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Projection and ground state correlations made simple
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We develop and test efficient approximations to estimate ground state correlations associated with low- and
zero-energy modes. The scheme is an extension of the generator coordinate (@&hydwithin Gaussian
overlap approximatioilGOA). We show that the GOA fails in non-Cartesian topologies and presents a topo-
logically correct generalization of the GO#opGOA). A random-phase-approximation likRPA-like) correc-
tion is derived as the small amplitude limit of topGOA, called topRPA. Using exactly solvable models, the
topGOA and topRPA schemes are compared with conventional appra@&6ésGOA, RPA, Lipkin-Nogami
projection for rotational-vibrational motion and for particle-number projection. The results shows that the new
schemes perform very well in all regimes of coupling.
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[. INTRODUCTION ation. The GOA is well suited for Cartesian coordinates
which extend in the interval {o,+%) with constant-
Self-consistent mean-field models are nowadays the stawvolume element. The best example is here center-of-mass
dard tool for nuclear structure calculations. Their quality hagnotion. But the GOA is not necessarily appropriate for other
reached a level where one needs to take into account corréapologies such as, e.g., rotational motion whose coordinates
lation effects beyond the mean field, particularly those whichare defined on a sphere. It can still work if the overlaps are
are related to low-energy or symmetry modes. Typical exfalling off very quickly. But regimes of weak coupling have
amples are center-of-mass projection, particle-number prd2road overlaps and thus the topology of the underlying co-
jection, angular momentum projection, or quadrupole surfac@rdinates is fully explored. It needs to be built into the ap-
vibrations. There are a large variety of techniques to degproXimation. An example for rotational motion is found in
with those correlations; for a review, s¢&]. The most 9] A ”_‘OSt general constructlon for any t_opology IS dis-
widely used ones are the random phase approximé&Rew) cussed irf10]. The changes are, in fact, obvious and simple.

. It amounts to building the topology of the coordinates into
(see, e.g.2,3]) and the generator coordinate meth@&CM) o ) ]
(see, e.g.[4,5]). The latter has close links to projection for- the parametrization of the GOA. We call the emerging ap

) . _ roach a topologically corrected Gaussian overlap approxi-
mulas. The RPA has the advantage that it provides simpl ation (topGOA.

equations because it employs only second-order commuta- |1 is the aim of this paper to investigate the accuracy of

tors of the basic one-body operators with the Hamiltonianihe 1opGOA for two cases most relevant in nuclear structure
However, it runs into difficulties with soft modes which arise cajculations: deformations and particle-number projection.
typically near transition points. The GCM is very general andyye compare the topGOA with the RPA as well as the full
extremely robust, but also very cumbersome to handle. Thugcm and simple GOA. Furthermore, we derive a small-
one has developed simplificati_ons in th_e a_im to use also prefamplitude limit of the topGOA which gives at the end very
erably second-order expressions. This is achieved by thgmple and compact formulas for the collective ground state
Gaussian overlap approximatiéBOA) to the GCM; for de-  correlations, in a sense comparable to the RPA. We call that
tails see the review if4]. The GCM-GOA is a fair compro-  approach the topRPA. In both test cases we employ a suitable

mise between the generality of the GCM and the simplicitygeneralization of the Lipkin-Meshkov-Glick modgd1].
of the RPA. It uses up to second-order anticommutators bu%

can still deal with large-amplitude collective motion.
Second-order approximations within the spirit of the GOA [I. CONVENTIONAL APPROACHES

have also been widely applied to projection schemes. The This section provides a brief summary of traditionally

standard recip& ,=(PZ,)/2mA for center-of-mass cor- well.known approaches for collective correlations, the RPA
rection belongs to this clag$]. The similarly simple rota- g4 GcMm up to the GOA.
tional correctior(32>/2® has been widely employed, e.g., in
the large-scale fits of7]. And there is the well-known
Lipkin-Nogami approach for particle-number projectic@].
However, one has to be aware that the GOA is not always The RPA theory is perhaps the most straightforward treat-
performing well. For example, it fails for rotational motion ment of correlations beyond mean-field theory. It gives the
in weakly deformed systems and for particle-number projecleading corrections in the limit of a large number of interact-
tion in the regime of weak pairing. The failure can be relatedng particles. With the RPA, one calculates an excitation
to the topology of the collective coordinate under considerspectrum of eigenfrequencies, and the associated particle-

A. RPA correlations
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hole operatorsf:ﬁ that generate the eigenmodes. These AE:(q/||Z||qr>_<q)O||i||<p0>, (6)

modes are also present in the RPA ground state as zero-point

motion, leading to a RPA theory of the ground state correlawhere|®,)=|0) is the ground state of the underlying inde-

tion energy; see, e.g[2,12]. For a single mode, the RPA pendent particle model. The GCM can be easily generalized

correlation energy is given by to multiple modes. One simply generalizggo a vector of
deformations and extendxqg’ to a multidimensional inte-

