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The sp(3R) mean field approximation describes collective nuclear rotation in a symplectic density matrix
formalism. The densities arexé6 matrices that are defined by the quantum mechanical expectations of the
symplectic algebra generators. The 21 generators of the noncompact symplectic algelithisp(idde the
mass quadrupole and monopole moments, the kinetic energy, the harmonic oscillator Hamiltonian, and the
angular, vibrational, and vortex momenta. The mean field approximation restricts the densities to a coadjoint
orbit of the canonical transformation group SR, The reduction of a Sp(B) coadjoint orbit into orbits of
the dynamical symmetry group GGB) is proved to be consistent with the reduction of an SR)3Jiscrete
series representation into irreducible representations of BLCMhis reduction places a strict bound on the
range of the Kelvin circulation which is the Casimir of the 15-dimensional subalgebré3gcsp3,R). The
cranked anisotropic oscillator and Riemann ellipsoid model are special cases of symplectic mean field theory.
The application of the Riemann model in the even-even heavy deformed region indicates that the character of
low energy collective rotational modes depends only on the quadrupole deforrgafitre energy of the first
2" state in such isotopes is a simple functiongf
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I. INTRODUCTION The Lie group of the algebra acts as a transformation group
on the dual space via the coadjoint action. For semisimple
The noncompact symplectic algebra s@®)3,js the dy- matrix Lie algebras, the dual space is naturally isomorphic to
namical symmetry algebra of the symplectic shell modelthe Lie algebra and the coadjoint action is matrix conjuga-
[1-9]. The symplectic algebra is generated by all one-bodyion. The mean field approximation restricts the model den-
Hermitian operators that are quadratic in the position andities to a single coadjoint orbit. This orbit is a surface con-
momentum operators. Its irreducible unitary discrete serief@ined in the algebra’s dual space. The energy in the mean
representations unify the geometrical collective model andield approximation is a real-valued function of the density;
the harmonic oscillator shell model. An infinite-dimensional 'S critical points on a coadjoint orbit are the equilibrium
representation space contains afi-mh core-excited basis mean field densities.

states which are required to embed the geometrical mod(a. The @menspn pf a_coadjc_nnt orb_|t surface is less than the
) R imension of a finite-dimensional Lie algebra. Although the
fully and without approximation into the shell model. Al-

.only nontrivial unitary representations of a nhoncompact Lie
X i S %Igebra such as sp@), are infinite dimensional, the mean
theory, the elg_e_nstates of the symplec_tlc model |_|am'lton"""'i’ield approximation limits the theoretical investigation to a
yield E2 transition rates and deformations that compare faz i« dimensional manifold. In fact, spf) mean field
vorably with experimen{10-12. The transvers&2 form  heqry requires only matrix computations with 6 matrices.
factors predicted by the symplectic model are sensitive to th?hus, algebraic mean field theory eliminates the technical
nuclear collective currenf13—-20. A conventional shell gjfficulty of infinite-dimensional representation spaces for
model calculation that excludes Symplectic core eXCitationﬁoncompact a|gebras_ Even for a Compact a|gebra, the di-
fails to provide a satisfactory theoretical explanation of transmension of the representation space is typically much greater
verse inelastic transitionf@1]. than the dimension of a coadjoint orbit surface, and the mean
An alternative to a dynamical symmetry model foundedfield method is simpler than the irreducible representation
on irreducible representation theory is algebraic mean fielgnethod.
theory. Recently the algebraic mean field method was ap- The shell model and the irreducible representation spaces
plied to the s(B) algebra and the description of rotational of dynamical symmetry algebras are fundamentally inertial
bands[22,23. The algebraic method is a generalization offrame descriptions. In contrast, the geometrical model pro-
Hartree-Fock and Hartree-Fock-Bogoliubov mean field theovides a simpler description of rotational and vibrational
ries that are based on the unitary and orthogonal groupsnodes in the rotating body-fixed frame. Even though useful
respectively{24—-27. The algebraic theory also allows for a approximations to it exisf29,30, the K quantum number
generalization of the random phase approximation that dethe projection of the angular momentum vector onto the
scribes time-dependent normal mode oscillations of equilibbody’s symmetry axis in the rotating framis not well de-
rium configurationg28]. fined in shell model theory. Symplectic mean field theory
For a given Lie algebra, the space of algebraic mean fielgpermits a transformation to the body-fixed frame that pro-
theory is the set of densities defined as the quantum mesddes a clearer physical interpretation of rotational modes
chanical expectations of the operators of the algebra. The s#tan shell model theory offers.
of densities is contained in the dual space of the Lie algebra. Geometric quantization is one of the methods for the con-
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struction of the irreducible representations of Lie groupsThe nonnegative intege€l/% labels the irreducible represen-
[31-35. The starting point for the construction is a coadjointtations of the vorticity group S@). A wave functionW¥(q)
orbit that satisfies a generalized Bohr-Sommerfeld quantizain an irreducible gcr(8) representation space is a function of
tion rule. These special coadjoint orbits are called integralthe monopole-quadrupole tenspmwith vector values in an
The metatheorem of geometric quantization states that, fdrreducible representation space of the vorticity group. The
every representation theory concept, a corresponding, argtalar representatiodd=0 corresponds to the original Bohr-
ultimately equivalent, idea can be discovered for integral coMottelson model for an irrotational droplet. The other repre-
adjoint orbits[31]. For example, a coadjoint orbit of a semi- sentationsC#0 correspond to nuclear collective currents
simple compact Lie group is integral when it contains thewith nonvanishing circulation.
density of an integral highest weight vector. A familiar prob- The gcnt3) Casimir is the squared length of the vector
lem in representation theory is the reduction of an irreducibleKelvin circulation operatof51]. This Casimir is a physical
representation of a Lie group into a direct sum of irreduc- observable that measures the collective current and the char-
ible representations of a Lie subgrokbip In geometric quan- acter of rotational states, i.e., rigid rotation, irrotational flow,
tization this decomposition problem is solved by projectingand the continuum of intermediate nuclear currents. For a
an integral coadjoint orbit o6 into the dual space dfi and  classical fluid, the Kelvin circulation is a conserved quantity
then determining the integral coadjoint orbitstbfcontained [52]. The gcni3) Casimir is a five-body operator that is too
in the projection. All information about an irreducible repre- complicated for shell model calculations at present. In Sec.
sentation of a Lie group is encoded in the symplectic geomtll the values of the gcit8) Casimir on a fixed coadjoint
etry of its coadjoint orbits. Thus, the metatheorem asserterbit of sp(3R) are derived. It is proved that the Kelvin
that the physical properties of a quantum system governed bgirculation has the same restriction on its range in mean field
a dynamical symmetry can be investigated in two equivalentheory as it has in the gdi®) reduction of a symplectic irre-
ways: The direct way is through the irreducible representaducible shell model representatip#3]. The scope of collec-
tions of the dynamical symmetry group; the indirect methodtive currents is sharply limited by the shell model and this
is via the group’s coadjoint orbits. For some problems, thémportant property is respected without error in the mean
physics and the mathematics of the mean field or coadjoirfield approximation.
orbit method is the preferred way. The Riemann ellipsoid and Bohr-Mottelson geometrical
In this article the mean field method is applied to themodels can be unified within the differential geometric for-
noncompact symplectic algebra. In Sec. Il the symplectianalism of modern gauge theofy3]. The relevant space is a
algebra and its dual space are defined. There are four reprprincipal G bundle, where the structure gro@=SO(3) is
sentations of the symplectic algebra corresponding to the dehe vorticity group and the base manifold is the space of
formed and isotropic phonon bases and, for both of thes@ertia ellipsoids. A choice of a connection on this principal
bases, representations associated with real Rp@Ehd com-  bundle imposes constraints on the current, e.g., rigid body,
plex u3,3Nsp3,C) matrices. Although these four represen- irrotational flow, or a “falling cat.” The quantum Bohr-
tations are mathematically equivalent, each has particular advottelson theory, as extended to allow nonzero Kelvin cir-
vantages for different physical applications. In this sectionculation, is an associategd bundle where the fibers are iso-
the coadjoint action and the coadjoint orbits are also definednorphic to an irreducible representation of the vorticity
The symplectic Casimirs are constant functions on each caggroup. The integral Kelvin circulation labels this vorticity
adjoint orbit. The restriction to a coadjoint orbit is the math- group representation, and it is a gauge invariant.
ematical expression of dynamical symmetry in algebraic The isotropic and anisotropic harmonic oscillator Hamil-
mean field theory. tonians are elements of the symplectic Lie algebra. In Sec.
There are two important subalgebra chains for the sym}V the range of the isotropic oscillator on a symplectic co-
plectic model. The shell model is associated with the Elliottadjoint orbit is shown to be bounded from below just as it is
u(3) subalgebra, the symmetry algebra of the harmonic oswithin the corresponding shell model irreducible siR)3,
cillator. The geometrical collective model is related to therepresentation. For the cranked anisotropic oscillator Hamil-
general collective motion gcfB) subalgebra. The intersec- tonian, symplectic coadjoint theory is shown to be equivalent
tion of the Y3) and gcnt3) algebras is the angular momen- to Inglis cranking theonf54-57. When the anisotropy of
tum algebra s@) of the rotation group. This article applies the mean field is consistent with the geometrical deforma-
symplectic mean field theory to the collective model and itstion, the nucleus rotates rigidly.
associated gc(B) subalgebra. To derive the Riemann ellipsoid model in symplectic co-
The general collective motion algebra g@nis a 15- adjoint orbit theory, a term proportional to the Kelvin circu-
dimensional noncompact subalgebra of the 21-dimensionaation is added to the Routhian of the anisotropic oscillator
symplectic algebr§36—-43. The monopole and quadrupole Hamiltonian in Sec. \[58—60. The Kelvin circulation term
mass tensors and the Lie algebra of the general linear group the symplectic model energy modifies the nuclear current.
GL, (3,R) generate gcii®). In classical physics, gcot®) is  The self-consistent moment of inertia in the Riemann theory
the dynamical symmetry of the Riemann ellipsoid theorydepends on a parametercalled the rigidity, which varies
[44-50. The dynamical symmetry algebra of the Bohr- continuously fromr=0, corresponding to irrotational flow,
Mottelson collective model is gcfB). The inequivalent irre- to r=1, corresponding to rigid rotation. The rigidity is the
ducible representations of g¢8) are indexed by the Kelvin ratio of the Kelvin circulation to its rigid body value; it di-
circulation C which is quantized to integral multiples &f. rectly measures the character of rotational motion.
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The rotational bands of deformed nuclei have approxi- R
mately a constant value for the rigidity. Among the rare-earth Q= 2 XajXak s
even-even nuclei, the rigidity is approximately a quadratic “
function of the nuclear quadrupole deformatign In this
heavy deformed region, experiment indicates that the char- ?jk=2 PajPak
acter of low energy rotational states depends only on their “«
deformation and that their excitation energies, in conformity i
\g/]vi|rt1h the Riemann approximation, are mostly kinetic in ori- Njk:Z, (Xajpak_ Eéjk)' (1)

