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Mean field study of the quadrupole-octupole degree of freedom in thespdf boson model
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We present a mean field study of the quadrupole-octupole degree of freedom in collective nuclei within the
framework of thespd f-boson model. For realistic choices of the Hamiltonian parameters, the ground state of
the system is shown to remain axially symmetric, which considerably simplifies the mean field treatment. The
critical point for the onset of octupole deformation in quadrupole deformed systems is identified in the
parameter space and importance of the parity projection in this process is emphasized. A systematic survey of
excitation energies and electric transitions for one-phonon states is given, which will provide useful guidance
for detailed studies of negative parity states within thespd f-boson model.
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I. INTRODUCTION

The low-lying negative parity states in even-even colle
tive nuclei are described in terms of the octupole degree
freedom~see Refs.@1–3# for reviews!. From the early stages
the octupole degree of freedom has been incorporated in
interacting boson model~IBM ! @4# by coupling a single oc-
tupole, f boson to thesd-boson system@5#. Because of its
simplicity, this formalism has been very popular in applic
tions of the IBM to negative parity states and continues
provide a useful framework for analysis of octupole vibr
tions in deformed nuclei~see Refs.@6–8# for systematic
studies!. However, due to the weak coupling assumption
herent in the truncation of the basis to a singlef boson, it is
limited to a description of octupole vibrations and the fo
malism needs to be extended to a fullsd f basis for discus-
sion of octupole deformations.

In a parallel development, the necessity of includingp
bosons in description of octupole deformed systems was
phasized in several studies from very different perspectiv
From the point of view of dynamical symmetries, the sy
metry group of thesd f-boson system U~13! does not contain
SU~3!, the limit associated with deformed systems, b
U~16! of thespd f-boson system does@9#. In the SU~3! limit
of thespd f-IBM, the p andf bosons are treated on an equ
footing and have degenerate energies. Further evidence
inclusion of p bosons emerged from microscopic stud
where both the positive parityS-D and negative parityP-F
pair structure of the nuclear wavefunction were analyz
@10,11#. The probability of theP pair was found to be com
parable to that of theF pair in deformed actinides@11#. Fi-
nally, phenomenological studies revealed that using
spd f-IBM resulted in an improved description of negativ
parity states, especially in regions of strong octupole coll
tivity @12–15#. For example,E1 transitions in Ba isotope
could be described well only with the inclusionp bosons
@14#. It is important to emphasize that while the quadrup
and octupole collectivities represented by thed and f bosons
are with respect to the single particle operatorsr 2Y2m and
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r 3Y3m , the dipole collectivity embodied by thep boson is
not associated withr 1Y1m , which corresponds to the spur
ous center of mass motion. Rather it arises from cohe
many-body correlations in the intrinsic wave function und
strong quadrupole and octupole fields@11#.

Application of the ensuingspd f-IBM formalism has been
limited in practice due to a number of problems. The first
the excessive number of parameters in the model; the m
generalspd f-IBM Hamiltonian with one- and two-body in-
teractions contains 53 terms. This drastic increase in
number of parameters is accompanied with a reduced se
available data for negative parity states. Thus for pract
applications, it is essential to find a much reduced param
set that still describes the basic features of octupole exc
tions. This is a physics problem that requires finding a mi
mal Hamiltonian and relating its parameters to spectra so
an intuitive understanding of thespd f-IBM at a level similar
to that of thesd-IBM is achieved. In this respect, a mea
field analysis of thespd f-IBM would be very useful. Such a
study has been carried out previously using the SU~3! intrin-
sic states with a quadrupole-plus-octupole Hamiltonian@16#.
However, problems with self-consistency, lack of sing
boson energies and enforcement of the SU~3! parameters
limits the utility of this study for the above purpose.

A second problem in application of thespd f-IBM arises
from the diagonalization of the Hamiltonian in the fullspd f
space, which is too large to carry out without truncation. T
is more of a technical nature and can be overcome us
angular momentum projected mean field theory@13#, which
leads to a 1/N expansion@17,18#. However, because projec
tion is quite a laborious procedure, a simpler strategy wo
be to first study the general features of the model using
mean field theory~without projection!, and then perform an-
gular momentum projection for the purpose of detailed co
parisons with spectra.

Due to their hindered accessibility, data on octupole ex
tations used to be quite meager compared to the quadru
ones. This situation has changed dramatically in recent y
©2002 The American Physical Society23-1
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with the arrival of theg-ray arrays. The negative-parity spe
tra in actinide nuclei Rn, Ra, and Th have been greatly
tended using theg-ray arrays Eurogam and Gammasphe
@19–21#. These new data, in turn, provide fresh challeng
for collective models, for example, description of the conje
tured transition from octupole vibrational to octupole d
formed shapes in actinides@22#. Another challenge for the
theory is to accommodate theKp532 band in the same
energy regime (;1.5 MeV) as the other one-phonon band
Due to lack of observation, theKp532 bands in deformed
nuclei had been assumed to lie at much higher energie
previous systematic studies@6–8#. The recent observation o
this band at 1571 keV in162Dy @23# calls for re-examination
of these IBM fits to the negative-parity bands in rare ear
and actinides.

In this article, we present a general mean field analysi
thespd f-IBM that provides an intuitive understanding of th
qualitative features of the model. This first step will be fo
lowed in future articles by quantitative calculations with a
gular momentum projection, where detailed description
nuclei with enhanced octupole correlations will be
tempted.

II. FORMALISM

A. Hamiltonian

The general Hamiltonian in thespd f-IBM contains too
many parameters to be useful in practical applications.
come up with a simpler Hamiltonian that still contains t
basic physics of the quadrupole-octupole degrees of f
dom, we use thesd-IBM as a guide. After years of distilla
tion, a standard form for thesd-IBM Hamiltonian has been
reached that contains just thed-boson energy term and th
quadrupole interaction

Hsd5«dn̂d2k2Q̂•Q̂. ~1!

Heren̂d is number operator ford bosons, and the quadrupo
operator,

Q̂m5@s†d̃1d†s#m
(2)1xd@d†d̃#m

(2) , ~2!

is also used in theE2 transition operator, i.e.,T(E2)5e2Q,
wheree2 is the boson effective charge. The tilde on a bos
operatorblm denotesb̃lm5(21)mbl 2m . The Hamiltonian
~1! contains all the dynamical symmetry limits of the IBM
and describes both spherical and quadrupole-deformed
clei.

The above consideration suggests that a minimal desc
tion of the octupole degree of freedom could be obtain
using thef-boson energy term and the octupole interacti
Increasing the strength of the latter, one can induce octu
deformation as in the case of thesd-IBM. Extending this
argument top bosons, we propose the following minim
Hamiltonian for thespd f-IBM that has already been used
describe the negative parity states in the actinide reg
@13,17#
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H5«dn̂d1«pn̂p1« f n̂ f2k2Q̂•Q̂2k1D̂•D̂2k3Ô•Ô,
~3!

where the quadrupole, dipole, and octupole operators are
fined as

Q̂m5@s†d̃1d†s#m
(2)1xd@d†d̃#m

(2)

1x2$xp f@p† f̃ 1 f †p̃#m
(2)1xp@p†p̃#m

(2)1x f@ f † f̃ #m
(2)%,

D̂m5@s†p̃1p†s#m
(1)1x1@d†p̃1p†d̃#m

(1)1x18@d† f̃ 1 f †d̃#m
(1) ,

Ôm5@s† f̃ 1 f †s#m
(3)1x38@d†p̃1p†d̃#m

(3)1x3@d† f̃ 1 f †d̃#m
(3) .

