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The possibility ofa cluster condensation has recently been suggested for some stat@sanfd 10 lying
near the & and 4 thresholds, respectively. Ar-boson model was applied to examine this issue for the
system of 3 and 4 particles. With the stochastic variational method, bound state solutions were obtained for
both the ground and excited states. The extentvafondensation was quantified by diagonalizing density
matrices. The probabilities that theparticles occupy a® orbit were 30—40 % for some candidate states of

condensation.
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[. INTRODUCTION These states are excited states but not the g.sx Aan-

densation, if possible, might be realized at high excitation

It is well known that a cluster model is successful in de-energy near the threshold decaying into constituergar-
scribing structure of light nuclefl,2]. The cluster model ticles. It is not obvious, however, that they are condensed to
assumes that a group of nucleons forms a localized substrug-singleS-wave « cluster orbit. The model wave functich)
ture. In particular, anx cluster is considered to play a pre- ysed in Ref[3] is restricted to a special form, so it is not
dominant role in the cluster model. This is because dhe clear if that configuration is supported by more general and
particle is stable as is understood by its large binding energyytended calculations. Instead we will show that the use of a
per nucleon. _ _ _ density matrix is useful in order to quantify the degree of the
~ Thea particle behaves as a boson. An interesting question, condensation. The purpose of this study is to examine
is if the Bose-Einstein condensation occurs in a system of these questions in a precise framework in the sense of varia-
particles. The condensation of neutral atoms sucR'®d  ignal calculations.
and *Na is realized at very low temperature when the de |t s not in the realm of a present day possibility to obtain
Broglie wavelength of the atom is comparable with the av-hoth the ground and excited states inadminitio calculation.
erage distance between the neighboring atoms. In the case gy example, the calculation fol?’C using the realistic
the finite system otr particles, a realization ok condensa-  charge-dependerfCD) Bonn and the Argonne V8poten-
tion is questionable in its ground statg.s) because it is tjals does not reproduce the correct excitation energy of the
dominated by a nuclear shell model. Another important dif-excited 0 state[4]. In this respect, it seems reasonable to
ference is that the-« interaction is short ranged whereas the perform a phenomenological analysis by assumingtpar-
atom-atom interaction is characterized by the long-rangegcie model.
van der Waals force. In the next section, we define our model and present a

An intriguing interprgt?tion haes recently been proposedtormalism to solve a bound-state problem for few-particle
for some of the states if"C and *°O [3]. The well-known  gystems. The basic method we use is the stochastic varia-
0" states lying near @ and 4 thresholds in these nuclei tional method(SVM) with correlated Gaussiar$,6]. The
have been reinvestigated from the viewpoint ofiaconden-  cajculation will be done for 3-& systems. The & system is
sation. A possible condensation has been conjectured Qyerformed mainly for demonstrating the accuracy of the
studying the energy surfaces obtained by a special class @kesent calculation. In Sec. I, results of calculation are pre-

variational wave functions foN« clusters, sented with some emphasis on an analysis of the orbits oc-
cupied by thea particles. This analysis will be done by in-
A{e—v(xi+~-~+xﬁl)¢(a{1). - play)} 1) vestigating the eigenvalue problem of density matrices

constructed from the wave functions of the system. The cal-

) ) ) . culation of the density matrix is detailed in the Appendix.
Here ¢(a) is the internal wave function of the cluster,X; is  Section IV draws a brief summary.

the center-of-mass coordinate of thia « cluster, and the
Fermi statistics of the constituent nucleons is observed by the

antisymmetrizerd. As Eq. (1) shows, the center of each Il MODEL
cluster follows anS-wave motion whose spatial extension is
specified by a Gaussian falloff parameteA “saddle point” The « particle is treated as a structureless boson. We are

configuration corresponding to a large spatial extensiornterested in states with total orbital angular momentum
(small v) has been assigned as an indication for the con=0 and paritym=+. The quality of a variational solution
densed state. The states at the excitation energies ofin.65 crucially depends on a trial function. A variational solution
12C) and 14.0 MeMin ®0) are, respectively, considered to W for N« system is obtained in terms of a combination of
be thea condensed states. correlated Gaussiar(s,