The observablesQ;, and T;, are the monopole-
Il. Sp(3,R) COADJOINT ORBIT THEORY quadrupole tensors in position and momentum space, respec-
tively. The traces of these tensors, which are the monopole
The mean field approximation uses a faithful matrix rep-components, determine the nuclear radius and the kinetic en-
resentation of the algebra to facilitate computations. For thergy, respectively. The traceless parts of these Cartesian ten-
symplectic Lie algebra there are two useful matrix represensors, which are the quadrupole components, determine the
tations. One is an algebra ofx® real matrices which is nuclear deformation in Euclidean space and momentum
isomorphic to the quadratics in the Cartesian position andgpace, respectively.
momentum operators. This representation relates the sym- The nine components O'f\ljk generate the Lie algebra
plectic theory to the geometrical collective model. The Othel’g|(3’R) of the general linear group. The antisymmetric parts
realization is a subalgebra 0f3;3), which is an algebra of Lizei'kNjk are the vector angular momentum components
66 complex matrices. This second matrix representation igyhich generate the algebra(8pof the rotation group. The
isomorphic to the quadratics in the oscillator phonons, and itrace Eijj=Ea(Fa-|3a—3i/2) measures the breathing

is relevant physically to the harmonic oscillator shell model. N L) o
In this section these two representations are defined. Th@qde oscillations. The traceless symmetric mﬁ =Nik

dual space of symplectic densities also has two matrix real® Nkj — (2/3)6;ZiN;; is the quadrupole vibrational momen-

izations corresponding to these two faithful matrix representUm- In the principal axis frame, the diagonal components of

tations. Note that some authors denote this real symplectill\s’ determine the vibrations of the principal axis lengths.

algebra by sp(®); the complexification of sp(R) is C;in  The off-diagonal components &},f) yield the Kelvin circu-

the Cartan classification of simple Lie algebras. lation. The quadrupole vibrational momentum satisfies the
Later, in Sec. Il A, the symplectic group and its coadjoint commutation relation

action on the densities are defined. Subgroups of &)(3,

such as the rotation group %), general linear group NP =i[ QP A1, 2
GL.(3,R), and unitary group (B), act as physically impor-
tant transformation groups on each coadjoint orbit. whereH is the harmonic oscillator Hamiltonian. The matrix

The three symplectic Qasimirs are definec_j _in Sec. I B.e|ement5<f|NJ(E)|i> of the quadrupole vibrational momentum
These are constant functions on each coadjoint orbit. Thgye evidently identically zero for any two state vectoesd

Casimirs are of enormous practical value for the mean field from a single major oscillator shell. In contrast, the matrix

method. Without them, the determination of critical points of g6 et 6f((2) petween the ground state and the giant isos-
the energy on a coadjoint orbit would necessitate the intro- !

duction of explicit coordinates for the orbit surface. In the calar quadrupole resonance is very large. Thus conventional

) : X X hell model calculation nn hiev meaningful theo-
case of Sp(R), the orbits are typically 18 dimensional, and ?etiecal ;ndaelyscii %l: ﬁtj?:lesarciurrztn?sc eve a meaningiul theo
the mean field method might become intractable and would The symplectic algebra sp@, o'f matrices consists of
certainly become messy. However, the critical points on &6 real matricess of the form '

level surface of the Casimirs can be found cleanly using the

method of Lagrange multipliers. Only the space of densities X —U
requires coordinates—an easy task because it is a vector 3:( ) 3
space. v =XT

In Sec. Il C, the anisotropic oscillator representation is ] .
defined in preparation for its use in cranking theory in Sec\whereX,U,V are 3<3 real matrices and,V are symmetric.
IV. The anisotropic and isotropic representations are relatedhe representation of the algebra of matrices is given by
by a coadjoint transformation using the diagonal dilatation i i
matrices in the general linear group. . R A L S