~4!

Compared to the three parameters of thesd-IBM ~1!, ~2!, the
spd f-IBM Hamiltonian ~3!, ~4! contains 14 free parameter
~herex2 is not free but introduced for convenience!. Clearly
this is still too many, and a further reduction in the number
parameters is desirable. Thesd subset of the parameters a
well known from previous studies, e.g., in deformed a
tinidesk2;20 keV, xd;20.9 @0.7 times the SU~3! value#,
and «d;1.5Nk2 @24#. Therefore, in the following we con
centrate on the other parameters introduced by thep f
bosons. There is sufficient data on octupole excitations
determine its coupling strengthk3 and energye f . The situ-
ation with respect to thep bosons, however, is more compl
cated. There are noK512 bands that one can clearly iden
tify as dipole excitations.~Recent data in Nd isotope
indicate existence of a second set ofK502 and 12 bands at
about 2.5 MeV that have been interpreted as dipole exc
tions @25#. However more work is needed to eliminate alte
native explanations and establish the uniqueness of this
terpretation.! In the absence of guidance from experiments
has been a common practice to take the dipole parame
same as the octupole ones, i.e.,ep5e f andk15k3. On an-
other extreme, thep boson has been identified with the gia
dipole resonance@26#, which putsep around 15 MeV. In
view of these uncertainties, we take a more flexible appro
here. Rather than choosing some arbitrary values, we s
sensitivity of theE1 and other properties to variations inep
andk1 to see if the available data can be used to restrict th
range. The only condition we impose in this study is th
ep.e f andk1,k3, in line with the stronger octupole collec
tivity.

The remainingx parameters are very sensitive to inte
band transitions and are best determined by them. For
ample, the quoted value ofxd follows almost uniquely from
theg→ groundE2 transitions. Since there are not sufficie
data to determine all thex parameters in this way, they hav
been chosen more or less arbitrarily in the past with so
guidance from the SU~3! limit ~see Table I!. While the SU~3!
limit provides a useful benchmark for quadrupole deform
nuclei, it is not at all clear whether this can be extended
mixed parity systems. In the following sections, we will se
alternative parametrizations forx which are physically more
appealing.

The explicit form of the Hamiltonian~3! is cumbersome
for the purpose of calculating the energy surface as it lead
3-2
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MEAN FIELD STUDY OF THE QUADRUPOLE-OCTUPOLE . . . PHYSICAL REVIEW C 65 064323
a very lengthy expression. For notational convenience
compact results, it will be handy to introduce a generaliz
boson systemblm , l 50,1,2,3, . . . , with a generic Hamil-
tonian

H5(
l

« l n̂l2(
k

kkT
(k)
•T(k), ~5!

where the boson number and multipole operators are g
by

n̂l5(
m

blm
† blm , T(k)5(

j l
tk j l@bj

†b̃l #
(k). ~6!

Here the multipole parameters satisfytk j l5tkl j from hermi-
ticity. The correspondence betweentk j l and thex parameters
in Eq. ~4! follows from a comparison of operators, e.g.,tk0l
51, t2225xd , t1125x1, etc. The parity of the multipole
terms in Eq.~5! is restricted top5(21)k, which are physi-
cally the most important ones. Forl 51,2,3 andk51,2,3 the
Hamiltonian ~5! is equivalent to that of Eq.~3!. As in the
sd-IBM, we choose the electric transition operators cons
tent with the Hamiltonian~5!, ~6!, i.e., T(Ek)5ekT

(k).
We also introduce a dimensionless parameter set tha

flects the dominance of the quadrupole interaction

h l5e l /Nk2 , z l5kk /k2 . ~7!

This way one can factor outN and k2 from the energy ex-
pressions, and the latter can be determined from the ov
scale of the spectrum. The above parametrization will
particularly useful in discussion of shape-phase transiti
and systematic studies of observables because the result
be independent ofN andk2.

B. Intrinsic state and parity projection

The ground state of a generalized boson systemblm , l
50,1,2,3, . . . can bewritten as a boson condensate@27#

TABLE I. The x parameters in the quadrupole, octupole, a

dipole operators.x̄ is obtained by multiplyingx with the C-G co-
efficient given in the third column. Unless otherwise stated,
parameter values given in the last column are employed in all
calculations.

SU~3! adapted
x C-G x̄ x̄

xd 2A7/2 2A2/7 1/A2 0.5
xp f 22A7/5 2A3/7 2A3/5 2A3/5
xp 3A3/5 A2/3 3A2/5 2A2/5
x f A42/5 2/A21 2A2/5 3A2/5
x3 2A6/5 22/A15 2A2/5 2A3/5
x38 2/A5 A3/5 2A3/5 2A2/5
x1 22/A5 2A2/5 2A2/5 2A2/5
x18 A21/5 3/A35 3A3/5 3A3/5
06432
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uN,x&5
1

AN!
~b†!Nu0&, b†5(

lm
xlmblm

† , ~8!

wherexlm are the mean fields that are to be associated w
various deformations of the system. The condensate~8! con-
tains a mixture of even and odd parity terms and, therefo
does not have a good parity. States with good parity can
obtained using the projection operator

Pp5
1

2
~11pP!, ~9!

wherep561 is the parity quantum number andP is the
parity operator. UnderP, boson operators transform as

Pblm
† P5~21! lblm

† , ~10!

henceP acting on the condensate~8! gives

PuN,x&5uN,x8&, xlm8 5~21! lxlm . ~11!

Using Eqs.~9! and ~11!, we obtain for the parity projection
of the condensate~8!

PpuN,x&5
1

2AN!
F S (

lm
xlmblm

† D N

1pS (
lm

xlm8 blm
† D NG u0&.

~12!

Binomial expanding the even and oddl parts in Eq.~12!, it is
easy to see that forp511, it has an even number of odd
parity bosons, and forp521, it has an odd number of odd
parity bosons. Note that while the condensate~8! is normal-
ized, this is lost after parity projection. UsingPp

2 5Pp , the
normalization of the projected state~12! is given by

Np5^N,xuPpuN,x&5
1

2
~x•x!N~11pr N!, r 5x•x8/x•x.

~13!

Herer gives a measure of the mixing between the even-
odd-parity bosons. Forr 51, the ground state corresponds
a condensate of the even-parity bosons only. With decrea
r, mixture of the odd-parity bosons in the condensate
creases, becoming an equal mixture atr 50. With further
reduction in r, the odd-parity bosons start dominating th
condensate, reaching the opposite limit of a condensat
the odd-parity bosons atr 521. Thus for weakly coupled
octupole vibrationsr'1, and the limitr→0 corresponds to
the onset of stable octupole deformation.

