boson energy is fixed ag,= 1.5 throughout as found from 54f.JBM with one f boson is the number dfbosons in the
the fits to theB and Y bands[24]. The results are presented ground andK=0" bands. Fo;<0.5, these numbers are as
2l;ghtr':2at tgsy a(r)elzenggeple_rr:desr::ec:]f the number of bodons expected from the octupole vibrations, that (8¢)~0 for
quadrup upiing gth the ground band and 1 for tHe=0" band. However, with
further increase if5 the number of-bosons rapidly increase

becoming(n;)~2 for both bands around;~1. Thus the
In Fig. 3, we plot the excitation energies for the single-restriction of the negative-parity bosons to 1 is not a good
phonon bands as a function of theoson energy. On the left approximation in regions of stable octupole deformation.

A. Band excitation energies
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FIG. 6. Similar to Fig. 4 but fot,= k4 /x, when ;=15 (left)
d 3=5 (right). The other parameters aje =0.5, 7;=3, and

53:01

FIG. 5. Dependence of the excitation energies of single-phonorgln
bands on the parametgr_ in the quadrupole operatofiz=3, {3
=0.1 on the left and 1 on the right. The other parameters are th
same as in Fig. 3.

strong coupling limit. Thus a more relevant parameter for

The ordering of the negative parity bands changes wittudying theE3 systematics igs, which is shown in Fig. 7
increasing neutron number in both rare earth and actinidéeft panej. In the weak coupling limit, theE3 transition
nuclei. In sdf-IBM with one f boson, this behavior is de- Strengths from th&=0", 17, 2~ bands are all similar but
scribed by including an exchange interaction betweendthe that from the 3" band is much smallgimostly unobserved

andf bosons[6,7]. As shown in Fig. 5, the ordering of the With increasing octupole coupling, the strength of &
bands fromK=0" to 3~ can be reversed by Changing the transition from theK =0~ band increases relative to the oth-

sign of they_ parameter in the case of the weak octupole€rs. These features are in broad agreement with the observed
coupling ((3=0.1). However, other orderings such as,1 B(E3) systematics in the rare-earth and actinide nuclei, and
0~, 2~ observed in172vb, cannot be obtained within the 9ives support to the values of theparameters chosen in this
restricted parameter set employed in this work. Thus, in studwork. Obviously, one has to fine tune the valuexgfparam-
ies of specific nuclei, one needs to consider variations in th&ter in theE3 operator in order to reproduce the variation in
Y parameters from the SB) values in order to reproduce the observed distribution of strengths among the octupole
such details as ordering of the band heads. bands. The dependence of th8 matrix elements oy are

We next consider the effect of theboson parameters_ In shown on the rlght panel of Flg 7. Here the transition from
the previous figure) bosons were weakly coupled, and the K=2~ band remains independent g because the corre-
corresponding<=0", 1~ bands were outside the figures. sponding Clebsch-Gordon coefficient in E§9) vanishes.
The p-boson energy has a similar effect on the band energies The results in Fig. 7 suggests an alternative explanation
as thef-boson energy shown in F|g 3, name|y, the energie§0r the nonobservation of th=3" bands in experiments:
of the K=0", 1~ bands associated with thebosons lin- rather than being much higher in excitation energy, they may
early increase withnp; while the others remain nearly flat
(not shown. Of more interest is the effect of the dipole cou- 10
pling strength in the case of highy(=15) and low-lying
(71=5) p-boson energies. As shown in Fig. 6, in the former
case, thef and p boson bands remain well separated and
remain rather pure even at the strong coupling limit. In the ¢
latter situation, the bands start mixing with increasfhgnd
cannot be identified as beimgor f-boson band fog;>0.5.
For example, the secorii=0" band has morébosons than
p bosons in the condensate néar 1.

