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a cluster condensation in 12C and 16O?
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The possibility ofa cluster condensation has recently been suggested for some states of12C and 16O lying
near the 3a and 4a thresholds, respectively. Ana-boson model was applied to examine this issue for the
system of 3a and 4a particles. With the stochastic variational method, bound state solutions were obtained for
both the ground and excited states. The extent ofa condensation was quantified by diagonalizing density
matrices. The probabilities that thea particles occupy anSorbit were 30–40 % for some candidate states ofa
condensation.
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I. INTRODUCTION

It is well known that a cluster model is successful in d
scribing structure of light nuclei@1,2#. The cluster model
assumes that a group of nucleons forms a localized subs
ture. In particular, ana cluster is considered to play a pre
dominant role in the cluster model. This is because thea
particle is stable as is understood by its large binding ene
per nucleon.

Thea particle behaves as a boson. An interesting ques
is if the Bose-Einstein condensation occurs in a system oa
particles. The condensation of neutral atoms such as87Rb
and 23Na is realized at very low temperature when the
Broglie wavelength of the atom is comparable with the a
erage distance between the neighboring atoms. In the ca
the finite system ofa particles, a realization ofa condensa-
tion is questionable in its ground state~g.s.! because it is
dominated by a nuclear shell model. Another important d
ference is that thea-a interaction is short ranged whereas t
atom-atom interaction is characterized by the long-ran
van der Waals force.

An intriguing interpretation has recently been propos
for some of the states in12C and 16O @3#. The well-known
01 states lying near 3a and 4a thresholds in these nucle
have been reinvestigated from the viewpoint of ana conden-
sation. A possible condensation has been conjectured
studying the energy surfaces obtained by a special clas
variational wave functions forNa clusters,

A$e2n(X1
2
1•••1XN

2 )f~a1!•••f~aN!%. ~1!

Heref~a! is the internal wave function of thea cluster,Xi is
the center-of-mass coordinate of thei th a cluster, and the
Fermi statistics of the constituent nucleons is observed by
antisymmetrizerA. As Eq. ~1! shows, the center of eacha
cluster follows anS-wave motion whose spatial extension
specified by a Gaussian falloff parametern. A ‘‘saddle point’’
configuration corresponding to a large spatial extens
~small n! has been assigned as an indication for the c
densed state. The states at the excitation energies of 7.6~in
12C) and 14.0 MeV~in 16O) are, respectively, considered
be thea condensed states.
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These states are excited states but not the g.s. Ana con-
densation, if possible, might be realized at high excitat
energy near the threshold decaying into constituenta par-
ticles. It is not obvious, however, that they are condense
a singleS-wavea cluster orbit. The model wave function~1!
used in Ref.@3# is restricted to a special form, so it is no
clear if that configuration is supported by more general a
extended calculations. Instead we will show that the use
density matrix is useful in order to quantify the degree of t
a condensation. The purpose of this study is to exam
these questions in a precise framework in the sense of va
tional calculations.

It is not in the realm of a present day possibility to obta
both the ground and excited states in anab initio calculation.
For example, the calculation for12C using the realistic
charge-dependent~CD! Bonn and the Argonne V88 poten-
tials does not reproduce the correct excitation energy of
excited 01 state@4#. In this respect, it seems reasonable
perform a phenomenological analysis by assuming thea par-
ticle model.

In the next section, we define our model and presen
formalism to solve a bound-state problem for few-partic
systems. The basic method we use is the stochastic v
tional method~SVM! with correlated Gaussians@5,6#. The
calculation will be done for 3–5a systems. The 5a system is
performed mainly for demonstrating the accuracy of t
present calculation. In Sec. III, results of calculation are p
sented with some emphasis on an analysis of the orbits
cupied by thea particles. This analysis will be done by in
vestigating the eigenvalue problem of density matric
constructed from the wave functions of the system. The c
culation of the density matrix is detailed in the Append
Section IV draws a brief summary.