0556-2813/2002/66)/0643188)/$20.00 65064318-1 ©2002 The American Physical Society



Y. SUZUKI AND M. TAKAHASHI PHYSICAL REVIEW C 65 064318

K permutation-invariant center-of-mass coordinabé the N
‘I’Iigl CiSG(A; x), (2 XN matrixUT,U* andP is its transposed matrix. There-
fore the symmetrization requirement on the trial function
wherex={x;,X,, ... Xy_1) iS a set of relative coordinates amounts to a simple multiplication of the matriXAP. Most

of the system. The choice of the set can be arbitrary. The setoticeable is that the symmetrization keeps the functional
used most widely is the Jacobi coordinate system. The reldorm of the correlated Gaussians.

tive coordinatex and the center-of-mass coordinagg are The trial wave function of Eq(2) contains3N(N— 1)K
related to the single particle coordinateéry,r,, ... ry} by  nonlinear parameter§A;} as well askK linear parameters
an appropriate transformation mattik {C;i}. An upper bound for the energy of the system is given
N by the eigenvalue of the generalized eigenvalue problem,
xi:Elui,-rj (i=12,...N). (3) K K
=

;21 HijCj:Ejzl Bi;C;, (i=12,...K), (8)

The symbolS is a symmetrizerS=(1/{N!) 2P, where the _ o .
sum runs over all permutatior of N particles. with the Hamiltonian and overlap matrices

The correlated Gaussidb,
Hij :<SG(A| ,X)|H|SG(A] ,X)>,

1
G(A,x)zexp( ~3 ; Aijxi-xj) Bij=(SG(A; ,x)|SG(A| x)). 9

This equation determines the linear parameters, once the ba-
:exp[ -> aij(ri—rj)z], (4)  sis functions are set up.
< The adequate choice of the nonlinear parame(tibes el-
: : . o - ements of the matri¥\; or «;;) is crucial. Although several
is characterized by a symmetric, positive-definité—1) ways for the choice (I)f the”t)alements Af have %een sug-

X(N—1) matrix A. The matrix A is characterized by d th ) f . ilabl hile th ical
iN(N—1) elements. The diagonal elements of the matrixgesfte. ,t.ere IS No safe recipe avaliable. While the numerica
2 C . optimization would be in principle the method of choice, in
correspond to the nonlinear parameters of an Gaussian ex:

ansion. and the off-diagonal elements connect the diﬁererﬁracnce there are several difficulties to face. The most seri-
b ' 9 Qus ones among these are probably the large number of pa-

relative coordinates representing correlations between th%meters to be optimized and the nonorthogonality of the
particles. The equivalence of the two expressions in (B, basis states. It is very time consuming to optimize all of

L?;ﬂgnfgﬁe?;ﬁdbgaeiss;gsns:asdSL:E.)iWSelln Eétﬂér-;qhseor??ggxele_these parameters at once because it requires repeated calcu-
! X b quely lations of both all the matrix elementd,;; andB;;, and the
ments{«} and vice versa. J J

The symmetrization of the basis function can easily b eigenvalues of E¢8). .Du.e t_o the nonorthogonality, none of
incorporated as follows. The permutation ethe_parameter sets is mdlspensable,_ and several dlﬁergnt
' choices can represent the wave functions equally well. This
1 2 ... N property makes the optimization tedious but offers the pos-
sibility of random selection of the nonlinear parameters. The
) SVM increases the basis dimension step by step by testing a
number of candidates which are chosen randomly. Many ex-
induces a rearrangement of the single-particle coordinates &nples have shown that this procedure is powerful to set up
such a basis set that gives a virtually exact soluf®#].
rq rq An effective potential between theparticles was studied
phenomenologically or by a resonating group method

