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Quantum-number-projected generator coordinate method and the shell model

K. Enami, K. Tanabe, and N. Yoshinaga
Department of Physics, Saitama University, Saitama City 338-8570, Japan
(Received 8 February 2002; published 29 May 2002

The validity of the quantum-number-projected generator coordinate mé#@®EM) is investigated within
the proton-neutron singleshell model. The results of the PGCM are compared with exact solutions in the
shell model. It is concluded that the PGCM provides a good approximation of the shell model for low-lying
collective states. In order to describe the proton-neutron relative motion such as a scissors mode, we also
propose a truncation scheme in terms of the PGCM. Various classes of PGCM truncations are examined by
changing sets of generator coordinates. Flexibility with respect to the choice of generator coordinates is
advantageous to illuminate the underlying physics. As an application of the PGCM truncatidvl 1{&@
transition probabilities concerning the=1* scissors state are analyzed for nuclei exhibiting stable triaxiality.
The electromagnetic properties are identified. Those are characteristic ©f &)edynamical symmetry limit
of the proton-neutron interacting boson model.
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[. INTRODUCTION shell model configuration space in each proton or neutron
system. The proton and neutron parts are treated separately
The singlef shell model has been widely utilized as a in the PGCM stage, and they are coupled through the diago-
testing ground for many microscopic theorjés-6]. Its great  nalization of the total Hamiltonian.
simplicity allows us to obtain exact solutions and to sweep In Sec. Il the model Hamiltonian and intrinsic states are
away any ambiguity arising from the numerical analysis. Thediven. We introduce three systems investigated in the present
quantal effect is strongly amplified in small systems such a¥/ork. In Sec. Ill the PGCM scheme is directly applied to the
the singlef shell model. This feature is also suitable for in- Simulation of exact spectra. In Sec. IV the shell model con-
vestigating a fully quantal theory, which goes beyond thefiguratilon space i_s truncated by various kinds of PQCM’s. In
mean-field approximation. The model contains enougtnalyzing numerical results, we pay much attention to the
physical contents to judge the effectiveness of a theoreticd? PES. In Sec. V electromagnetic properties concerning the
method. I=1" scissors mode are examined, in connection with the
In our consecutive papef§—10], the capability of the Proton-neutron interacting boson model. We conclude the pa-
guantum-number-projected generator coordinate methoBer in Sec. V1.
(PGCM) was investigated within the singjeshell model of
identical nucleons. The PGCM was proved to be an excellent Il. HAMILTONIAN, INTRINSIC STATE,
approximation of the shell model, irrespective of the shell AND MODEL NUCLEI
fillings. It was also clarified that the projected potential en-
ergy surface(PPES offers an intuitive insight into shell
model spectrd7]. Furthermore, we demonstrated the capa
bility of the PGCM to reproduce the change of spectroscopi
properties accompanied by shape evolution from the sphere N P
to the maximal deformatiof8]. The PGCM combined with H=H.+H,+H.,,
the study of the PPES leads to some unexpected outcomes,
such as stable triaxiality in the ground state, which cannot be ~
predicted within the mean-field approximation.
The purpose of this paper is to test the validity of the
PGCM in a more realistic situation, i.e., the proton-neutron 2
singlej shell model. This work completes our studies of the A== xm > Q;”)TQT,
PGCM within the singlg-shell model. We examine various n=-2
kinds of PGCM’s by changing the choice of generator coor- . o
dinates. The analysis based on the PGCM is classifie&"he[e the subscripts and v indicate protons and neutrons,
roughly into two schemes. One constructs the total systerand Q' (7= or ») denotes the dimensionless mass quad-
from the single PGCM state, and the other from the angularupole operator, the definition of which is given in Ref8],
momentum coupling of the proton and neutron PGCM stated9]. A common force parameter is assumed, s X
In the former scheme, total spinis projected out directy =yx,,=x,,=1(MeV), except when we compare the
from a product wave function of the mean-field theory. Thestrength of thep-n QQI component with that of the identical
PGCM levels derived directly from the Hill-Wheeler equa- nucleon components.
tion are compared with exact solutions in the shell model. In Intrinsic states of protons and neutroh®,.) and|®,),
the latter scheme, the PGCM is used to truncate the exaete determined from the Nilsson or Nilsson BCS model

In this paper, we investigate a model where protons and
nneutrons in each single-shell interact through pure
Quadrupole-quadrupole interactiéQQl),
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[7—11]. The total intrinsic state, which is employed as thespin projection, the system possesses a small triaxial shape.
generating function of the PGCM, is given by their productThe prominent minimum of the PPES appeargat30° for
|®)=|D)|P,). In the Nilsson scheme, we assume thesystemsB andC. The triaxiality-favoring tendency is not an
common potential deformatiofB, y) for both protons and unusual feature in the singjeshell model, provided that the
neutrons. spin projection is taken into account. The potential energy is
It is characteristic of the singleshell model that the Nils- lowered with increasing deformation. The minimum of the
son intrinsic state reaches the maximum deformation as sodPPES is realized at a point where the pairing gap is almost
as the potential deformation is switched|[dd]. The Nilsson  zero for systenB, and exactly zerddeformation limij for
state does not depend @B so thaty becomes the only systemsA andC. This is due to a manifest property of the
parameter specifying the intrinsic state. Thus, the allowedQI. The good agreement between the minimum of the
deformation for the model nucleus is strictly restricted, un-PPES and the exact ground-state energy justifies the pre-
less the pairing correlation exisfg]. In order to stress this dicted equilibrium shape.
property, we use the termdéeformation limit for the de-

formed Nilsson states, in accordance with our previous work ll. STANDARD PGCM
[8]. The Nilsson intrinsic state is expressed [as(y)) . . _
[=]D.(¥))|P,(y))] hereafter. In the mean-field theory, the superfluid deformed state is