II. MODEL

The a particle is treated as a structureless boson. We
interested in states with total orbital angular momentumL
50 and parityp51. The quality of a variational solution
crucially depends on a trial function. A variational solutio
C for Na system is obtained in terms of a combination
correlated GaussiansG,
©2002 The American Physical Society18-1
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C5(
i 51

K
CiSG~Ai ,x!, ~2!

wherex5$x1 ,x2 , . . . ,xN21) is a set of relative coordinate
of the system. The choice of the set can be arbitrary. The
used most widely is the Jacobi coordinate system. The r
tive coordinatesx and the center-of-mass coordinatexN are
related to the singlea particle coordinates$r1 ,r2 , . . . ,rN% by
an appropriate transformation matrixU:

xi5(
j 51

N

Ui j r j ~ i 51,2, . . . ,N!. ~3!

The symbolS is a symmetrizer,S5(1/AN!) (PP, where the
sum runs over all permutationsP of N particles.

The correlated GaussianG,

G~A,x![expS 2
1

2 (
i j

Ai j xi•xj D
5expH 2(

i , j
a i j ~r i2r j !

2J , ~4!

is characterized by a symmetric, positive-definite (N21)
3(N21) matrix A. The matrix A is characterized by
1
2 N(N21) elements. The diagonal elements of the ma
correspond to the nonlinear parameters of an Gaussian
pansion, and the off-diagonal elements connect the diffe
relative coordinates representing correlations between
particles. The equivalence of the two expressions in Eq.~4!
for the correlated Gaussian is shown in Ref.@6#. The matrix
elementsAi j can be expressed uniquely in terms of the e
ments$akl% and vice versa.

The symmetrization of the basis function can easily
incorporated as follows. The permutation

P5S 1 2 ••• N

p1 p2 ••• pND
induces a rearrangement of the single-particle coordinate

PS r1

r2

A

rN

D 5TPS r1

r2

A

rN

D , ~5!

where theN3N matrix TP is given by

~TP! i j 5d jpi
~ i , j 51,2, . . . ,N!. ~6!

With the use of Eqs.~3! and ~5!, we can show that the per
mutationP acts on the correlated Gaussian as

PG~A,x!5G~ P̃AP,x!, ~7!

whereP is an (N21)3(N21) matrix obtained by omitting
the last row and the last column~corresponding to the
06431
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permutation-invariant center-of-mass coordinate! of the N

3N matrix UTPU21 and P̃ is its transposed matrix. There
fore the symmetrization requirement on the trial functi
amounts to a simple multiplication of the matrix,P̃AP. Most
noticeable is that the symmetrization keeps the functio
form of the correlated Gaussians.

The trial wave function of Eq.~2! contains1
2 N(N21)K

nonlinear parameters$Ai% as well asK linear parameters
$Ci%. An upper bound for the energy of the system is giv
by the eigenvalue of the generalized eigenvalue problem

(
j 51

K
Hi j Cj5E(

j 51

K
Bi j Cj , ~ i 51,2, . . . ,K!, ~8!

with the Hamiltonian and overlap matrices

Hi j 5^SG~Ai ,x!uHuSG~Aj ,x!&,

Bi j 5^SG~Ai ,x!uSG~Aj ,x!&. ~9!

This equation determines the linear parameters, once the
sis functions are set up.

The adequate choice of the nonlinear parameters~the el-
ements of the matrixAi or a i j ) is crucial. Although severa
ways for the choice of the elements ofAi have been sug-
gested, there is no safe recipe available. While the nume
optimization would be in principle the method of choice,
practice there are several difficulties to face. The most s
ous ones among these are probably the large number o
rameters to be optimized and the nonorthogonality of
basis states. It is very time consuming to optimize all
these parameters at once because it requires repeated c
lations of both all the matrix elements,Hi j andBi j , and the
eigenvalues of Eq.~8!. Due to the nonorthogonality, none o
the parameter sets is indispensable, and several diffe
choices can represent the wave functions equally well. T
property makes the optimization tedious but offers the p
sibility of random selection of the nonlinear parameters. T
SVM increases the basis dimension step by step by testi
number of candidates which are chosen randomly. Many
amples have shown that this procedure is powerful to se
such a basis set that gives a virtually exact solution@5,6#.

An effective potential between thea particles was studied
phenomenologically or by a resonating group meth
~RGM! @7#. We use the phenomenological potential, t
S-wave potential of Ali-Bodmer@8#,

V~r !5500 exp@2~0.7r !2#

2130 exp@2~0.475r !2# ~MeV!. ~10!