3

E3;K— 0
o

B. E1 and E3 transitions

When thep bosons are weakly coupléde., »,~15), the 0 . | . . .
octupole-boson bands remain rather pure, andfibeson 0 0.5 . 1 15 -1 -05 0
energy has almost no effect on tB8 transition strengths to : %o

the ground state as long as they are not very strongly g, 7. Intrinsic matrix elements foE3 transitions from the
coupled. In the strong coupling limit{¢~1), the E3 K pegative-parity bands to the ground state. Absolute values of the
=0~ -0y transition strength rapidly increases as e  matrix elements are plotted as a function of the octupole coupling
=0~ band comes down with decreasing. But the other strengthz, (left) and x5 for £3=0.1 (right). The other parameters
E3 transitions show little dependence apy even in the are the same as in Fig. 4.
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6 . . 5 . . As long as thep- andf-boson energies are not degenerate, the
1 matrix elements for all th&1 transitions have similar mag-

nitude. This suggests that measurementEdf transitions

from theK=0", 1~ bands are likely to be more helpful in

identification of the collective dipole excitations. Data on

absoluteB(E1) values are meager and it is not easy to con-

firm the appropriateness of the chodeh operator from the

] experimental systematics. Nevertheless, the mea&(ed)

L0 1 L 1 values in %%Gd from theK=0", 1~ octupole bands are

W -z consistent with the results shown in Fig[33].

0 5 10 15 0 5 10 15 VI. CONCLUSIONS

M Ny
FIG. 8. Dependence of the3 (left) andE1 (right) transitions We have developed a mean field formalism for the study

on the p-boson energy. The-boson bands are indicated by the of negative-parity states within thepdf-IBM. The results

dashed lines. Herg;=3, {3=0.1, £;=0.1, and the other param- are employed in studying the octupole shape-phase transi-
eters are the same as in Fig. 7. tions in quadrupole deformed nuclei. An interesting result is

the important role parity projection plays on the octupole
shape transitions, completely changing the shape-phase dia-

state and thus not seen in Coulomb excitation experiment f;asrpec(i:?/vni}cﬁi%eg ;gstehteo?nﬂ?é?jtec)?ecssgr;glt?oﬁ t/(\)/ht;?ect?lr;
This also provides another incentive for avoiding the positive q P ’

range of theys parameter because they would lead to Iargemean field results change littlef order 1N) after angular

B(E3) values fo the excitation of 3~ bandstbesides TP ET T MRS CR, TE TECE e o Pty bande
leading to nonaxial shapes y 9 9 panty '

We next discuss the influence of tpebosons on thé&l and E1 and €3 transitions i Fhem. The .resglts are n
; - . . broad agreement with the experiments, indicating that the
and E3 systematics. Variations in thp-boson coupling

strength have little effect on tHel andE3 transitions from simplified parametrization suggested in this work may pro-

the negative-parity bands, and therefore we will not conside\r/Ide a good starting point for detailed studies of negative-

i parity states in individual nuclei. Regarding the dipole col-
Lh:srggxéhﬁ#lggr:iézzﬁg?: dzgetrrgayr;sci)t?oggeagtgﬁcr)vcﬁ?nd' lective bands, we have found that the observables exhibit a

: o P ~general insensitivity towards theboson parameters. Thus it
Eilgt.e?j. Lnﬁﬁﬁegagsét:)%gsz:;grg(:zerﬁ(tz)obe, rln ur?k?r\:\?esai(sefoan ould be difficult to make any suggestions about the pos-
similar in strength to that from the unobservée:3~ band. ible location of the dipole bands from the systematics alone.

Thi X fundamental difficulty in identification fAccording to our results, the best signature for the dipole
S Suggests a fundamenta culty entimeation ot o, citations would be the observation®i transitions from a
collective dipole bands from Coulomb excitation experi- d oK=0-_ 1~ bands that h imil h
ments regardless of whether such bands are low Iimthe second set ok =0, ands that have similar strengths to
. o . . . those from the first set that have octupole nature.
region of octupole excitationsr high lying. Curiously, the
E3 matrix elements vanish fop;~5, so the dipole bands
would be even more elusive were they to lie just above the
octupole bands. The situation with respect to the strengths of The authors thank the Australian Academy of Science and
transitions from thep bosonK=0", 1~ bands is more Japan Society for Promotion of Science for supporting this
promising in the case dE1 transitions(Fig. 8, right panel work through the Bilateral Exchange Program.

have much smalleE3 transition strengths to the ground

ACKNOWLEDGMENTS

[1] S. G. Rohozinski, Rep. Prog. Physl, 541 (1988. (2002.

