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Sp„3,R… mean field theory

G. Rosensteel
Department of Physics, Tulane University, New Orleans, Louisiana 70118

~Received 28 February 2002; published 11 June 2002!

The sp(3,R) mean field approximation describes collective nuclear rotation in a symplectic density matrix
formalism. The densities are 636 matrices that are defined by the quantum mechanical expectations of the
symplectic algebra generators. The 21 generators of the noncompact symplectic algebra sp(3,R) include the
mass quadrupole and monopole moments, the kinetic energy, the harmonic oscillator Hamiltonian, and the
angular, vibrational, and vortex momenta. The mean field approximation restricts the densities to a coadjoint
orbit of the canonical transformation group Sp(3,R). The reduction of a Sp(3,R) coadjoint orbit into orbits of
the dynamical symmetry group GCM~3! is proved to be consistent with the reduction of an Sp(3,R) discrete
series representation into irreducible representations of GCM~3!. This reduction places a strict bound on the
range of the Kelvin circulation which is the Casimir of the 15-dimensional subalgebra gcm~3!,sp~3,R!. The
cranked anisotropic oscillator and Riemann ellipsoid model are special cases of symplectic mean field theory.
The application of the Riemann model in the even-even heavy deformed region indicates that the character of
low energy collective rotational modes depends only on the quadrupole deformationb. The energy of the first
21 state in such isotopes is a simple function ofb.

DOI: 10.1103/PhysRevC.65.064321 PACS number~s!: 21.60.Fw
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I. INTRODUCTION

The noncompact symplectic algebra sp(3,R) is the dy-
namical symmetry algebra of the symplectic shell mo
@1–9#. The symplectic algebra is generated by all one-bo
Hermitian operators that are quadratic in the position a
momentum operators. Its irreducible unitary discrete se
representations unify the geometrical collective model a
the harmonic oscillator shell model. An infinite-dimension
representation space contains all np-nh core-excited basis
states which are required to embed the geometrical m
fully and without approximation into the shell model. A
though there are no effective charges in the symple
theory, the eigenstates of the symplectic model Hamilton
yield E2 transition rates and deformations that compare
vorably with experiment@10–12#. The transverseE2 form
factors predicted by the symplectic model are sensitive to
nuclear collective current@13–20#. A conventional shell
model calculation that excludes symplectic core excitati
fails to provide a satisfactory theoretical explanation of tra
verse inelastic transitions@21#.

An alternative to a dynamical symmetry model found
on irreducible representation theory is algebraic mean fi
theory. Recently the algebraic mean field method was
plied to the su~3! algebra and the description of rotation
bands@22,23#. The algebraic method is a generalization
Hartree-Fock and Hartree-Fock-Bogoliubov mean field th
ries that are based on the unitary and orthogonal gro
respectively@24–27#. The algebraic theory also allows for
generalization of the random phase approximation that
scribes time-dependent normal mode oscillations of equ
rium configurations@28#.

For a given Lie algebra, the space of algebraic mean fi
theory is the set of densities defined as the quantum
chanical expectations of the operators of the algebra. The
of densities is contained in the dual space of the Lie alge
0556-2813/2002/65~6!/064321~15!/$20.00 65 0643
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The Lie group of the algebra acts as a transformation gr
on the dual space via the coadjoint action. For semisim
matrix Lie algebras, the dual space is naturally isomorphic
the Lie algebra and the coadjoint action is matrix conjug
tion. The mean field approximation restricts the model d
sities to a single coadjoint orbit. This orbit is a surface co
tained in the algebra’s dual space. The energy in the m
field approximation is a real-valued function of the densi
its critical points on a coadjoint orbit are the equilibriu
mean field densities.

The dimension of a coadjoint orbit surface is less than
dimension of a finite-dimensional Lie algebra. Although t
only nontrivial unitary representations of a noncompact L
algebra such as sp(3,R) are infinite dimensional, the mea
field approximation limits the theoretical investigation to
finite-dimensional manifold. In fact, sp(3,R) mean field
theory requires only matrix computations with 636 matrices.
Thus, algebraic mean field theory eliminates the techn
difficulty of infinite-dimensional representation spaces
noncompact algebras. Even for a compact algebra, the
mension of the representation space is typically much gre
than the dimension of a coadjoint orbit surface, and the m
field method is simpler than the irreducible representat
method.

The shell model and the irreducible representation spa
of dynamical symmetry algebras are fundamentally iner
frame descriptions. In contrast, the geometrical model p
vides a simpler description of rotational and vibration
modes in the rotating body-fixed frame. Even though use
approximations to it exist@29,30#, the K quantum number
~the projection of the angular momentum vector onto
body’s symmetry axis in the rotating frame! is not well de-
fined in shell model theory. Symplectic mean field theo
permits a transformation to the body-fixed frame that p
vides a clearer physical interpretation of rotational mod
than shell model theory offers.

Geometric quantization is one of the methods for the c
©2002 The American Physical Society21-1
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struction of the irreducible representations of Lie grou
@31–35#. The starting point for the construction is a coadjo
orbit that satisfies a generalized Bohr-Sommerfeld quant
tion rule. These special coadjoint orbits are called integ
The metatheorem of geometric quantization states that,
every representation theory concept, a corresponding,
ultimately equivalent, idea can be discovered for integral
adjoint orbits@31#. For example, a coadjoint orbit of a sem
simple compact Lie group is integral when it contains t
density of an integral highest weight vector. A familiar pro
lem in representation theory is the reduction of an irreduc
representation of a Lie groupG into a direct sum of irreduc-
ible representations of a Lie subgroupH. In geometric quan-
tization this decomposition problem is solved by projecti
an integral coadjoint orbit ofG into the dual space ofH and
then determining the integral coadjoint orbits ofH contained
in the projection. All information about an irreducible repr
sentation of a Lie group is encoded in the symplectic geo
etry of its coadjoint orbits. Thus, the metatheorem ass
that the physical properties of a quantum system governe
a dynamical symmetry can be investigated in two equiva
ways: The direct way is through the irreducible represen
tions of the dynamical symmetry group; the indirect meth
is via the group’s coadjoint orbits. For some problems,
physics and the mathematics of the mean field or coadj
orbit method is the preferred way.

In this article the mean field method is applied to t
noncompact symplectic algebra. In Sec. II the symple
algebra and its dual space are defined. There are four re
sentations of the symplectic algebra corresponding to the
formed and isotropic phonon bases and, for both of th
bases, representations associated with real sp(3,R) and com-
plex u~3,3!ùsp~3,C! matrices. Although these four represe
tations are mathematically equivalent, each has particular
vantages for different physical applications. In this sect
the coadjoint action and the coadjoint orbits are also defin
The symplectic Casimirs are constant functions on each
adjoint orbit. The restriction to a coadjoint orbit is the mat
ematical expression of dynamical symmetry in algebr
mean field theory.

There are two important subalgebra chains for the sy
plectic model. The shell model is associated with the Elli
u~3! subalgebra, the symmetry algebra of the harmonic
cillator. The geometrical collective model is related to t
general collective motion gcm~3! subalgebra. The intersec
tion of the u~3! and gcm~3! algebras is the angular mome
tum algebra so~3! of the rotation group. This article applie
symplectic mean field theory to the collective model and
associated gcm~3! subalgebra.

The general collective motion algebra gcm~3! is a 15-
dimensional noncompact subalgebra of the 21-dimensio
symplectic algebra@36–43#. The monopole and quadrupo
mass tensors and the Lie algebra of the general linear g
GL1(3,R) generate gcm~3!. In classical physics, gcm~3! is
the dynamical symmetry of the Riemann ellipsoid theo
@44–50#. The dynamical symmetry algebra of the Boh
Mottelson collective model is gcm~3!. The inequivalent irre-
ducible representations of gcm~3! are indexed by the Kelvin
circulation C which is quantized to integral multiples of\.
06432
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The nonnegative integerC/\ labels the irreducible represen
tations of the vorticity group SO~3!. A wave functionC(q)
in an irreducible gcm~3! representation space is a function
the monopole-quadrupole tensorq with vector values in an
irreducible representation space of the vorticity group. T
scalar representationC50 corresponds to the original Bohr
Mottelson model for an irrotational droplet. The other rep
sentationsCÞ0 correspond to nuclear collective curren
with nonvanishing circulation.

