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Quantum-number-projected generator coordinate method and the shell model
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Department of Physics, Saitama University, Saitama City 338-8570, Japan

~Received 8 February 2002; published 29 May 2002!

The validity of the quantum-number-projected generator coordinate method~PGCM! is investigated within
the proton-neutron single-j shell model. The results of the PGCM are compared with exact solutions in the
shell model. It is concluded that the PGCM provides a good approximation of the shell model for low-lying
collective states. In order to describe the proton-neutron relative motion such as a scissors mode, we also
propose a truncation scheme in terms of the PGCM. Various classes of PGCM truncations are examined by
changing sets of generator coordinates. Flexibility with respect to the choice of generator coordinates is
advantageous to illuminate the underlying physics. As an application of the PGCM truncation, theM1/E2
transition probabilities concerning theI 511 scissors state are analyzed for nuclei exhibiting stable triaxiality.
The electromagnetic properties are identified. Those are characteristic of theO(6) dynamical symmetry limit
of the proton-neutron interacting boson model.
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I. INTRODUCTION

The single-j shell model has been widely utilized as
testing ground for many microscopic theories@1–6#. Its great
simplicity allows us to obtain exact solutions and to swe
away any ambiguity arising from the numerical analysis. T
quantal effect is strongly amplified in small systems such
the single-j shell model. This feature is also suitable for i
vestigating a fully quantal theory, which goes beyond
mean-field approximation. The model contains enou
physical contents to judge the effectiveness of a theore
method.

In our consecutive papers@7–10#, the capability of the
quantum-number-projected generator coordinate met
~PGCM! was investigated within the single-j shell model of
identical nucleons. The PGCM was proved to be an excel
approximation of the shell model, irrespective of the sh
fillings. It was also clarified that the projected potential e
ergy surface~PPES! offers an intuitive insight into shel
model spectra@7#. Furthermore, we demonstrated the cap
bility of the PGCM to reproduce the change of spectrosco
properties accompanied by shape evolution from the sp
to the maximal deformation@8#. The PGCM combined with
the study of the PPES leads to some unexpected outco
such as stable triaxiality in the ground state, which canno
predicted within the mean-field approximation.

The purpose of this paper is to test the validity of t
PGCM in a more realistic situation, i.e., the proton-neutr
single-j shell model. This work completes our studies of t
PGCM within the single-j shell model. We examine variou
kinds of PGCM’s by changing the choice of generator co
dinates. The analysis based on the PGCM is classi
roughly into two schemes. One constructs the total sys
from the single PGCM state, and the other from the angu
momentum coupling of the proton and neutron PGCM sta
In the former scheme, total spinI is projected out directly
from a product wave function of the mean-field theory. T
PGCM levels derived directly from the Hill-Wheeler equ
tion are compared with exact solutions in the shell model
the latter scheme, the PGCM is used to truncate the e
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shell model configuration space in each proton or neut
system. The proton and neutron parts are treated separ
in the PGCM stage, and they are coupled through the dia
nalization of the total Hamiltonian.

In Sec. II the model Hamiltonian and intrinsic states a
given. We introduce three systems investigated in the pre
work. In Sec. III the PGCM scheme is directly applied to t
simulation of exact spectra. In Sec. IV the shell model co
figuration space is truncated by various kinds of PGCM’s.
analyzing numerical results, we pay much attention to
PPES. In Sec. V electromagnetic properties concerning
I 511 scissors mode are examined, in connection with
proton-neutron interacting boson model. We conclude the
per in Sec. VI.

II. HAMILTONIAN, INTRINSIC STATE,
AND MODEL NUCLEI

In this paper, we investigate a model where protons a
neutrons in each single-j shell interact through pure
quadrupole-quadrupole interaction~QQI!,

Ĥ5Ĥp1Ĥn1Ĥpn ,

Ĥp1Ĥn52
1

2 (
t5p,n

(
m522

2

xttQ̂m
~t!†Q̂m

~t! , ~1!

Ĥpn52xpn (
m522

2

Q̂m
~n!†Q̂m

~p! ,

where the subscriptsp andn indicate protons and neutrons
andQ̂m

(t) ~t5p or n! denotes the dimensionless mass qu
rupole operator, the definition of which is given in Refs.@7#,
@9#. A common force parameter is assumed, i.e.,x5xpp

5xnn5xpn51 ~MeV!, except when we compare th
strength of thep-n QQI component with that of the identica
nucleon components.

Intrinsic states of protons and neutrons,uFp& and uFn&,
are determined from the Nilsson or Nilsson BCS mod
©2002 The American Physical Society08-1
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@7–11#. The total intrinsic state, which is employed as t
generating function of the PGCM, is given by their produ
uF&5uFp&uFn&. In the Nilsson scheme, we assume t
common potential deformation~b, g! for both protons and
neutrons.

It is characteristic of the single-j shell model that the Nils-
son intrinsic state reaches the maximum deformation as s
as the potential deformation is switched on@11#. The Nilsson
state does not depend onb, so thatg becomes the only
parameter specifying the intrinsic state. Thus, the allow
deformation for the model nucleus is strictly restricted, u
less the pairing correlation exists@7#. In order to stress this
property, we use the term ‘‘deformation limit’’ for the de-
formed Nilsson states, in accordance with our previous w
@8#. The Nilsson intrinsic state is expressed asuF(g)&
@5uFp(g)&uFn(g)&] hereafter.