C. Energy surface and axial symmetry

The energy surface of the Hamiltonian~5! with parity
projection is given by

Ep~x!5
1

Np
^N,xuHPpuN,x&

5
1

2Np
@^N,xuHuN,x&1p^N,xuHuN,x8&#. ~14!

e
e
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The matrix elements in Eq.~14! can be evaluated using bo
son calculus, yielding

Ep~x!5
N2k2

~11pr N!~x•x!2 H ~x•x!(
lm

h l uxlmu2

3@11pr N21~21! l #

2(
km

zk@ uAkmu21pr N22uAkm8 u2#J , ~15!

where we have used the dimensionless parameters i
duced in Eq.~7!. The quadratic formsAkm in Eq. ~15! are
defined by

Akm5 (
jmln

^ jmlnukm&~21!ntk j lxjm* xl 2n , ~16!

andAkm8 5Akm(x,x8). In deriving Eq.~15!, we have ignored
the 1/N correction terms in the two-body part in the spirit
the large N interpretation of the energy surface. This
equivalent to using the normal ordered forms of the mu
pole interactions. The result without parity projection can
obtained from Eq.~15! by ignoring the parity projected
terms, i.e., by settingp50.

Finding the minimum of the energy surface~15! for a
general condensate is a rather difficult problem. In
spd f-IBM, there are ( l(2l 11)516 mean fields which
could, in general, be complex. In order to make progress,
essential to reduce the number of mean fields in the va
tional problem using symmetry and physics arguments.
start with, we can setx0051 from the normalization condi
tion. Unlike the quadrupole deformation, there are no sp
symmetries in the intrinsic frame for a mixed parity syste
The only other symmetry one can invoke is time revers
which givesxlm5(21)mxl 2m* . This reduces the number o
independent mean fields by half to three realxl0 and six
complexxlm with m.0. In fact, in all our test runs the rea
and complex mean fields led to the same result, consis
with the observation@28# that only real mean fields ar
needed in the intrinsic frame.

From experimental observations, axial symmetry appe
to be maintained to a good approximation in the grou
states of deformed nuclei. In thesd-IBM, axial symmetry is
well known to be preserved@27#, and we expect that this wil
also hold true in realistic cases of thespd f-IBM. We have
checked this conjecture using the explicit form of the Ham
tonian~3!. The energy surface of the Hamiltonian~3! can be
worked out from the expressions given in Eqs.~15! and~16!
by inserting the appropriate Clebsch-Gordan coefficients.
a given parameter set, the absolute minimum of the ene
surface is determined numerically using the simplex meth
and the nature of the solutions~i.e., whether axially symmet
ric or not! is noted. We consider variations in three para
eters that are expected to play a role in octupole deformat
namely,k3 , x3 , andx2 . The otherx values are taken from
Table I and for the rest we useh1515, h251.5, h353,
z150.1. The results of this study covering a wide range
the parameter values are summarized in Fig. 1. The l
06432
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correspond to different values ofz35k3 /k2, which is varied
from 0.1 ~top line! to 1.0 ~bottom line! in steps of 0.3. The
regions below the lines correspond to parameter values l
ing axially symmetric mean fields. Thus, as long asx3 is
negative, the system remains axially symmetric, regard
of the other parameters. Notice that with increasingz3 the
lines quickly converge towardsx350 line, andx2 has a
rather marginal effect on the results. As seen from Table
negativex3 value naturally occurs in the SU~3! limit. In the
following, we will stick to the negativex3 values and presen
more reasons in the next sections why this choice is m
physical as well as being more convenient.

While our focus in this work is on axially symmetric sys
tems, Fig. 1 also indicates that nonaxial shapes can be e
obtained in thespd f-IBM using the basic Hamiltonian~3!
with positive x3 values. This in contrast to thesd-IBM
where introduction of higher order interactions is necess
in order to induce nonaxial shapes.

The proof of axial symmetry brings in an enormous si
plification to the mean field problem, which we exploit in th
following to get a better understanding of the model para
eters. The ground state of the boson system is still given
the condensate~8! but with the sum restricted to them50
terms only. Henceforth, we will suppress the 0 subscript
convenience and denote the mean fields byxl . Whenx0 is
set to 1 from normalization, it is customary to denote t
remaining mean fields byb l[xl . We follow this practice in
this work. It should be noted that the IBM deformation p
rametersb l are different from their geometrical model cou
terparts. Since they represent only the deformation ass
ated with the valence nucleons, they are typically a facto
3–4 larger than the liquid drop values@27#.

D. Eigenmode conditions

For axially symmetric systems, the variational proble
for a given multipole interactionHk52kkT

(k)
•T(k) is

FIG. 1. Regions of axial symmetry in thespd f-IBM parameter
space. The lines, from top to bottom, correspond to fixed octup
strengths withz35k3 /k250.1, 0.4, 0.7, and 1.0, respectively. Fo
parameter values below each line the boson system remains ax
symmetric while above the line it becomes nonaxial.
3-4
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equivalent to the eigenmode condition for the operatorT(k).
Hence, the effect of a particular multipole interaction on t
intrinsic stateb†, which is not so easy to surmise from th
energy surface~15!, can be simply obtained from the eige
mode condition defined by

@T0
(k) ,b†#5lkb

†. ~17!

Using Eq.~6! in the commutator one obtains an eigenva
equation for the mean fields

(
j

t̄ k j lxj5lkxl . ~18!

The eigenvalueslk correspond to the extremum values
the energy surface, given by^Hk&52N2lk

2 to leading order
in N. Here~and on thex parameters, see Table I! bar denotes
Clebsch-Gordan weighted parameters, that is,

t̄ k j l5^ j 0l0uk0&tk j l . ~19!

We consider the eigenmode condition for each of the m
tipole operators in Eq.~4! to see their effect on the conden
sate. For the quadrupole operator, Eq.~18! can be written
explicitly as

S 0 1 0 0

1 x̄d 0 0

0 0 x̄p x̄p f

0 0 x̄p f x̄ f

D S x0

x2

x1

x3

D 5l2S x0

x2

x1

x3

D , ~20!

where we have setx251 for simplicity and grouped the
even and odd parity mean fields separately for clarity
demonstration. The block diagonal form of Eq.~20! shows
that theQ•Q interaction does not mix the positive and neg
tive parity bosons. In general, there are two solutions of
~20!, one associated with the positive parity mean fields a
the other with the negative parity ones

l215
1

2
@ x̄d6Ax̄d

214#, x15~1,l21 ,0,0!,

l225
1

2
@ x̄p1x̄ f6A~ x̄p2x̄ f !

214x̄p f
2 #,

x25~0,0,1,~l222x̄p!/x̄p f!, ~21!

wherex5(x0 ,x2 ,x1 ,x3) as above. For a prolate shape, th
we assume in this work, the1 signs in Eq.~21! minimize the
energy and maximize the quadrupole moment~see below!.
When l21.l22 , the ground state is a condensate ofsd
bosons, and whenl21,l22 it is a condensate ofp f bosons.
The casel215l22 corresponds to the critical point in be
tween. We have chosen the relative scale factor in thep f
sector of the SU~3! quadrupole parameters~Table I! such that
l215l225A2 in this limit. Then, an arbitrary combinatio
of the solutionsx15(1,A2,0,0) andx25(0,0,A3,A2) satis-
fies Eq.~20!. Note that contrary to the expected dominan
06432
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of octupole over dipole collectivity, the SU~3! values lead to
x1.x3. A more realistic parametrization that we adapt here
obtained by simply interchanging the values ofx̄p andx̄ f in
Table I, which gives the samel22 but with the mean fields
interchanged, that isx25(0,0,A2,A3). In general, one can
always setx25l21 /l22 in the quadrupole operator~4! so
that sd and p f sectors simultaneously satisfy Eq.~20!. In
realistic parametrizations, however,Q•Q interaction alone
should lead to a quadrupole deformation only. For the qu
rupole parameters used in this work~Table I!, this imposes
the conditionux2u,0.9.