Let (X,j,P,;) denote the dimensionless Cartesian compo- () I% XjNj 3 % UiQikt 3 % VieTje (4
nents of the position and momentum Hermitian operators of
particle « in a finite system of particles. They obey the ca-WhenSis a matrix in the symplectic Lie algebra, the opera-
nonical commutation relationX,;,pg]=i08,59- The tor o(S) is a skew-adjoint one-body operator. The set of
symplectic generators are the Hermitian operators operators is a representatide;(S;),0(S,) 1= ([ S1,S,]).
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The symplectic density matrig corresponding to a nor- The symplectic density matrig’ relative to the phonon
malized wave function? is a symplectic matrix basis that corresponds to a normalized wave funciois a
T complex matrix
_( n t ) © . X
p= ; z —-w
@ - p’=(_w _Z), (11)
where the X3 real dimensionless matrices q, t are de-
fined by the expectations of the algebra generators, where the X3 complex matriceg, w are defined by the
R expectations
Aj=(V|Qji|¥), A
A Zj=—1(V|Cy|P),
ti=( [T ¥), i
. ij:—2|<q’|AJk|\I’>,

.o el B
Note thatp is a symplectic Lie algebra matrix becawgand Wj"_2|<w|8jk|q’>' 12

t are symme_tric. The quantum meghanical expectation of §ote thatp’ is a symplectic Lie algebra matrix in(3,3)
symplectic Lie algebra representatior{S) equals half the nsy3.C) becausez is skew-Hermitian anav is symmetric.
trace of the product of the density matrix times the Lie alge-The quantum mechanical expectation of the symplectic Lie
bra element, algebra representatian’ (S') equals the trace of the product
1 of the density matrix times the Lie algebra element,

(p.S)= 5 tr (pS)=—i(¥|o(S)|¥). Y

1 :
(p',S')= Etr (p'S)=—i(¥|c'(S)| V). (13
A second equivalent characterization of the symplectic Lie

algebra and its space of density matrices is given by operayhen js a highest weight vector of an irreducible unitary

tors that are quadratics in phonon creation and deStrUCtior‘bpresentation of sp(R), the density in the phonon basis is
operators. Leazj anda,; denote oscillator creation and de- diagonal

struction operators for particke in the Cartesian basis; these

operators obey phonon commutation relatiohauj,a};k] . [z 0 o
f=5aﬁ6jk. The symplectic sp(&) generators in phonon "=, , z=—idiagNy,N,N3), (14
orm are

1 whereN; are the weights of the irreducible unitary represen-
alant 551")’ tation, C;; ¥ = N; V.
The representations of the real Lie algebra sp(R) and
o' of the embedding of $B,R) in u(3,3) are related by a

éijE

A :E 2 atal transformation from position and momentum observables to
k™ & Fajaks harmonic oscillator phonons. Define the unitary@ com-
plex matrix
.1
Bik=5 > QgjAak - 8 1/ 1
2 a == . . ’ (15)
J2\ =it il

The symplectic algebra of matrices may be viewed as a sub-
algebra of (3,3). Define the complex 86 matrices in wherel denotes the 83 identity matrix. IfSis a real sym-

u(3,39Nsp(3,0), plectic Lie algebra matrix, Eq(3), then S'=K'SK is its

isomorphic image in (8,3NSp(3,C), Eq. (9). The represen-
, z -W tations of these two matrices as skew-adjoint operators are
S'= W+ —ZT) ©  the sameg(S)=0¢'(S"). When the dual space elements are

related byp’ =K'pK, the expectations also coincidg,S)

whereZ,W are complex X3 matricesZ is skew-Hermitian, =(p’,S’).

andW is symmetric. This matrix is represented by the skew- The complex diagonal density of Eq. (14) corresponds

adjoint one-body operator, to a real symplectic density matrix=Ko'KT,

R N R 0o t
a'(sw:% zjkcjk+j2k (WiAj—WiiBj). (10 e=( q 0), t=q=diagN;,N;,N3).  (16)

These operators are a representation of the symplectic Li€his is the symplectic density of a wave function with
algebra[o'(S;),0'(S)1=0'([S1,S5]). oscillator quanta in théth Cartesian direction.
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A. Sp(3,R) transformation group momentum tensot is positive definite on the physical co-
adjoint orbits. Thus a physically admissible orbit must have
positive-definite momentsandg.

Whenq is diagonal, the symplectic density represents the
system in the rotating principal axis frame, and it is denoted
(17 by’p. The spaceM,, of all principal axis frame densitigsis

a submanifold of the coadjoint orb®,, .
The group is represented by unitary transformatiorfg) The unitary group (B) is a subgroup of (8,3) NSp3,C)

which are the exponentiation of the Lie algebra representadiVen by

tion: If Siis a sp(3R) Lie algebra matrix,g=exp@© is a

symplectic group element that is represented unitarily by ) X 0

a(g) =exd o(9]. The set of unitary operators(g) forms a T'(x)= ( 0 (XT)l)' (20
ray representation of the symplectic group and a unitary rep-

resentation of the metaplectic group. The metaplectic grou
Mp(3,R) is a twofold covering group of the symplectic
group that is introduced because the spectrum of the ha
monic oscillator is half-integral.

When the symplectic group acts on a wave function,
V—o(g)V¥, the corresponding symplectic density is trans-
formed according to the coadjoint actiorpHAdgp
=gpg~ L. The coadjoint orbit0, consists of the density
and all transformed densities E\ﬁ asg ranges over the en- Lt , T .
tire symplectic group Sp(R). An orbit O, is a smooth sur- p=Kp'Kli=K7' (x)p" 7' (x) "= 1(X)pr(x)"", (21)
face contained in the space of all symplectic density matri-
ces. The space of all density matrices is a disjoint union of itsvhere the unitary group is represented by the real matrices
coadjoint orbits.

The subgroups of the symplectic group are transformation
groups on each coadjoint orbit. The subalgebra &) 3on- 7(X)= Kr’(x)KT:(
sists of the block diagonal matrices of Eg), and the sub-
group GL, (3,R) of Sp(3R) is given by the matrices

The symplectic group Sp(R) consists of the real 66
matricesg that leave invariant an antisymmetric forin

I
I 0/

0
Sp3R)={geMg(R)|g"Ig=J}, J=( _

evherex is a 3x3 complex unitary matrix. The subgroup
J(3) is the symmetry group of the harmonic oscillator
amiltonian.

The unitary group acts on the space of complex sym-
plectic densities p’ by the coadjoint transformation,
p'—7 (X)p' 7' (X) 1. On the space of real symplectic den-
sitiesp, the unitary group acts equivalently according to

u -V

vV U 22

and U,V are the real and imaginary parts g=U+iV

x 0 cU(3).