The gcm~3! Casimir is the squared length of the vect
Kelvin circulation operator@51#. This Casimir is a physica
observable that measures the collective current and the c
acter of rotational states, i.e., rigid rotation, irrotational flo
and the continuum of intermediate nuclear currents. Fo
classical fluid, the Kelvin circulation is a conserved quant
@52#. The gcm~3! Casimir is a five-body operator that is to
complicated for shell model calculations at present. In S
III the values of the gcm~3! Casimir on a fixed coadjoin
orbit of sp(3,R) are derived. It is proved that the Kelvi
circulation has the same restriction on its range in mean fi
theory as it has in the gcm~3! reduction of a symplectic irre-
ducible shell model representation@43#. The scope of collec-
tive currents is sharply limited by the shell model and th
important property is respected without error in the me
field approximation.

The Riemann ellipsoid and Bohr-Mottelson geometric
models can be unified within the differential geometric fo
malism of modern gauge theory@53#. The relevant space is
principal G bundle, where the structure groupG5SO(3) is
the vorticity group and the base manifold is the space
inertia ellipsoids. A choice of a connection on this princip
bundle imposes constraints on the current, e.g., rigid bo
irrotational flow, or a ‘‘falling cat.’’ The quantum Bohr-
Mottelson theory, as extended to allow nonzero Kelvin c
culation, is an associatedG bundle where the fibers are iso
morphic to an irreducible representation of the vortic
group. The integral Kelvin circulation labels this vorticit
group representation, and it is a gauge invariant.

The isotropic and anisotropic harmonic oscillator Ham
tonians are elements of the symplectic Lie algebra. In S
IV the range of the isotropic oscillator on a symplectic c
adjoint orbit is shown to be bounded from below just as it
within the corresponding shell model irreducible sp(3,R)
representation. For the cranked anisotropic oscillator Ham
tonian, symplectic coadjoint theory is shown to be equival
to Inglis cranking theory@54–57#. When the anisotropy of
the mean field is consistent with the geometrical deform
tion, the nucleus rotates rigidly.

To derive the Riemann ellipsoid model in symplectic c
adjoint orbit theory, a term proportional to the Kelvin circu
lation is added to the Routhian of the anisotropic oscilla
Hamiltonian in Sec. V@58–60#. The Kelvin circulation term
in the symplectic model energy modifies the nuclear curre
The self-consistent moment of inertia in the Riemann the
depends on a parameterr, called the rigidity, which varies
continuously fromr 50, corresponding to irrotational flow
to r 51, corresponding to rigid rotation. The rigidity is th
ratio of the Kelvin circulation to its rigid body value; it di
rectly measures the character of rotational motion.
1-2
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Sp(3,R) MEAN FIELD THEORY PHYSICAL REVIEW C 65 064321
The rotational bands of deformed nuclei have appro
mately a constant value for the rigidity. Among the rare-ea
even-even nuclei, the rigidityr is approximately a quadrati
function of the nuclear quadrupole deformationb. In this
heavy deformed region, experiment indicates that the c
acter of low energy rotational states depends only on t
deformation and that their excitation energies, in conform
with the Riemann approximation, are mostly kinetic in o
gin.

II. Sp„3,R… COADJOINT ORBIT THEORY

The mean field approximation uses a faithful matrix re
resentation of the algebra to facilitate computations. For
symplectic Lie algebra there are two useful matrix repres
tations. One is an algebra of 636 real matrices which is
isomorphic to the quadratics in the Cartesian position
momentum operators. This representation relates the s
plectic theory to the geometrical collective model. The oth
realization is a subalgebra of u~3,3!, which is an algebra of
636 complex matrices. This second matrix representatio
isomorphic to the quadratics in the oscillator phonons, an
is relevant physically to the harmonic oscillator shell mod
In this section these two representations are defined.
dual space of symplectic densities also has two matrix r
izations corresponding to these two faithful matrix repres
tations. Note that some authors denote this real symple
algebra by sp(6,R); the complexification of sp(3,R) is C3 in
the Cartan classification of simple Lie algebras.

Later, in Sec. II A, the symplectic group and its coadjo
action on the densities are defined. Subgroups of Sp(3R),
such as the rotation group SO~3!, general linear group
GL1(3,R), and unitary group U~3!, act as physically impor-
tant transformation groups on each coadjoint orbit.

The three symplectic Casimirs are defined in Sec. II
These are constant functions on each coadjoint orbit.
Casimirs are of enormous practical value for the mean fi
method. Without them, the determination of critical points
the energy on a coadjoint orbit would necessitate the in
duction of explicit coordinates for the orbit surface. In t
case of Sp(3,R), the orbits are typically 18 dimensional, an
the mean field method might become intractable and wo
certainly become messy. However, the critical points o
level surface of the Casimirs can be found cleanly using
method of Lagrange multipliers. Only the space of densi
requires coordinates—an easy task because it is a ve
space.

In Sec. II C, the anisotropic oscillator representation
defined in preparation for its use in cranking theory in S
IV. The anisotropic and isotropic representations are rela
by a coadjoint transformation using the diagonal dilatat
matrices in the general linear group.

Let (xa j ,pa j ) denote the dimensionless Cartesian com
nents of the position and momentum Hermitian operators
particle a in a finite system of particles. They obey the c
nonical commutation relation@xa j ,pbk#5 idabd jk . The
symplectic generators are the Hermitian operators
06432
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Q̂jk5(
a

xa j xak ,

T̂jk5(
a

pa j pak ,

N̂jk5(
a

S xa j pak2
i

2
d jkD . ~1!

The observablesQ̂jk and T̂jk are the monopole-
quadrupole tensors in position and momentum space, res
tively. The traces of these tensors, which are the monop
components, determine the nuclear radius and the kinetic
ergy, respectively. The traceless parts of these Cartesian
sors, which are the quadrupole components, determine
nuclear deformation in Euclidean space and momen
space, respectively.

The nine components ofN̂jk generate the Lie algebr
gl(3,R) of the general linear group. The antisymmetric pa
L̂ i5« i jk N̂jk are the vector angular momentum compone
which generate the algebra so~3! of the rotation group. The
trace ( j N̂ j j 5(a(rWa•pW a23i /2) measures the breathin
mode oscillations. The traceless symmetric partN̂jk

(2)5N̂jk

1N̂k j2(2/3)d jk( i N̂i i is the quadrupole vibrational momen
tum. In the principal axis frame, the diagonal components
N̂jk

(2) determine the vibrations of the principal axis length

The off-diagonal components ofN̂jk
(2) yield the Kelvin circu-

lation. The quadrupole vibrational momentum satisfies
commutation relation

N̂jk
(2)5 i @Q̂jk

(2) ,Ĥ#, ~2!

whereĤ is the harmonic oscillator Hamiltonian. The matr
elementŝ f uN̂jk

(2)u i & of the quadrupole vibrational momentum
are evidently identically zero for any two state vectorsi and
f from a single major oscillator shell. In contrast, the mat
element ofN̂jk

(2) between the ground state and the giant is
calar quadrupole resonance is very large. Thus conventi
shell model calculations cannot achieve a meaningful th
retical analysis of nuclear currents.

The symplectic algebra sp(3,R) of matrices consists o
636 real matricesS of the form

S5S X 2U

V 2XTD , ~3!

whereX,U,V are 333 real matrices andU,V are symmetric.
The representations of the algebra of matrices is given by

s~S!5 i(
jk

XjkN̂jk1
i

2 (
jk

U jkQ̂jk1
i

2 (
jk

VjkT̂jk . ~4!