By applying the BCS scheme to Nilsson single-particledescribed by the spontaneous breakdown of the gauge and
levels, better generating functions are provided. In thgotational symmetries, which must be conserved in the finite
present work, the significance of the pairing correlation lieshucleus. Neither total spihand itsz componentM nor the
in the expansion of the deformation regip8], since our nucleon numberbl andZ are good quantum numbers for the
model Hamiltonian does not contain the pairing interaction Nilsson BCS state. The eigenstatelpM, N, andZ can be
The singlef shell is such a small system that the deformation€Xtracted from such an intrinsic state by means of the
of the model nucleus quickly reaches its upper limit@s duantum-number-projection method. A linear superposition

increases. In order to specify the extent of deformation in £f many projected wave functions labeled by generator co-
unigue manner, we introduce intrinsic quantities ordinates set up the PGCM wave function. Depending on the

=(qo,q,) and q,=(do,.qz,) in terms of the expectation Objectives, suitable generator coordinates are incorporated

values of the quadrupole operators into the PGCM wave function. In the present model, the
most general PGCM wave function for tikéh state of spir
Jo=do-1 oy, U2=02,102, (20 is given by

with definitions ! e

i i |\PIKMNZ>ZJ qu:E_I TPy PP D (), (5)
Go,=(P,|Q[®,), o= —vAP QY [D,). (9

It is noted thatq, does not fluctuate for a fixed (=q,

+4q,), since protons and neutrons share the same potenti
deformation(B, y). We express the Nilsson BCS intrinsic

where P}, is the spin projection operator, aml' and P?
gre the neutron and proton number projection operators, re-
spectively. The positive parity is always ensured as a good
- tum number for all the states appearing in the present
state agd(q)) [=|®.(q,))|®P,(q,))] hereafter. quan , . .
In thi preéent|paper, 2/\|/e focui on the following threeP@Per. The weight functiongy,(q) and the PGCM energies

model nuclei labeled, B, and C, which are typical of the E,. are determined by solving the Hill-Wheeler equation
p-n singlej shell model. The values ¢f(j=j .=j,) and the |

neutron and proton numbe(il,2) for each system are sum- J da’ o AP PNPZP (g’
o 9 2 (P@IAP PP @ (a)
13 —E (®(q)| Py, PNPZD(q"))} Fi(q')=0 (6
A =2 nz2)-010, L D()] Pl PNPAD(9))} AR =0 (6)
under the normalization condition
13
B, =%, (N.2)=(4,10, (V1 mnzl Wirermrnrze) = 6110 8t Smmr Oy 2,27 - -
11 _ In the numerical analysis, PGCM levels calculated up to spin
C = 2" (N.2)=(6.6). ) I=8 are compared with exact solutions in the shell model.

Detailed accounts of the numerical analysis have been given
In Figs. Ia—9, we show the ground-state PPES’s for thein Refs.[7-9].
three systems, which result from simultaneous spin- and Judging from the functional behavior of the ground-state
particle-number projections. All the possible shapes allowedPES shown in Fig. 1, we can expect that intrinsic states in
for the system are represented by the coordinates in thihe deformation limit provide suitable generating functions
Jo-g, plane. For systend\, both proton and neutron mean of the PGCM. First, we examine the PGCM in the deforma-
fields favor the prolate distribution. As a consequence of theion limit. In this case, the twofold integral concerning
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FIG. 1. Contour plots of the ground-state PPES'’s for the sys#&i1fs, B (b), andC (c). The contour line separation is 5 MeV. Some
auxiliary contour lines indicated by dashed lines with a separation energy of 1 MeV are added for the &/stedh€. Dotted line
corresponds to potential deformation wigt=30°. The point where the potential energy takes its minimum is indicated by a cross, and its
value is shown in the figure. For comparison, the exact ground-state energy of the shell model calculation is also given in parentheses. The
placement of ten deformation points taken in the PGCM2 calculdtibrSec. Il)) is indicated by open circles.

=(0o,09,) can be replaced with the singjeintegral, and the ing y can be estimated by the direct comparison between the
nucleon number projections can be dropped. Second, we prégvels in the PGCM1 and the PPES’s. The calculation of the
ceed to the more desirable PGCM given in ), the de- PGCM2 is carried out by taking 31 deformation points. We
formation region of which is extended to the fud-q,  add ten deformation points to the 21 points in the PGCM1.
plane. In order to distinguish two PGCM schemes, we callThe placement of the additional ten points is indicated by
the former PGCML1 and the latter PGCM2. open circles in Figs. (B—9. The numerical analysis of the
Numerical results for the three systems are shown in FigPGCM2 is much more elaborate than that of the PGCM1,
2—-4. In the left panel, the PPES’s in the deformation limitsince it necessitates the particle-number projection in 520
are plotted as functions of. The maximum number of the PGCM kernels out of 961« 31X 31) ones.
spin projected levels up tio=8 is limited to 21 due to th®, We recognize some features in these figures. To begin
symmetry assumed in the intrinsic state. For syst@asd  with, we pay attention to the PPES. Systdnshows simple
C, all the 21 PPES’s are displayed in the figure. In the rightoand structure, typical of well deformed nuclei. This indi-
panel, level schemes of two PGCM'’s and the shell model areates that the intrinsic state is not strongly affected by the
compared. In the PGCM1, deformation points are takercollective motion. The intrinsic states with=0°~30° gen-
along the curved line corresponding to the deformation limit.erate similar projected levels. This outcome is explained by
We arrange 21 points at regular intervalsy=3°) from y Fig. 1(a), from which we find that the correspondence be-
=0° to 60°. The effect of the configuration mixing concern-tween y and tarn(g,/qy) is not good in the deformation
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FIG. 2. Energy levels(in
MeV) for systemA. Left: Func-
tional behavior of PPES’s in the
deformation limit. The solid
(dashed lines represent PPES'’s
for even (odd spins. The spin
value with a suffix specifying the
level ordering is assigned to each
PPES. The PES calculated within
the mean-field(MF) approxima-
tion is indicated by a dotted line.
Right: Comparison between the
shell model and PGCM levels.
The shell model levels are indi-
cated by open circles. The levels
of the PGCML1 are specified by
while those of the PGCM2 are
specified byX. See text for fur-
ther details.

previous works[7-10], but not in the present work. We
should keep in mind that such an effect is also seen in the
proton-neutron systeifl 2], while we do not go too far into
this topic.

stable triaxial deformation in the stage of the mean-field ap- Now, we proceed to the analysis of PGCM spectra. The
proximation. In this case, the competition between protonGCM1 gives an excellent description of the ground-state