0 (xH 1) Each coadjoint orbit is a homogeneous space; i.e., it
is diffeomorphic to a coset space of the group SRJ3,

wherex is a 3x3 real matrix with a positive determinant. modulo a subgroup. The relevant subgroup is an isotropy

The general linear group GI(3,R) is the kinematical group subgroup which is the set of group elemegtshat fix an

of invertible linear transformations of three-dimensional Eu-orbit point, Ad; p=p. If ¢ of Eq.(16) is the orbit point, then

clidean space. The subgroup SIRp,of the general linear the isotropy subgroupd, depends on whether the eigen-

group consists of the matrices with unit determinant andyalues coalesce,

when acting on Euclidean space, describes incompressible

7(X)= (18

fluid motion. -
The rotation group S@) is a subgroup of the general U(1)>U(1)xU(1), whenN; are distinct
linear group, and it is a transformation group on each coad- H,={ U(2)xU(1), when twoN; are equal;
joint orbit. ForRe SQ(3), the coadjoint action transforms the u(3), when allN; are equal.
densityp of Eq. (5) into the rotated density (23)

T\ T 1)
(RnR )T RIR a (199 The dimension of the homogeneous spac®,
—RgR —RnR =Sp(3R)/H,, is dim O,=dim Sp(3R)—dimH,. Hence
. ) ) i i . the dimension of the generic coadjoint orbit is 18. When two
Each orbit of the rotation group contains a diagonal 'nert'aeigenvaluesf\li are equal, the coadjoint orbit is 16 dimen-
tensorRqR' = diag(aj,a3,a3). Since a physical orbitin the gjonal. If all three eigenvalues coincide, the orbit

dual space demands a positive definite inertia tensor, the dép(3R)/U(3) is 12 dimensional, and it is diffeomorphic to

agonal elementa? are positive real numbers. The positive gne of the classical domains1].

rootsa,>0 are proportional to the axis lengths of the inertia  The coadjoint orbits of the symplectic group in the space
elllps_0|d. Th.e.OFbItS for WhICh the_ inertia tensor fails .tO be of Comp|ex Symp|ectic densities are in one-to-one correspon-
positive definite are unphysical; i.e., no wave functi¥n  dence with the orbits0, in the space of real symplectic
exists such that the expectation of the quadrupole-monopolgensities. Whenp' =K TpK is a complex symplectic density
tensoerk is not a positive definite matrix. Similarly, the (11), then the orbit through it iS’)p,zKT(’)pK.

#(R)-p- 7(R) 1=
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B. Symplectic Casimirs C. Anisotropic representation

The symplectic Casimir§,,[ p] are real-valued functions The definition of the representation of the algebra of sym-
of the density plectic matriceg4) depends ultimately on the choices for the
length units of the three Euclidean directions which render
(Xq4j+Poj) dimensionless. In the isotropic case, a single
length unitb is used, and the sp() representation is de-
noted bya(S). In the anisotropic case, the length urits

The Casimirs are constant on each coadjoint omjffp] ~ depend on the Euclidean directidr=1,2,3, and the sym-
=Czr[Ad§ p] for ge Sp(3R). They are also independent of plectic representation is denoted by.{Sse). The symplec-

the real or complex form of the symplectic density,[ p] tic matricesS and Sy; are elements of the same matrix alge-
=C,[p']. The trace of an odd power of the density is iden-bra (3). . o
tically zero because of the special form of the symplectic For the deformed representation the density is denoted by
density matrix. Only the even powers of quadratic, quarticdef and
and sextet degrees are functionally independent. 1

Suppose a coadjoint orbit in the space of complex sym-  (per, Syep = St (PdeSuen) = —IH{ V| 0 ged Sue) | V).
plectic densities contains a diagonal matgikx of the form 26
(14) where the entriedl; are real numbers. The eigenvalues (26)

N; are unique to the coadjoint orbit and, therefore, label therhe subgroup of diagonal matrices in the general linear
coadjoint orbit. When theN; are positive half-integers or group determines transformations from isotropic to deformed
integers, the orbit corresponds to an irreducible unitary disgscillator phonons. Leb =diag(d;,d,,ds) be the diagonal
crete series representation of the symplectic Lie algebra, angatrix with positive elements,=b/b,= . /w,. The de-

the labelsN; are its weights. There are also orbits for which fgrmed representation of spgd, is related to the isotropic
the densityp” cannot be diagonalized by a symplectic group epresentation by

transformation, but these will not be considered in this paper
because they do not correspond to shell model representa- T gef Suen) = 0(S), S=7(D)Syerr(D) 2, (27)
tions.

Because the coadjoint action is matrix conjugation, it doedor S,Sqere SP(3R). If the diagonal matrix is an element of
not alter the eigenvalues of the density matrix, and the coadSL(3,R), then the deformed frequencies satishfw,ws
joint transformation Agp is an isospectral deformation of =w8.
the densityp. The solutions to the secular equation for each  The symplectic density s of @ wave functior¥ in the
density in a fixed coadjoint orbit are the constant eigenvaluegeformed representation is related by a coadjoint transforma-
N; . Thus the coefficients to the polynomial secular equatiorfion to the density in the isotropic representation,
must be likewise constant on each coadjoint orbit. These _ 1
coefficients are the Casimir functions,[p]. For an orbit p=1(D)pgerr(D) . (28)

O,/ , labeled by N1,N2,Ns), the values of the symplectic The oscillator phonons can be chosen to be either the isotro-
Casimirs are pic harmonic oscillator phonons or the anisotropic deformed
oscillator phonons. The alternate representation by deformed
, or phonons is the same skew-adjoint operator as its representa-
Cale ]:Z Ni™ . 25 tion by isotropic phonons. Thus, for every skew-adjoint op-
erator in the symplectic Lie algebra, there are four matrices

. o ) _that characterize it,
A level surface of the symplectic Casimir functions consists

of all densitiesp, Eq. (5), that satisfy the three algebraic d(S)=0"(S") = 0 gef Sdet) = T el Sied) s (29
equationsCZr[p]inNiZ’. The corresponding coadjoint or- ) .

bit O, in the space of complex matrices consists of theWhere the matrices are interrelated by

densitiesp’ of the form(11) that satisfy the three polynomial bt Pt

relations(25). In the typical case of distind\;, the three Ster= K SeeK, S'=KSK,
Casimir functions are functionally independent and, accord- _ 1 e L a1
ing to the implicit function theorem, the level surface is 18 S=7(D)Sgerm(D) 7%, §'=7'(D)Sgerr (D)7, (30)

dimensional, i.e., the dimension of the dual space of densitie@ith 7'(D)= KTT(D)K. Depending on the theoretical prob-
minus the number of independent functions. lem, one of these four equivalent matrix forms of a symplec-

~Since the Casimirs are invariant with respect to the coadgc | je algebra operator may optimize the mathematical com-
joint action, each coadjoint orbit is contained in a level SUr-pytation or the physical interpretation.

face of the symplectic Casimirs. For distingf, the coad-
joint orbit and the level surface have the same dimension,
and the coadjoint orbit is an open submanifold of the level
surface. But the coadjoint orbit is not necessarily identical to The general collective motion algebra g@nis a subal-
the level surface; see the Appendix for a counterexample. gebra of the real symplectic algebra sfX)3,

_ r

CZr[P]:( 21) tr (Pzr), r=1,23. (24)

Ill. GCM (3) DECOMPOSITION
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a5

1. .
0 _xT X,UeM3(R),UT=U{. (31 > .C+tr(t)=>, NZ. (36)

The gcni3) algebra is a 15-dimensional semidirect sum ofSince the kinetic tensdris positive definite, the length of the
two Lie subalgebras. One subalgebra is the Lie a|gebr§irculation pseudovector is bounded from above on a coad-
gl(3R) of the general linear group. The ideal of the semidi-joint orbit of the symplectic group. - S

rect sum is the six-dimensional Abelian algebra generated by A finer upper bound is determined by identifying the

subgroup of the symplectic group SpR3, Casimir function. Lefp denote the GCNB) orbit representa-

tive of Eq. (34) and p(e) a smooth curve in the symplectic
coadjoint orbit througtp,

X —xU
GCM<3>=[(O (XT)1>

xe GL.(3R),UeM3(R), 2

ple)=eSpe™S=p+ S p]+ 5 [S[S,pll+ -,
UT=U]. (32 (37)