WhenS is a matrix in the symplectic Lie algebra, the oper
tor s(S) is a skew-adjoint one-body operator. The set
operators is a representation,@s(S1),s(S2)#5s(@S1 ,S2#).
1-3
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G. ROSENSTEEL PHYSICAL REVIEW C 65 064321
The symplectic density matrixr corresponding to a nor
malized wave functionC is a symplectic matrix

r5S nT t

2q 2nD , ~5!

where the 333 real dimensionless matricesn, q, t are de-
fined by the expectations of the algebra generators,

qjk5^CuQ̂jkuC&,

t jk5^CuT̂jkuC&,

njk5^CuN̂jkuC&. ~6!

Note thatr is a symplectic Lie algebra matrix becauseq and
t are symmetric. The quantum mechanical expectation o
symplectic Lie algebra representations(S) equals half the
trace of the product of the density matrix times the Lie alg
bra element,

^r,S&[
1

2
tr ~rS!52 i ^Cus~S!uC&. ~7!

A second equivalent characterization of the symplectic
algebra and its space of density matrices is given by op
tors that are quadratics in phonon creation and destruc
operators. Letaa j

† andaa j denote oscillator creation and de
struction operators for particlea in the Cartesian basis; thes
operators obey phonon commutation relations,@aa j ,abk

† #
5dabd jk . The symplectic sp(3,R) generators in phonon
form are

Ĉjk5(
a

S aa j
† aak1

1

2
d jkD ,

Âjk5
1

2 (
a

aa j
† aak

† ,

B̂jk5
1

2 (
a

aa jaak . ~8!

The symplectic algebra of matrices may be viewed as a s
algebra of u~3,3!. Define the complex 636 matrices in
u~3,3!ùsp~3,C!,

S85S Z 2W

2W* 2ZTD , ~9!

whereZ,W are complex 333 matrices,Z is skew-Hermitian,
andW is symmetric. This matrix is represented by the ske
adjoint one-body operator,

s8~S8!5(
jk

ZjkĈjk1(
jk

~WjkÂjk2Wjk* B̂jk!. ~10!

These operators are a representation of the symplectic
algebra,@s8(S18),s8(S28)#5s8(@S18 ,S28#).
06432
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The symplectic density matrixr8 relative to the phonon
basis that corresponds to a normalized wave functionC is a
complex matrix

r85S zT 2w*

2w 2z D , ~11!

where the 333 complex matricesz, w are defined by the
expectations

zjk52 i ^CuĈjkuC&,

wjk522i ^CuÂjkuC&,

wjk* 52i ^CuB̂jkuC&. ~12!

Note that r8 is a symplectic Lie algebra matrix in u~3,3!
ùsp~3,C! becausez is skew-Hermitian andw is symmetric.
The quantum mechanical expectation of the symplectic
algebra representations8(S8) equals the trace of the produc
of the density matrix times the Lie algebra element,

^r8,S8&[
1

2
tr ~r8S8!52 i ^Cus8~S8!uC&. ~13!

WhenC is a highest weight vector of an irreducible unita
representation of sp(3,R), the density in the phonon basis
diagonal,

%85S z 0

0 2zD , z52 i diag~N1 ,N2 ,N3!, ~14!

whereNi are the weights of the irreducible unitary represe
tation, Ĉii C5NiC.

The representationss of the real Lie algebra sp(3,R) and
s8 of the embedding of sp~3,R! in u~3,3! are related by a
transformation from position and momentum observables
harmonic oscillator phonons. Define the unitary 636 com-
plex matrix

K5
1

A2
S I I

2 i I i I D , ~15!

whereI denotes the 333 identity matrix. IfS is a real sym-
plectic Lie algebra matrix, Eq.~3!, then S85K†SK is its
isomorphic image in u~3,3!ùSp~3,C!, Eq. ~9!. The represen-
tations of these two matrices as skew-adjoint operators
the same,s(S)5s8(S8). When the dual space elements a
related byr85K†rK, the expectations also coincide,^r,S&
5^r8,S8&.

The complex diagonal density%8 of Eq. ~14! corresponds
to a real symplectic density matrix%5K%8K†,

%5S 0 t

2q 0D , t5q5diag~N1 ,N2 ,N3!. ~16!

This is the symplectic density of a wave function withNi
oscillator quanta in thei th Cartesian direction.
1-4
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Sp(3,R) MEAN FIELD THEORY PHYSICAL REVIEW C 65 064321
A. Sp„3,R… transformation group

The symplectic group Sp(3,R) consists of the real 636
matricesg that leave invariant an antisymmetric formJ,

Sp~3,R!5$gPM6~R!ugTJg5J%, J5S 0 I

2I 0D . ~17!

The group is represented by unitary transformationss(g)
which are the exponentiation of the Lie algebra represe
tion: If S is a sp(3,R) Lie algebra matrix,g5exp(S) is a
symplectic group element that is represented unitarily
s(g)5exp@s(S)#. The set of unitary operatorss(g) forms a
ray representation of the symplectic group and a unitary r
resentation of the metaplectic group. The metaplectic gr
Mp(3,R) is a twofold covering group of the symplect
group that is introduced because the spectrum of the
monic oscillator is half-integral.

When the symplectic group acts on a wave functio
C°s(g)C, the corresponding symplectic density is tran
formed according to the coadjoint action,r°Adg* r
5grg21. The coadjoint orbitOr consists of the densityr
and all transformed densities Adg* r asg ranges over the en
tire symplectic group Sp(3,R). An orbit Or is a smooth sur-
face contained in the space of all symplectic density ma
ces. The space of all density matrices is a disjoint union o
coadjoint orbits.

The subgroups of the symplectic group are transforma
groups on each coadjoint orbit. The subalgebra gl(3,R) con-
sists of the block diagonal matrices of Eq.~3!, and the sub-
group GL1(3,R) of Sp(3,R) is given by the matrices

t~x!5S x 0

0 ~xT!21D , ~18!

where x is a 333 real matrix with a positive determinan
The general linear group GL1(3,R) is the kinematical group
of invertible linear transformations of three-dimensional E
clidean space. The subgroup SL(3,R) of the general linear
group consists of the matrices with unit determinant a
when acting on Euclidean space, describes incompres
fluid motion.

The rotation group SO~3! is a subgroup of the genera
linear group, and it is a transformation group on each co
joint orbit. ForRPSO~3!, the coadjoint action transforms th
densityr of Eq. ~5! into the rotated density

t~R!•r•t~R!215S ~RnRT!T RtRT

2RqRT 2RnRTD . ~19!

Each orbit of the rotation group contains a diagonal ine
tensorRqRT5diag(a1

2 ,a2
2 ,a3

2). Since a physical orbit in the
dual space demands a positive definite inertia tensor, the
agonal elementsak

2 are positive real numbers. The positiv
rootsak.0 are proportional to the axis lengths of the iner
ellipsoid. The orbits for which the inertia tensor fails to b
positive definite are unphysical; i.e., no wave functionC
exists such that the expectation of the quadrupole-mono
tensor Q̂jk is not a positive definite matrix. Similarly, th
06432
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momentum tensort is positive definite on the physical co
adjoint orbits. Thus a physically admissible orbit must ha
positive-definite momentst andq.

Whenq is diagonal, the symplectic density represents
system in the rotating principal axis frame, and it is deno
by r̃. The spaceMr of all principal axis frame densitiesr̃ is
a submanifold of the coadjoint orbitOr .

The unitary group U~3! is a subgroup of u~3,3! ùSp~3,C!
given by

t8~x!5S x 0

0 ~xT!21D , ~20!

where x is a 333 complex unitary matrix. The subgrou
U~3! is the symmetry group of the harmonic oscillat
Hamiltonian.