P= P1 P2 -+ Pn

r r
P '2 _T '2 ) (RGM) [7]. We use the phenomenological potential, the
: Lo Swave potential of Ali-Bodmef8],
'n 'n 2
V(r)=500 exp—(0.7r)“]
where theN X N matrix T, is given by —130 exp—(0.475)%] (MeV). (10
(Tp)ij=8ip, (i,i=1,2,...N). (6)  The original Ali-Bodmer potential it dependent. We ignore

the L dependence but use tt®wave potential for all the
With the use of Eqs(3) and (5), we can show that the per- partial waves. Since th®- and G-wave potentials of Ali-

mutation? acts on the correlated Gaussian as Bodmer are more attractive than tSewvave potential, this
means that the present calculation favors $heave a little
PG(A,X)=G(PAP,x), (7) more than the other waves. In most cases the Coulomb po-

tential between thex particles is switched off. If the Cou-
whereP is an (N—1) X (N—1) matrix obtained by omitting lomb potential is included, thes2system has a shafwave
the last row and the last columftorresponding to the resonance. Thedsystem has only one bound state but has
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TABLE I. Energies(in MeV) and root-mean-square radin 2 = r
fm) of Na systems interacting via the Ali-Bodmer potential of %
Eg. (10). The energy is from thé&la threshold. Both the ground or §
and excited states are given foé=3 and 4. The result with 2|
the Coulomb force being included is indicated by an asteffigk <
The « particle is considered to be a structureless bo¢dnM, S 4l
=41.467/4 MeV . g
S gt
(0]
N Method E rms radius Dimension T 5
2 numerical —1.3696 2.246
SVM ~1.3696 2.246 10 107
0.080f o
3 ATMS [12] —5.18 2.43 0 50 100 150 200 250 300 350 400 450
SVM [5] —5.18 2.43 60 Dimension
SVM —5.18 2.43 60 . . - .
_518 543 120 FIG. 1. Energies of 4 system as a function of basis dimension.
' ’ The energy is measured from the threshold.
-0.62 2.64 140
—1.38 10.05 120 L . .
4 ATMS [12] 111 2 65 basis if the resonance has a sharp width. For a point Cou-
SVM [5] _11'07 2.65 150 lomb potential, the resonance energy is found to be 80 keV,
SVM _11'10 2'59 150 very close to the experimental value of 92 keV. Thesys-
_11'17 2'57 450 tem with the Coulomb potential being included becomes
5'76 3'66 450 Borromean, that is, any pairwise constituent particles have
Y ' no bound state but the three-body system has at least one
—2.01 >.78 450 (one in the present casbound state. The g.s. energy is just
—0.98 6.63 450 0.62 MeV below the & threshold, so one may think that this
5 SVM[5] —16.22 2.99 400 state could be identified as the excitet §tate of'°C at 7.65
SVM —18.63 2.74 480 MeV. However, this state does not have such weakly bound

structure as is shown by the microscopiccluster model
calculationd9,10].

no bound, excited 0 state. By switching off the Coulomb When the Coulomb potential is switched off, the gys-
potential, both the ground and excited states are obtained &m becomes bound. The energy obtained with the SVM
energies comparable to the experimental values. These ragrees with the result of numerical solution. For thesys-
sults are consistent with the microscopiccluster model tem, two bound states are obtained: One-5.18 MeV be-
calculations for'“C [9,10]. It should be noted that there are |ow the 3 threshold. The other is just below tHBe+
some restrictions in the boson model. Most serious is probthreshold.(Note that®Be is bound. The latter is in fact only
ably that there is no way to include the effects of the Pauli12 keV below the threshold, and its rms radius is as large as
principle. It is not clear how reliable the effectivar poten- 10 fm. A very careful, precise calculation was needed to
tial is at short distances. Reality of boson-model resultsptain this state. These two states may correspond to the
should thus be accepted with some reservations, especialjfound and excited Ostates in'’C. The latter is a candidate
for those states with compact structure. for a 3o condensed state.