The original Ali-Bodmer potential isL dependent. We ignore
the L dependence but use theS-wave potential for all the
partial waves. Since theD- and G-wave potentials of Ali-
Bodmer are more attractive than theS-wave potential, this
means that the present calculation favors theS wave a little
more than the other waves. In most cases the Coulomb
tential between thea particles is switched off. If the Cou
lomb potential is included, the 2a system has a sharpS-wave
resonance. The 3a system has only one bound state but h
8-2
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a CLUSTER CONDENSATION IN12C AND 16O? PHYSICAL REVIEW C 65 064318
no bound, excited 01 state. By switching off the Coulomb
potential, both the ground and excited states are obtaine
energies comparable to the experimental values. These
sults are consistent with the microscopica cluster model
calculations for12C @9,10#. It should be noted that there ar
some restrictions in the boson model. Most serious is pr
ably that there is no way to include the effects of the Pa
principle. It is not clear how reliable the effectiveaa poten-
tial is at short distances. Reality of boson-model resu
should thus be accepted with some reservations, espec
for those states with compact structure.

Matrix elements of most operators in the correlated Ga
sians are calculated analytically. They are found in Ref.@6#.
The matrix element for a nonlocal operator will be needed
the next section, so its calculation method is given in
Appendix. Calculations have been performed with the use
the computer code available in Ref.@11#.

III. RESULTS

Table I lists the energies and root-mean-square~rms! radii
of N52 – 5 a particle systems. The agreement with oth
calculations is very good for the g.s. ofN53 and 4 cases
The energy of the g.s. of the 5a system is considerably lowe
than the previous SVM result@5#. This is due to a more
thorough optimization of ten parameters of the matrixAi .
The g.s. of the 2a system becomes a resonance if the C
lomb potential is included. The resonance energy can be
culated to a good approximation by using square integra

TABLE I. Energies ~in MeV! and root-mean-square radii~in
fm! of Na systems interacting via the Ali-Bodmer potential
Eq. ~10!. The energy is from theNa threshold. Both the ground
and excited states are given forN53 and 4. The result with
the Coulomb force being included is indicated by an asterisk~* !.
The a particle is considered to be a structureless boson.\2/Ma

541.467/4 MeV fm2.

N Method E rms radius Dimension

2 numerical 21.3696 2.246
SVM 21.3696 2.246 10

0.080*
3 ATMS @12# 25.18 2.43

SVM @5# 25.18 2.43 60
SVM 25.18 2.43 60

25.18 2.43 120
20.62* 2.64* 140
21.38 10.05 120

4 ATMS @12# 211.1 2.65
SVM @5# 211.07 2.65 150

SVM 211.10 2.59 150
211.17 2.57 450
25.76 3.66 450
22.01 5.78 450
20.98 6.63 450

5 SVM @5# 216.22 2.99 400
SVM 218.63 2.74 480
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basis if the resonance has a sharp width. For a point C
lomb potential, the resonance energy is found to be 80 k
very close to the experimental value of 92 keV. The 3a sys-
tem with the Coulomb potential being included becom
Borromean, that is, any pairwise constituent particles h
no bound state but the three-body system has at least
~one in the present case! bound state. The g.s. energy is ju
0.62 MeV below the 3a threshold, so one may think that th
state could be identified as the excited 01 state of12C at 7.65
MeV. However, this state does not have such weakly bo
structure as is shown by the microscopica cluster model
calculations@9,10#.

When the Coulomb potential is switched off, the 2a sys-
tem becomes bound. The energy obtained with the S
agrees with the result of numerical solution. For the 3a sys-
tem, two bound states are obtained: One is25.18 MeV be-
low the 3a threshold. The other is just below the8Be1a
threshold.~Note that8Be is bound.! The latter is in fact only
12 keV below the threshold, and its rms radius is as large
10 fm. A very careful, precise calculation was needed
obtain this state. These two states may correspond to
ground and excited 01 states in12C. The latter is a candidate
for a 3a condensed state.