[2] I. Ahmad and P. A. Butler, Annu. Rev. Nucl. Part. 48 71 [9] J. Engel and F. lachello, Phys. Rev. Leid, 1126 (1985;
(1993. Nucl. Phys.A472, 61 (1987.

[3] P. A. Butler and W. Nazarewicz, Rev. Mod. Phy&8, 349 [10] F. Catara, M. Sambataro, A. Insolia, and A. Vitturi, Phys. Lett.
(1996. B 180, 1 (1986.

[4] F. lachello and A. ArimaThe Interacting Boson Mod¢Cam-  [11] T. Otsuka, Phys. Lett. B82 256 (1986.
bridge University Press, Cambridge, 1987 [12] C. S. Han, D. S. Chun, S. T. Hsieh, and H. C. Chiang, Phys.

[5] F. lachello and A. Arima, Ann. Phy$N.Y.) 111, 201(1978. Lett. 163B, 295(1985.

[6] A. F. Barfield, B. R. Barrett, J. L. Wood, and O. Scholten, Ann. [13] T. Otsuka and M. Sugita, Phys. Lett. 9 140 (1988.
Phys.(N.Y.) 182 344(1988. [14] D. Kusnezov and F. lachello, Phys. Lett.2B9, 420(1988.

[7] P. D. Cottle and N. V. Zamfir, Phys. Rev.53, 176(1996); 58, [15] H. Y. Ji, G. L. Long, E. G. Zhao, and S. W. Xu, Nucl. Phys.
1500(1998. A658, 197 (1999.

[8] N. V. Zamfir and D. Kusnezov, Phys. Rev. €3, 054306 [16] C. E. Alonsoet al, Nucl. Phys.A586, 100 (1995.

064323-13



SERDAR KUYUCAK AND MICHIO HONMA PHYSICAL REVIEW C 65 064323

[17] V. S. Lac and I. Morrison, Nucl. Phy#581, 73 (1995. (1980.

[18] A. F. Diallo, B. R. Barrett, P. Navratil, and C. Gorrichategui, [28] S. Levit and U. Smilansky, Nucl. PhyA389, 56 (1982.
Ann. Phys.(N.Y.) 279 81 (2000. [29] A. E. L. Dieperink and O. Scholten, Nucl. Phya346, 125

[19] J. F. Smithet al, Phys. Rev. Lett75, 1050(1995. (1980.

[20] J. F. C. Cocket al, Phys. Rev. Lett78, 2920(1997). [30] S. Kuyucak and I. Morrison, Appl. PhysN.Y.) 181, 79

[21] J. F. C. Cocket al, Nucl. Phys.A645, 61 (1999. (1988.

[22] I. Wiedenhwer et al, Phys. Rev. Lett83, 2143(1999. [31] S. Kuyucak, Phys. Lett. B66, 79 (1999.

[23] A. Aprahamian(private communication [32] A. Bohr and B. R. MottelsonNuclear Structure(Benjamin,

[24] S. C. Li and S. Kuyucak, Nucl. Phy$604, 305(1996. Reading, MA, 1975 Vol. 2.

[25] . lachello and A. Zilgegprivate communication [33] H. H. Pitz, U. E. P. Berg, R. D. Heil, U. Kneissl, R. Stock, C.

[26] M. Sugita, T. Otsuka, and P. von Brentano, Phys. LetB8B, Wesselborg, and P. von Brentano, Nucl. Phgdo2, 411
642 (1996. (1989.

[27] J. N. Ginocchio and M. W. Kirson, Nucl. Phy#350, 31

064323-14