© _ . e
_0 A At gral; see, e.9.[4,16,17. The GCM is often applied in this
AE=7 01 (Pol{C.CTHPo)), @ straightforward, but tedious, manner where the overlaps and
the solution of the Griffin-Hill-Wheeler equation are deter-
where mined numerically; see, e.d5,18,19.
w={(Dy|[C,[H,CT]]|Do) 2 2. Gaussian overlap approximation

and|®,) is the mean-field ground state. In the case the mode 'h€ full GCM is much more elaborate than the RPA be-
corresponds to a broken continuous symmeirs;0 and the ~ Cause one deals with the overlaps for any combinatiog of
formula should be applied by taking the—0 limit. It is andq’ and the highly nonlocal Griffin-Hill-Wheeler equa-

also advantageous in that case to separate the generators iR A dramatu_: sm_1pl|f|cat|on is achieved by the Gaussian
time-even and time-odd generators overlap approximation. It represents the dependence of the

overlaps on the differenceq-q’) by a Gaussian times a
polynomial in (q—q’)". The overlap is represented as a pure

~ 1 .. . ~ b A, 4
=—(C"+C), P=—(C'-0C). 3)  Gaussian,
Q \/i( ) \/5( ) )
A
The P is usually the generator of a collective deformation— 1(a.q ):eXF< —z(@-q )2). )

for example, a center-of-mass shift in case of the transla-
tional mode. Particle-number projection is an example whergvith

the time-even operatdil spans the collective space. 1

Thg REA correlation energyl) can fail due to double A )=—(i<9q—iﬁq/)ZI(q,q’)|q=q/=g. ®)
counting if one employs a sum over a large RPA spectrum 2
[13], but double counting is negligible if only a few collec- o .
tive modes are usefll4]. That is the line of approach fol- One gsually goes up to spcond—order derivatives in the ex-
lowed here. For a most recent survey of RPA correlation®ression for the Hamiltonian:
along that line, segl5]. It will be taken up explicitly in the

g H(q,q") — 1 —
applications later on. a q/ IHo(Q)—g(q—Q')ZHz(Q), 9a)
Z(9.9")
B. Generator coordinate method o -
1. General framework Ho(@)="H(q,q), (9b)
The most general technique for constructing collective H(q.q")
modes is the generator coordinate method. It utilizes a super- HZ(E)Z (i aq—iaq,)Z 9.9 la=q'=q (90
position of wave functions defined along some collective de- 7(9.9")

formation path{|®,)=|q)}. Each stat¢q) along this path is
an independent particle stater independent quasiparticle —_Q+Q'
state in case of BOSThe correlated wave function is given a= 2 (9d)

by

For further details, segt]. The GOA yields a dramatic sim-
|\I,>:f dala)f(q) 4) plification of the Griffin-Hill-Wheeler equation. Assuming

that the coefficients depend only weakly @none can recast

the Griffin-Hill-Wheeler equation into a collective Schro

dinger equation with a simple second derivative as operator

for the kinetic energy. Large amplitudes in average collective
deformationq=(q+q’)/2 are still allowed. Thus the GCM-

f da’'[H(dq,9")—EZ(q,9")]f(q") =0, (58 GOA is applicable to conditions of large fluctuation as are
typical for low-energy modes and for symmetry projection.

where the superposition functiohis determined by the
Griffin-Hill-Wheeler equation

H(q,q’)=(q|l3||q’), (5b) A furth_er dra_matic simplification emerges if one__restricts
the considerations to small amplitudes also dn=(q
7(q,9")={qlq’). (50 +q’')/2. Then the collective dynamics becomes harmonic
and all expressions can be worked out analytically. The final
NormalizingW, the correlation energy is given by result is then just the RPAL6,14,17. The correlations from
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the GCM-GOA become then identical to the RPA correla-

tions as given the above section Il A. A=e>, R‘”_Xm > (K2 +K2)), (113
=1 -1) 4 ’ '

3. Beyond the GOA

N
However, the GOA has its limitations. The Gaussian an- Koj= > alaim, (11b
satz assumes tacitly that the collective coordinate spans the m=1
interval
N
Kii=2> ahaom, (119
qe(—o,+%). (10) m=t
N
In other words, the dynamics is fundamentally Cartesian in R_,iz Z agmaim, (11d
m=1

the collective coordinates. This is certainly true for some
32?;2%23"F?y'?'ér:zachunr:groc\)/fe:n:‘cfl _Tgot)'ogl\:\t”:ﬁ ;epc::sc:pf:oo%h? ex_act _solution of this I:|iernriT!tonian is obtained by difago-
position is violated in many cases. In particular, in rotationainalization in the space oK,K;". The three-level Hamil-
motion the rotation angles are restricted to finite intervalgonian is the first term in Eq(113. It defines the energetic
with periodic boundary conditions. For such situations the'elations among the levels. Note that the two excited states
GOA can be genera”zed by m0d|fy|ng the arguments of thézl,z are degenerate. This gives the model the rotational
Gaussian to correctly include the topology of the collectiveSymmetry. The second term in E@.1a models a two-body
mode[9,10]. We call this generalization the topological GOA interaction. It is again symmetric in=1<2 which main-
(topGOA). The details of topGOA depend, of course, on thetains rotational symmetry. The strength is regulatedxby
actual mode under considerations. In the following, we exdefined to be the dimensionless coupling strength. We will
emplify and test the topGOA for two typical and most im- see later thaf~1 is the critical point in the model separat-
portant applications in nuclear physics: deformations andng weak and strong coupling.
particle-number projection. The projection is straightforward It is convenient to analyze the many-particle wave func-
and yields immediately expressions in second order througtion in terms of collective variables and 8. The collective
out. The efficient treatment of deformations remains an imwave function is defined as
portant problem in nuclear structure. The theory should pro- .
vide accurate correlation energies, going from the small- |aB)=eR@X: By N~V ), (12)
amplitude vibrational limit to the large-amplitude static
deformations and including the soft region in between. Theswhere
applications will serve as a critical testing ground for the
tC(;)gRAPA and the small-amplitude approximation to the top- K, (B)=cogB)K, ;+sinB)K., , (13