(favoring prolate distributionand neutrongfavoring oblate

band and the first quasi-band, irrespective of the systems.

distribution gives rise to stable triaxiality as a whole. At any It can be recognized that the minima of the PPES’s also
rate, the triaxial spin projection plays a crucial role in eachreproduce the levels in the two bands fairly well. For systems
system from the viewpoint of the correction in energy. ItsB and C, the projected levels constructed from an intrinsic
strong effect drives the equilibrium shape toward large tri-state withy=30° simulate PGCM levels best of all. Other

axial deformation in the syster@. The triaxiality-driving

than these low-lying levels, it is difficult to find clear corre-

effect of the spin projection was our main concern in thespondence between the PGCM1 and the shell model.
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FIG. 3. Energy levels for sys-
tem B. Left: Functional behavior
of PPES’s in the deformation
limit. Right: Comparison between
the shell model and PGCM levels.
Other illustrations are the same as
those in Fig. 2.
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By extending the deformation region in the PGCM2,and neutron distribution§13—15. The PGCM'’s in the
some new levels appear, and energies of many existing levefgesent section cannot describe such an excitation. In the
are lowered. In the range of higher energy, this extensioffiollowing section, we intend to simulate various collective
modifies the results of the PGCM1 to some extent. We findmodes in a unified manner.
however, that the addition of states with a small deformation Table | summarizes the number of levels appearing in
is not essential in the energy range shown in the figure?GCM1 and PGCM2 for the three systems. Dimensions of
Further modification is not attained by the increment of de-the Hamiltonian matrix in the exact shell model and three
formation points. truncation schemes taken up in the following section are also

In the case of the singleshell model of protons or neu- shown in the table.
trons only, the underlying physics is almost clarified in this  There is one thing to be added with respect to the PPES.
stage[7-10. The physical situation is not so simple in the SystemB, which is made up of four proton holes and four
p-n coupled system. There exist many levels even in theneutron particles, is very sensitive to the force parameter of
low-energy region that cannot be constructed by PGCM1 anthe QQI. In Fig. 5, the PPES'’s for the ground-state band and
PGCM2. A rotational band starting froin=1, of systemA  the first quasiy band are displayed. The left panel shows the
is a typical example. This band is interpreted as the scissoBPES'’s for thep-n QQI, and the right panel shows those for
band stemming from the relative displacement of the protorthe sum of thep-p and n-n components. There is large

TABLE I. The dimension of the Hamiltonian matrix for three model nuclei.

PGCM1 PGCM2 One axial state Axial PGCM Triaxial PGEM ExacP
System A B C A B C AB C AB C AB C AB C

=0 7 8 7 16 18 15 11 10 168 196 149 141 205 252
I=1 10 9 164 187 398 378 509 639
1=2 13 17 13 31 35 30 30 27 482 551 680 638 895 1103
I=3 6 8 6 13 17 15 28 25 466 527 904 846 1167 1441
=4 18 24 18 40 49 42 46 41 750 845 1148 1062 1501 1821
=5 11 15 11 23 30 24 43 38 714 793 1324 1216 1705 2051
=6 22 30 22 46 57 49 59 52 956 1049 1512 1372 1961 2317
I=7 15 21 15 29 38 31 55 48 896 959 1629 1461 2082 2420
=8 25 33 25 49 60 50 69 60 1090 1143 1751 1549 2242 2542
Total 117 156 117 247 304 256 351 310 5686 6250 9495 8663 12267 14586

Sec. I Sec. I Sec. IVA Sec. IVB Sec. IVC

Numerical results correspond to one intrinsic state with20° for systemA, and that withy=30° for systems3 andC.
®The dimension of which is the same as that of full PGCM truncation.
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=22

theoretical framework cannot treat various collective modes
in which the relative motion of protons and neutrons is es-
sential. The extension of the framework is necessary to de-
scribe such modes.

One possibility is to exclude the assumption of common
deformation between protons and neutrons. Each shape de-
gree of freedony, (7= 7, v) is regarded as two independent
generator coordinates, but total spin is still projected out
from the p-n product wave function. This scheme can par-
tially take into account th@-n relative motion. At any rate,
many levels in oddK bands cannot be described as long as
the PGCM is based on intrinsic states conserving Ehe
symmetry.

An alternative method is to project out spins of the proton
and neutron partd , andl,) separately, and to construct the
total wave function from the angular momentum coupling.
Then, the proton and neutron PGCM wave functions are pro-
vided independently, and the Hill-Wheeler equation is solved

0 1I() ' 2|() 30 40 5|() = 1|0 20 30 40 5I() ‘ 6642 twice. The PGCM wave function for each nucleon system is
v (degrees) v (degrees) given by

28 P T RSN N

FIG. 5. Functional behavior of PPES’s in the deformation limit I, N N .
for systemB. The PPES'’s for the ground-state band and the cquasi- |\If|(;))MTNT)= f dq, E f‘KT pT(qT)PMT K PN ® (q,)),
band are displayed up to=6. Left panel shows the contribution Ke==lp 07 T
from the p-n QQI component(i.e., X»»=X,,=0, X+»,=1), and (8)
right panel shows that from thgp plusn-n QQI componenti.e., whereN, =N, N_=Z, andq, integral is carried out over the

= =1, =0). We use the same convention as those in . .
X=X X7=0) range relevant to protons or neutrons. The weight functions

Figs. 2—4 for the classification of the states. N ) . .
f-'KT pT(qT) are solutions of the Hill-Wheeler equation

difference between the two PPES’s. The same is true for the

unprojected PES. The-n component has a tendency to can- ) 'y PN )
cel the prominent triaxial minimum arising from tipep and da; /Z {<q)T(QT)|HTPKTK!P 1P (a;))
n-n components. However, the stable triaxiality does not dis- =l !

appear from the total PPES until the ratig,,/x
(x-»/x,,) becomes extremely large. Such a characteristic
effect appears when two kinds of nucleons are definitely
separated into the prolate and oblate distributions. For sys- ©)
temsA andC, functional behavior of the PPES’s againsis
not affected by the force parameter. Syst@randC possess
some common features, including electromagnetic transitio
properties, but theigy dependence is quite different.