Next consider the eigenmode condition for the octup
operator, which leads to the eigenvalue equation

S 0 0 0 1

0 0 x̄38 x̄3

0 x̄38 0 0

1 x̄3 0 0

D S x0

x2

x1

x3

D 5l3S x0

x2

x1

x3

D . ~22!

Notice that the structure of Eq.~22! is completely opposite to
that of Eq.~20!, with zero block diagonal terms and nonze
off diagonal terms. This leads to a mixing of positive a
negative parity mean fields in the intrinsic state which w
not possible with aQ•Q interaction. The discriminant of Eq
~22! is quadratic inl3

2

l3
42~ x̄3

21x̄38
211!l3

21x̄38
250, ~23!

which has the solutions

l3
25

1

2
@ x̄3

21x̄38
2116A~ x̄3

21x̄38
211!224x̄38

2#,

x5S 1,
l3

221

x̄3

,
x̄38~l3

221!

x̄3l3

,l3D . ~24!

Using the SU~3! values from Table I givesl3
25(9

1A33)/1051.474 andx5(1,0.839,0.478,1.214). Thus th
octupole interaction leads to an enhanced octupole defor
tion as expected. Unlike in other cases, the SU~3! tensor
operator here results in irrational eigenvalues, and further
pd coupling is stronger than thef d coupling (x̄38.x̄3). In
the realistic set~Table I!, we interchange these two value
which sorts out both of these problems, givingl3

258/5 and

x5(1,A3/2,A3/20,A8/5). Note that forx3,0 (x̄3.0), the
mean fields in Eq.~24! are coherent with those obtained fro
the quadrupole interaction, which reinforces the axial sy
metry in the combined Hamiltonian. Positivex3 values, on
the other hand, lead to conflicting signs in the mean fie
giving rise to the nonaxial shapes.

Finally, the eigenmode condition for the dipole opera
gives
3-5
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S 0 0 1 0

0 0 x̄1 x̄18

1 x̄1 0 0

0 x̄18 0 0

D S x0

x2

x1

x3

D 5l1S x0

x2

x1

x3

D . ~25!

The structure of Eq.~25! is very similar to that of Eq.~22!,
and one obtains the same equation forl1 as for l3 in Eq.
~23! with all the subscripts 3 replaced by 1. The mean fi
solutions are thus given by

l1
25

1

2
@ x̄1

21x̄18
2116A~ x̄1

21x̄18
211!224x̄18

2#,

x5S 1,
l1

221

x̄1

,l1 ,
x̄18~l1

221!

x̄1l1
D . ~26!

Substituting the SU~3! values above, we obtainl1
259/5 and

x5(1,A2,3/A5,A6/5). Compared to the octupole interactio
the dipole interaction leads to a more even distribut
among the various deformations.

The mean field solutions obtained from the eigenmo
conditions clearly demonstrate the basic incompatibi
among the various multipole interactions. For example,
the quadrupole SU~3! solutions,x2.x0 andx1.x3, which is
opposite to that obtained in the octupole SU~3! case. Thus
mixing of the two quadrupole solutionsx1 and x2 in a
quadrupole-plus-octupole Hamiltonian, as is done in R
@16#, cannot yield a consistent solution for the mean fiel
While independent variation of three mean fields is cons
erably more complicated to handle analytically, this can
easily achieved using numerical techniques.

E. Multipole moments

In the intrinsic frame, the static moment associated wit
multipole operatorT(k) is given by

Tk05
^N,xuT0

(k)uN,x&

^N,xuN,x&
5N(

j l
t̄ k j lxjxl . ~27!

In terms of the mean fieldsx5(1,b1 ,b2 ,b3), the quadru-
pole, octupole and dipole moments have the particular fo

Q05
N

x•x
@2b21x̄db2

21x2~2x̄p fb1b31x̄pb1
21x̄ fb3

2!#,

O05
2N

x•x
@b31x̄3b2b31x̄38b1b2#,

D05
2N

x•x
@b11x̄1b1b21x̄18b2b3#. ~28!

There is some arbitrariness in the choice of phases in
SU~3! limit. We have fixed the signs of the parameters
Table I such that all the terms in Eq.~28! add coherently to
yield the maximum moments. For example, in most previo
work the opposite sign forxp f was used. While this has n
06432
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effect on the quadrupole moment itself, the resulting me
fields lead to cancellations in the octupole moment, reduc
the effectiveness of the octupole interaction. The choice
negativex3 (x̄3.0), required for axial symmetry, is als
seen to maximize the octupole moment.

The static moment associated with a particular multip
interaction T(k)

•T(k) follows trivially from the eigenmode
condition ~18! as

Tk05Nlk5Nbk , ~29!

wherebk5lk used in the last step follows from Eqs.~21!,
~24!, ~26!. Thus the static moments are simply proportion
to the corresponding deformation parameter when the Ha
tonian is restricted to a certain multipolarity.

With parity projection, the multipole matrix element i
Eq. ~27! becomes

Tk0
p,p85@NpNp8#

21/2^N,xuPpT0
(k)Pp8uN,x&

5
@11~21!kpp8#

4@NpNp8#
1/2

@^N,xuT0
(k)uN,x&

1p^N,xuT0
(k)uN,x8&#. ~30!

For p5p8, Eq. ~30! gives essentially the same result as E
~27! for even multipoles, but it vanishes for odd ones.
discuss the odd-multipole moments, one can either use
~27! or introduce transition moments by

Tk0
125@12r 2N#21/2Tk0 , ~31!

whereTk0 are given in Eq.~28!. When there is a substantia
mixture of odd-parity bosons in the ground state,r !1, and
the two results are seen to merge. We will consider b
options in discussing octupole moments.

III. SHAPE-PHASE TRANSITIONS

Shape-phase transitions in thesd-IBM has been well
studied in earlier works@27,29#. For comparison purpose
we summarize the results for spherical to quadrupo
deformed shape transition here. The energy surface of
Hamiltonian~1! is given by

Esd~b2!5N2k2F h2b2
2

11b2
22S 2b21x̄db2

2

11b2
2 D 2G , ~32!

whereh2 was introduced in Eq.~7!. Variation of Eq.~32!
with respect tob2 gives a fourth degree polynomial equatio

b2@h2~11b2
2!22~21x̄db2!~11x̄db22b2

2!#50.
~33!

The critical point for the phase transition from spherical
quadrupole-deformed shape is given by

h2541x̄d
2 , or k25

ed

N~41x̄d
2!

. ~34!
3-6
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At the critical point, the spherical (b250) and deformed
(b25x̄d/2) minima coexist, both having the energyE50.
Note that with angular momentum projection, one obta
the same leading order expression for the energy surfac
in Eq. ~32! @30#. Thus restoration of the broken rotation
invariance causes only a small change of order 1/N in the
shape-phase diagram.