Matrix elements of most operators in the correlated Gaus- The energy versus basis dimension is displayed in Fig. 1
sians are calculated analytically. They are found in R&f.  for the 4« system. Clearly the lowest two states well con-
The matrix element for a nonlocal operator will be needed inverge and they may be identified as the ground and first
the next section, so its calculation method is given in theexcited 0" states in'®0. The energy spacing between them
Appendix. Calculations have been performed with the use ofs close to the experimental value, 6.16 MeV. In addition, the
the computer code available in R¢L1]. excited state at—5.76 MeV is located just below the
12C(g.s.x+ a threshold. The third to fifth states &=450
are above thé?C(g.s.1 « threshold and can be identified as
continuum states which appear in calculations of bound-state

Table | lists the energies and root-mean-squere) radii ~ approximation. The sixth and eighth states indicate a plateau
of N=2-5 « particle systems. The agreement with otherbehavior in the energy curve. We consider these states a can-
calculations is very good for the g.s. bf=3 and 4 cases. didate for a condensate ofvparticles because their energies
The energy of the g.s. of theXsystem is considerably lower are near the'C(0,)+ a threshold(—1.38 MeV) and the
than the previous SVM resu[5]. This is due to a more rms radii of these states are considerably large, i.e., 5.78 and
thorough optimization of ten parameters of the matix 6.63 fm, respectively. Because these states are unbound and
The g.s. of the 2 system becomes a resonance if the Coutheir widths are expected to be fairly large, the energies ob-
lomb potential is included. The resonance energy can be catained by the present bound-state type calculation should not
culated to a good approximation by using square integrablbe taken very precise. A generator coordinate me{@&ciV)

Ill. RESULTS
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FIG. 2. Pair correlation function for the excited Gtate of 3
system plotted as contour maps. The positions of avwparticles are
(X,y)=(r cosé, r sing) and (,y)=(r,0). The position of the
third « particle is &,y)=[—r(1+cosf),—r sinf]. The ratio of - -
the heights between any two neighboring contour levels is three. 6 6 4 -2 0 2 4 6 8

y (fm)

calculation for excited states ohdsystem suggested the ex-
istence of a loosely coupled configuration slightly above the
4a threshold[13].

The excited state of“C has been discussed in relation to
a possiblea-chain statd14,15. Several microscopic calcu-
lations based on@RGM [9] or GCM [10] reproduce both S
the ground and excited states reasonably well. These calcu- 8 -6 -4 2 0 2 4 6 8
lations show that the excited state does not have a particular x (fm)
arrangement of @ particles but indicates a structure com- ] ) . .
prising various configurations as a loosely bound system. FIG. 3. Pair correlation functions for the_gxcned Btate of 3 .
The present boson-model calculation bears it out. This cordystem plotteo_l as contour maps. The position of the test particle,
clusion has been reached by examining the pair correlatioffarked by, is at ,y)=(1.7 fm,0) @, (x.y)=(3.1 fm.0) (b),
function or the two-particle density defined by and (x,y) = (3.7 fm.0) (c), respectively.

y (fm)

sion can be understood as a consequence of excluding Pauli-
>_ forbidden states from the effective potenti@|16).
What is a good measure to assess a condensation? A lit-
(11) eral interpretation of am condensation is that all the par-
ticles occupy arS-wave orbit. In a finite system, the occu-

Let r, be a fixed vector, pointing to a test particle positionedPation probability may spread out over several orbits, but a
appropriately and let be the variable of. The function ggmﬁcgnt probability should be occupied by a particular or-
P(r,r,) shows how the fixed test particle sees the densityPit if it is called a condensate.

distribution of the other particles. For a spherical st&e,

depends orr|, |ry| and the angl® betweerr andr,. Figure 0.04
2 shows the contour map d? for the excited state as a
function of |r|=|ry|, and 6. Three peaks are clearly seen at
6=60, 120 and 180°. They correspond tar2a (®Be 0.03
+a), 3a regular triangle and chain configurations, respec-

P(r,r0)=<\lf

gj (r=xXN—1)o(rj—xXy—ro)| ¥

0.035 1

7 L
tively. We show in Fig. 3 the pair correlation function which £ 0.025
is obtained when the test patrticle is put at the distance cor- 2 0.02 |
responding to these peaks. When the test particle is located atg 0.015 L
[ro|=1.7 fm, only a triangular configuration shows up. As QO
[ro| increases tory|=3.1 fm, both a linear-chain configura- 001k
tion and a®Be+ « like configuration appear. When the test 0.005 |
particle is located further outsiddrg|=3.7 fm), a linear
chain dominates. 0