It is still controversial whether such an ambiguity for the
QQI is also seen in real nuclei. It is known that the long-
range particle-hold =0 component of thgp-n QQI is cru-

%al f_or Ithe nuclezr deformation. f-'”:g requilren;re;nt of theaII the possible spin values for. andl, to make up the total
identical proton and neutron mean fields makespttrecom- spinl. The range of .., |, runs froml .=1,=0 to max(_,)

ponent dominant, in general. In many transitional nuclei OT_max(,)=20 for systemsA and B, and max(,)=max( )

weakly deformedy-soft nuclei, a combination of valence —18 for systemC. We also take account of the, quantum
particles and valence holes determines fundamental nUC|eﬂ[meer correctly in order to count the dimeTnsion of the

propgrties. I.t Wi.” be intere_sting. to invegtig_atg a role of theHamiltonian matrix without ambiguity. Needless to say, high

p-n interaction in connection with the triaxiality. spinsl . and highk , components as well as high-lying states
specified by large are not important for low-lying collec-

IV. PGCM TRUNCATION OF THE SHELL MODEL tive levels. In case of realistic nuclei, the contribution from

Within the PGCM examined in the preceding section, to_f[hese will be safely excluded without affecting key dynam-

tal spinl is projected out directly from the-n product wave 'CS: .
function |®)=|d_)|d,). In such a construction of the The p-n coupled state is constructed from the proton and

PGCM state, the proton and neutron bodies are tighth€utron PGCM wave functions
coupled, and both states @b .) and|®,) undergo the same () )\l
rotation specified by the common set of Euler angles. Its |\P'MNZ(I’TP""‘7)>_[|\P'ﬂpz>|qf'voN>]M' (10

~E (@ (a)IP, PV (a))}F] () =0.

KK/

An essential point of this scheme is the separatioh,cdnd
| , rather than the discrimination between proton and neutron
Beformations. As mentioned in Sec. I, we utilize deforma-
tion pointsq, andq, determined from common parameters
(B, y). Up to Eq.(9), unlike nucleons are completely sepa-
rated.

In the practice of the numerical analysis, we project out
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What we intend in the following investigation is to construct A. PGCM with only one axial intrinsic state

the p-n coupled state in terms of various kinds of PGCM's. |, the first place, we consider the case of one axial intrin-

The p-n coupled PGCM states provide building blocks for gj¢ state ¢=0°) in the deformation limit. The PGCM state
the truncation of the shell model. The truncated shell models gptained by replacing the weight function in E8) ac-

wave function for thecth state of spirl is given by cording to
Ok _08(do,—Max do,]) 6(d2,~0)
[ aanz) =2 2 F1llp, o) [ Winz(lp,1,0)). F(g,)— — =
o T a Koo (@ (y=0°)[Pgl®(y=0°))

This theoretical framework is essentially equivalent to that of
The p-n correlation arising from théiw term does not ap- the extended version of the projected shell mddél. The
pear until the total Hamiltonian matrix is diagonalized in thespinl ; has to be even, and only one state is allowed for each
(I -p,1,0) space. spin. Then, the summation for the level indigesind o in
Here, we give the Hamiltonian matrix element concerningEq. (11) can be dropped. The restriction to a prolate shape in
the p-n coupled PGCM wave function of E¢10). The ma- the deformation limit allows us to omit the particle-number
trix for identical nucleons is diagonal, and its elements areprojection, and to replace the triaxial spin projection with the
just the PGCM energies given by the Hill-Wheeler equationaxial one. Thus, the PGCM state becomes simple enough,
but physical contents derived from it are still rich. In order to
~ ~ demonstrate this, we take a close look at the degenerate
(Yinanz(l L)l (Ht H)[Wimnz(17p" o)) 2p1f shell before the singlgshell. ’
=(E1 p+E| )8 118, 8 11800 (12) It was shown that theSD-pair truncation of the shell
i veoomhm v model exactly reproduces dominant irreps for tisd @ shell
[17]. The 2p1f shell, for which theSD-pair approximation is

The matrix element of the-n interaction is obviously insufficient, is suitable for checking the validity of
the simplification. Let us consider a system with six protons
NG | ol A v o' I'g’ and six neutrons as an ex_ample. _
Wizl 2,10 Rl Winanz( o 107)) Our Hamiltonian consists of pure QQI witly=x,.
=— X MI211 50,00 X(WEW;Z||Q(7T)||\I;|(;”)'Z> = X = X» (Symmetric between protons and neutrods a
” P result, Elliott’s SU3) model can be applied to this situation
(W) NIIQ(”)II‘P@, ), (13 [18,19. Thep-n coupled system has the.dynamlcal symme-
v 1o'N try SU(3),®SU(3),DSU(3),.,. The leading representation
is (\,u),=(12,0), (r=a,v) for identical nucleons. This
with the reduced matrix element representation has the maximum orbital symmetry, i.e., zero

intrinsic spinS,,=S,=0, so thatl ., |, and the total spit
D 1AM are identical with the orbital angular momertta, L,, and
(WonQ ||‘P|;prNT> L, respectively. The energy spectra of the total system are
given by using the eigenvalue of the second order SUJ(3)
B Casimir operator
=\/2|T+1f dq,f olq;KEI
T T K’
' EL (M) 7= — T4+ A a2+ 3N + 330
X (1K= p,2u]1,K,) 32m

oisl= : —3L(L+1)]. 1
X(@AA)IQPY PP () (L+1)] )

, If the spin projection is applied to the prolate Nilsson state
x]:'KrNr*(qT);LJT,NT(q;)' (14)  with six like nucleons in the degeneratep®f shell, the
- Kee! SU(3), representation (12,0)is exactly reproduced. Then,
unlike nucleons are coupled through the diagonalization of
where (;m;,j.m,|jsms) and)V denote the Clebsch-Gordan the total Hamiltonian. This procedure generates rotational
coefficient and the Racah coefficient, respectively. Throughbands belonging to the SU(3) irreps, (12,0)®(12,0),
out this paper, the definition of the reduced matrix element=(24,0),,©(22,1),,®...©(0,12),,. A total of 413 levels
for the irreducible spherical tensor of rankand labelu, belonging to the above irreps are exactly reproduced within
:rw' is the PGCM truncation. In Fig. 6, the energy spectra are dis-
played. We point out without details that only one represen-
(/M7 A el IM) tation (24,0),,, i.e., the ground-state band, is reproduced
= ’—'“<| a| Tyl a’). when the spin projection is applied directly to the total Nils-
V2I+1 son state as in the preceding section. The excited bands arise
(15  from the relative motion between protons and neutrons, since

(IMa|T,,[lI'M"a")
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i FIG. 7. Energy levels in the exact shell model and the PGCM
2400 subspace with one prolate intrinsic state for sysferirom the left,
26000 L L Loy the ground-state band, the scissors band, the gubaird, and the
0 2 4 6 8 10 12 14 16 18 20 22 24 B band are depicted for both theoretical methods. See text for fur-
Spin I ther details.