As shown in Ref.@31#, shape-phase transitions in th
s f-IBM are very similar to those in thesd-IBM if one ig-
nores parity projection. For a Hamiltonian consisting of on
body energy and octupole interaction, the critical point
the onset of octupole deformation occurs atk35e f /4N,
which is the same as Eq.~34! if we setxd50 ~the difference
is due to the lack of af † f̃ term in the octupole operato
because it has positive parity!. This well-known picture for
shape-phase transitions, however, completely changes
parity projection~PP!, with the critical point moving tok3
50 @31#. In the following, we generalize this result to th
sd f- andspd f-IBM. That is, we show that the onset of th
octupole deformation is immediate in the presence of
octupole strength (k3Þ0) regardless of whether the syste
is quadrupole deformed or not. For this purpose we use
axially symmetric version of the energy surface~15!, which
can be written as

Ep~b1 ,b2 ,b3!

5
N2k2

~11pr N!~x•x!2 H ~x•x!(
l 51

3

h lb l
2@11pr N21~21! l #

2~A20
2 1pr N22A208

2!2z1A10
2 2z3A30

2 J , ~35!

where x5(1,b1 ,b2 ,b3) and the dimensionless paramete
introduced in Eq.~7! are employed. The quadratic forms
Eq. ~35! have the explicit forms

A2052b21x̄db2
21x2~2x̄p fb1b31x̄pb1

21x̄ fb3
2!,

A1052b112x̄1b1b212x̄18b2b3 ,

A3052b312x̄38b1b212x̄3b2b3 , ~36!

with A208 5A20(2x2). Note thatA108 5A308 50 because the
hermitian conjugate of each term contributes with an op
site sign in odd-parity operators.

A. sdf-IBM

We first consider thesd f-IBM both because of its rel-
evance (p boson is presumably weakly coupled! and also for
convenience~analytic solutions are still possible with tw
mean fields but not with three!. The energy surface in th
sd f-IBM follows from Eq. ~35! by settingb15z150 and
x251. Without PP (p50), this energy surface further sim
plifies to
06432
s
as

-
r

ter

y

e

-

Esd f~b2 ,b3!5
N2k2

~11b2
21b3

2!2@~11b2
21b3

2!~h2b2
21h3b3

2!

2~2b21x̄db2
21x̄ fb3

2!224z3~b3

1x̄3b2b3!2#. ~37!

Setting the derivatives ofEsd f with respect tob2 andb3 to
zero, we find for the extremum conditions

b2~11b2
21b3

2!@h21~h22h3!b3
2#24z3b3

2~11x̄3b2!

3@ x̄3~12b2
21b3

2!22b2#22~2b21x̄db2
21x̄ fb3

2!

3@~11x̄db2!~11b3
2!2b2~b21x̄ fb3

2!#50, ~38!

b3$~11b2
21b3

2!@h31~h32h2!b2
2#24z3~11x̄3b2!2

3~11b2
22b3

2!12~2b21x̄db2
21x̄ fb3

2!

3@2b21x̄db2
22x̄ f~11b2

2!#%50. ~39!

Note that Eq.~39! has the formb3(C2b3
22C0)50. Thus it

has either the trivial solutionb350, in which case the en
ergy minima correspond to those ofEsd as discussed above
or b3

25C0 /C2, which could lead to an octupole deforme
minimum. Substituting this value ofb3

2 back in Eq. ~38!
leads to an 8th degree polynomial equation inb2, which we
will not pursue here. What we are really interested in
finding the critical point for the onset of octupole deform
tion, which can be determined without explicitly solving fo
b2 andb3. At the critical point, the octupole deformed solu
tion coexists with the vibrational one (b350) with a vanish-
ingly small b3. Thus the condition for criticality is simply
given byC050, which can be written from Eq.~39! as

C05~11b2
2!@h2b2

22h3~11b2
2!14z3~11x̄3b2!2#

22~2b21x̄db2
2!@2b21x̄db2

22x̄ f~11b2
2!#50.

~40!

Using Eq.~33! in ~40! to eliminate theh2 term and reverting
back to the original parameters, this condition can be c
into a physically more transparent form

k35
1

~11x̄3b2!2 F e f

4N
~11b2

2!1
k2

2
~b22x̄ f !~2b21x̄db2

2!G .
~41!

For b250, the condition~41! reduces tok35e f /4N, con-
sistent with thes f-IBM result. For realistic values of param
eters (b2'1), the presence of the quadrupole deformation
seen to shift the criticalk3 to larger values, thus retarding th
onset of octupole deformation further compared to
spherical case.

Before proceeding with the parity projected case, we
mark that the same result can also be obtained by expan
the energy surface aroundb350 and examining the coeffi
cient of theb3

2 term. This method will be useful in compli
3-7
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cated cases where manipulation of the extremum equatio
substantially more difficult. Expansion ofEsd f in Eq. ~37!
gives

Esd f~b2 ,b3!5Esd~b2!2N2k2C0~11b2
2!23b3

21•••,
~42!

whereEsd andC0 are defined in Eqs.~32! and~40!, respec-
tively. We see from Eq.~42! that for C0,0 the energy sur-
face is stable atb350 and there is no octupole deformatio
~in the above discussion, this corresponds to the secondb3
solution becoming imaginary!. Conversely, forC0.0 the
energy surface becomes unstable atb350 and the system
becomes octupole deformed. ClearlyC050 corresponds to
the critical point, leading to the characteristic flat-bottom
energy surface in theb3 direction.

We next consider the effect of PP on the octupole sha
phase transition. Thesd f-IBM energy surface withp511
is given by

E1sd f~b2 ,b3!5
N2k2

~11r N!~11b2
21b3

2!2H ~11b2
21b3

2!

3(
l 52

3

h lb l
2@11r N21~21! l #

2~2b21x̄db2
21x̄ fb3

2!22r N22~2b2

1x̄db2
22x̄ fb3

2!224z3~b31x̄3b2b3!2J .

~43!

As the extremum conditions lead to unwieldy expressio
we follow the second method here to find the critical po
and expand the energy surface~43! around b350. After
some algebra, we obtain to leading order inb3

2

E1sd f~b2 ,b3!5Esd~b2!22N2k3~11b2
2!22~11x̄3b2!2b3

2

1••• . ~44!

Comparing Eq.~44! with Eq. ~42!, we see that contribution
from the positive parity operators to theb3

2 term have all
disappeared after PP, leaving behind only the octupole te
Obviously, for any finite octupole strengthk3.0, the system
has an octupole deformation. The inescapable conclusio
that PP has a drastic effect on the onset of octupole defor
tion moving the required octupole strength from a fin
value to zero, that is, the critical point occurs atk350 after
PP.