Figure 4 compares the density distribution of tagar-
ticles for the four states of®0. The density distribution
extends to further distances as the excitation energy in- F|G. 4. « particle density distributions ofadsystem. The thick
creases. The reason why the central density for the g.s. is $@lid, thin solid, dotted, and dash-dotted curves correspond to the
low is because the state is compact and the Ali-Bodmer pofour states at-11.17,—5.76,—2.01, and—0.98 MeV, respectively
tential has a strong repulsion at short distances. This repulsee Table)l.

r (fm)
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The occupation probability can be calculated by solving TABLE Il. Eigenvalues of the density matrix for3system. The
eigenvalue\ is labeled by the sequence numipeand the angular

known [17] that the density matrix for a single Slater deter- momentumL of the corresponding eigenfunction. The result with

the eigenvalue problem of a density matpix,r’). It is well

minantW is given by

PHYSICAL REVIEW C 65 064318

the Coulomb force is indicated by an asterik

0/ (-5.18 0;(—1.39 07 (—0.62*

p(rr)=NCE|S(r=r)N(S(=DIW) =2 yg(r)ge(n, N " N " N
(12 0S 2.447 ® 1.287 ® 2.505
wherec runs over all the occupied orbits which constitute the®P 0.363 @ 0.482 ®© 0.304
Slater determinant. Since the wave functibns totally an- 0.075 5 0.287 ® 0.072
tisymmetric, any single-particle coordinate can be used 0.063 ® 0.157 5 0.066
instead ofr, in the above equation. The eigenvalue problemOF 0.013 @ 0.128 © 0.012
of the density matrix, 0G 0.012 D 0.106 * 0.010
1P 0.008 5 0.049 P 0.008
1D 0.007 D 0.048 D 0.007
f dr’p(r,r")f(r")=\f(r), (13 1G 0.005 0 0.041 G 0.007
ol 0.001 G 0.038 5 0.002
OH 0.001 P 0.026 0 0.001

gives the following solutionA=1 for f= ¢, (the occupied

orbit) but A=0 otherwise. The diagonal part of the density
matrix, p(r,r), is the density of the system. The sum of all the

which is obtained by switching on the Coulomb potential.
The spectrum of the eigenvalues is similar to the case for the
)po-Coulomb g.s.

The eigenvalues of the density matrices for tlhes§stem
are presented in Table lll. The general behavior of the spec-
trum for the two lowest states is similar to the 8ase. The

eigenvalues is equal to the number of partidleshich is the
trace of the density matrix,drp(r,r).

In analogy to the above fermionic case, the density matri
for the Na system may be defined as

p(rr)=N(W[8(ri—xy—r" )} (ri—xy=0[¥), (14

where the singlex particle coordinate is measured from the
center-of-mass coordinate in conformity to the translation-
invariant wave functionV. Since the wave function is totally
symmetric, any single-particle coordinatecan be used in-
stead ofr,. A spectrum of eigenvalues of the density matrix
is expected to give information on the occupancy of the or-
bits of the system. The eigenvalues of the density matrix
corresponding to an ideal condensed state wouldN st
ong and zeros. A method of calculation for the density ma-
trix is detailed in the Appendix.

The eigenvalues of the density matrices constructed from

-0.2 ! ! !
the two 0" states of°C are listed in Table Il. They are 0 1 3 5 6
labeled by the sequence numb®r=0,1,...) and the or- r (fm)
bital angular momentum. For the g.s., th8 8igenfunction 0.35 - :
occupies more than 80% of the total sum, and all other 05| \ (b)
eigenfunctions but theD function have small eigenvalues. J
For the excited state which may be a candidate of the con- 0/ |
densed state, the eigenvalues are apparently spread out over 02} \
several configurations. Though the eigenvalue of tBefbit 0.15 | \

is largest, the occupation probability is about 40%. The sum
of all the eigenvalues belonging to tf&wave eigenfunc-
tions is about 1.6, which is approximately 50% of the total
sum. The excited state dfC produced by the present boson
model is far from an idealkr condensed state. It should be
noted that the eigenfunctions of the two density matrices
show quite different behavior, particularly in the spatial ex-

f) (fm=7)

) (fm-3?)