The unitary group acts on the space of complex sy
plectic densities r8 by the coadjoint transformation
r8°t8(x)r8t8(x)21. On the space of real symplectic de
sitiesr, the unitary group acts equivalently according to

r5Kr8K†°Kt8~x!r8t8~x!215t~x!rt~x!21, ~21!

where the unitary group is represented by the real matric

t~x!5Kt8~x!K†5S U 2V

V U D ~22!

and U,V are the real and imaginary parts ofx5U1 iV
PU(3).

Each coadjoint orbit is a homogeneous space; i.e.
is diffeomorphic to a coset space of the group Sp(3,R)
modulo a subgroup. The relevant subgroup is an isotr
subgroup which is the set of group elementsg that fix an
orbit point, Adg* r5r. If % of Eq. ~16! is the orbit point, then
the isotropy subgroupH% depends on whether the eige
values coalesce,

H%5H U~1!3U~1!3U~1!, whenNi are distinct;

U~2!3U~1!, when twoNi are equal;

U~3!, when allNi are equal.
~23!

The dimension of the homogeneous spaceO%

.Sp(3,R)/H% is dim O%5dim Sp(3,R)2dim H% . Hence
the dimension of the generic coadjoint orbit is 18. When t
eigenvaluesNi are equal, the coadjoint orbit is 16 dimen
sional. If all three eigenvalues coincide, the orb
Sp(3,R)/U~3! is 12 dimensional, and it is diffeomorphic t
one of the classical domains@61#.

The coadjoint orbits of the symplectic group in the spa
of complex symplectic densities are in one-to-one corresp
dence with the orbitsOr in the space of real symplecti
densities. Whenr85K†rK is a complex symplectic densit
~11!, then the orbit through it isOr85K†OrK.
1-5



f

n
ti
tic

m

es
th
r
is
a

ch
up
pe
n

e
a
f
c
ue
io
es

c

st
ic
r-
th
l

rd
18
iti

ad
ur

io
ve
l t
.

m-
e

der
le

-

e-

by

ear
ed

f

ma-

tro-
ed
ed

nta-
p-

ces

-
c-
m-

G. ROSENSTEEL PHYSICAL REVIEW C 65 064321
B. Symplectic Casimirs

The symplectic CasimirsC2r@r# are real-valued functions
of the density

C2r@r#5
~21!r

2
tr ~r2r !, r 51,2,3. ~24!

The Casimirs are constant on each coadjoint orbit,C2r@r#
5C2r@Adg* r# for gP Sp(3,R). They are also independent o
the real or complex form of the symplectic density,C2r@r#
5C2r@r8#. The trace of an odd power of the density is ide
tically zero because of the special form of the symplec
density matrix. Only the even powers of quadratic, quar
and sextet degrees are functionally independent.

Suppose a coadjoint orbit in the space of complex sy
plectic densities contains a diagonal matrix%8 of the form
~14! where the entriesNi are real numbers. The eigenvalu
Ni are unique to the coadjoint orbit and, therefore, label
coadjoint orbit. When theNi are positive half-integers o
integers, the orbit corresponds to an irreducible unitary d
crete series representation of the symplectic Lie algebra,
the labelsNi are its weights. There are also orbits for whi
the densityr8 cannot be diagonalized by a symplectic gro
transformation, but these will not be considered in this pa
because they do not correspond to shell model represe
tions.

Because the coadjoint action is matrix conjugation, it do
not alter the eigenvalues of the density matrix, and the co
joint transformation Adg* r is an isospectral deformation o
the densityr. The solutions to the secular equation for ea
density in a fixed coadjoint orbit are the constant eigenval
Ni . Thus the coefficients to the polynomial secular equat
must be likewise constant on each coadjoint orbit. Th
coefficients are the Casimir functionsC2r@r#. For an orbit
O%8 , labeled by (N1 ,N2 ,N3), the values of the symplecti
Casimirs are

C2r@%8#5(
i

Ni
2r . ~25!

A level surface of the symplectic Casimir functions consi
of all densitiesr, Eq. ~5!, that satisfy the three algebra
equations,C2r@r#5( iNi

2r . The corresponding coadjoint o
bit O%8 in the space of complex matrices consists of
densitiesr8 of the form~11! that satisfy the three polynomia
relations~25!. In the typical case of distinctNi , the three
Casimir functions are functionally independent and, acco
ing to the implicit function theorem, the level surface is
dimensional, i.e., the dimension of the dual space of dens
minus the number of independent functions.

Since the Casimirs are invariant with respect to the co
joint action, each coadjoint orbit is contained in a level s
face of the symplectic Casimirs. For distinctNi , the coad-
joint orbit and the level surface have the same dimens
and the coadjoint orbit is an open submanifold of the le
surface. But the coadjoint orbit is not necessarily identica
the level surface; see the Appendix for a counterexample
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C. Anisotropic representation

The definition of the representation of the algebra of sy
plectic matrices~4! depends ultimately on the choices for th
length units of the three Euclidean directions which ren
(xa j ,pa j ) dimensionless. In the isotropic case, a sing
length unitb is used, and the sp(3,R) representation is de
noted bys(S). In the anisotropic case, the length unitsbk
depend on the Euclidean directionk51,2,3, and the sym-
plectic representation is denoted bysdef(Sdef). The symplec-
tic matricesSandSdef are elements of the same matrix alg
bra ~3!.

For the deformed representation the density is denoted
rdef and

^rdef,Sdef&[
1

2
tr ~rdefSdef!52 i ^Cusdef~Sdef!uC&.

~26!

The subgroup of diagonal matrices in the general lin
group determines transformations from isotropic to deform
oscillator phonons. LetD5diag(d1 ,d2 ,d3) be the diagonal
matrix with positive elementsdk5b/bk5Avk /v0. The de-
formed representation of sp(3,R) is related to the isotropic
representation by

sdef~Sdef!5s~S!, S5t~D !Sdeft~D !21, ~27!

for S,SdefPsp(3,R). If the diagonal matrix is an element o
SL(3,R!, then the deformed frequencies satisfyv1v2v3

5v0
3.

The symplectic densityrdef of a wave functionC in the
deformed representation is related by a coadjoint transfor
tion to the densityr in the isotropic representation,

r5t~D !rdeft~D !21. ~28!

The oscillator phonons can be chosen to be either the iso
pic harmonic oscillator phonons or the anisotropic deform
oscillator phonons. The alternate representation by deform
phonons is the same skew-adjoint operator as its represe
tion by isotropic phonons. Thus, for every skew-adjoint o
erator in the symplectic Lie algebra, there are four matri
that characterize it,

s~S!5s8~S8!5sdef~Sdef!5sdef8 ~Sdef8 !, ~29!

where the matrices are interrelated by

Sdef8 5K†SdefK, S85K†SK,

S5t~D !Sdeft~D !21, S85t8~D !Sdef8 t8~D !21, ~30!

with t8(D)5K†t(D)K. Depending on the theoretical prob
lem, one of these four equivalent matrix forms of a symple
tic Lie algebra operator may optimize the mathematical co
putation or the physical interpretation.

III. GCM „3… DECOMPOSITION

The general collective motion algebra gcm~3! is a subal-
gebra of the real symplectic algebra sp(3,R),
1-6
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gcm~3!5H S X 2U

0 2XTD UX,UPM3~R!,UT5UJ . ~31!

The gcm~3! algebra is a 15-dimensional semidirect sum
two Lie subalgebras. One subalgebra is the Lie alge
gl(3,R) of the general linear group. The ideal of the semi
rect sum is the six-dimensional Abelian algebra generated
the quadrupole-monopole tensor.

The general collective motion group GCM~3! is a Lie
subgroup of the symplectic group Sp(3,R),

GCM~3!5H S x 2xU

0 ~xT!21D UxPGL1~3,R!,UPM3~R!,

UT5UJ . ~32!