Because this is a somewhat surprising result whose d
vation from Eq.~43! is not so transparent, we expand on i
little. Comparing Eq.~37! with Eq. ~43!, it is seen that the
matrix elements~m.e.! of the positive parity operators hav
all acquired ap-dependent term after projection where
such a term is missing in the m.e. of the negative pa
octupole operator. Disappearance of the m.e. of the pos
parity operators from theb3

2 term in Eq.~44! is precisely due
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to the cancellation between the unprojected andp-dependent
terms. A more direct way to see the effect of PP is to expa
the sd f-boson condensate

~s†1b2d0
†1b3f 0

†!N

5~s†1b2d0
†!N1N~s†1b2d0

†!N21b3f 0
†

1~1/2!N~N21!~s†1b2d0
†!N22~b3f 0

†!21•••, ~45!

and look at the overlaps of various terms. Denoting the sta
in the expansion by theirf boson numbernf , the leading
contribution to the one-body terms comes from the~1-1! m.e.
~i.e. ^1un̂f u1&!, which goes asb3

2. However, after PP, oddnf

terms are projected out, so the leading term has to come f
the ~2-2! m.e., which goes asb3

4. A similar argument applies
to the quadrupole m.e. In contrast, the leading~equal! con-
tributions to the octupole term come from the~1-1! and~0-2
1 2-0! m.e., and PP blocks only the first one, leaving t
second one intact@which explains the 1/2 reduction in thek3
term in Eq.~44! compared to Eq.~42!#. Thus the net effect of
PP is to lift the obstruction of the one-body and quadrup
interaction terms in the Hamiltonian against the formation
an octupole deformed system. In the absence such resist
even the slightest octupole perturbation is sufficient to
form the system.

We summarize the results of this section with a sha
phase diagram shown in Fig. 2. On the left, theb3 values
obtained from the absolute minimum of the energy surfa
with and without PP are plotted againstz35k3 /k2, while the
figure on the right shows the corresponding octupole m
ments obtained from Eq.~28!. Here thex parameters are
taken from Table I, and the others are;h251.5, h353.
Without PP, a sharp shape-phase transition to octupole de
mation is seen to occur at the critical point given by Eq.~41!.
After PP, the critical point moves tok350 and the sharp
transition is replaced by a smoothly varying curve. Note t
there is a very close correlation between theb3 values and
the static octupole moments. Thus the exact proportiona
found between the two quantities for a particular multipo
Hamiltonian@see Eq.~29!# is more or less preserved in th

FIG. 2. Shape-phase diagrams depicting the onset of octu
deformation in the presence of quadrupole deformation with
~solid line! and without PP~dashed line!. Theb3 values correspond-
ing to the absolute minimum of the energy surfaces Eqs.~37! and
~43! are plotted againstz35k3 /k2 on the left. The corresponding
octupole moments calculated from Eq.~28!, together with the tran-
sition moment from Eq.~31! ~dotted line!, are shown on the right.
3-8
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more general case, confirming the interpretation of theb3
mean field as the octupole deformation parameter. The t
sition octupole moment~dotted line!, on the other hand, de
viates from the static one for smallb3 and does not provide
a reliable measure of the octupole deformation in this reg

We remark that the concept of mean field is useful o
when the symmetries broken in the intrinsic frame do
have an appreciable effect on the calculated values of ph
cal quantities. Breaking of the rotational symmetry is such
example. As pointed out earlier, one obtains the same en
surface to leading order inN with and without angular mo-
mentum projection. Thus the mean field results obtained
the intrinsic frame are accurate to order 1/N. As demon-
strated here, in mixed parity systems the mean field res
without PP are dramatically different from those with P
Therefore mean field studies of mixed parity systems sho
be carried out with PP, otherwise one is likely to obtain
roneous results especially at small octupole deformation

B. spdf-IBM

The previous result on the onset of octupole deformat
can be extended to thespd f-IBM in a straightforward man-
ner, though the algebra is considerably more involved. T
energy surface in thespd f-IBM without PP is obtained from
Eq. ~35! by settingp50. Because the analysis of the extr
mum conditions is quite complicated, we directly expand t
energy surface for smallb1 and b3, keeping only the qua-
dratic terms

Espd f~b1 ,b2 ,b3!

5Esd~b2!1N2k2~11b2
2!22

„@h1~11b2
2!2h2b2

2

12~2b21x̄db2
2!2~11b2

2!2122x2~2b21x̄db2
2!x̄p

24z1~11x̄1b2!224z3~ x̄38b2!2#b1
2

2$2x2~2b21x̄db2
2!x̄p f14@z1~11x̄1b2!x̄18

1z3~11x̄3b2!x̄38#b2%2b1b31@h3~11b2
2!2h2b2

2

12~2b21x̄db2
2!2~11b2

2!2122x2~2b21x̄db2
2!x̄ f

24z1~ x̄18b2!224z3~11x̄3b2!2#b3
21•••…. ~46!

In order to facilitate the discussion of shape-phase transit
we rewrite this energy surface as

Espd f~b1 ,b2 ,b3!5Esd~b2!1Ab1
212Bb1b31Cb3

21•••,
~47!

where the coefficientsA, B, andC can be read off from Eq
~46!. The behavior of the quadratic form~47! is determined
by the sign of its discriminant.

~i! B22AC,0: the energy surface has a bowl shape
theb1-b3 plane. When the quadrupole interaction domina
~or h1@1 and h3@1), both A and C are positive andb1
5b350 is the absolute minimum of the energy. So this
gion of the parameter space corresponds to the octup
dipole vibrational phase.
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~ii ! B22AC.0: Increasing the octupole and dipo
strengths while reducing the one-body energies will even
ally change the sign of the discriminant. The energy surf
then has a saddle shape and unstable against deformati
theb1-b3 plane. The absolute minimum of the energy occu
at a point withb1.0 and/orb3.0. This region of the pa-
rameter space complements the case~i! and corresponds to
the octupole/dipole deformed phase.

~iii ! B22AC50: The surface defined by this condition
the parameter space clearly defines the critical region
tween the vibrational and deformed phases. We will not d
cuss further the implications of the critical condition on t
model parameters and derive relations among them for
onset of octupole/dipole deformation because, as is sh
below, this is a chimerical phase transition that disappe
after PP.

To see the effect of PP on the shape-phase transition
expand thespd f-IBM energy surface~35! with p511 for
small b1 andb3

E1spd f~b1 ,b2 ,b3!

5Esd~b2!22N2k2~11b2
2!22$z1@~11x̄1b2!b1

1x̄18b2b3#21z3@ x̄38b2b11~11x̄3b2!b3#21•••%.

~48!

Comparing Eq.~48! with Eq. ~46!, it is seen that contribu-
tions from all the positive parity operators have vanish
after PP, and only the dipole and octupole interaction ter
are left behind at the quadratic level. It is clear from Eq.~48!
that the presence of any nonzero strength of the dipole
octupole interactions will cause an instability in the ener
surface atb15b350, leading to a dipole/octupole deforme
system. The direction of deformation in theb1-b3 plane de-
pends on the relative strengths of the dipole and octup
interactions. In realistic cases, the octupole interaction
much stronger and, therefore, the system will mainly defo
along the b3 axis. Thus the results presented for t
sd f-IBM in Fig. 2 provide an approximate picture for th
phase transition in thespd f-IBM as well.

IV. ONE-PHONON BANDS

So far we have discussed the ground state propertie
mixed parity systems with and without PP. However, most
the data on octupole deformation are obtained from the
citation of collective negative parity bands. Here we der
expressions for the excitation energies and transit
strengths for the negative-parity bands. Assuming axial sy
metry, the one-phonon bands can be written as

ufK&5@~N21!! #21/2~b†!N21bK
† u0&, bK

† 5(
l

ylKblK
† ,

~49!

whereK50, 1, 2, 3 for thespd f-IBM, and ylK are the mean
fields to be determined from the variation of the respect
band energies. The normalization of the parity-projected o
phonon bands is given by
3-9
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NpK5^fKuPpufK&5
1

2
~x•x!N21@yK•yK1pr N21yK•yK8 #.