1.8

g.s. might be called an condensed state because the eigen-

1.6 o
141
12t
1 L
08}
06|
04}
02
0

()

0.1
0.05 |

r (fm)

tension, corresponding to the different characteristics of the F|G. 5. Radial parts of the eigenfunctions of the density matrix
two states of'“C. This is shown in Fig. 5 where four eigen- of 3« system.(a) is for the g.s. andb) is for the excited 0 state.
functions that have largest eigenvalues are displayed. Tabfehe thick solid, thin solid, dotted, and dash-dotted curves denote
Il also lists the eigenvalues of the density matrix for the g.sthe eigenfunctions with 8, 0D, OP, and 1S, respectively.
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nL A nL A nL A nL A APPENDIX: CALCULATION OF DENSITY MATRIX

0S 2815 (B 194 G 1180 G 1611 The aim of this appendix is to show a method of calcula-

0D 0520 15 0830 ® 1114 ® 0716  tjon for the density matrix14). It is considered a matrix

opP 0203 ® 034 ® 0432 B 0525 element of a special nonlocal operatotd(r,— Xy

OF 0173 ® 0181 © 0277 ® 0317 —r")8(ry—xy—r)|, wherexy is the center-of-mass coor-

1P 0114 1 0115 = 0140 P 0.163 dinate of the system. It should be noted thgtr, — x5 may

1S 0073 1D 0112 D 0134 @& 0.108 not belong to a member of the coordinate getwhich is

0G 0022 @ 009 ¢ 0109 3 0.071 used to define the correlated Gaussin A most direct but

1D 0015 G 0069 P 0087 D 0.061 tedious way of the calculation of the matrix element of

1G 0011 @ 0057 P 0045 P 0.041 |8(y1—1")){S8(yL—T)| is to express; in terms of the sex,

1F 0008 X 0053 @ 0.040 GG 0.039 and then to perform the integration over these coodinates.

OH 0007 G 0023 ™ 0038 3 0032 Herewe take another route.

2S 0007 T 0016 FE 0034 TF 0031 The first step of the calculation is to transform the coor-
dinatesx={x;,Xs, ... Xy_1} t0 @ new set of coordinates
={y1.¥2, -+ Yn-1f

value of the (& orbit is about 70% of the total sum, but that
state is considered to correspond to the doubly magic g.s. of B 2 N v _ T
180. Thus this is just an artifact of the boson model. The yi_k:1 (W)= WX,
excited state at-2.01 MeV is conjectured to be a candidate

of the condensation, but i-wave eigenvalue is as large as The symbol  indicates the transposition of a matrix or a
the lowestSwave eigenvalue. The excited state -a0.98 vector. The N-l)-dimensionaj column Vect@w(l) is cho-
MeV has stronger concentration in &norbit, but the occu-  sen in such a way that the first coordingtereduces to the
pancy of the & orbit is about 40%. Thus it is likely that one defined above. The choice of the other coordinates

N-1
(A1)

either of these is not aar condensed state. {Y2, ... Yn_1} is, however, not unique and thus the column
vectorsw() (i=2,... N—1) are not unique, either. For the
IV. SUMMARY sake of convenience, we may require that théée 2) vec-

tors be all normalized and orthogonal to each other and,

o il 16 .
The possibility of & condensation in”C and O was moreover, orthogonal tar? as well. The vectorsv(") form

investigated in arw-boson model. Variational solutions for ; - :
. a complete set in a real vector space Nf1) dimension.
0" states of & and 4x systems were obtained by the sto- P b (1)

; e . The coordinate transformatiofAl) from x to y is ex-
chastic optimization of the nonlinear parameters of the cor-

, : - : ressed ag=T1x by a matrixT 1, wherey (and als) is
related Gaussian basis. The precision of the calculation Wa%onsidereg a columﬁ vector comprisifg} )Eegnd also{x-)})
good enough to discuss tlhecondensation. 7