and the normalization is given by

IIl. VIBRATIONS AND ROTATIONAL PROJECTION Ma) :<0|etan(a)f<,etan(a)k+|0> — COS_ZN(a).

A. Three-level model

The usual two-level Lipkin-Meshkov-Glick Hamiltonian Note thaj[ thg model is rotationally nvariant in th? angle
The motion ina corresponds to collective vibrations. The

has been widely used to model the collective motion of in a ; : ; i
ystem is close to a good vibrator for small residual interac-

deformation coordinate, as it contains the vibrational and. . . )
. S . ' . tion, y<1. It is a rigid rotator for largey>1. The transi-
static deformation limits with the mean-field phase transition,. . . ; .
téonal regimey~1 explores collective motion with large-

in between. However, the model does not have a contmuouarnplitude fluctuations. Two subtle details need to be

symmetry, which is an important aspect of the deformations, entioned: First, there is only one rotational degree of free-

To include a continuous symmetry, we have extended th om which means that the model corresponds to rotations in

space in the Lipkin-Meskov-Glick model to three |evels anda lane. Second, the vibrational degree of freedom contains
call the extended model the three-level model. Two of the® P ‘ : 9

levels are degenerate in the three-level model, and the inteh—?:aev\ig:;:gor:gag]oon dgnli?f] 'Thtgeljggf/ Tieé%ﬁézmg‘stgmk
actions treat those levels identically. This introduces a Sym_model This is the price one pavs to h:fve a simole model
metry mode with the topology of rotations in a plane. For Th L licit fpth q F ?1 i it pd th.
clarity we repeat here the definition of the three-level model; € simplicity ot the mo. €l allows one to write down the
for details, se¢15]. The three levels are labeled 0, 1, and 0 exact overlaps analytically:

The basic ph transitions 6-1 are induced byA<+,1 and T(aB,a'B")
those to state 2 bf(tz. The amount of excitation is mea-

sured byK;, i €{1,2. The K operators obey a quasispin =[cog a)cog a’) +sin(a)sin(a’)cog B— BN,
algebra. The Hamiltonian of the model reads (149
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H(ap,a'B")
LaB,a’B')

sinasina’cogB— ')

=Ne
cosa cosa’ +sina sina’cogB—B’)

€ sirfa cofa’ +coa sirfa’

2" [cosa cosa’ +sinasina’cog B—B')]?

(14b)
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To develop an appropriate ansatz for the topGOA we have
to look at the topology of the collective coordinates. The pair
of coordinates ¢,8) extends over the surface of the unit
sphere. The exact overlafs4) hint already at the combina-
tion of coordinates which is generated by this topology:
cos@)cos(’)+sin(w)sin(a’)cosB—B'). It is the measure for
a distance on the sphere. The idea of the topGOA is to apply
to the norm overlap the Gaussian limit theorem for the shape
of the overlap function while preserving the topological
combination of the arguments. Similar combinations are to
be used for expanding the Hamiltonian overlap. This yields
then for the three-level model the form

The Hartree-FockHF) solution is obtained simply by
minimizing the expectation value of the Hamiltonian in a
state|aS),

Emi(@)=H(aB,ap)
=Nesir?(a)— xyeN sirf(a)cos(a), (15

with respect to the deformatiam, 8. This yields the Hartree-
Fock energy a& = E i ayr) Where the deformation of the
minimum is denoted byy,r. Note that the energy is inde-
pendent of the actual value @f due to rotational invariance
of the three-level model.

B. RPA modes

Small-amplitude motion around the HF minimum induces
collective excitations of the system. They can be worked out
analytically for the three-level modg¢ll5]. There are two
collective modes to be considered. At spherical shape
~0, there are two degenerate vibrational modes. The degen-
eracy is lifted with increasingeye. With further increasing
ape, there comes a critical point where the RPA solutions
become unstable. A different scenario develops after the tran-
sition point. The two modes separate into a rotational mode
along 8 and a vibrational mode along. The two eigenfre-
guencies arevn=0, associated with the rotational mode, and
w=e\x?’—1 for vibrations. Having these two modes at
hand, one can compute the RPA correlation energy applying
Eq. (1) for each mode separately and add up the result to the
total correlations.