The energy versus basis dimension is displayed in Fig
for the 4a system. Clearly the lowest two states well co
verge and they may be identified as the ground and
excited 01 states in16O. The energy spacing between the
is close to the experimental value, 6.16 MeV. In addition,
excited state at25.76 MeV is located just below the
12C(g.s.)1a threshold. The third to fifth states atK5450
are above the12C(g.s.)1a threshold and can be identified a
continuum states which appear in calculations of bound-s
approximation. The sixth and eighth states indicate a plat
behavior in the energy curve. We consider these states a
didate for a condensate of 4a particles because their energie
are near the12C(02

1)1a threshold~21.38 MeV! and the
rms radii of these states are considerably large, i.e., 5.78
6.63 fm, respectively. Because these states are unbound
their widths are expected to be fairly large, the energies
tained by the present bound-state type calculation should
be taken very precise. A generator coordinate method~GCM!

FIG. 1. Energies of 4a system as a function of basis dimensio
The energy is measured from the 4a threshold.
8-3
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Y. SUZUKI AND M. TAKAHASHI PHYSICAL REVIEW C 65 064318
calculation for excited states of 4a system suggested the e
istence of a loosely coupled configuration slightly above
4a threshold@13#.

The excited state of12C has been discussed in relation
a possiblea-chain state@14,15#. Several microscopic calcu
lations based on 3a RGM @9# or GCM @10# reproduce both
the ground and excited states reasonably well. These ca
lations show that the excited state does not have a partic
arrangement of 3a particles but indicates a structure com
prising various configurations as a loosely bound syst
The present boson-model calculation bears it out. This c
clusion has been reached by examining the pair correla
function or the two-particle density defined by

P~r,r0!5K CU(
iÞ j

d~r i2xN2r!d~r j2xN2r0!UCL .

~11!

Let r0 be a fixed vector, pointing to a test particle position
appropriately and letr be the variable ofP. The function
P(r,r0) shows how the fixed test particle sees the den
distribution of the other particles. For a spherical stateP
depends onuru, ur0u and the angleu betweenr andr0. Figure
2 shows the contour map ofP for the excited state as
function of uru5ur0u, andu. Three peaks are clearly seen
u560, 120 and 180 °. They correspond to 2a1a (8Be
1a), 3a regular triangle anda chain configurations, respec
tively. We show in Fig. 3 the pair correlation function whic
is obtained when the test particle is put at the distance
responding to these peaks. When the test particle is locat
ur0u51.7 fm, only a triangular configuration shows up. A
ur0u increases tour0u53.1 fm, both a linear-chain configura
tion and a8Be1a like configuration appear. When the te
particle is located further outside (ur0u53.7 fm), a linear
chain dominates.

Figure 4 compares the density distribution of thea par-
ticles for the four states of16O. The density distribution
extends to further distances as the excitation energy
creases. The reason why the central density for the g.s.
low is because the state is compact and the Ali-Bodmer
tential has a strong repulsion at short distances. This re

FIG. 2. Pair correlation function for the excited 01 state of 3a
system plotted as contour maps. The positions of twoa particles are
(x,y)5(r cosu, r sinu) and (x,y)5(r ,0). The position of the
third a particle is (x,y)5@2r (11cosu),2r sinu#. The ratio of
the heights between any two neighboring contour levels is thre
06431
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sion can be understood as a consequence of excluding P
forbidden states from the effective potential@7,16#.

What is a good measure to assess a condensation? A
eral interpretation of ana condensation is that all thea par-
ticles occupy anS-wave orbit. In a finite system, the occu
pation probability may spread out over several orbits, bu
significant probability should be occupied by a particular
bit if it is called a condensate.

FIG. 3. Pair correlation functions for the excited 01 state of 3a
system plotted as contour maps. The position of the test part
marked by3, is at (x,y)5(1.7 fm,0) ~a!, (x,y)5(3.1 fm,0) ~b!,
and (x,y)5(3.7 fm,0) ~c!, respectively.