The GCM~3! group is a semidirect product of GL1(3,R) and
the Abelian normal subgroup

R65H S I 2U

0 I D UUPM3~R!,UT5UJ . ~33!

GCM~3! is a transformation group on each coadjoint or
of the symplectic group. The goal of this section is to det
mine the orbits of GCM~3! in a fixed coadjoint orbit of the
symplectic group. Given a symplectic density with
positive-definite quadrupole-monopole tensorq, a general
linear group element can be found that transformsq into the
identity matrix I. Next aR6 group transformation is chose
to remove the symmetric part of then tensor. Finally a rota-
tion group element is selected to diagonalize the posit
definite kinetic tensort. Hence each physical orbit of th
GCM~3! group in the space of real symplectic densities c
tains a density of the form

r5S 2n t

2I 2nD , ~34!

wherenT52n is antisymmetric andt5diag(t1 ,t2 ,t3) is a
positive-definite diagonal matrix.

There is one gcm~3! Casimir function which is the
squared length of the Kelvin circulation vector,

C2@r#5tr~qnTq21n2n2!. ~35!

The circulation is zero,C2@%#50, for the symplectic orbit
representative of Eq.~16!. The Casimir function is invarian
with respect to GCM~3! subgroup transformations,C2@r#
5C2@Adg* r# for gP GCM~3!. Since the Kelvin circulation
is constant on each GCM~3! orbit, its value may be com
puted at the GCM~3! representative density of Eq.~34!,
C2@r#522 tr(n2). The antisymmetric matrixn determines
the components of the pseudovector Kelvin circulation,ni j

5e i jkCk/2, and the Casimir function isC2@r#5C1
21C2

2

1C3
25CW •CW .

When evaluated at the GCM~3! representative density, th
quadratic symplectic Casimir function implies the relation
06432
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CW •CW 1tr~ t !5( Nk

2 . ~36!

Since the kinetic tensort is positive definite, the length of the
circulation pseudovector is bounded from above on a co
joint orbit of the symplectic group.

A finer upper bound is determined by identifying th
maximum of the Kelvin circulation on a given coadjoint o
bit. A relative maximum is a critical point of the gcm~3!
Casimir function. Letr denote the GCM~3! orbit representa-
tive of Eq. ~34! and r~e! a smooth curve in the symplecti
coadjoint orbit throughr,

r~e!5eeSre2eS5r1e@S,r#1
e2

2
†S,@S,r#‡1•••,

~37!

for San element~3! of the symplectic Lie algebra. A critica
point of the gcm~3! Casimir satisfies

d

de
C2@r~e!#ue5050, ~38!

or equivalently, after evaluating the derivative explicitly,

05~ t12t2!C35~ t22t3!C15~ t32t1!C2 . ~39!

In addition, the symplectic density satisfies the three sy
plectic Casimir identities.

There are three cases to consider. First, if all compone
of the circulation are zero, then the GCM~3! orbit represen-
tative is

r5S 0 t

2I 0D , t5diag~N1
2 ,N2

2 ,N3
2!. ~40!

This density is in the GCM~3! orbit of the highest
weight density % since r5t(x)%t(x)21 for x
5diag(AN1,AN2,AN3) in GL1(3,R).

Second, if two components of the circulation vanish a
one is nonzero, sayC15C250, C3Þ0, then two diagonal
elements of the kinetic tensor coalesce,t15t2, according to
Eq. ~39!. This density is on the level surface of the symple
tic Casimir functions when either~1!

C35N12N2 , t15t25~N11N2!2/4, t35N3
2 ~41!

or ~2! C35N11N2 , t15t25(N12N2)2/4, t35N3
2. It is

shown in the Appendix that~2! is not a point on the coadjoin
orbit O% , although it lies on the level surface, and, therefo
this solution is rejected. For~1!, the quantaNk may be per-
muted to obtain three distinct solutions altogether.

Third, if just one component of the circulation is zero—
say,C350—then the kinetic tensor is a multiple of the ide
tity matrix. Because of the kinetic tensor symmetry, the sy
plectic density may be rotated so that the circulation vec
has two zero components. Thus the third case reduces to
second case. When all diagonal elements oft are equal, one
of the quanta is the average of the other two—say,N3
5(N11N2)/2.
1-7
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G. ROSENSTEEL PHYSICAL REVIEW C 65 064321
To determine whether or not a critical point is a relati
maximum, the Hessian of the gcm~3! Casimir function must
be evaluated. Along a curver~e! through the critical point
~41!, the gcm~3! Casimir equals

C2@r~e!#5~N12N2!22e2$~N1
22N3

2!~N3
22N2

2!~V23
2 1V31

2 !

1~N12N2!2N1N2@~V222V11!
214V12

2 #%. ~42!

The GCM~3! orbit point r is a relative maximum of the
gcm~3! Casimir function only whenN1>N3>N2 or N1
<N3<N2.

Theorem. SupposeO% is the symplectic coadjoint orbi
containing the density% of Eq. ~16! and the orbit labels are
ordered byN1>N3>N2. The range of the squared length
the Kelvin circulation vector on the surfaceO% is 0
<C2@r#<(N12N2)2.

In a study of the unitary sp(3,R) discrete series represen
tations and their gcm~3! decomposition, Rowe and Repk
@44# proved that the maximum value of the circulation equ
the maximum value of the angular momentum in the su~3!
representation (l,m)5(N12N3 ,N32N2) for N1>N3>N2.
The maximum value from su~3! representation theory isl
1m5N12N2 which, as has been just shown, is the ma
mum value of the circulation on a coadjoint orbit.

IV. OSCILLATOR HAMILTONIAN

The simplest Hamiltonian of the symplectic model is t
isotropic harmonic oscillator,

Ĥ05\v0(
k51

3

Ĉkk , ~43!

and its energy functional is

E@r#5
\v0

2
tr ~ t1q!, ~44!

wherev0 is the isotropic oscillator frequency. The oscillat
Hamiltonian is an element of the symplectic Lie algeb
Ĥ052 i\v0s(h)52 i\v0s8(h8), where the real and com
plex symplectic matrices are

h5S 0 2I

I 0 D , h85S i I 0

0 2 i I D . ~45!

A critical point r8 of the harmonic oscillator energy func
tional must commute with the matrix Hamiltonianh8,

05@r8,h8#, ~46!

and, therefore, the symplectic density is

r85S zT 0

0 2zD , ~47!

where z is any skew-Hermitian 333 complex matrix. In
order for r8 to lie on the coadjoint orbit, the eigenvalue
of z must be 2 iN1 ,2 iN2 ,2 iN3. The energy equalsE
06432
s

-

,

5\v0^r8,h8&5i\v0tr z5\v0(Nk . Since the harmonic oscil
lator Hamiltonian is U~3! invariant, there is a correspondin
U~3! degeneracy for the density,

^Adx* r8,h8&5^r8,Adx
21h8&5^r8,h8&5E, ~48!

for any xP U~3!.
The symplectic orbit representative% has energyE and it

minimizes of the oscillator energy functional. The U~3!orbit
Adx* %8 for xPU~3! is a surface of degenerate densities in t
coadjoint orbit.

For the discrete series unitary representations of sp(3R),
the harmonic oscillator spectrum is bounded similarly fro
below at the energyE. Moreover, the eigenspace of energyE
in the representation space is U~3! invariant.

A. Anisotropic oscillator

The anisotropic oscillator Hamiltonian is an element
the symplectic Lie algebra,

Ĥ5 (
k51

3

\vkĈkk , ~49!

wherevk are the normal mode frequencies and the opera
Ĉkk are defined in terms of deformed phonons. A GL1(3,R)
adjoint transformation that is defined by a diagonal mat
D5diag(d1 ,d2 ,d3), dk

25vk /v0, transforms the isotropic
oscillator into the deformed oscillator

iĤ /\v05sdef~hdef!5sdef8 ~hdef8 !, ~50!

where the real and complex symplectic matrices

hdef5S 0 2U

U 0 D , U5diag~v1 /v0 ,v2 /v0 ,v3 /v0!,

hdef8 5S Z 0

0 2ZD , Z5 iU . ~51!