C. TopGOA for the three-level model

The standard GOA overlaps can be obtained by expanding
Eq. (14) with respectto §—«') and (83— ') up to second
order. We exemplify it here for the norm kernelet o' and
expansion in3— B’'. The GOA reads

I(aB,af')=[co(a)+sir(a)cog B—B') N,

I(a,B,a’B’)ZeX;{ — %sinz( a—2a )

7\3 . B_,B,
— ZSQSIHZ(T> } (163
1. .
)\azz(laa_Iﬁa’)zz’(aﬂ!alﬁﬂa:a':; (16b)
1 .
NpSa=5(10p=10p)*L(a,aB)|p-p-5 (169
Eﬁfﬁiﬁzz%%—ﬂggﬁ(“_a»
I(Q,B,QI,BI) 2
—Hgsasinz(g), (169
-1 H(aB,a'B)
a "t o prieba b 16
HZ 2 (ﬁa (9&) I(aﬁ,a'ﬁ) ‘a=a/=a ( f)
-1 H(aB,aB’)
HB:—(D" —d /)2— (169
P28 P Tapaph |, 5
S,=s°— sinz( a_za
s=sin(a), c=coda),
__a-i—a'
4“7

Thus far we have the topGOA overlaps for any system where
the collective coordinates form the topology of a sphere. The
specific coefficients for the present three-level model are

_ N
=[1—2 sinz(a)sinz(ﬁT” ,

—>ex;{ - gsinz(a)(ﬂ—B’F).

The problem is obvious: the exact overlap is periodig3in
— B’ while the GOA is not.

064320-4
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FIG. 1. The norm overlaps along thedirection for two differ- X

ent deformationsy as indicated, for the three-level model with FIG. 2. Comparison of energies for the three-level model at
=12. The dots show th_e exact overlaps, dashed lines stand_ for thewrious levels of approximations as indicated. Upper block: total
standard GOA, and solid line for the topGOA. The topGOA is NOtenergies forN=12. Lower block: the correlation energyE=E

shown in the upper panel because it is graphically identical with the_ E,e for various N as indicated. Results are drawn for a large

standard GOA. range of coupling strengthg from sphericityy=0 deeply into the
deformed regime.
H5=Ne(c®~s%) + Nye(4s’c®+1), (17d A more detailed look is given in the three lower panels of
Fig. 2 where we show the correlation energid&=E
H§=2Ne?+ 4NX6§2€2, (17 — E for the various approaches and for a series of system
sizes. The RPA provides a useful correction in the limits of
The effect of the GOA versus topGOA for the norm over- SPhericity and well-developed deformations, but fails badly
ap s demonstated n Fig 1. For large deormatomper 010 1 rlica bt e nCoA perome very vel
pane), the norm overlap decays rather quickly in angie as one cou'ld expect from the Gaussian limit theorem inher-
li?fa('c:iggviesn?r?l?(?rl] i%ﬁrésn?z:esiqg:'%t:%?nqg{gg.m%t:gné\;g;_eent in the topGOA. Acceptable results are obtained from the
laps become broad and hit the periodicity limits. This yieldstODGOA also for_N=_4. But all approaches _become naceu-
a dramatic difference between the GOA and tobGOA. Noterate forN=2 which is obviously not collective enough.

that the topGOA is still an excellent approximation to the

exact overlap while the GOA fails badly. E. Angular momentum projection
When the mean-field ground state breaks a symmetry of
D. Performance of the topGOA the Hamiltonian, one can get an improved wave function and

energy by projection, i.e., take a minimal set of stajemd
The conventional GOA, Eq9a), maps the Griffin-Hill-  appropriatef in Eq. (4) to enforce the symmetry. This is

Wheeler equatioif5) onto a collective Schidinger equation particularly useful for deformations and projection of the

of second order in the collective moment(ih5]. This fea- =0 ground state out of a deformed intrinsic state. The ques-

ture is lost in the topGOA. Further approximation stepstions before us are, how does this technique compare with

would be needed to come to that end. We will not pursug¢he RPA or the topGOA for computing the correlation en-

them further here and solve directly the Griffin-Hill-Wheeler €rgy? It should be noted that the projection method has a

equation(5) inserting the topGOA overlapd6). formal advantage in that the cglculate_d energy is an upper
Figure 2 compares the RPA and topGOA with the HF andPound of the true energy associated with the Hamiltonian.

exact results for a large variety of coupling strengths. The _

uppermost panel shows total energies. One sees that both 1. Projected state

approaches correct the HF energy very far towards the exact We will examine how well the projection technique works
energy. However, the RPA shows irregularities near the critifor the three-level model as a test case. Rotational projection

cal pointy~1. on the ground state angular momentir=0 reads simply
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m 07F— T T , . —
oo | aBlag). 18 ool N-12
0.5 o -
The rotationally projected energy is computed as the expec- 04 g ]
tation value which amounts to integrating the overlaps over = 03k /j?' i
the angular coordinatg, i.e., 0'2- //’ :
2 B v
f d(B— B H(aB,aB') o _; ]
Eproj( a)= . (19 0 ———f—————
J d(B—B")I(aB,aB’) I
-1
This is simple and straightforward for the topGOA overlaps of
of the form (16). We thus can skip the detalils. E _3'