X : : The inverse transformation fropto x, x=Ty, is performed
Some states with large spatial extension were found neaHy the matrixT
the « threshold in both*?C and 0. To assess the measure ’

of condensation, the occupation probabilities of various 1

single « particle orbits were calculated by diagonalizing the — 0

density matrix constructed from the state of interest. The T=(whw@. .. wiN-1) H#1 . (A2)
results of analysis indicated that the candidate is far from an 0 In-2

ideal « condensed state. For example, the probability that the

3a system remains in a singl® orbit was at most 40% in

zfalltthf the fact that the system is in an extremely extende ian for trle\fransformation bgggmw;et(ax/ﬁy)|=|detT|3

We used thex boson model. It obviously has some limi- = w1 °|detT 3= 7 3|det(T 1T 1)[32= p, 32

tations from the viewpoint of microscopic nuclear structure The next step is to calculate the matrix element dffy,

models. The boson model may not work well for the ground—r")){(8(y;—r)| between the correlated Gaussia@$. In

states of 2C and %0, thereby causing some undesirablewhat follows we extend this correlated Gaussian to a more

influence on the excited states. To obtain more definitivegeneral one:

conclusion, realistic calculations must be performed at the 1

nucleon level in which nar cluster assumption is invoked. A X _ _ = vy v

12-nucleon calculation which reproduces both the ground g(s,A,x)—ex;{ 2 ; A Xﬁz § X')

and excited 0 states of°C at the correct energies will

enable one to quantify the degree to which thelusters, if _ ;{ _ }~ ~
L . - =ex XAX+ SX

a condensation is the case, are condensed in the excited state.

gereﬂlzw(l)w(l) andl, is annxn unit matrix. The Jaco-

, (A3)
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wheres={s;,s,, ... ,Sy_1} is a set of vectors which serves with
to generate a correlated Gaussian with nonspherical shape
[5,6]. The correlated Gaussida is simply obtained by put-

ting s=0 in g. By substitutingx=Ty in Eq. (A3), the func-
tion g is transformed to

a(sAX)=g(TsTATyY), (A4)
which leads to
1 2
xg(tH—a®rAM yb), - (A5)

with the use of short-hand notations for the maikT, the
vectors {Ts); (i=1,... N—1), andy?,

- a a® ~ ty V2
TAT=| ;0 A0, Ts={ @], yW=
YN-1
(A6)
Herea,; andt;, for example, are given by
1 — 1 —~——
a;=— whAw®D, t=—wls (A7)

M1 M1

Note thata®) is an (N— 2)-dimensional column vectof®)
an (N—2)x(N—2) symmetric matrix, and® is an (N
—2)-dimensional column vector whosgh element is
(TS)i+1-

Using Eq.(A5) and integrating oveys, . . .
the following result:

Yn_1 leads to

(9(s; A7, )| 8(yy— 1)) 8(y1—1)|g(s A, X))

(2mN-2\ ¥ 1
W ex —Ealr +t-r

1 1.
——air'2+t;.r'+§v(5<l>)1v) (A8)

2

BW=A® 4 A7),

v=t0—a@r4 ¢ 5" @)y (A9)
where the primed quantities such as, a’®, t;, t'(®) are
defined throughA’ ands’ in exactly the same way as in Egs.
(A6) and (A7). Equation(A8) is the desired formula to cal-
culate the density matrix. By settigj=0 ands=0 in Eq.
(A8), we obtain the required matrix element for the corre-
lated Gaussian6.

The formula(A8) may seem to depend on the choice of
the vectorsw” (i=2, ... N—1) because, e.g., the matrix
B() apparently depends on them. The dependencev6n
cannot be accepted because the quantity we are calculating
should entirely be defined by*) alone. The relevant quan-
tities in Eq.(A8) are in fact independent of the choicevaf’
but determined by(*) alone as follows:

1.
detBM=—wMB~twdetB,

M1
v(BW) " ly=7Cz, (A10)
with
B=A+A’, C=B!
L S SENYE! trcsf
WOB 1w ’
1 1
z=s+s — —AwBr— —A'wDyr, (A11)

M1 M1

The proof is available from the authors at the email address
suzuki@nt.sc.niigata-u.ac.jp. We note that the method of cal-
culation for the density matrix can readily be applicable to
the calculation of matrix elements of a nonlocal operator
|8(re—r—r"))(8(r—r,—r)| by simply changingy, asy,
=r=n.
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