FIG. 6. Energy levels for the degeneratp12 shell. For the  the ghell fillings and model Hamiltonian. Turning our atten-

sake of convenience, the force parameter of the QQI is chosen to t{ﬁ)n to systemsB and C, we see that the problem is not so
X =32m/5 MeV. S?Chh rotational g’;‘lf‘d ,';Spec'ged by the dsuﬁ(}f) simple. The correspondence between the PGCM truncation
g;%ss g\ré“():gr”]ﬁecédrgSp;C(Ll;oshea'jol};es number, everodd and the exact shell model is bad, though their figures are not
y ' displayed here. There is large discrepancy even in the

both intrinsic states are in the irreps (12,0dnd (12,0),  ground-state energy. As we have seen in Figs. 3 and 4, two

corresponding to their ground stafié6]. The first excited Projected levels at prolate and oblate shapes are degenerate

band starting froml,=1;, namely, thek=1 band de- in energy, and the minimum of the PPES appearsyat

scribed by the representation (22,]) is interpreted as the =30°. It is obvious that one intrinsic state with=0° is

rotational band on the scissors vibrational mode. insufficient to simulate the Complicated band structure of
We now leave the muli-shell and apply the same SystemsBandC. Now that underlying physics for systen

method to systemA. The low-lying rotational bands are has been clarified, we place great emphasis on the analysis of

shown in Fig. 7. These consist of the lowest 25 levels calcuthe system® andC in what follows.

lated in the PGCM subspace and the corresponding exact

levels. There appear 51 shell model levels in the energy B. Axial PGCM

range of the lowest 25 approximate levels. It can be recog- e of the purposes of this paper is to investigate various
nized that the band structure is similar to that of the degengi,4s of PGCM's by changing the choice of generator coor-

erate P1f shell. In addition to the ground-state band, tWo yinates. We cannot evade examining the capability of the
bands interpreted as the first quasband andg band are  5i5| pGCM, since its application is interesting from a prac-

reproduced qualitatively. The =1, band, which cannot be jico| viewpoint. The restriction to axial shapes is still effec-
simulated by the PGCM in Sec. Ill, is also reproduced with &6 1o cut down the computation time, while the configura-

good accuracy. In spite of its drastic simplification, many;ion mixing of many deformation points is required. In this
correlations are already taken into account. The total NUMb&lation we focus on the truncation of the shell model in

of levels up tol =8 amounts to 351. terms of the axial PGCM.

However, we must regard the success for systeas an The wave function of the axial PGCM is obtained by
exceptional case. The picture of the @Umodel happens to settingq,,=0 (y=0°) andK.=0 in Eq.(8)

be suitable for this system owing to some conditions, e.g.,

Wi N )= J ddo. T, "(do) Py 4PN (a5,)),

The assignment oK is based on Elliott's quantum number. (18
Within the present PGCM state generated from any axial intrinsic
state, theK number is necessarily zero. whereq, is integrated over all the possible axially symmet-
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o o] o ] X0 %27 are not dominant in the low-energy range for the proton
- x| x xo Xy | x© X x8 I (neutrorn) system. Moreover, the accuracy of the ground-state
"g y 6| 20| 8|70 band is not so bad. It is worthwhile to mention that bad
" xo g ° < Pl o x results in the case of one prolate intrinsic state are improved
i x| & x X6 | X xg 1 substantially. What must be stressed is that the axial PGCM
-60r ° |7 x© < | x° o] has an ability to reproduce many states of even d$pin
2 i o| o © l inc_luding the members of quasi-bands, whileK is re- _
5 [ X % x stricted to zerd8]. Many of these levels are usually classi-
ar N g o | 1 fied into states in thé&,#0 bands in other theories. Thus,
i o | x o l capabilities hidden in each identical nucleon system lead to
-65- o o 7 the improvement of spectra.
%o l It can.be safely said that t.he truncatjon _by the axial
" Xo System B PGCM will be a good and practical approximation for many
30 | 8 [ xP| B ~¥ <0 deformed nuclei. Also, it may be conveniently utilized as the
x g ‘o % o g-" Z)- first approximation even for the triaxial grsoft nucleus.
A5 o | | xg y RE xg x
o ° %o 8 o 1 C. Triaxial PGCM
§ w § @ &_ . . H
& | x The consequence of the preceding section requires us to
g x X o o & x . - . )
5 o| o o withdraw the assumption of the axially symmetric deforma-
[ xo x % | tion for further progress. I._et_us_ conside_r the PGCM s'gate
Rl . x o 0 generated from a triaxial intrinsic state in the deformation
o . .
° s limit
X
[¢] |
x T . TNT B IT
° System Wioun)= 2 AP P r). (19
0 i 2 3 4 5 6 171 8
Spin 1 Other than the triaxiality, there is no large difference between

FIG. 8. Energy levels in the exact shell model and the axialthe trIa'X|aI PGCM state and that in Sec. IV A.