_ o for San element3) of the symplectic Lie algebra. A critical
The GCM3) group is a semidirect product of GI3,R) and  point of the gcni3) Casimir satisfies
the Abelian normal subgroup

d

I —U d_CZ[P(E)]le:O:Oa (38)
R6= (o | ) UeM3(R),UT=U}. (33 €
or equivalently, after evaluating the derivative explicitly,

GCM(3) is a transformation group on each coadjoint orbit

of the symplectic group. The goal of this section is to deter- 0=(11=t2)C3= (13~ t5) C1= (13— 1) Cy. (39
mine the orbits of GCNB) in a fixed coadjoint orbit of the
symplectic group. Given a symplectic density with a
positive-definite quadrupole-monopole tenspra general
linear group element can be found that transfognisto the
identity matrix|. Next aR® group transformation is chosen
to remove the symmetric part of thetensor. Finally a rota-
tion group element is selected to diagonalize the positive- 0 t
definite kinetic tensot. Hence each physical orbit of the pZ(
GCM(3) group in the space of real symplectic densities con- Y

tains a density of the form This density is in the GCNB) orbit of the highest
“n t weight density ¢ since p=7(x)or(x)"! for x
o)

In addition, the symplectic density satisfies the three sym-
plectic Casimir identities.

There are three cases to consider. First, if all components
of the circulation are zero, then the GC3)l orbit represen-
tative is

), t=diag N7,N3,N3). (40)

(34  =diag(yNy, VN, VNg) in GL,(3R).

Second, if two components of the circulation vanish and
one is nonzero, sa¢,=C,=0, C3#0, then two diagonal
elements of the kinetic tensor coalestest,, according to
Eq. (39). This density is on the level surface of the symplec-
tic Casimir functions when eithdf)

-1 —n

wheren™=—n is antisymmetric and=diag(t,,t,,t3) is a
positive-definite diagonal matrix.

There is one gci®) Casimir function which is the
squared length of the Kelvin circulation vector,
C3=N;—N,, t;=t,=(N;+N,)%4, t3=N3 (41
Cz[p]=tr(anq‘1n—n2). (35) 3 1 2 1 2 ( 1 2) 3 3 ( )
or (2) C3:N1+N2, t1:t2:(Nl_N2)2/4, tgzNg It is
shown in the Appendix thd®) is not a point on the coadjoint
orbit O, , although it lies on the level surface, and, therefore,

The circulation is zeroC?[0]=0, for the symplectic orbit
representative of Eq16). The Casimir function is invariant
with2 respect to GCNB) subgroup transformation€£*[p]  yhic solution is rejected. Fatl), the quantaN, may be per-
=C“[Adyp] for ge GCM(3). Since the Kelvin circulation ted to obtain three distinct solutions altogether.
is constant on each GQOM) orbit, its value may be com-  Thjrg  if just one component of the circulation is zero—
pléted at the %CK/B) representative density of Eq34), g5y c.=0—then the kinetic tensor is a multiple of the iden-
Clp]=—21r(n%). The antisymmetric matrix1 determines  r, matrix. Because of the kinetic tensor symmetry, the sym-
the components of the pseudovector Kelvin circulatiog,  plectic density may be rotated so that the circulation vector
=¢€ijkCi/2, and the Casimir function I€Xp]=Ci+C;  has two zero components. Thus the third case reduces to the
+C§=C-C. second case. When all diagonal elements afe equal, one
When evaluated at the GQ®B) representative density, the of the quanta is the average of the other two—dsy,
guadratic symplectic Casimir function implies the relation =(N;+ N,)/2.
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To determine whether or not a critical point is a relative =fiwg(p’,h’)=ifiwgtr z=h wo=Ny.. Since the harmonic oscil-
maximum, the Hessian of the g€& Casimir function must lator Hamiltonian is 3) invariant, there is a corresponding
be evaluated. Along a curveg(e) through the critical point U(3) degeneracy for the density,

(41), the gcnt3) Casimir equals
* 1\ ’ =1\ I\ —
C2Lp(e)]= (Ny~ Np)?~ e2{(NF~N3) (N3~ NB)(V3q+ V) WGP AL =T = (48
+(Np—N3)N;No[ (Vo= Vi) ?+4VE ]} (42)  foranyxe UQ).

The symplectic orbit representatigehas energye and it
The GCM?) orbit point p is a relative maximum of the minimizes of the oscillator energy functional. Thé3)brbit
gcm(3) Casimir function only whenN;=N3;=N, or N;  Ad; ¢’ for xe U(3) is a surface of degenerate densities in the
<Nz=<N,. coadjoint orbit.

Theorem SupposeO, is the symplectic coadjoint orbit For the discrete series unitary representations of B)(3,
containing the density of Eq. (16) and the orbit labels are the harmonic oscillator spectrum is bounded similarly from
ordered byN;=N3;=N,. The range of the squared length of below at the energi. Moreover, the eigenspace of eneky
the Kelvin circulation vector on the surfac®, is 0 in the representation space ig3)invariant.
<C?[p]=(N;—Np)%

In a study of the unitary sp(R) discrete series represen-
tations and their gc@) decomposition, Rowe and Repka ) ) ) o
[44] proved that the maximum value of the circulation equals  The anisotropic oscillator Hamiltonian is an element of
the maximum value of the angular momentum in thé3gu the symplectic Lie algebra,
representationN, x) = (N;—N3,N3—N,) for N;=N3=N,. 3
The maximum vglue from €8) repr_esentatlon t_heory s _ 0= 2 hwkékky (49)

+ u=N;—N, which, as has been just shown, is the maxi- k=1
mum value of the circulation on a coadjoint orbit.

A. Anisotropic oscillator

wherew, are the normal mode frequencies and the operators
IV. OSCILLATOR HAMILTONIAN C, are defined in terms of deformed phonons. A,G8R)
adjoint transformation that is defined by a diagonal matrix
D =diagd;,d,,d3), dﬁ=wk/wo, transforms the isotropic
oscillator into the deformed oscillator

The simplest Hamiltonian of the symplectic model is the
isotropic harmonic oscillator,

3
Ho=wo 2, Cuc 43 1F111.00= e N = 7 e (50
and its energy functional is where the real and complex symplectic matrices
Elpl- "2t (1) (44) 0 U
2 ’ hdef: U 0 y U=diaQle/w0,w2/w0,w3/w0),

wherewy is the isotropic oscillator frequency. The oscillator

Hamiltonian is an element of the symplectic Lie algebra, ) Z 0 )
Ao=—ifiweo(h)=—ihwea' (h'), where the real and com- Neer=| o _, |+ 271U. (51
plex symplectic matrices are
0 —| TR TheA energy functional is E[pjed =7 0ol p et Nier
=l ol = 0o —itl (45  =(W|H|W¥). The real matrixhy Or the equivalent complex

matrix hes in sp(3R) is the mean field Hamiltonian. A mean

A critical point p’ of the harmonic oscillator energy func- field solutionpgeris a complex density that is a critical point
tional must commute with the matrix Hamiltonidm, of the energy functional on the coadjoint orlit,, . A criti-
cal point commutes with the mean field Hamiltonian,

0=[p".,h"], (46)
and, therefore, the symplectic density is [Pget:Naerd =0- (52
) zZT 0 Since the mean field Hamiltonidn, is diagonal, the com-
P=\o —z) (47 muting densitype must also be diagonal. To be a point on

the coadjoint orbit, the diagonal entriesgf,; must be some
where z is any skew-Hermitian 83 complex matrix. In permutation of iN;,—iN,,—iN3z). When the diagonal
order for p’ to lie on the coadjoint orbit, the eigenvalues entries are not permuted, the energy of the critical point is
of z must be —iN;,—iN,,—iN3. The energy equalE  simply E[ pged = =Zh o Ny .
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B. Cranked deformed oscillator valuesiN, iN,, iN3. Hence, in the natural order of Eq.