— Exact

2. Variation before and after projection -4 Hartree-Fock
The energy(19) can be computed for any given deforma- I — ¥’§§
tion . The HF ground state deformatian,: is obtained 1 R E N TR R B
from minimizing the mere HF energgl6e. Applying the 0 o5 1 15 2 25 3
projection on this state corresponds to the scheme “variation X

before projection.” It serves to correct for the angular mo-

men;‘urk‘)n t]j[luctuatlons f:n' thitdgfoémeg HF gfrounq st:ate.. AVariation before projectioiiVBP) in the three-level model witiN
muc etier 'app.rorf}c IS obtaine W gn'per ormlng' vara-_ 1, using exact projection. Upper panel: ground state deformation
tion after projection’12]. Here one minimizes the projected aqq- LOwer panel: ground state energies from HF and from rota-

. . . . . eq
energy (19). This is an involved task for exact projection. gonal projection both ways, compared with the exact energy.
The topGOA approach yields a simple expression for the

projected energy on which a variation is still feasible. It is, of
course, particularly simple in the present test case. We ju
have to search for the deformatiary,, which minimizes

E

FIG. 3. Comparison of variation after projectiqi’AP) and

cted energy which can be deduced from second-order mo-
ents only. This is welcome for an efficient variation after
projection and it is particularly helpful in connection with

proj - . L _ effective energy functionals because douf@atijcommuta-
The variation-before-projection and variation-after- 9y tat)

projection schemes are compared in Fig. 3 for a large range
of coupling strengths. The upper panel shows the ground 0
state deformations. The variation-before-projection state
stays spherical up the critical point and switches to a defor-
mation with a discontinuous derivatsecond-order transi-
tion). The variation-after-projection states develop more
smoothly and show a steady growth of deformation. The 3
variation-after-projection scheme can afford intrinsic defor-
mations because it “knows” that projection will restore
spherical symmetry. The freedom which the variation-after-
projection scheme exploits will yield a lower energy. This is
shown in the lower panel of Fig. 3. It is obvious that the
variation-after-projection scheme picks up a large fraction of
the correlation energy at any coupling strength80% for
strongly deformed systems and even more for weakly de-
formed ones. This makes it obvious that the variation-after-
projection scheme is the superior strategy. Note that the top-
GOA helps to simplify the variation-after-projection scheme L
considerably. We will test it now in the next paragraph.

N=127]

E/e

—— Exact Projection N ]
N SR GOA Projection N ]
F -—— Top-GOA Projection e

) 1 1 1

(E-E) /e

-1.5 PR T R NN SN NN SO R T S
3. Performance of the topGOA for a.m. projection X

~ The performance of the topGOA for rotational projection  giG_ 4. The correlation energyE = E— E¢ at various levels of

is checked in Fig. 4 for the case Nf=12. The conventional  approximation for the three-level modgk=12. The compared cases
GOA has obviously problems at small deformation up toare full = exact projection energy, dotted projection using stan-
beyond the critical point. But the topGOA provides a very dard GOA, dashed- projected energy using topGOA. The upper
good approximation to exact projection throughout. And itpanel shows the energies as such and the lower panel shows the
does that on the grounds of a simple expression for the prceorrelation energy, i.e., the difference to the mere HF energy.
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tors withH can still be safely derived from second functional
derivatives; see Sec. IVE.

The rotational projection can still be done with second-
order information around the minimum point. It is thus as
simple to compute as the RPA. And this simple part provides
the dominant portion of the correlation energy. The most
costly part of the correlation energy is computing the small g

— Exact

final contribution from vibrations. It is tempting to consider — ?’ngﬁl} .
. . - s = N e op roj.
mere angular projection as a first guess for the correlation 0.5 <. --- TopRPA

energy. That is, in fact, a strategy pursued in the large-scale
fits of [7]. Our result here provides a welcome substantiation
of their “rule of thumb.”

E-Eyp) /e

F. thoroughly second-order approach: The topRPA

The conclusions from the previous subsection encourage
a quest for a more efficient estimator of the vibrational cor-
relation energy. And the typical pattern of the variation-after-
projection scheme adds reasons to that. We have seen in Fig. ) SN S N R B
3 that the variation-after-projection ground state is nearly : ;
always deformed. The projected energy as function tfas
always a fairly well-developed minimum much in contrastto g, 5. Comparison of the topGOA and topRPA for the three-
the HF energy which is rather soft around the critical point.jevel model and variousl as indicated. Upper block: total energies
This hints that one is allowed to perform a small-amplitudecompared with HF and the exact result. Lower block: the correla-
expansion about the projected minimurg,;. Once having  tion energiesEgpems Ene for various levels of approximation.
accepted this idea, the remaining steps are obvious aridere “scheme” stands for the exact solutigsolid line), the top-
simple. GOA (dotted ling, the topRPA(dashed ling Results are drawn vs
(1) One performs variation after projection using the top-effective coupling strengtly.
GOA for rotational projection. This yields the variation-after-
projection ground state deformatiary. state. In that sense it is much similar to the RPA. We thus calll
(2) One computes the topGOA projected energy that scheme the topologically corrected RRBpRPA. The
1 essence is, of course, that topological constraints are ex-
N T 242 ) loited to construct from the given second-order information
Eprofl @) = Bproj @0) + 5 (@ = @0) "0 Eprof ) (20 'E)he final ground state energygin the topRPA.