The energy functional is E@rdef8 #5\v0^rdef8 ,hdef8 &
5^CuĤuC&. The real matrixhdef or the equivalent complex
matrix hdef8 in sp(3,R) is the mean field Hamiltonian. A mea
field solutionrdef8 is a complex density that is a critical poin
of the energy functional on the coadjoint orbitO%8 . A criti-
cal point commutes with the mean field Hamiltonian,

@rdef8 ,hdef8 #50. ~52!

Since the mean field Hamiltonianhdef8 is diagonal, the com-
muting densityrdef8 must also be diagonal. To be a point o
the coadjoint orbit, the diagonal entries ofrdef8 must be some
permutation of (2 iN1 ,2 iN2 ,2 iN3). When the diagonal
entries are not permuted, the energy of the critical poin
simply E@rdef8 #5(\vkNk .
1-8
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B. Cranked deformed oscillator

The cranked anisotropic oscillatorĤv5Ĥ2vL̂1 is the
Routhian that describes the rotation of the anisotropic os
lator Ĥ about the one-axis with an angular velocityv. The
Routhian is an element of the symplectic Lie algebra beca
the components of the vector angular momentum oper
are in the algebra. Thekth angular momentum component
the representation of the real matrixS,

i L̂ k /\5s~S!,S5S Ei j 2Eji 0

0 Ei j 2Eji
D , ~53!

where Ei j denotes the elementary 333 matrix whose only
nonzero entry is one at the intersection of rowi with column
j. With respect to the deformed phonon basis, the Routh
operator is the representation of the complex matrixhv8 ,

iĤ v /\v05sdef8 ~hv8 !, ~54!

hv8 5S Z 2W

2W* 2ZTD ,

Z5S iv1 /v0 0 0

0 iv2 /v0 2u

0 u iv3 /v0

D ,

W5S 0 0 0

0 0 2v

0 2v 0
D , ~55!

where

u5
v

2v0
~a1a21!, v5

v

2v0
~a2a21!, ~56!

and a5Av2 /v3. A critical point for the Routhian energy
functional Ev@rv8 #5\v0^rv8 ,hv8 & on a coadjoint orbit is a
densityrv8 that commutes with the Routhian matrixhv8 . To
solve for the critical point, first diagonalize the Routhia
matrix by an adjoint transformation

Adghv8 5S Z 0

0 2ZD , Z5 i diag~v1 ,V1 ,V2!/v0 ,

V6
2 5

1

2
~v2

21v3
2!1u22v26q,

q25
1

4
~v2

22v3
2!21u2~v21v3!22v2~v22v3!2. ~57!

The transformed density Adg* rv8 commutes with the di-
agonalized Routhian,

05g@rv8 ,hv8 #g215@Adg* rv8 ,Adghv8 #. ~58!

This forces the transformed density to be diagonal. Bu
diagonal density on the coadjoint orbit must have the eig
06432
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values iN1 , iN2 , iN3. Hence, in the natural order of Eq
~14!, the symplectic density of the cranked anisotropic os
lator is

rv8 5Adg21* %8. ~59!

The energy of the critical point isEv@rv8 #5\v1N1

1\V1N21\V2N3.
In the usual derivation of the cranked anisotropic oscil

tor energy, the quantum numbersN1 ,N2 ,N3 are fixed, an
assumption known as the adiabatic condition@62#. In the
symplectic theory, the quanta are fixed because the m
field assumption restricts the densities to a fixed coadjo
orbit. Thus the adiabatic condition and the symplectic me
field approximation are mathematically equivalent.

The density of the cranked oscillator may be determin
explicitly in two ways. One method is to determine the me
field Routhian’s eigenvectors, which are the columns of
symplectic group elementg of Eq. ~59!. The other technique
is to apply Feynman’s lemma@63#. Suppose the mean fiel
Hamiltonian h(l) depends on some parameterl, e.g., the
angular velocityv or the frequenciesvk . For each value of
l, let r~l! denote the equilibrium density,@r(l),h(l)#50,
and letE(l)5\v0^r(l),h(l)& be the equilibrium energy
Then Feynman’s lemma, in its density matrix form, sta
that

dE

dl
5\v0K r~l!,

]

]l
h~l!L . ~60!

When l is taken to bev, the angular momentum of th
equilibrium density is determined. Ifl equals one of the
frequenciesv i , the squared axis lengths of the inertia elli
soid are determined. Explicit formulas for the angular m
mentum and the axis lengths are given by Stamp@64#.

C. Inglis cranking

For small angular velocities, the cranking term may
computed in perturbation theory. In the coadjoint or
theory, the perturbation method is implemented by expre
ing the diagonalizing symplectic group elementg as a power
series inv,

g5expS v

v0
M D5I 1

v

v0
M1

1

2 S v

v0
D 2

M21•••, ~61!

whereM is a complex matrix in the symplectic Lie algeb
sp~3,C!ùu~3,3!, Eq. ~9!. HereM is chosen so that

Adghv8 5hv8 1
v

v0
@M ,hv8 #1

1

2 S v

v0
D 2

†M ,@M ,hv8 #‡1•••

~62!

is a diagonal matrix to quadratic order inv. The perturbation
results in the coadjoint orbit theory for the rotational ener
deformation, and angular momentum derived are identica
the well-known formulas of Inglis@54#.

The advantage to the perturbation formulas is that th
physical interpretation is clearer than the exact express
of Sec. IV B and that the approximation is adequate for
1-9
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G. ROSENSTEEL PHYSICAL REVIEW C 65 064321
plications to the yrast rotational bands of deformed ev
even isotopes. In particular, the angular momentumI in the
Inglis approximation is a linear interpolation of the rig
body ~RR! and irrotational flow~IF! values,

I 5@rIRR1~12r !IIF #v, ~63!

where the moments of inertia are

IRR5
M

5
~b21c2!, IIF5

M

5

~b22c2!2

b21c2
, ~64!

whenM is the nuclear mass, andb,c are the semiaxis length
of the inertia ellipsoid perpendicular to the rotation axis, a
the parameterr equals

r 5
N3 /N22N2 /N3

v2 /v32v3 /v2
. ~65!

The extreme cases of rigid rotation and irrotational flow,
spectively, are attained whenv3N35v2N2 or r 51, the self-
consistency ansatz, andN35N2 or r 50, respectively@56#.

In the classical theory of Riemann ellipsoids, the angu
momentum is also a linear combination~63! where the mix-
ing parameter is the rigidityr, the ratio of the Kelvin circu-
lation to its rigid body value@44,46#.

Within the framework of the cranked anisotropic oscill
tor theory, what frequencies are most appropriate for r
nuclei? The squares of the axis lengths (a,b,c) of the inertia
ellipsoid are proportional to the ratios of quanta to frequen
in the three Cartesian directions,a2}N1 /v1 , b2}N2 /v2 ,
c2}N3 /v3 . After rearranging Eq.~65!, the ratio of the
frequencies depends on the rigidity and the deformation
cording to

S v2

v3
D 2

5
r 1~c/b!2

r 1~b/c!2
. ~66!