The cranked anisotropic oscillatdi, = Al — wi, is the I(;t4())r ':ge symplectic density of the cranked anisotropic oscil-

Routhian that describes the rotation of the anisotropic oscil-

lator H about the one-axis with an angular velocity The pZU:Ad;,lQ’. (59
Routhian is an element of the symplectic Lie algebra because

the components of the vector angular momentum operatofhe energy of the critical point isE,[p.]=AwiN;

are in the algebra. Thieth angular momentum component is +#Q ,N,+#AQ _Ns.

the representation of the real matfx In the usual derivation of the cranked anisotropic oscilla-
tor energy, the quantum numbekg ,N,,N; are fixed, an
assumption known as the adiabatic conditi@2]. In the
symplectic theory, the quanta are fixed because the mean
field assumption restricts the densities to a fixed coadjoint
where E;; denotes the elementaryx3 matrix whose only orbit. Thus the adiabatic condition and the symplectic mean
nonzero entry is one at the intersection of rowith column  field approximation are mathematically equivalent.

j. With respect to the deformed phonon basis, the Routhian The density of the cranked oscillator may be determined

_EJI
0 E”_E“ '

il /hi=0(S),5= (53)

operator is the representation of the complex mdifjx explicitly in two ways. One method is to determine the mean
R field Routhian’s eigenvectors, which are the columns of the
iH,/fwg=ocgfh.), (54)  symplectic group elememf of Eq. (59). The other technique
is to apply Feynman’s lemmf@3]. Suppose the mean field
, z -W Hamiltonianh(\) depends on some parametere.g., the
h,= —Wr —ZT) angular velocityw or the frequencies, . For each value of
\, let p(\) denote the equilibrium densityp(\),h(\)]=0,
iwq/wg 0 0 and letE(\) =Awe(p(N),h(\)) be the equilibrium energy.
. Then Feynman’s lemma, in its density matrix form, states
Z= 0 iwy/wg -u , that
0 u |0)3/0)0 dE J
0O 0 0 a—ﬁwo P()\),Kh()\) . (60)
w=|0 0 -vf, (55 When\ is taken to bew, the angular momentum of the
0 -v O equilibrium density is determined. X equals one of the
frequenciesw; , the squared axis lengths of the inertia ellip-
where soid are determined. Explicit formulas for the angular mo-
® © mentum and the axis lengths are given by Std64.
u==—(a+a ), v=c—(a—a™b), (56)
2w 2w C. Inglis cranking

and a=\Jw,/w3. A critical point for the Routhian energy For small angular velocities, the cranking term may be

functional E,[p/ ]=fiwe(p.,,h.) on a coadjoint orbit is a computed in perturbation theory. In the coadjoint orbit

densityp!, that commutes with the Routhian matti . To ~ theory, the perturbation method is implemented by express-
solve for the critical point, first diagonalize the Routhian N9 the diagonalizing symplectic group elemeras a power

matrix by an adjoint transformation series inw,

0 = ;n(wM—|+wM+1w2M2+ 61
Adgh, = 0 —Z)’ Z=idiag w1,Q,,Q )/ wg, g=ex LY Il Z1 ()

1 whereM is a complex matrix in the symplectic Lie algebra

Qi=§(w§+w§)+u2—v2iq, sp(3,C)Nu(3,3), Eq. (9). HereM is chosen so that
0} 1/ w)\?
1 Adgh:ﬂ=h;+w—[M,h;]+§ w— [M,[M,h;]]""--

0%=7 (03— 3)*+ U+ wg) 0¥ (0~ w3)%. (57) ° 0 62

is a diagonal matrix to quadratic orderdn The perturbation
results in the coadjoint orbit theory for the rotational energy,
deformation, and angular momentum derived are identical to
0=g[p,, ,h;]g—lz[Ad;pL’u JAdgh]. (58  the well-known formulas of Ingli$54].
The advantage to the perturbation formulas is that their
This forces the transformed density to be diagonal. But ghysical interpretation is clearer than the exact expressions
diagonal density on the coadjoint orbit must have the eigenef Sec. IV B and that the approximation is adequate for ap-

The transformed density qub(’u commutes with the di-
agonalized Routhian,
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plications to the yrast rotational bands of deformed even- 30 - 175 7 /I otational
even isotopes. In particular, the angular momentum the /4 < Flow Vs
Inglis approximation is a linear interpolation of the rigid 18- %
body (RR) and irrotational flowm(IF) values, 15k /, i /
25| : s
14 ! ¥
I=[rIgr+(1—-1) 1] o, (63 0,/ 0y 120 125 1.30 1.35 / o
/
where the moments of inertia are 20 L //
M M b2_C2)2 / . rg
Ter=—(b%+¢?), Tp=— (—7 (64) /& 76 Deformed ///
5 5 p2+¢? / lsotopes -
15 ~ //
.~ "Rigid Body
-
whenM is the nuclear mass, afijc are the semiaxis lengths -
of the inertia ellipsoid perpendicular to the rotation axis, and g
the parameter equals 1.0 £~ I I I \
1.0 1.2 1.4 1.6 1.8
N3/N,—N5,/N c/b
r=_—o 2 27738 (65)
wz/w3— w3l w, FIG. 1. The ratio of the frequencies of the anisotropic oscillator

Hamiltonian is plotted versus the ratio of the axis lengths for de-

The extreme cases of rigid rotation and irrotational flow, reformed even-even nuclei using E§6).
spectively, are attained whessN;= w,N, orr=1, the self-
consistency ansatz, amtb=N, or r =0, respectivel\j56]. V. RIEMANN ELLIPSOIDS
In the classical theory of Riemann ellipsoids, the angular
momentum is also a linear combinati®B) where the mix-
ing parameter is the rigidity, the ratio of the Kelvin circu-
lation to its rigid body valu¢44,46.
Within the framework of the cranked anisotropic oscilla-

tor theory, what frequencies are most appropriate for re . ; Y - oo
. ’ . o etric 3X3 matrix, the ellipsoid rotates rigidly. Whei(r)
? = ’ . . . .
nuclei? The squares of the axis lengthsh,c) of the inertia —Z 7 with £ a symmetric X3 matrix, the ellipsoid rotates

ellipsoid are proportional to the ratios of quanta to frequency ) 5 . e
in the three Cartesian directiona?«N; /w;, b2N,/w,, irrotationally, VX o =0. A general linear velocity field is de-

c?«Ns/ws . After rearranging Eq(65), the ratio of the fined by a sum of antisymmetri@ and symmetric€ matri-

frequencies depends on the rigidity and the deformation ac<®S: _ o _ _
An Stype Riemann ellipsoid is one that is rotating about

The gcnt3) subalgebra of sp(B) is the dynamical sym-
metry algebra of the Riemann ellipsoid model. A Riemann
ellipsoid is a classical fluid with an ellipsoidal boundary such
that its velocity fieldv(F) is a linear function of the Carte-
ian position vector. Wheng (1) =Q  with ) an antisym-

cording to S ) . I
a principal axis—say, the one-axis. Tlgdype equilibrium
ellipsoids are indexed by the rigidity parameteThe kinetic
wp|% r+(c/b)? energy of arStype ellipsoid is an interpolation between the
w_3 _r+(b/c)2' (66) rigid and irrotational values,
| 2
Rigid rotation and irrotational flow, respectively, correspond E=—, (67)
t0 w»/w3=C/b andw,/ws=(c/b)?, respectively. The rigid- 21,

ity of an even-even deformed nucleus is inferred from the
measured deformation and moment of inertia of its yrast rowhere the moment of inertia is
tational band using Eq68) for a Riemann ellipsoid46].