o In Fig. 9, the lowest 300 shell model levels and the cor-
PGCM subspace for systerBsand C. The shell model levels are responding levels calculated in the PGCM subspace are dis-
indicated by open circles, and the levels of the PGCM truncation by . S
Crosses. played for system® and C. The numerical analysis is per-

formed by using an intrinsic state witk=30° for both
ric shapes. We take about 50 deformation points uniformlysystems. The number of levels increases drastically due to
over the whole range afy,. For all the systems, the number the triaxial degree of freedom, though the configuration mix-
of levels already reaches the maximum within its theoreticalng of deformation points is not carried out. There appear
framework(cf. Table ), and the convergence of each level is 274 (235) levels in the figure for systerB (C).
confirmed. The strong influence of the triaxial intrinsic state can be
For systemA, we only point out a few facts without show- also read from the dimension of the Hamiltonian matrix
ing the figure. In comparison with the result in the previousshown in Table I. In comparison with the axial PGCM trun-
section(Fig. 7), the agreement between the levels calculatedtation, the dimension increases except for the state=df.
in the axial PGCM subspace and the exact ones becomd$e axial PGCM truncation can produce at most half of the
even better, but no drastic change is made in the low-lyingotal levels. This implies that many additional levels origi-
levels. This validates an assumption of a fixed intrinsic statenate from the triaxiality. In addition to the scissors mode, the
The numerical results for systemBsand C are shown in triaxiality of the proton and neutron distributions excites new
the upper and lower panels of Fig. 8, respectively. The leveimodes such as the twist mode, scissors plus twist mode, and
schemes calculated in the PGCM subspace are comparsd forth[20]. These modes are also visualized as a counter-
with the exact ones. The truncation by the axial PGCM is nototational oscillation of the triaxial proton and neutron
very good as a whole. The axial intrinsic state includes onlybodies.
even spin components so that the odd $pidoes not appear There is still room to make an improvement, but the over-
in the axial PGCM. All the even and odd spins of then all trend of exact spectra is well simulated. Considering the
coupled PGCM state are constructed by the angular momeffiact that the result is obtained by using an only intrinsic state
tum coupling of even . andl,. The absence of the odd spin with y=30°, we may say that the triaxial PGCM is very
|, is a main reason for the discrepancy between the PGCMuccessful.
truncation and the exact shell model. This view is eventually For systemA, we abbreviate the figure, and only refer to
reduced to the absence of the triaxial intrinsic state. some outcomes. The result is almost perfect. The truncation
However, the accuracy of lower-spin states is satisfactoryis already successful in the stage of the axial PGCM, but
Above all, the states of=0, for which | .=1,, are well further modification is achieved. For instance, the band head
reproduced. This is because shell model states ofl oddl,) energy of the first quasj-band, which is not quantitatively
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FIG. 9. Energy levels in the exact shell model and #%€30° triaxial PGCM subspace for syste®gleft) andC (right). The shell model
levels are indicated by open circles, and the levels of the PGCM truncation by crosses. The lowest 300 shell model levels are displayed.

reproduced by the axial PGCM, is improved with the help ofappearance of the PPES's is preserved as a whole. Their
triaxiality. The number of levels amounts to 282 in the en-variation againsty turns out to be small, in general. In other
ergy range of the lowest 300 shell model levels, when amwords, the minima of the PPES’s become shallow compared
intrinsic state withy=20° is employed. with Figs. 3 and 4(One clear example for this feature is seen
Indeed the truncation is successful, but the underlyingn systemA, where the ground-state energy gt 60° is
physics derived from it is not so clear. It is not always sig-lowered by almost 20 MeV, in comparison with the PPES in
nificant to extend the theoretical framework at the cost of arFig. 2) This fact implies that a large correlation is taken into
intuitive physical picture that simpler schemes have. In theaccount through thp-n coupling scheme, even if a selected
PGCM, such a picture is provided by intrinsic states. As inintrinsic state is not the most suitable. On the other hand,
the preceding section, we can depict the PPES in the space sbme levels, e.g., the state lgf=0,, become less accurate
deformation parameters. than the axial PGCM case. The restriction to a fixed shape is
In Fig. 10, the PPES’s of the systerBsand C are dis- not appropriate to reproduce these levels quantitatively.
played as functions of. Because of a large number of lev-  As inferred from the above excellent results, the configu-
els, we confine our investigation to low-lying states lof ration mixing of some triaxial intrinsic states completes the
=0, 1, and 2. Some levels are not smooth around the axiallwork at least for the-n singlej shell model. As a matter of
symmetric shapdy~0° or 609. Through this range, the fact, the “full” PGCM in Eq. (8) makes a perfect reproduc-
dimension of the Hamiltonian matrix increases rapidly, andion of all the shell model levels for the three systems. Total
new levels appear. The levels constructegat30° give the  number of levels up tb=8 already amounts to 10 000. This
best description of exact levels. This result is easily underfact indicates that the singjeshell model for the identical
stood from the above investigations. It is noted that thenucleon system is exactly solved in terms of the PGCM. The
triaxiality-favoring tendency is extended to the statesl of purpose of this paper is not to bring the PGCM truncation to
=1. The scissor$,=1, state and the ground state possesgerfection. It goes without saying that this kind of endeavor
common properties with respect to the triaxiality. In the fol- makes no sense from a practical point of view. Therefore, we
lowing section, we will examine this issue, in connectiondo not take up the “full” PGCM in detail.
with the M1 andE2 transition probabilities. The excellence of the PGCM may conversely suggest the
It is interesting to compare the PPES’s in this section withdifficulty in the numerical calculation. Namely, as is always
those in Sec. Ill. Over the whole range f the energy of the case with the spherical shell model, the PGCM truncation
each level is lower than those of Figs. 3 and 4, while themay be confronted with the diagonalization of the Hamil-
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FIG. 10. Functional behavior
of PPES’s calculated in the tri-
axial PGCM subspace for systems
B (left) and C (right). The lowest
PPES'’s forl=0 (solid lineg, 1
(dotted line$, and 2(dashed lines
are displayed. For comparison, ex-
act shell model levels of=0, 1,

50k i and 2(open circleg are plotted in
the lines ofy=25°, 30°, and 35°,
I o 1 respectively. See text for further
S e, details.
T T e 0 I - .
— S I -
5 System B 1 | 9\ System C |
1 n Il " 1 ) 1 " n [ " 1 n 1 1 1 s
0 10 20 30 40 50 60 0 10 20 30 40 50 60
¥ (degrees) ¥ (degrees)

tonian matrix with huge dimension, if it is faithfully applied with this, we pay attention to theiy dependence.
to the analysis of a real heavy nucleus. It is natural to ask Here, we give some expressions for the sake of complete-
whether the “full” PGCM truncation is still applicable to ness. We start from the irreducible tensor operé’tpﬁ of
realistic cases. The present model nuclei are not suitable fgank \ and labely,
answering this question, since the full PGCM truncation is
no longer an approximation within thp-n singlej shell R R R
model. The perfect reproduction is simply due to the small- Th =TV + T (20)
ness and simplicity of the system. It is impossible to connect
the result of thep-n singlej shell directly to realistic nuclei.
However, we can give some comments on this issue.