Rigid rotation and irrotational flow, respectively, correspo
to v2 /v35c/b andv2 /v35(c/b)2, respectively. The rigid-
ity of an even-even deformed nucleus is inferred from
measured deformation and moment of inertia of its yrast
tational band using Eq.~68! for a Riemann ellipsoid@46#.
Equation ~66! determines the frequency ratio of a nucle
modeled as a pure anisotropic oscillator using the exp
mental rigidity and deformation. In Fig. 1, the frequen
ratio v2 /v3 is plotted versus the major to minor axis rat
c/b for all deformed even-even nuclei withc/b>1.2 using
experimental values for the nuclear quadrupole deforma
and the Riemann ellipsoid rigidity@65#. The 76 deformed
isotopes in the figure range from12C to 252Cf. The correla-
tion of a straight line of slope52 with the experimenta
points is 0.996. The linear relationship for real nuclei b
tween the deformation in frequency space and the defor
tion in Euclidean space is remarkably simple.
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V. RIEMANN ELLIPSOIDS

The gcm~3! subalgebra of sp(3,R) is the dynamical sym-
metry algebra of the Riemann ellipsoid model. A Riema
ellipsoid is a classical fluid with an ellipsoidal boundary su
that its velocity fieldvW (rW) is a linear function of the Carte
sian position vectorrW. WhenvW (rW)5V rW with V an antisym-
metric 333 matrix, the ellipsoid rotates rigidly. WhenvW (rW)
5J rW with J a symmetric 333 matrix, the ellipsoid rotates
irrotationally,¹W 3vW 50. A general linear velocity field is de
fined by a sum of antisymmetricV and symmetricJ matri-
ces.

An S-type Riemann ellipsoid is one that is rotating abo
a principal axis—say, the one-axis. TheS-type equilibrium
ellipsoids are indexed by the rigidity parameterr. The kinetic
energy of anS-type ellipsoid is an interpolation between th
rigid and irrotational values,

E5
I 2

2Ir
, ~67!

where the moment of inertia is

Ir5
@rIRR1~12r !IIF #2

r 2IRR1~12r 2!IIF

. ~68!

For a heavy deformed nucleus, the low energy yrast ro
tional band is described by the classical Riemann formu
Because the experimental moment of inertia is typica
about one-half the rigid body value and 5 times the irro
tional flow value, the rigidity is about 1/6. In Fig. 2, th
energy levels of the yrast band of166Er are compared to the
spectra of a rigid rotor (r 51), irrotational fluid (r 50), and
S-type Riemann ellipsoid (r 50.15).

FIG. 1. The ratio of the frequencies of the anisotropic oscilla
Hamiltonian is plotted versus the ratio of the axis lengths for
formed even-even nuclei using Eq.~66!.
1-10
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Sp(3,R) MEAN FIELD THEORY PHYSICAL REVIEW C 65 064321
If the rigidity were only an interpolating parameter th
enables a fit to the experimental moment of inertia, it wo
be of minor interest. But the rigidity characterizes t
nuclear current and the nature of rotational motion in
formed isotopes. A direct experimental method for determ
ing the nuclear circulation and rigidity is provided by inela
tic electron scattering measurements of the transverseE2
form factor, as has been emphasized by Moya de Guerra@13#
and Vassanji and Rowe@14#. The author has shown else
where that the transverseE2 form factor for a Riemann roto
is a weighted interpolation of the rigid rotor and irrotation
flow form factors@16#. There is to date no published expe
mental measurement of transverse form factors in the he
deformed region. But projected Hartree-Fock~PHF! calcula-
tions of the transverseE2 form factor in the heavy deforme
region were done by Berdichevskyet al. @15#. For 156Gd the
PHF transverse form factor implies a rigidityr'0.12 and
this is consistent with the rigidityr 50.15 inferred from the
moment of inertia.

The rigidity depends on the nuclear deformation. For
rare-earth even-even isotopes, Fig. 3 plots the experime
rigidity r versus the quadrupole deformationb. The optimal
theoretical fit of a quadratic function of the deformation
the rigidity in this region isr 510b225.1b10.68. In Fig. 4,
this quadratic function is used in conjunction with Eqs.~67!,
and ~68! to predict the energy of the 21 excited state in the
rare-earth region.

The Riemann model is an approximate solution to a sy
plectic model Routhian which includes a Kelvin circulatio
term. The Kelvin circulation is a vector operator with com

ponentsĈi5« i jk(Q̂21/2N̂Q̂1/2) jk . Despite its physical impor-
tance, the expectation of the circulation has not been ca
lated in shell model irreducible representations of
symplectic algebra because the Kelvin circulation operato
very complicated. However, in mean field theory, this ope
tor may be evaluated in the principal axis frame,

FIG. 2. The yrast band spectrum of166Er is compared with
the theoretical spectrum of a rigid rotor, irrotational droplet, an
Riemann ellipsoid withr 50.15.
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iĈk /\5s~S@ r̃# !, S@ r̃#5S X 0

0 2XTD ,

X5~aj /ai !Ei j 2~ai /aj !Eji , ~69!

where the quadrupole-monopole tensorq̃ of the symplectic
density r̃ in the rotating frame is diagonal q̃
5diag(a1

2 ,a2
2 ,a3

2). The circulation operator is the represe

tation of a density dependent matrixS@ r̃# in the sp(3,R) Lie
algebra.

The symplectic Routhian in the Riemann ellipsoid a
proximation is@58,60#

Ĥvl5Ĥ2lĈ12vL̂1 . ~70!

a

FIG. 3. The rigidity of 16 rare earth even-even isotopes is p
ted versus their quadrupole deformation.

FIG. 4. The theoretical energy of the first 21 excited state for 16
rare-earth even-even isotopes is compared to experiment.
1-11
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G. ROSENSTEEL PHYSICAL REVIEW C 65 064321
In the classical Riemann model, the real parameterl is the
vortex velocity. With respect to the deformed basis,
Routhian operator is the representation of the complex s
plectic matrixhvl8 @ r̃#,

iĤ vl /\v05sdef8 ~hvl8 !, ~71!

where the matrix is given by Eq.~55! with

u5
v

2v0
~a1a21!1

l

2v0
~n1n21!,

v5
v

2v0
~a2a21!1

l

2v0
~n2n21!, ~72!

with n5(a2 /a3)a anda25v2 /v3. A critical point for the
Routhian energy functionalEvl@rvl8 #5\v0^rvl8 ,hvl8 & on a
coadjoint orbit is a density that commutes with the Routh
matrix

@rvl8 ,hvl8 #50. ~73!

For small angular and vortex velocities, a critical point f
the Riemann ellipsoid Routhian can be derived using per
bation theory. When the self-consistency condition is sa
fied, v1N15v2N25v3N3, the classical expressions for th
angular momentum~63!, and circulation of a Riemann ellip
soid are attained@58#,

C5~M /5!@2bcv2~b21c2!l#,

I 5~M /5!@~b21c2!v22bcl#, ~74!

whereM is the nuclear mass, andb,c are the axis lengths
perpendicular to the rotation axis. The rotational kinetic e
ergy also approximates its classical Riemann ellipsoid va
~68! or

E5~M /10!@~b21c2!~v21l2!24bcvl#

5
1

4 F ~ I 1C!2

~b1c!2
1

~ I 2C!2

~b2c!2G . ~75!

Whenl50, the rigid rotation formulas of Inglis cranking ar
obtained@54#.

When the angular and vortex velocities are not smal
critical point for the Routhian energy is discovered by
iterative scheme. The procedure is similar to the conv
tional technique to find Hartree-Fock solutions. First ma
an initial guess for the symplectic densityrvl8 and calculate
the symplectic Routhian matrixhvl8 @rvl8 #. Next, diagonalize
the Routhian matrix by an adjoint transformation

Adghvl8 5S Z 0

0 2ZD , Z5 i diag~v1 ,V1 ,V2!/v0 ,

for gPU(3,3)ùSp(3,C). The eigenvalues of the Routhia
matrix are given by Eq.~57!.

The transformed density Adg* rvl8 commutes with the di-
agonalized Routhian,
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05g@rvl8 ,hvl8 #g215@Adg* rvl8 ,Adghvl8 #. ~76!

This forces the transformed density to be diagonal. Bu
diagonal density on the coadjoint orbit must have the eig
values iN1 , iN2 , iN3. Hence, in the natural order of Eq
~14!, the symplectic density of the cranked anisotropic os
lator is

rvl8 5Adg21* %8. ~77!