FIG. 4. a particle density distributions of 4a system. The thick
solid, thin solid, dotted, and dash-dotted curves correspond to
four states at211.17,25.76,22.01, and20.98 MeV, respectively
~see Table I!.
8-4
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The occupation probability can be calculated by solv
the eigenvalue problem of a density matrixr~r,r8!. It is well
known @17# that the density matrix for a single Slater dete
minantC is given by

r~r,r8![N^Cud~r12r8!&^d~r12r!uC&5(
c

cc* ~r8!cc~r!,

~12!

wherec runs over all the occupied orbits which constitute t
Slater determinant. Since the wave functionC is totally an-
tisymmetric, any single-particle coordinater i can be used
instead ofr1 in the above equation. The eigenvalue proble
of the density matrix,

E dr8r~r,r8! f ~r8!5l f ~r!, ~13!

gives the following solution:l51 for f 5cc ~the occupied
orbit! but l50 otherwise. The diagonal part of the dens
matrix,r~r,r!, is the density of the system. The sum of all t
eigenvalues is equal to the number of particlesN which is the
trace of the density matrix,*drr(r,r).

In analogy to the above fermionic case, the density ma
for the Na system may be defined as

r~r,r8!5N^Cud~r12xN2r8!&^d~r12xN2r!uC&, ~14!

where the singlea particle coordinate is measured from th
center-of-mass coordinate in conformity to the translati
invariant wave functionC. Since the wave function is totally
symmetric, any single-particle coordinater i can be used in-
stead ofr1. A spectrum of eigenvalues of the density mat
is expected to give information on the occupancy of the
bits of the system. The eigenvalues of the density ma
corresponding to an ideal condensed state would beN ~just
one! and zeros. A method of calculation for the density m
trix is detailed in the Appendix.

The eigenvalues of the density matrices constructed f
the two 01 states of 12C are listed in Table II. They are
labeled by the sequence numbern(50,1, . . . ) and the or-
bital angular momentum. For the g.s., the 0S eigenfunction
occupies more than 80% of the total sum, and all ot
eigenfunctions but the 0D function have small eigenvalues
For the excited state which may be a candidate of the c
densed state, the eigenvalues are apparently spread out
several configurations. Though the eigenvalue of the 0S orbit
is largest, the occupation probability is about 40%. The s
of all the eigenvalues belonging to theS-wave eigenfunc-
tions is about 1.6, which is approximately 50% of the to
sum. The excited state of12C produced by the present boso
model is far from an ideala condensed state. It should b
noted that the eigenfunctions of the two density matri
show quite different behavior, particularly in the spatial e
tension, corresponding to the different characteristics of
two states of12C. This is shown in Fig. 5 where four eigen
functions that have largest eigenvalues are displayed. T
II also lists the eigenvalues of the density matrix for the g
06431
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which is obtained by switching on the Coulomb potenti
The spectrum of the eigenvalues is similar to the case for
no-Coulomb g.s.

The eigenvalues of the density matrices for the 4a system
are presented in Table III. The general behavior of the sp
trum for the two lowest states is similar to the 3a case. The
g.s. might be called ana condensed state because the eig

FIG. 5. Radial parts of the eigenfunctions of the density ma
of 3a system.~a! is for the g.s. and~b! is for the excited 01 state.
The thick solid, thin solid, dotted, and dash-dotted curves den
the eigenfunctions with 0S, 0D, 0P, and 1S, respectively.

TABLE II. Eigenvalues of the density matrix for 3a system. The
eigenvaluel is labeled by the sequence numbern and the angular
momentumL of the corresponding eigenfunction. The result wi
the Coulomb force is indicated by an asterisk~* !.

01
1~25.18! 02

1~21.38! 01
1~20.62!*

nL l nL l nL l

0S 2.447 0S 1.287 0S 2.505
0D 0.363 0D 0.482 0D 0.304
0P 0.075 1S 0.287 0P 0.072
1S 0.063 0P 0.157 1S 0.066
0F 0.013 0G 0.128 0G 0.012
0G 0.012 1D 0.106 0F 0.010
1P 0.008 2S 0.049 1P 0.008
1D 0.007 2D 0.048 1D 0.007
1G 0.005 0I 0.041 1G 0.007
0I 0.001 1G 0.038 2S 0.002
0H 0.001 1P 0.026 0I 0.001
8-5
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Y. SUZUKI AND M. TAKAHASHI PHYSICAL REVIEW C 65 064318
value of the 0S orbit is about 70% of the total sum, but th
state is considered to correspond to the doubly magic g.s
16O. Thus this is just an artifact of the boson model. T
excited state at22.01 MeV is conjectured to be a candida
of the condensation, but itsP-wave eigenvalue is as large a
the lowestS-wave eigenvalue. The excited state at20.98
MeV has stronger concentration in anS orbit, but the occu-
pancy of the 0S orbit is about 40%. Thus it is likely tha
either of these is not ana condensed state.