Figure 5 compares the performance of the topRPA and
in the vicinity of & and deduces the curvaturgE ,; of this topGOA for the correlation energy in the three-level model.
effective potential. It is obvious that the topRPA provides a good approximation

(3) For the remaining vibrational correction, one appliesto the topGOA, equally good for all system sizes. Both
the simple correlation energy from the harmonic approximaschemes constitute a reliable approach to the exact result,

tion better for larger systems. For completeness, we show also the
) correlation from angular momentum projection alone. We
1 — I Eproj NproiB see again that this exhausts the leading part of correlations
5Evib_§\/‘92Epr0JB_( I\ proj + 4 |’ (218 and could be considered as a quick and simple approach.
However, the topRPA is not much more expensive and
2H % (ap) comes close to the final result.
=—, (21
)\PYOJ
IV. PARTICLE-NUMBER-PROJECTION
Noroi= 20,4041 {a’ oz = ans 21c¢ . . . .
proj adar (@ [@)prof a=ar=ag (219 The second test case in this paper is concerned with
s particle-number projection. It becomes necessary when start-
« B (a |H|a>pr0j ing Hartree-Fock-BogoliuboyHFB) states, or its BCS ap-
H5(ag)=2040 4 ————— (21d S . S
<a/|a>pr0j . proximation, are involved. The HFB approximation produces

aTe "% independent quasiparticle states which have mixed particle
numberN. One needs to project the HFB states onto a good
particle number. This is important in any nuclear structure
E= 6o @0) — SEyip .- calculation because doubly magic nucleihere mere HF
sufficeg are an extremely rare species. Similar as in the pre-
Note that this scheme requires only information on secondvious example of rotation-vibrations there is, in principle, a
order derivatives ina and 8 about the deformed ground pair of modes: namely, particle number projection and pair-

(4) The total energy is then finally
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ing vibrations. We confine here the discussion to projection Ho:<‘1’0||:||‘1’0>:E s (250
alone because that is the widely used strategy and because it Bes:
will again exhaust the dominant part of the correlations. ~ A A~
Ho=({N.{H—(H),N}}). (250
A. Exact projection ~
xactp _J l _ Note that the width =2(N?) and the coefficients{; of the
Let |do) be a HFB state with average particle number: Hamiltonian overlap are still defined as in the standard GOA;
see EQ.(99. What changes is the way these overlaps are

(®o|N|Po)=No. (22 extrapolated. It is obvious that the conventional GOA is re-
) ) , . covered in the case of a steeply decaying norm overlap, i.e.,
The projected state with exact particle numbgyris for \— .
o The projected energ§24) can then be expressed in rather
|q,>o<f dyln), |n)=e™|d,), (239 compact fashion as
0
E=Egcs— 6Epnp, (263
where
~ A 1 ~
N=RN-Np. (23b) SEpnp=7 A((N%)) Ha, (26b)
The construction of the path from straightforward ex{) o _ .
makes the norm overlap a function of the difference alone, dye st sirF(E)
i.e., Z=Z(n»—7'). The number conservatiofid,N]=0 Aly)= 0 (260
causes alsd{="H(n—»n'). The projected energy thus be- dene*ZVS‘”z(”’Z)
comes 0

J’ drp( Dol Fie M|y J’ dyH( ) In the limiting case, the standard GOA is recovered by

E= (24)

< B A—1/(2(N?)) for (N?)— .
J dn(dole' ™N|do) f dnZ(n) (N9 (N%
This corresponds to a HFB state deep in the pairing regime
where one gathers substantial particle-number fluctuations.

B. TopGOA for particle-number projection: Overlaps and The opposite limit is

correlation energy

The collective path i$7) as given in Eq(233. The col- A—1 for (N&)—0.
lective coordinate is defined in the intend,27) and is
periodic asy— 7+ 2ar. This periodicity is not reproduced by 1t corresponds to the breakdown of pairing towards a pure
the standard GOA overlagt8a). One has to modify the GOA [ state. The standard GOA fails here. It is obvious that only
to account for tr_]at structure; in other words, one has to emg,e topGOA can cope properly with that pairing transition.
ploy the topologically correct GOKopGOA). Taking up the As in the case of angular momentum projection, there is
experience from the previous test case, we can postulate thide choice between the variation-before-projection and
the periodic structure of the coordinates is properly takeR,giation-after-projection schemes; see Sec. Il E2. And

into account by the argument in the GOA through again the variation-after-projection scheme is the preferred
method. Variation means here in general variation with re-
z—>sin 2)_ spect to the single-particle wave functions in the HFB state