The energy of the critical point isEv@rvl8 #5\v1N1

1\V1N21\V2N3.
The symplectic density, determined in this way, is not y

a critical point for the Routhian whenlÞ0. In contrast to
ordinary Inglis cranking of the anisotropic oscillator, th
Routhian matrixhvl8 @rvl8 # depends on the symplectic den
sity due to the Kelvin circulation term. Using the tran
formed density~77! as the new starting point, one repeats t
procedure a second time, thereby yielding a transformed d
sity ~77!. This sequence must be iterated until convergenc
achieved:

rvl8 →hvl8 →Adghvl8 is diagonal→rvl8 5Adg21* %8. ~78!

Numerical results for the deformation, angular momentu
circulation, and energy obtained by this iterative sche
were reported elsewhere@58#.

The pairing force influences significantly the rigidity. I
prior work the rigidity was shown to be given approximate
by

r'12sinh21x/~xA11x2!, ~79!

where x5(\v22\v3)/2D and D is the BCS pairing gap
@66#. When the pair gap is large,x and the rigidityr are small
and the rotational motion approaches irrotational flow. Wh
the pairing gap is small,x is large, the rigidity nears unity
and the system rotates almost rigidly. Using experimen
values for the moment of inertia and deformation, the rig
ity is calculated from Eq.~68!, and the pairing field is de-
duced from the Belyaev formula for the moment of inertia
a self-consistent anisotropic oscillator plus BCS pairing fi
@67#. In Fig. 5, the BCS pairing fieldD is plotted versus the
rigidity r in the rare earth region. BCS pairing and the Kelv
circulation modify the moment of inertia of a cranked anis
tropic oscillator in similar ways.

VI. CONCLUSION

The symplectic shell model presents special techn
challenges because its irreducible representations are infi
dimensional. Moreover, explanations of nuclear rotatio
motion in the shell model share a common problem:
rotating body-fixed frame is difficult or impossible to defin
rigorously and work with effectively. Symplectic coadjoin
orbit theory eliminates these two obstructions to a tracta
robust theory of geometrical collective motion.

When sp(3,R) is an exact dynamical symmetry of th
shell model, the wave functions are vectors from a sin
symplectic irreducible representation space. Spin-orbit
1-12
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pairing forces are not operators in the symplectic envelop
algebra and, except for special cases, cause a violatio
exact symplectic symmetry. The symplectic Lie algebra i
maximal finite dimensional Lie algebra of hermitian ope
tors; i.e., any Hermitian microscopic operator adjoined to
sp(3,R) algebra generates an infinite-dimensional Lie al
bra. The exclusion of monopole pairing from the sp(3,R)
dynamical symmetry model is partially mitigated by the i
clusion of the Kelvin circulation. The effect of the Kelvi
circulation on the nuclear moment of inertia is similar
BCS pairing. The spin-orbit force usually mixes symplec
representations. One exception is when Wigner supermu
let symmetry is good. In some cases, the representatio
the symplectic algebra by pseudospin operators ena
sp(3,R) to be a good symmetry@68,69#. In heavy deformed
nuclei, strong coupling of the spin to rotor bands can c
tribute positively to well-defined rotational bands@70,71#.
However, the overall landscape is that sp(3,R) symmetry is
broken for most isotopes, and its application to the desc
tion of geometrical states requires careful analysis. This
puzzle because experiment unambiguously demonstrate
existence of rotational bands, yet the fundamental theor
geometrical collective states indicates that such bands
only possible in special circumstances.

Symplectic mean field theory places less stringent
mands than irreducible representation theory and provid
conceivable explanation for the data. In mean field theo
the basic object is a sp(3,R) density matrix that is defined b
the expectations of algebra generators. Even when a s
wave functions that forms a rotational band are a superp
tion of vectors from many sp(3,R) irreducible representa
tions, the densities of band members can share appr
mately common values for the three symplectic Casimirs

The sp(3,R) densities determine nuclear geometric
properties and these may be predicted accurately in m
field theory. A symplectic density matrix makes no pred
tions for nongeometrical operators, while wave functio
from a sp(3,R) irreducible representation predict the matr

FIG. 5. The pairing fieldD depends linearly on the rigidityr in
the rare earth region.
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elements of all operators. In essence, symplectic irreduc
representation theory makes strong claims about nuc
wave functions that are irrelevant to the description of g
metrical states. Symplectic mean field theory can expl
geometrical collective densities, as observed directly in
periment, but it does not try to construct wave functions t
incorporate all the degrees of freedom in phase space.

One of the oldest and most fundamental questions
nuclear structure science is, how does a deformed nuc
rotate? This article uses the Riemann rotor model to crea
simple physical picture of rotating deformed isotopes. In
proposed model, the excitation energies of yrast rotatio
band members are essentially kinetic in nature, the mom
of inertia is a function of the deformation and the rigidit
and, for even-even rare earth isotopes, the character of
lective rotation depends only on the quadrupole deformat
These physical assertions need to be put to a stringent
direct experimental test in electron scattering measurem
of the transverseE2 form factor in the heavy deformed re
gion. Such measurements could finally answer the phys
question about nuclear collective rotation in this domain.

The symplectic model is a rich theory of geometrical c
lective modes, but this article has explored just a small p
of it, primarily topics related to the Kelvin circulation. Th
range of the circulation is bounded on a symplectic coadjo
orbit, as was shown in Sec. III. The character of rotatio
modes in atomic nuclei is circumscribed by this theore
which parallels the reduction of gcm~3! in an irreducible
sp(3,R) discrete series representation@43#.

In many prior applications of the symplectic theory to t
shell model, the rotationally invariant Hamiltonian is the su
of the harmonic oscillatorĤ0 and a collective potential en
ergy V(b,g) that is a function of the quadrupole deform
tion. In future work on symplectic coadjoint orbit theory, th
critical points of energy functionals corresponding to su
shell model Hamiltonians will be found and compared to t
prior shell model calculations.

The mean field Hamiltonian is, in general, a densi
dependent element of the Lie algebra@72#. A subsequent ar-
ticle will derive the symplectic mean field Hamiltonian from
the energy functional using the symplectic geometry o
coadjoint orbit. The mean field Hamiltonian can be appli
to the description of normal mode oscillations of symplec
equilibrium states. For su~3! dynamical symmetry, the mea
field Hamiltonian and normal mode theory have been
ported@23,28#.
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APPENDIX: CASIMIR-LEVEL SURFACE

A symplectic coadjoint orbit is properly contained in
level surface of the symplectic Casimirs. Consider the f
lowing matrix in the symplectic Lie algebra sp(2,R):
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M ~u,v !5S 0 u/2 v2/4 0

2u/2 0 0 v2/4

21 0 0 u/2

0 21 2u/2 0

D , ~A1!

whereu,v are real numbers. When~I! u5N12N2 , v5N1
1N2 or ~II ! u5N11N2 , v5N22N1, the eigenvalues of the
matrix M (u,v) are6 iN1 and6 iN2. Thus both cases I an
II lie on the same level surface of the sp(2,R) Casimirs.

In case I, the matrixM (u,v) is in the orbitO% for

%5S 0 0 N1 0

0 0 0 N2

2N1 0 0 0

0 2N2 0 0

D , ~A2!

since gM(u,v)g215% for the real symplectic group ele
mentg in Sp(2,R),
hy

hy

h

is-
ki

06432
g5S 0 1/Av Av/2 0

21/Av 0 0 2Av/2

21/Av 0 0 Av/2

0 1/Av 2Av/2 0

D . ~A3!

In case II, the matrixM (u,v) is not in the orbitO% . In order
for gM(u,v)g215%, the transformationg is

g5S 0 Av/2 iAv/2 0

2 iAv/2 0 0 Av/2

i /Av 0 0 1/Av

0 21/Av i /Av 0

D . ~A4!

This g is an element of Sp(2,C); it is not a member of
Sp(2,R).

The result may be extended to Sp(n,R) for n.2 by em-
bedding the matrixM (u,v) in an obvious way.
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