IV. SUMMARY

The possibility ofa condensation in12C and 16O was
investigated in ana-boson model. Variational solutions fo
01 states of 3a and 4a systems were obtained by the st
chastic optimization of the nonlinear parameters of the c
related Gaussian basis. The precision of the calculation
good enough to discuss thea condensation.

Some states with large spatial extension were found n
the a threshold in both12C and 16O. To assess the measu
of condensation, the occupation probabilities of vario
singlea particle orbits were calculated by diagonalizing t
density matrix constructed from the state of interest. T
results of analysis indicated that the candidate is far from
ideala condensed state. For example, the probability that
3a system remains in a singleS orbit was at most 40% in
spite of the fact that the system is in an extremely exten
state.

We used thea boson model. It obviously has some lim
tations from the viewpoint of microscopic nuclear structu
models. The boson model may not work well for the grou
states of 12C and 16O, thereby causing some undesirab
influence on the excited states. To obtain more definit
conclusion, realistic calculations must be performed at
nucleon level in which noa cluster assumption is invoked. A
12-nucleon calculation which reproduces both the grou
and excited 01 states of 12C at the correct energies wi
enable one to quantify the degree to which thea clusters, if
a condensation is the case, are condensed in the excited

TABLE III. Eigenvalues of the density matrix for 4a system.
See the caption of Table II.

01
1~211.17! 02

1~25.76! 01~22.01! 01~20.98!

nL l nL l nL l nL l

0S 2.815 0S 1.994 0S 1.180 0S 1.611
0D 0.520 1S 0.830 0P 1.114 0D 0.716
0P 0.203 0D 0.354 0D 0.432 1S 0.525
0F 0.173 0P 0.181 1S 0.277 0P 0.317
1P 0.114 1P 0.115 2S 0.140 1P 0.163
1S 0.073 1D 0.112 1D 0.134 0F 0.108
0G 0.022 0F 0.095 0F 0.109 2S 0.071
1D 0.015 0G 0.069 1P 0.087 1D 0.061
1G 0.011 2P 0.057 2P 0.045 2P 0.041
1F 0.008 2S 0.053 0G 0.040 0G 0.039
0H 0.007 0H 0.023 0H 0.038 3S 0.032
2S 0.007 1F 0.016 1F 0.034 1F 0.031
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APPENDIX: CALCULATION OF DENSITY MATRIX

The aim of this appendix is to show a method of calcu
tion for the density matrix~14!. It is considered a matrix
element of a special nonlocal operator,ud(r12xN
2r8)&^d(r12xN2r)u, wherexN is the center-of-mass coor
dinate of the system. It should be noted thaty1[r12xN may
not belong to a member of the coordinate setx, which is
used to define the correlated Gaussian~4!. A most direct but
tedious way of the calculation of the matrix element
ud(y12r8)&^d(y12r)u is to expressy1 in terms of the setx,
and then to perform the integration over these coodina
Here we take another route.

The first step of the calculation is to transform the co
dinatesx5$x1 ,x2 , . . . ,xN21% to a new set of coordinatesy
5$y1 ,y2 , . . . ,yN21%:

yi5 (
k51

N21

~w( i )!kxk5w( i )̃x. ~A1!

The symbol˜ indicates the transposition of a matrix or
vector. The (N21)-dimensional column vectorw(1) is cho-
sen in such a way that the first coordinatey1 reduces to the
one defined above. The choice of the other coordina
$y2 , . . . ,yN21% is, however, not unique and thus the colum
vectorsw( i ) ( i 52, . . . ,N21) are not unique, either. For th
sake of convenience, we may require that these (N22) vec-
tors be all normalized and orthogonal to each other a
moreover, orthogonal tow(1) as well. The vectorsw( i ) form
a complete set in a real vector space of (N21) dimension.