Equation(66) determines the frequency ratio of a nucleus [ Zapt (1—1) T2
modeled as a pure anisotropic oscillator using the experi- I=— 5 . (68
mental rigidity and deformation. In Fig. 1, the frequency FZgrt (1-19) L

ratio w, /w3 is plotted versus the major to minor axis ratio

c/b for all deformed even-even nuclei witttb=1.2 using For a heavy deformed nucleus, the low energy yrast rota-
experimental values for the nuclear quadrupole deformatiotional band is described by the classical Riemann formula.
and the Riemann ellipsoid rigidit}y65]. The 76 deformed Because the experimental moment of inertia is typically
isotopes in the figure range froffC to 25°Cf. The correla- about one-half the rigid body value and 5 times the irrota-
tion of a straight line of slope2 with the experimental tional flow value, the rigidity is about 1/6. In Fig. 2, the
points is 0.996. The linear relationship for real nuclei be-energy levels of the yrast band &fEr are compared to the
tween the deformation in frequency space and the deformaspectra of a rigid rotorr(=1), irrotational fluid ¢ =0), and
tion in Euclidean space is remarkably simple. Stype Riemann ellipsoidr(=0.15).
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enables a fit to the experimental moment of inertia, it wouldy ersus their quadrupole deformation.

ing the nuclear circulation and rigidity is provided by inelas-

where that the transver&® form factor for a Riemann rotor where the quadrupole-monopole tengpof the symplectic
mental measurement of transverse form factors in the heawation of a density dependent mat@kp] in the sp(3R) Lie
PHF transverse form factor implies a rigidity=0.12 and

rare-earth even-even isotopes, Fig. 3 plots the experimente

this quadratic function is used in conjunction with E(&7),

plectic model Routhian which includes a Kelvin circulation ']

lated in shell model irreducible representations of the e 164 6 1 0 o 16 te0 e 1m0 172

FIG. 2. The yrast band spectrum &f%r is compared with
Riemann ellipsoid witlr =0.15. 026 028 030 032 034 036
§

If the rigidity were only an interpolating parameter that FIG. 3. The rigidity of 16 rare earth even-even isotopes is plot-
be of minor interest. But the rigidity characterizes the
nuclear current and the nature of rotational motion in de- X 0
formed isotopes. A direct experimental method for determin- iC/h=a(Yp]), Ypl= T)

L 0 _ X 1

tic electron scattering measurements of the transve®e
form factor, as has been emphasized by Moya de Giié8ja X=(a;/a)E;j—(a;j/a)E;i, (69
and Vassanji and Rowgl4]. The author has shown else-
is a weighted interpolation of the rigid rotor and irrotational density » in the rotating frame is diagonalg
flow form factors[16]. There is to date no published experi- =diag(@?,a5,a3). The circulation operator is the represen-
deformed region. But projected Hartree-FdekiP calcula-  algebra.
tions of the transversé2 form factor in the heavy deformed  The symplectic Routhian in the Riemann ellipsoid ap-
region were done by Berdichevsky al.[15]. For %Gd the  proximation is[58,60,
this is consistent with the rigidity=0.15 inferred from the H,,=H-\C;—wl,. (70)
moment of inertia.

The rigidity depends on the nuclear deformation. For the 200
rigidity r versus the quadrupole deformatignThe optimal 180 1 Er
theoretical fit of a quadratic function of the deformation to
the rigidity in this region ig =108°—5.18+0.68. In Fig. 4,
and(68) to predict the energy of the*2excited state in the
rare-earth region.

The Riemann model is an approximate solution to a sym-5§
term. The Kelvin circulation is a vector operator with com-
ponentsC; = &, (Q " ¥2NQY?),, . Despite its physical impor-
tance, the expectation of the circulation has not been calcu e
symplectic algebra because the Kelvin circulation operator is Mass Number
very complicated. However, in mean field theory, this opera-  FiG. 4. The theoretical energy of the first 2xcited state for 16
tor may be evaluated in the principal axis frame, rare-earth even-even isotopes is compared to experiment.
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In the classigal Rigmann model, the real paramgtesy t_he 0=g[p., ,h‘flm]g—lz[Ad;p;A JAdgh!,\ 1. (76)
vortex velocity. With respect to the deformed basis, the
Routhian operator is the representation of the complex symthis forces the transformed density to be diagonal. But a

plectic matrixh/,[p], diagonal density on the coadjoint orbit must have the eigen-
valuesiN,, iN,, iN3. Hence, in the natural order of Eq.
id o [hwg=alefhl)), (71 (14), the symplectic density of the cranked anisotropic oscil-
lator is

where the matrix is given by E@55) with
. pip=Ad 10" (77)
w
u= 2_%(0‘+a D+ z_wo(”+ v, The energy of the critical point isE,[p.,]=%wN;
+AQ No+AQ _Na.
1) . N . The symplectic density, determined in this way, is not yet
U= gl @m @ g (v, (72 a critical point for the Routhian when+0. In contrast to
ordinary Inglis cranking of the anisotropic oscillator, the
with v=(a,/az)a and @®=w,/w3. A critical point for the ~ Routhian matrixh/,[p.,] depends on the symplectic den-
Routhian energy function& ,,[p.,]=%we(p., h.,) ona sity due to the Kelvin circulation term. Using the trans-
coadjoint orbit is a density that commutes with the Routhiarformed density(77) as the new starting point, one repeats the
matrix procedure a second time, thereby yielding a transformed den-
sity (77). This sequence must be iterated until convergence is
[Pon Nen]=0. (73 achieved:

For small angul_ar a_nd vortex velocities, a.critical_point for por—hiy—Adghl, is diagonabpt’u}\zAd;‘,lg’. (79
the Riemann ellipsoid Routhian can be derived using pertur-
bation theory. When the self-consistency condition is satisNumerical results for the deformation, angular momentum,

fied, w;N; = w,N,= w3N3, the classical expressions for the circulation, and energy obtained by this iterative scheme
angular momentuni63), and circulation of a Riemann ellip- were reported elsewhef&8].

soid are attainef58], The pairing force influences significantly the rigidity. In
5 o prior work the rigidity was shown to be given approximately
C=(M/5)[2bcw—(b“+Cc*)N], by
| =(M/5)[(b?+c*)w—2bcN ], (74) r~1—sinh™ 3/ (x\ 1+ x2), (79

whereM is the nuclear mass, arglc are the axis lengths where x=(hw,—hws)/l2A and A is the BCS pairing gap

perpendicular to the rotation axis. The rotational kinetic eN166]. When the pair gap is large,and the rigidityr are small
ergy also approximates its classical Riemann ellipsoid valug g the rotational motion approaches irrotational flow. When
(68) or the pairing gap is smallx is large, the rigidity nears unity
E=(M/10)[(b?+¢?)(w?+\2)— 4bcw\] and the system rotates almost rigidly. Using experimental
values for the moment of inertia and deformation, the rigid-
ity is calculated from Eq(68), and the pairing field is de-
. (75 duced from the Belyaev formula for the moment of inertia of
a self-consistent anisotropic oscillator plus BCS pairing field
_ - . . . [67]. In Fig. 5, the BCS pairing field is plotted versus the
WhenA=0, the rigid rotation formulas of Inglis cranking are rigidity r in the rare earth region. BCS pairing and the Kelvin