The dimension of the Hamiltonian matrix can be kept
small as long as the number of deformation points is smallpy
Inclusion of a few triaxial intrinsic states has a large effect on
the PGCM wave function. The minimum number of points to 1 .
attain the perfect reproduction of the shell model is only two B(EN/MN;likj— 1 k)= m|<‘/’IfoNZHT)\||wliKiNZ>|2
for systemsA andB, and three for syster@. What must not : 1)
be forgotten is that the PGCM2 examined in Sec. Il takes
account of as many as 30 points, the results of which are
inferior to the present ones. In any case, a small number ofith
deformation points is sufficient to reproduce low-lying col-
lective levels. We consider that this view is correct even in A
real nuclei. In addition to some implicit assumptions in the <¢|foNz||Tx||lﬂ|iKiNz>
intrinsic state, imposing a restriction on deformation points

By using the truncated shell model wave function of Eq.
(11), a reduced EM multipole transition probability is given

works to suppress the dimension of the Hamiltonian matrix. =Jer+1n+10> > > >
Some simplifications of the PGCM state may be inevitable, Lap 1o 1ot 1l gt
but the knowledge of intrinsic states and PPES’s is expected
to offer a useful ansatz for the truncation. X[ hmrs 108, o
V. ELECTROMAGNETIC PROPERTIES ><<Wf:;ZII?§")II\Iff7;,Z>W(I AN
It is interesting to examine electromagneti€M) proper- +(_1)Ii+IV_IW_>\5|W,|;_5p,p’

ties as an application of the PGCM. Such a study also gives
a chance to test the validity of the wave function. In this
section, we employ the-n coupled state constructed from
two PGCM wave functions of Eq$18) and (19), and ana-
lyze B(M1/E2) values for the systen8 andC. In parallel

XU AT I )]
Xfikfkf(lﬂ'pJVa-)fliki(lﬂ’n-p’vl],;0-,)- (22)
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In the singlej shell model, both the orbital angular mo-
mentumL and the intrinsic spi® are identical with the total

TABLE II.
results of the PGCM truncations for syste®andC.
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Comparison of exacB(M1/E2) values with the

spinJ multiplied by a trivial factor so that thil 1 operator is

' Exact v=30° Axial
given by

SystemB ~ B(M1;1,—0,) 0.6565  0.6496  0.6754

B(M1;1,—2,) 0 0 0
T(M1;u)= \/ > )J” (23) B(M1:1,—2,) 1.3104 13309  1.3294
oy B(M1:1,2;) 0.0946  0.1122  0.0753
where we employ the choide=1+ 1/2 throughout this paper. B(E2;1,—2y) 0.6862 0.6697 0.7032
In the numerical analysis, we use thare orbital and spin B(E2;1,—2,) 0.1032 0.1063 0.3473
gyromagnetic factors, i.eg"=1, g7=5.5857 for protons B(E2;1,-2;) 646279 71.1025  60.2517
andg;=0, g;= —3.8263 for neutrons. The dynamical effect B(E2;2,—0,) 265242 26.3983  26.4811
on the M1 strength arises only from the coefficient B(E2;2,—0,) 1.0640 1.1585 1.0411
fi.(I p,1,0) of the shell model wave function, since the B(E2;25—0,) 0.2563 02235 0.2299
reduced matrix element does not connect different PGCM B(E2;2,—2,) 36.5153 36.4979  35.2698
states, giving a geometrical contribution only, B(E2;2;—2,) 04322 02636  0.5776
SystemC  B(M1;1,—0,) 0.8160  0.8237  0.8007

- - (7) o B(M1;1,—2,) 0 0 0
(vi )N H‘] )”q}" ,NT>—6.T,.;6,, V(4D (21+1). B(M1;1,—2,) 1.0737  1.2676  1.0070

(24 B(M1;1,—25) 0 0 0
, . B(E2;1,—2,) 0.6158 05896  0.6109

The E2 operator is defined as B(E2;1,—2,) 0 0 0
B(E2;1,—2;) 44.8753 447753 46.8495
T(E2;p)=e,Q\"+e,Q), (29 B(E2;2,—0,) 21.3720 21.2188  20.9008

B(E2;2,—0;) 0 0 0
wheree,, ande, indicate the effective charges of protons and B(E2;2;,—0,) 0.3677 0.3760 0.3461
neutrons, respectively. The general form of the reduced ma- B(E2;2,—2,) 29.6375 29.2248  28.0001

trix element is already given in E@14). In the practice of B(E2;2:—2,) 0 0 0

the numerical analysis, we utilize the effective charges

(e,,e,)=(1.5,0.5) as an example. For the present model
nucleus, theB(M1/E2) value is given as a dimensionless | the y-soft nucleus. Such an effectiveness of the axial PGCM

quantity. is reconfirmed. Also, the validity of thg=30° intrinsic state

: . o ._.Is justified again.
We put our emphasis mainly on the EM transitions, which'S JUS . .
have a connection with thie,.=1, state excited through the Many properties derived from Table 1l are understood

. de. For th : f inalei shell th from the proton and neutron interacting boson model
SCISSors mode. For the Systems o e singlej shell, the (IBM2). In theO(6) dynamical symmetry limit of the IBM2,
M1 transition from the ground state to the lowést1,

: a strong 1—2, M1 decay is anticipated and thg-%2;
scissors state exhausts almost the thal strength M1 decay is strictly forbidder21]. Conversely, the {4

—2, E2 decay is forbidden and the;+-2, decay is pre-
dicted to have arE2 character in theD(6) limit of the
IBM2. These features can be seen in the two systems. Such
characteristic EM properties have been reported in some
v-unstable nuclej22-24.