2 2 and its occupation amplitudesandv. The wave functions

) . ) are fixed in the model which we use later on and only the
One may wonder why we use this particular assignment o4 iation ofu andv remains to be done.
the generalization. The choice is unique in that it corresponds
to the base period of the squared sine function. Other frac-
tions would not have the correct periodicity of the Hamil-
tonian. The generalized overlaps for particle-number projec- The correlation energy in RPA is computed with E).
tion are then The mode corresponding to particle-number phase is given

by the path(233. It is found as the zero-energy mode in the

C. RPA correlations

I 7;)=exp( —2(N2>sin2(z) ) (253 RPA spectrum pec§u§e QH,NJZO.A Thus one knoyvs al-
2 ready the combinatioN=0Q=(C'+C)/\2. The conjugate
combination(3) has to be determined by the linear response
_ 1. o7 [H,Pp]=N. Once having the pairN,Py), one can easily
Hn) =1 77)[7‘(0 28m2< Z)Hz}’ (250 compute the correlation energy).
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D. Simple model as test case €x

AERPA: - 7 (30)

1. Model

For further testing of the approximate scheme, we need a o
schematic model. It should have a gap in the single-particld "€ RPA frequency of the other mode is given bj 2
spectrum to model the interplay between this gap and th& 4€x(uv). This mode corresponds to the pairing vibration
pairing strength. Thus we take a two-shell model with IowerWhC_’Se _contr|but|on is omitted here because we study just the
bands=—1 and upper band=+1. Each band is\-fold ~ Projection part.
degenerated asi=—(N—1)/2,... +(N—1)/2. The states
+m are considered as the pairing conjugate partners. This
yields the generalized Lipkin-Meshkov-Glick model intro-  Full projection is often difficult, the more so if used in
duced in Ref[22]. It is simply a two-level model with se- connection with the variation-after-projection scheme. Thus

4. Few words on the Lipkin-Nogami approach

niority pairing. The model Hamiltonian reads one often employs approximate schemes for particle-number
projection.
A= 62 Salmasm Awi_dely used a@pp_roximatior? scheme for particle-number
sm projection is the Lipkin-Nogami approach; see, €[§],and

5 references cited therein. It provides a good numerical ap-
€ Tt proximation of the variation-after-projection scheme in situ-
X - . (2 . .
N ( 2 wonttiml| 2 @s-mtsnl. (27 ations where both HFB equations predict a collapse of the
) _ ) ) _ pairing correlations. The prescription of Lipkin and Nogami
We associate the following single-particle energies and occlamounts to modifing the energy by adding the second-order

pation amplitudes: Kamlah correction ,(N—(N))? where\ , is computed from

s,m>0 s,m>0

e1=e, py=U_j=u=I—0% mixed variances oN andH; see, e.g.[20] for the Skyrme-
Hartree-Fock approach. The modification of the HFB equa-
e_1=—g, v_1=U;=v. (2g)  tions associated with the Lipkin-Nogami prescription is ob-

tained by a restricted variation of wheke is not varied
Note that the Fermi energy is-=0 for symmetry reasons. although its value is calculated from self-consistent expecta-
The exact solution can be obtained by diagonalizing thdion values. For a thorough discussion of the approximations
Hamiltonian (27) using the quasispin formalism; for details involved se€f21,24. Note that the Kamlah expansion, and
see[23]. therefore the Lipkin-Nogami approach, uses a similar expan-
sion as the naive GOA and does not take into account the
2. Energy in the topGOA topology of the gauge angls.

The model is sufficiently simple that everything can be
worked out analytically. The final result projected energy in E. Results and discussion

the topGOA becomes The upper part of Fig. 6 shows the total energy in the

Y two-level model with seniority pairing foN=12 particles.
( 1—(2uv)?+ —(2uv)2), (299  Various approximations are considered. The BCS is the un-
2 correlated result. It decreases with constant slope up to
N ~ 1.1 which is the transition point from pure Hfor smaller
SEprp= EBCS{1+(ZUU)2A(—(ZUU)2”. (29p  x) to a truly pairing HFB statefor larger x). The exact
2 energy is the goal. In addition to the RPA and topGOA, we
show also the results from the Lipkin-Nogami schefsee
Psec. IvD 9. It is obvious from the figure that all corrections
improve the BCS energy towards the exact result. The RPA
correction works fine except for the region around the critical
point. That is understandable because the critical point is
As shown in[23], there are two collective modes in this distinguished by large fluctuations and the RPA is designed
model. For small values of, the mean-field approximation to be a theory for small amplitude. The Lipkin-Nogami result
does not support the BCS solution and only the trivial solu-has a smoother trend than the RPA and corrects the energy in
tion with zero pairing gap\ =0 appears. In this regime, the the wanted direction. However, the correction is incomplete,
two RPA frequencies are similar to each other; see R&  particularly at small coupling; [23]. Last but not least, the
for the explicit expressions. Agx~N/(N—1), the system topGOA provides a very good approximation throughout all
undergoes a phase transition to the superfluid phase, and theupling strengths. It is clearly superior to the competing
number fluctuating BCS solution becomes the ground statprojection approach, the Lipkin-Nogami scheme, and it is
in the mean-field approximation. Consequently, one of themore robust than the RPA around the transition point.
RPA frequencies becomes zero due to number conservation A more detailed comparison of the various approaches is
of the Hamiltonian27). Applying Eqg.(1) with the symmetry  shown in the lower panels of Fig. 6. It displays the correla-
mode yields the RPA correlation energy tion energies which point out the differences more clearly.