~50!

Here the prime on mean fields denotes parity transforma
as in Eq.~11!. For KÞ0, orthogonality of the one-phono
bands with the ground band is implicit but this is not so
K50, and needs to be enforced by the condition

^fguPpuf0&50, ~51!

which leads to the following relationship among the me
fields:

x•~y01pr N21y08!50. ~52!

For strong coupling,r !1, and the orthogonality condition
reduces to the familiarx•y050 between the ground andK
50 bands. Then the expression~50! also holds for the nor-
malization of theK50 bands. But in general, it is modifie
by an additional term

Np05
1

2
~x•x!N21H y0•y01pr N21y0•y08

1
N21

x•x
@~x•y0!21pr N22~x•y08!2#J . ~53!

A. One-phonon band energies

The expectation value of the Hamiltonian~5! in the one-
phonon bands~49! can be evaluated in a straightforwa
manner. For theKÞ0 bands, the energy expressions are re
tively simple, given by

EpK5
1

NpK
^fKuHPpufK&,

5
~x•x!N21

2NpK
S (

l
« l H @11p~21! l r N21#ylK

2

1
N21

x•x
@yK•yK1p~21! l r N22yK•yK8 #xl

2J
2(

k
kk

N21

x•x F2~AkAkK1BkK
2 !

12pr N22~Ak8AkK8 1BkK8 BkK9 !

1
N22

x•x
~yK•yKAk

21pr N23yK•yK8 Ak8
2!G D . ~54!

Here the various quadratic forms are defined similar to
~16!, for example,

AkK5(
j l

^ jKl 2Kuk0&tk j l y jKylK ,

BkK5(
j l

^ jKl 0ukK&tk j l y jKxl , ~55!
06432
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with the prime denoting a parity transformed mean field
the above formsxl85(21)lxl

Ak85(
j l

^ j 0l0uk0&tk j lxjxl8 ,

AkK8 5(
j l

^ jKl 2Kuk0&tk j l y jKylK8 ,

BkK8 5(
j l

^ jKl 0ukK&tk j l y jKxl8 ,

BkK9 5(
j l

^ jKl 0ukK&tk j l y jK8 xl . ~56!

Subtracting the ground state energy from Eq.~54!, one ob-
tains the band-excitation energies. For theK50 bands, there
are additional terms arising from the nonorthogonality of b
son operators as in the case of the normalization~53!. These
terms typically introduce small corrections to the band en
gies but because they are lengthy and are not of much in
est, they are not given here.~The energies of theK50 bands
in the next section are, of course, calculated using the
expressions.!

B. Electric moments and transitions

For even-multipole operators, the static moment of a o
phonon band is given by

Tk0
p 5

1

NpK
^fKuT0

(k)PpufK&

5
~x•x!N21

2NpK
FAkK1

N21

x•x
yK•yKAk

1pr N21S AkK8 1
N21

x•x
yK•yK8 Ak8D G . ~57!

The quadratic forms here and in the expressions below
given in Eqs.~55! and~56!. For odd-multipole operators, w
calculate the transition moment between the positive
negative parityK bands

Tk0
125@N1KN2K#21/2^fKuP1T0

(k)P2ufK&,

5
1

2
@N1KN2K#21/2~x•x!N21FAkK1

N21

x•x
yK•yKAkG .

~58!

Finally we calculate the intrinsic matrix elements for the e
citation of theK bands assuming the same multipole ope
tors for electric transitions as those employed in the Ham
tonian
3-10
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^pKuTK
(k)ug.s.&5@NpKNg.s.#

21/2^fKuPpTK
(k)P1ufg.s.&,

5
AN

4
@11~21!kp#@NpKNg.s.#

21/2

3~x•x!N21~BkK1r N21BkK8 !. ~59!

Clearly only the bands withp5(21)k have non-zero tran
sitions to the ground state. The result in Eq.~59! does not
incorporate the time reversal invariance, which is import
in comparison with experimental results in the lab fram
This is achieved simply by multiplying the matrix elemen
for KÞ0 states by a factor ofA2 in Eq. ~59! @32#.

As in the case of the band-energies, there are extra te
for theK50 bands that have not been included in the ab
matrix elements. Nevertheless the systematic studies in
next section are carried out using the full expressions.

V. SYSTEMATIC STUDIES

In this section, we present systematic studies of the
rameter dependence of band-excitation energies and tr
tion matrix elements. The results are contrasted with the
perimental data in the rare-earth and actinide nuclei wit
view of determining the appropriate ranges of model para
eters that can be employed in detailed studies of nega
parity bands in specific nuclei. The key parameters are
single boson energies (h1 , h3) for the p and f bosons and
their coupling strengths (z1 , z3). We also consider the effec
of x2 as it can expedite mixing of the negative parity boso
in the ground state band. Unless otherwise stated, thex̄ pa-
rameters are taken from the adapted values in Table I.
d-boson energy is fixed ash251.5 throughout as found from
the fits to theb andg bands@24#. The results are presente
such that they are independent of the number of bosonN
and the quadrupole coupling strengthk2.

A. Band excitation energies

In Fig. 3, we plot the excitation energies for the sing
phonon bands as a function of thef boson energy. On the lef

FIG. 3. Dependence of the excitation energies of single-pho
bands ~in units of Nk2) on the octupole boson energyh3

5«3 /Nk2. On the left panel,z350.1 and on the right,z351. The
other parameters arex250.5, h1515, andz150.1.
06432
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panel,z350.1, which represents the weak coupling of oc
pole bosons appropriate to the rare-earth region. On the r
z351, representing the strong coupling observed in the
tinide nuclei. Thep bosons are assumed to be weak
coupled in these figures (h1515 andz150.1). Except in the
case of extreme mixing,h3 is seen to have no influence o
theb andg-band energies. The negative-parity bands exh
a linear dependence in both cases, suggesting that thef boson
energy would be best determined from their center of ene
A linear correlation between the octupole centroids and n
tron number has been observed in rare earths and actin
@7#. Thus thef boson energies can be determined in a rat
unique way for all nuclei with octupole excitations. Com
parison of the two panels indicates that increasing the o
pole coupling strength leads to a larger splitting among
octupole bands. On the right panel,K502 band is seen to
merge with the ground state, signalling the onset of rig
octupole deformation. This behavior is more likely to be i
duced by an increase in octupole coupling rather than a
duction in thef-boson energy. This is shown in Fig. 4, whe
the band-excitation energies are plotted as a function oz3
for a fixed h353. With increasingz3, the octupole bosons
steadily mix in the ground state and theK502 band comes
down. Forz3.1, the two bands merge and the condens
becomes a mixture of positive and negative-parity bosons
the Ra and Th nuclei, theK502 bands do not quite merg
with the ground state band@21#, indicating thatz3,1 in
these nuclei.