For systemC, the selection rules completely coincide
with those in theO(6) limit of the IBM2. We observe the
vanishing B(M1;1,—25) and B(E2;2;—2,) values as
well as a strong 1—2; E2 transition. According to the

Table Il summarizes somB(M1/E2) values relevant to IBM2, the | ,=25 state is interpreted as a mixed symmetry
the I ,=1, scissors state for systen® and C. We also state. The strength of thE2 transition between the mixed
present other transitions in order to understand the interrelaymmetry and fully symmetric states is sensitive to the dif-
tion between the scissors and neighboring states. The exafeirence of the proton and neutron effective charges,
B(M1/E2) values are compared with the results of two—e,. We confirm that B(E2;2;—0,) vanishes and
kinds of PGCM truncations; one is the axial PGCM in Sec.B(E2;1;—23) is unchanged when we pet.=e,=1. This
IV B and the other is the triaxial PGCM in Sec. IV C. For the validates the assignment of the= 25 state as a mixed sym-
triaxial PGCM, we employ an intrinsic state with=30° in  metry state. The systel® has a close resemblance to the
view of the triaxiality-favoring tendency of the PPES. systemC, while strict selection rules do not hold true any

It can be said that both truncation schemes reproduce gefonger. Remembering the fact that the triaxial deformation is
eral trends of the exact results very well. In Sec. IV B, weessential for systemB and C, these consequences are not
have pointed out the potentiality of the axial PGCM even forsurprising.

B(M1;0,—1
- ( 11 o8,

> B(M1;0,—1,)
k=1

(26)

Clear fragmentation of th1 strength, which is typical of
realistic nuclei, does not occur in the-n singlej shell
model within the present framework.
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/| S L L B nucleus. AnyB(E2) value is always symmetric with respect
- 1 to y=230° for systenC. The same is true only in the case of
124 BOMI- N e,=e, for systemB, and theE2 strength is stronger on the
(M1;1; > 2,5) 3 N o X
i 1.3104 1 prolate side, ife,>e, . This is because systeBiis roughly
" Ir system B | regarded as a model nucleus made up of the prolate proton
kS 08'_ ] and oblate neutron bodies. The strofvgeak 1,—24(25)
E ’ \_—/ E2 decay is well reproduced, irrespective af Also, the
=l i value of B(E2;1;—2,) vanishes aty=30° for systemC.
2 0.6 B(Mll1 -— 01) . . .
5 L 0.6565 | However, as for the tw@(E2) values, physical information

0.4 _ obtained from they dependence is not so rich as in the case
of E2 transitions between symmetric states, e.g.,

0.2t~ BMIL1, —>2) B(E2;2,,2,—0,) andB(E2;2,—2;) [7].
-t\/i\ ﬂ/ The fundamental EM properties presented in this section
Ot are not strongly affected by the force parameter of the QQI,
system C 7 if x.~ andy,, are not artificially large compared with,,,, .

[ BMLL —>2))
1.0737

VI. CONCLUSION

g 08 BMI1, >0y 1 We have investigated various kinds of PGCM'’s on the
s 0.81599 ] basis of the proton-neutron singleshell model. By using

g 0.6 7 pure QQI, the quadrupole collectivity has been examined for
F b o2 y three model nuclei.

04 We have begun our investigations from the standard
PGCM, where the collective motion is described by the co-
herent motion of protons and neutrons. The results of the
present work together with those in previous wofKs-10]
303060 lead us to the conclusion that the correlations essential to the
v (degrees) low-lying states can be correctly taken into account by the
PGCM. Even for thep-n coupled system, its theoretical
FIG. 11.B(M1;1,—04,2 ) values of systemB andC as func-  framework is reasonable as far as fh@ coherent motion is
tions of y. The results correspond to those calculated in the triaxiakgncerned.
PGCM subspace. For the sake of convenience, the &@dtl) In order to describe collective modes relevant to pag
values of the shell model calculation are shown in the figure. relative motion such as a scissors mode, we have extended
the theoretical framework by explicitly separating the proton
Let us examine the dependence of thB(M1) values in  and neutron parts. We have proposed a truncation scheme by
a manner similar to the PPES’s. In Fig. 11, thi8@M1)  means of the PGCM. The truncation of the shell model has
values, i.e.B(M1;1,—04,24,2), are shown as functions of peen carried out for three types of PGCM's, i.e., the simplest
y for systemsB andC. We can draw some features common PGCM using a prolate intrinsic state, the axial PGCM, and
to two systems. As for thé1 transition from the scissors the triaxial PGCM using a fixed intrinsic state. The merits
state to the ground state, tlB{M1) value calculated ay  and demerits of each truncation are transparent from its in-
=30° gives the best description of the exact value as exgredients. A comparative study of respective truncations
pected from the PPES's. The functional behavior ofmakes it easy to disclose collective contents hidden in the
B(M1;1,—0,) turns out to be similar to that of the PPES’s complicated band structure of the shell model. With small
of 1,=04,1; (cf. Fig. 10. The large triaxial deformation is revision of the program code, we can perform many kinds of
advantageous to produce the strdig decay from the scis- PGCM’s for cross checking. This kind of flexibility is char-
sors state to thé,=2, quasi¢ band head. This view is acteristic of the PGCM, and will be also useful for the analy-
applied more explicitly to syster@, where the strength in- sis of real nuclei.
creases with triaxiality and reaches its maximum -at Along the lines of these investigations, we could clarify
=30°. TheB(M1) value aty=30° also accounts for the some properties of the model nuclei. For instance, the equi-
vanishing 3 — 2, decay. Its strength is small but nonzero for librium deformation of thd ,=1, scissors state is found to
y#30°. be realized aty=30° for systemsB and C. Namely, the
With respect to th&2 transitions, we are interested in the PPES of the scissors state shows the triaxiality-favoring ten-
v dependence oB(E2;1;—24,2,). As mentioned above, dency similar to that of the ground state. As for the EM
the functional behavior of the twl2 transitions is strongly transition probabilities of the two triaxial model nuclei, the
dependent on the choice of effective charges. An ambiguitglecay branches of the,=1; scissors state are similar to
arising from the effective charges is inevitable for the modelthose predicted in th®(6) limit of the IBM2.
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