EBCS: _
Ne

This energy needs now to be compared with the BCS a
proximationEgcs, the RPA energy, and the exact energy.

3. Energy in the RPA
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the trends are always smooth and the average performance is
excellent.

There are two more particularly appealing aspects of
particle-number projection with the topGOA.

(1) The projected energy26) is a closed expression in

terms of expectation values bf in combination withN and
of the occupation amplitudesandv. One can easily use that
as starting point for “variation after projection.” Variation
with respect to the single-particle wave functions yields the
appropriate correction terms to the mean-field equations.
These terms can easily be incorporated in existing codes.
(2) The full GCM is not applicable in connection with
nuclear density functionals, such as, e.g., the Skyrme-
Hartree-Fock energy. The energy density functional is given
for an expectation value with one mean-field state. The ex-
tension to overlaps with different statesqaandq’ is am-
biguous. But an extension of the functional is still feasible in
the immediate vicinity of a mean-field state. Thus the
second-order expressidt, in Eq. (25d can still be derived
within the safe grounds of density functional theory. The
topGOA thus provides a means to compute particle-number
projection safely for the Skyrme-Hartree-Fock scheme.

V. CONCLUSIONS

We have investigated the efficient computation of ground
state correlations for low-energy modes and projection. The
starting point is the generator coordinate method. It is con-
sidered in the Gaussian overlap approximation which re-
duces the formal and numerical expense dramatically be-
cause it involves only expectation values and second-order
variations therefrom. We have shown that the GOA runs into
trouble in the case of weak couplithus broad overlaps
for coordinates with nontrivial topology. A slight modifica-
tion of the scheme allows us to tune a topologically correct

X GOA (topGOA). We have demonstrated and tested the top-
GOA for two typical cases of collective coordinates:

FIG. 6. Upper panel: total energies at various levels of approxifotation-vibration and particle-number projection. To that
mation for a system wittN=12 particles obeying the Hamiltonian €nd, we employed exactly solvable models in the spirit of the
(27). Lower three panels: the correlation enedylf = E— Egcg for Lipkin-Meskov-Glick model.
systems with differenN as indicated. The straightforward cases are mere projectimst cases:
angular momentum and particle numpédt was found that
Ot#we topGOA provides an excellent approximation to full pro-
Jection. Performing variation after projectiduariation after

First of all, the correlation energy stays about independent

system size \_/vh|l_e the total energy gro_\MsN. Th|_s means projectior) allows us to incorporate already a great deal of
that the relative importance of correlations shrinks @.1/ . yajations into the projected states. The topGOA is particu-
This corroborates the known effect that mean-field models,y el suited for the variation-after-projection scheme be-
here represented by BCS, become exact in the INrit>.  :5,se the projected energy is expressed in simple and com-
The Lipkin-Nogami scheme maintains its feature to produceyact expressions on which one can perform variation with
a “halfway” correction. It is a little bit surprising that the moderate expense, far simpler than for exact projection
mismatch becomes even more pronounced with increasingvhere nonorthogonal overlaps complicate majters par-
system size. The RPA, on the other hand, clearly improvesgcular for particle-number projection, the topGOA thus of-
for larger systems. That is not surprising because mean-fieliirs a simple and in all regimes reliable scheme which allows
theories are restored in the lartyelimit, and the RPA is a a thoroughly variational formulation. It is superior to the
theory of vibrating mean fields. Finally, the topGOA pro- Lipkin-Nogami scheme in that respect.

vides a reliable and robust approximation to the exact corre- Mere angular momentum projection with variation after
lation energy at all system sizes and coupling strengthsprojection was shown to grab a large portion of the correla-
There are regions where it is near perfect. There are regiort®n energy. Yet it is incomplete without the vibrational part.
where one obtains visible deviations of a few percent. ButWe have tested the topGOA for the coupled rotations and
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vibrations and it performs well in all regimes, near spheric-topGOA and thus to the exact correlation energy for rotations

ity, at the transition point, and for well-deformed nuclei. As and vibrations.

one could expect for a Gaussian limit, the performance im- Altogether, we have developed with the help of topologi-

proves with system size. The reverse is also true: small sysally corrected Gaussian overlaps a palette of useful approxi-

tems are more critical and a two-particle system is off limits.mations for computing very efficiently the collective corre-
The topGOA for vibrations involves, in principle, large- lations on top of nuclear mean-field calculations. The next

amplitude motion. This can become inconvenient in practicestep is to implement that into practical calculations. Work in

because a whole collective deformation path has to bé¢hat direction is in progress.

mapped. The better-defined deformation of the variation-

after-projection ground state allowed a small-amplitude ex-

pansion of the topGOA. The result is a scheme which can ACKNOWLEDGMENTS
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