A question of considerable interest for applications of t
sd f-IBM with one f boson is the number off bosons in the
ground andK502 bands. Forz3,0.5, these numbers are a
expected from the octupole vibrations, that is,^n̂f&'0 for
the ground band and 1 for theK502 band. However, with
further increase inz3 the number off-bosons rapidly increase
becoming^n̂f&'2 for both bands aroundz3'1. Thus the
restriction of the negative-parity bosons to 1 is not a go
approximation in regions of stable octupole deformation.

n

FIG. 4. Dependence of the excitation energies of single-pho
bands on the octupole coupling strengthz35k3 /k2 for a fixedh3

53. The other parameters are the same as in Fig. 3.
3-11



it
id
-
e
e
e

ole

e
tu
th

e

e
s.
gi
ie

t
u-

e
n
th

g

for

t

h-
rved

and
s

in
ole

m
-

tion
:
ay

no

th

the
ling

SERDAR KUYUCAK AND MICHIO HONMA PHYSICAL REVIEW C 65 064323
The ordering of the negative parity bands changes w
increasing neutron number in both rare earth and actin
nuclei. In sd f-IBM with one f boson, this behavior is de
scribed by including an exchange interaction between thd
and f bosons@6,7#. As shown in Fig. 5, the ordering of th
bands fromK502 to 32 can be reversed by changing th
sign of thex2 parameter in the case of the weak octup
coupling (z350.1). However, other orderings such as 12,
02, 22 observed in172Yb, cannot be obtained within th
restricted parameter set employed in this work. Thus, in s
ies of specific nuclei, one needs to consider variations in
x parameters from the SU~3! values in order to reproduc
such details as ordering of the band heads.

We next consider the effect of thep-boson parameters. In
the previous figures,p bosons were weakly coupled, and th
correspondingK502, 12 bands were outside the figure
Thep-boson energy has a similar effect on the band ener
as thef-boson energy shown in Fig. 3, namely, the energ
of the K502, 12 bands associated with thep bosons lin-
early increase withh1 while the others remain nearly fla
~not shown!. Of more interest is the effect of the dipole co
pling strength in the case of high (h1515) and low-lying
(h155) p-boson energies. As shown in Fig. 6, in the form
case, thef and p boson bands remain well separated a
remain rather pure even at the strong coupling limit. In
latter situation, the bands start mixing with increasingz1 and
cannot be identified as beingp or f-boson band forz1.0.5.
For example, the secondK502 band has moref bosons than
p bosons in the condensate nearz151.

B. E1 and E3 transitions

When thep bosons are weakly coupled~i.e., h1'15), the
octupole-boson bands remain rather pure, and thef-boson
energy has almost no effect on theE3 transition strengths to
the ground state as long as they are not very stron
coupled. In the strong coupling limit (z3'1), the E3 K
502→0g.s. transition strength rapidly increases as theK
502 band comes down with decreasingh3. But the other
E3 transitions show little dependence onh3 even in the

FIG. 5. Dependence of the excitation energies of single-pho
bands on the parameterx2 in the quadrupole operator.h353, z3

50.1 on the left and 1 on the right. The other parameters are
same as in Fig. 3.
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strong coupling limit. Thus a more relevant parameter
studying theE3 systematics isz3, which is shown in Fig. 7
~left panel!. In the weak coupling limit, theE3 transition
strengths from theK502, 12, 22 bands are all similar bu
that from the 32 band is much smaller~mostly unobserved!.
With increasing octupole coupling, the strength of theE3
transition from theK502 band increases relative to the ot
ers. These features are in broad agreement with the obse
B(E3) systematics in the rare-earth and actinide nuclei,
gives support to the values of thex parameters chosen in thi
work. Obviously, one has to fine tune the value ofx3 param-
eter in theE3 operator in order to reproduce the variation
the observed distribution of strengths among the octup
bands. The dependence of theE3 matrix elements onx3 are
shown on the right panel of Fig. 7. Here the transition fro
K522 band remains independent ofx3 because the corre
sponding Clebsch-Gordon coefficient in Eq.~59! vanishes.

The results in Fig. 7 suggests an alternative explana
for the nonobservation of theK532 bands in experiments
rather than being much higher in excitation energy, they m

n

e

FIG. 6. Similar to Fig. 4 but forz15k1 /k2 whenh3515 ~left!
andh355 ~right!. The other parameters arex250.5, h353, and
z350.1.

FIG. 7. Intrinsic matrix elements forE3 transitions from the
negative-parity bands to the ground state. Absolute values of
matrix elements are plotted as a function of the octupole coup
strengthz3 ~left! and x3 for z350.1 ~right!. The other parameters
are the same as in Fig. 4.
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have much smallerE3 transition strengths to the groun
state and thus not seen in Coulomb excitation experime
This also provides another incentive for avoiding the posit
range of thex3 parameter because they would lead to la
B(E3) values for the excitation of theK532 bands~besides
leading to nonaxial shapes!.

We next discuss the influence of thep bosons on theE1
and E3 systematics. Variations in thep-boson coupling
strength have little effect on theE1 andE3 transitions from
the negative-parity bands, and therefore we will not consi
them further here. Thep-boson energy, on the other han
has some influence on theE1 andE3 transitions as shown in
Fig. 8. TheE3 transitions from theK502, 12 bands asso-
ciated with thep bosons are seen to be much weaker, a
similar in strength to that from the unobservedK532 band.
This suggests a fundamental difficulty in identification
collective dipole bands from Coulomb excitation expe
ments regardless of whether such bands are low lying~in the
region of octupole excitations! or high lying. Curiously, the
E3 matrix elements vanish forh1'5, so the dipole bands
would be even more elusive were they to lie just above
octupole bands. The situation with respect to the strength
transitions from thep boson K502, 12 bands is more
promising in the case ofE1 transitions~Fig. 8, right panel!.

FIG. 8. Dependence of theE3 ~left! andE1 ~right! transitions
on the p-boson energy. Thep-boson bands are indicated by th
dashed lines. Hereh353, z350.1, z150.1, and the other param
eters are the same as in Fig. 7.
n
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As long as thep- andf-boson energies are not degenerate,
matrix elements for all theE1 transitions have similar mag
nitude. This suggests that measurement ofE1 transitions
from theK502, 12 bands are likely to be more helpful i
identification of the collective dipole excitations. Data o
absoluteB(E1) values are meager and it is not easy to co
firm the appropriateness of the chosenE1 operator from the
experimental systematics. Nevertheless, the measuredB(E1)
values in 156Gd from theK502, 12 octupole bands are
consistent with the results shown in Fig. 8@33#.

VI. CONCLUSIONS

We have developed a mean field formalism for the stu
of negative-parity states within thespd f-IBM. The results
are employed in studying the octupole shape-phase tra
tions in quadrupole deformed nuclei. An interesting resul
the important role parity projection plays on the octupo
shape transitions, completely changing the shape-phase
gram compared to the unprojected case. This is to be c
trasted with the onset of quadrupole deformation, where
mean field results change little~of order 1/N) after angular
momentum projection. The mean field results allow a s
tematic study of excitation energies of negative-parity ban
and E1 and E3 transitions from them. The results are
broad agreement with the experiments, indicating that
simplified parametrization suggested in this work may p
vide a good starting point for detailed studies of negati
parity states in individual nuclei. Regarding the dipole c
lective bands, we have found that the observables exhib
general insensitivity towards thep boson parameters. Thus
would be difficult to make any suggestions about the p
sible location of the dipole bands from the systematics alo
According to our results, the best signature for the dip
excitations would be the observation ofE1 transitions from a
second set ofK502, 12 bands that have similar strengths
those from the first set that have octupole nature.
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