The coordinate transformation~A1! from x to y is ex-
pressed asy5T21x by a matrixT21, wherey ~and alsox) is
considered a column vector comprising$yi% ~and also$xi%).
The inverse transformation fromy to x, x5Ty, is performed
by the matrixT,

T5~w(1)w(2)
•••w(N21)!S 1

m1
0

0 I N22
D . ~A2!

Herem15w̃(1)w(1) and I n is ann3n unit matrix. The Jaco-
bian for the transformation becomesudet(]x/]y)u5udetTu3

5m1
23udetT21̃u35m1

23udet(T21T21̃)u3/25m1
23/2.

The next step is to calculate the matrix element ofud(y1
2r8)&^d(y12r)u between the correlated Gaussians~4!. In
what follows we extend this correlated Gaussian to a m
general one:

g~s;A,x!5expS 2
1

2 (
i j

Ai j xi•xj1(
i

si•xi D
5expS 2

1

2
x̃Ax1 s̃xD , ~A3!
8-6



s
ha

s.
-

e-

of
x

ating
-

ess
cal-
to
tor

a CLUSTER CONDENSATION IN12C AND 16O? PHYSICAL REVIEW C 65 064318
wheres5$s1 ,s2 , . . . ,sN21% is a set of vectors which serve
to generate a correlated Gaussian with nonspherical s
@5,6#. The correlated GaussianG is simply obtained by put-
ting s50 in g. By substitutingx5Ty in Eq. ~A3!, the func-
tion g is transformed to

g~s;A,x!5g~ T̃s;T̃AT,y!, ~A4!

which leads to

^d~y12r!ug~s;A,x!&5expS 2
1

2
a1r21t1•rD

3g~ t(1)2a(1)r;A(1),y(1)!, ~A5!

with the use of short-hand notations for the matrixT̃AT, the
vectors (T̃s) i ( i 51, . . . ,N21), andy(1),

T̃AT5S a1 ã(1)

a(1) A(1)D , T̃s5S t1
t(1)D , y(1)5S y2

A

yN21
D .

~A6!

Herea1 and t1, for example, are given by

a15
1

m1
2

w(1)̃Aw(1), t15
1

m1
w(1)̃s. ~A7!

Note thata(1) is an (N22)-dimensional column vector,A(1)

an (N22)3(N22) symmetric matrix, andt(1) is an (N
22)-dimensional column vector whosei th element is
(T̃s) i 11.

Using Eq.~A5! and integrating overy2 , . . . ,yN21 leads to
the following result:

^g~s8;A8,x!ud~y12r8!&^d~y12r!ug~s;A,x!&

5S ~2p!N22

m1detB(1)D 3/2

expS 2
1

2
a1r21t1•r

2
1

2
a18r8

21t18•r81
1

2
ṽ~B(1)!21v D ~A8!
u-

06431
pe
with

B(1)5A(1)1A8(1),

v5t(1)2a(1)r1t8(1)2a8(1)r8, ~A9!

where the primed quantities such asa18 , a8(1), t18 , t8(1) are
defined throughA8 ands8 in exactly the same way as in Eq
~A6! and ~A7!. Equation~A8! is the desired formula to cal
culate the density matrix. By settings850 ands50 in Eq.
~A8!, we obtain the required matrix element for the corr
lated GaussiansG.

The formula~A8! may seem to depend on the choice
the vectorsw( i ) ( i 52, . . . ,N21) because, e.g., the matri
B(1) apparently depends on them. The dependence onw( i )

cannot be accepted because the quantity we are calcul
should entirely be defined byw(1) alone. The relevant quan
tities in Eq.~A8! are in fact independent of the choice ofw( i )

but determined byw(1) alone as follows:

detB(1)5
1

m1
w̃(1)B21w(1)detB,

ṽ~B(1)!21v5 z̃Cz, ~A10!

with

B5A1A8, C5B21

2
1

w̃(1)B21w(1)
B21w(1)w(1)̃B21,

z5s1s82
1

m1
Aw(1)r2

1

m1
A8w(1)r8. ~A11!

The proof is available from the authors at the email addr
suzuki@nt.sc.niigata-u.ac.jp. We note that the method of
culation for the density matrix can readily be applicable
the calculation of matrix elements of a nonlocal opera
ud(rk2r l2r8)&^d(rk2r l2r)u by simply changingy1 as y1
5rk2r l .
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