Obt\‘;"\;ﬂgg[?ﬁi anqular and vortex velocities are not small circulation modify the moment of inertia of a cranked aniso-
9 ' %ropic oscillator in similar ways.

critical point for the Routhian energy is discovered by an
iterative scheme. The procedure is similar to the conven-

1

('+C)2+ (1-C)?
4

(b+c)?> (b—c)?

tional technique to find Hartree-Fock solutions. First make VI. CONCLUSION

an initial guess for the symplectic densty, and calculate The symplectic shell model presents special technical
the symplgctlc Rogthlan matrllx(’qx[pc’m]. Next, (_Jl|agonallze challenges because its irreducible representations are infinite
the Routhian matrix by an adjoint transformation dimensional. Moreover, explanations of nuclear rotational

motion in the shell model share a common problem: the
rotating body-fixed frame is difficult or impossible to define
rigorously and work with effectively. Symplectic coadjoint
orbit theory eliminates these two obstructions to a tractable
for ge U(3,3)NSp(3C). The eigenvalues of the Routhian robust theory of geometrical collective motion.

Z 0

0 —z)' Z=idiagw;,Q. Q) wg,

Adgh;M:(

matrix are given by Eq(57). When sp(R) is an exact dynamical symmetry of the
The transformed density Ag,,, commutes with the di- shell model, the wave functions are vectors from a single
agonalized Routhian, symplectic irreducible representation space. Spin-orbit and
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0.20 I elements of all operators. In essence, symplectic irreducible
representation theory makes strong claims about nuclear
wave functions that are irrelevant to the description of geo-

metrical states. Symplectic mean field theory can explain

geometrical collective densities, as observed directly in ex-

periment, but it does not try to construct wave functions that

incorporate all the degrees of freedom in phase space.

One of the oldest and most fundamental questions in
nuclear structure science is, how does a deformed nucleus
rotate? This article uses the Riemann rotor model to create a
simple physical picture of rotating deformed isotopes. In the
proposed model, the excitation energies of yrast rotational
| | band members are essentially kinetic in nature, the moment

008 510 015 5.20 of inertia is a function of the deformation and the rigidity,
' ' ' ' and, for even-even rare earth isotopes, the character of col-
Rigidity r lective rotatipn depend_s only on the quadrupole def_ormation.
These physical assertions need to be put to a stringent and

FIG. 5. The pairing field\ depends linearly on the rigidityin ~ direéct experimental test in electron scattering measurements
the rare earth region. of the transvers&2 form factor in the heavy deformed re-

gion. Such measurements could finally answer the physical

. _ ) _question about nuclear collective rotation in this domain.
pairing forces are not operators in the symplectic enveloping’ 114 symplectic model is a rich theory of geometrical col-

algebra and, except for special cases, cause a violation tive modes, but this article has explored just a small part
exact symplectic symmetry. The symplectic Lie algebra is & it, primarily topics related to the Kelvin circulation. The
maximal finite dimensional Lie algebra of hermitian Opera-range of the circulation is bounded on a symplectic coadjoint
tors; i.e., any Hermitian microscopic operator adjoined to theyrhit, as was shown in Sec. Ill. The character of rotational
sp(3R) algebra generates an infinite-dimensional Lie algeynodes in atomic nuclei is circumscribed by this theorem,
bra. The exclusion of monopole pairing from the sSR)3, which parallels the reduction of gd8) in an irreducible
dynamical symmetry model is partially mitigated by the in- sp(3R) discrete series representatigts].

clusion of the Kelvin circulation. The effect of the Kelvin In many prior applications of the symplectic theory to the
circulation on the nuclear moment of inertia is similar to shell model, the rotationally invariant Hamiltonian is the sum
BCS pairing. The spin-orbit force usually mixes symplectlcof the harmonic oscillatoﬂo and a collective potential en-

representations. One exception is when Wigner supermultip- gy V(B.y) that is a function of the quadrupole deforma-
let symmetry is good. In some cases, the representation (?fr '

the symplectic algebra by pseudospin operators enabldon- In future work on symplectic coadjoint orbit theory, the

thitical points of energy functionals corresponding to such
sp(SR) to be a gooq symmetm63,69|. In heavy deformed shell model Hamiltonians will be found and compared to the
nuclei, strong coupling of the spin to rotor bands can Con'prior shell model calculations
tribute positively to well-defined rotational ban¢ig0,71]. )

H th Il land is that i The mean field Hamiltonian is, in general, a density-
owever, the overall landscape is that sR)3symmetry is . dependent element of the Lie algelpr2]. A subsequent ar-

b_roken for most isotopes, and_lts application to t_he de.sc.”pficle will derive the symplectic mean field Hamiltonian from

tion of geometrical states requires (_:areful analysis. This is e energy functional using the symplectic geometry of a
pu;zle because experiment unambiguously demonstrates t Sadjoint orbit. The mean field Hamiltonian can be applied
existence of rotational bands, yet the fundamental theory o the description of normal mode oscillations of symplectic

geometrical collective states indicates that such bands a@quilibrium states. For €8) dynamical symmetry, the mean

only posyblg in specw}l circumstances. . field Hamiltonian and normal mode theory have been re-
Symplectic mean field theory places less stringent de- ted[23.2
Rorte [23,28.

mands than irreducible representation theory and provides
conceivable explanation for the data. In mean field theory,
the basic object is a sp) density matrix that is defined by
the expectations of algebra generators. Even when a set of
wave functions that forms a rotational band are a superposi- | would like to thank Ts. Dankova and D. J. Rowe for
tion of vectors from many sp(B) irreducible representa- insightful comments.
tions, the densities of band members can share approxi-
mately common values for the three symplectic Casimirs.

The sp(3R) densities determine nuclear geometrical APPENDIX: CASIMIR-LEVEL SURFACE
properties and these may be predicted accurately in mean
field theory. A symplectic density matrix makes no predic- A symplectic coadjoint orbit is properly contained in a
tions for nongeometrical operators, while wave functionslevel surface of the symplectic Casimirs. Consider the fol-
from a sp(3R) irreducible representation predict the matrix lowing matrix in the symplectic Lie algebra sp3;

Hdqdeo
)
<

o
-
4]

Pairing field
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0 ul2 ¥4 0 0 1v 2 0
—-u/2 0 0 0?4 —1o O 0 — /2
M = Al _
W=t 1 o o upl @Y 9=\ 1 o 0 o (A3)
0 -1 -u2 0 0 1o —\u2 ©

whereu,v are real numbers. Wheft) u=N;—N,, v =Ny
+N, or (Il) u=N;+N,, v=N,—Nj, the eigenvalues of the
matrix M (u,v) are =iN; and =iN,. Thus both cases | and
Il lie on the same level surface of the sgR2,Casimirs.

In case Il, the matriM (u,v) is notin the orbitO, . In order
for gM(u,v)g~t=p, the transformatiory is

In case |, the matribM (u,v) is in the orbitO, for 0 iz iul2 0
—ivi2 0 0 2
0 0 N, O 9=\ s 0 T (A4)
0 0 0 N, .
- 0 —1\v il 0
e N, 0 o0 o] (A2)
0 N, 0 0 This g is an element of Sp(€); it is not a member of

since gM(u,v)g 1=p for the real symplectic group ele-

mentg in Sp(2R),
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