By applying the BCS scheme to Nilsson single-parti
levels, better generating functions are provided. In
present work, the significance of the pairing correlation l
in the expansion of the deformation region@8#, since our
model Hamiltonian does not contain the pairing interacti
The single-j shell is such a small system that the deformat
of the model nucleus quickly reaches its upper limit asb
increases. In order to specify the extent of deformation i
unique manner, we introduce intrinsic quantitiesq
5(q0 ,q2) and qt5(q0t ,q2t) in terms of the expectation
values of the quadrupole operators

q05q0p1q0n , q25q2p1q2n ~2!

with definitions

q0t5^FtuQ̂0
~t!uFt&, q2t52&^FtuQ̂2

~t!uFt &. ~3!

It is noted thatqt does not fluctuate for a fixedq (5qp

1qn), since protons and neutrons share the same pote
deformation~b, g!. We express the Nilsson BCS intrins
state asuF(q)& @5uFp(qp)&uFn(qn)&] hereafter.

In the present paper, we focus on the following thr
model nuclei labeledA, B, andC, which are typical of the
p-n single-j shell model. The values ofj ( j 5 j p5 j n) and the
neutron and proton numbers~N,Z! for each system are sum
marized as

A, j 5
13

2
, ~N,Z!5~10,10!,

B, j 5
13

2
, ~N,Z!5~4,10!,

C, j 5
11

2
, ~N,Z!5~6,6!. ~4!

In Figs. 1~a–c!, we show the ground-state PPES’s for t
three systems, which result from simultaneous spin-
particle-number projections. All the possible shapes allow
for the system are represented by the coordinates in
q0-q2 plane. For systemA, both proton and neutron mea
fields favor the prolate distribution. As a consequence of
06430
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spin projection, the system possesses a small triaxial sh
The prominent minimum of the PPES appears atg530° for
systemsB andC. The triaxiality-favoring tendency is not a
unusual feature in the single-j shell model, provided that the
spin projection is taken into account. The potential energ
lowered with increasing deformation. The minimum of th
PPES is realized at a point where the pairing gap is alm
zero for systemB, and exactly zero~deformation limit! for
systemsA and C. This is due to a manifest property of th
QQI. The good agreement between the minimum of
PPES and the exact ground-state energy justifies the
dicted equilibrium shape.

III. STANDARD PGCM

In the mean-field theory, the superfluid deformed state
described by the spontaneous breakdown of the gauge
rotational symmetries, which must be conserved in the fin
nucleus. Neither total spinI and itsz componentM nor the
nucleon numbersN andZ are good quantum numbers for th
Nilsson BCS state. The eigenstate ofI, M, N, andZ can be
extracted from such an intrinsic state by means of
quantum-number-projection method. A linear superposit
of many projected wave functions labeled by generator
ordinates set up the PGCM wave function. Depending on
objectives, suitable generator coordinates are incorpor
into the PGCM wave function. In the present model, t
most general PGCM wave function for thekth state of spinI
is given by

uC IkMNZ&5E dq (
K52I

I

FKk
INZ~q!P̂MK

I P̂NP̂ZuF~q!&, ~5!

where P̂MK
I is the spin projection operator, andP̂N and P̂Z

are the neutron and proton number projection operators
spectively. The positive parity is always ensured as a g
quantum number for all the states appearing in the pre
paper. The weight functionsFKk

INZ(q) and the PGCM energie
EIk are determined by solving the Hill-Wheeler equation

E dq8 (
K852I

I

$^F~q!uĤ P̂KK8
I P̂NP̂ZuF~q8!&

2EIk^F~q!uP̂KK8
I P̂NP̂ZuF~q8!&%FK8k

INZ
~q8!50 ~6!

under the normalization condition

^C IkMNZuC I 8k8M8N8Z8&5d I ,I 8dk,k8dM ,M8dN,N8dZ,Z8 .
~7!

In the numerical analysis, PGCM levels calculated up to s
I 58 are compared with exact solutions in the shell mod
Detailed accounts of the numerical analysis have been g
in Refs.@7–9#.

Judging from the functional behavior of the ground-sta
PPES shown in Fig. 1, we can expect that intrinsic state
the deformation limit provide suitable generating functio
of the PGCM. First, we examine the PGCM in the deform
tion limit. In this case, the twofold integral concerningq
8-2
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FIG. 1. Contour plots of the ground-state PPES’s for the systemsA ~a!, B ~b!, andC ~c!. The contour line separation is 5 MeV. Som
auxiliary contour lines indicated by dashed lines with a separation energy of 1 MeV are added for the systemsB and C. Dotted line
corresponds to potential deformation withg530°. The point where the potential energy takes its minimum is indicated by a cross, a
value is shown in the figure. For comparison, the exact ground-state energy of the shell model calculation is also given in parenth
placement of ten deformation points taken in the PGCM2 calculation~cf. Sec. III! is indicated by open circles.
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5(q0 ,q2) can be replaced with the singleg integral, and the
nucleon number projections can be dropped. Second, we
ceed to the more desirable PGCM given in Eq.~5!, the de-
formation region of which is extended to the fullq0-q2
plane. In order to distinguish two PGCM schemes, we c
the former PGCM1 and the latter PGCM2.

Numerical results for the three systems are shown in F
2–4. In the left panel, the PPES’s in the deformation lim
are plotted as functions ofg. The maximum number of the
spin projected levels up toI 58 is limited to 21 due to theD2
symmetry assumed in the intrinsic state. For systemsB and
C, all the 21 PPES’s are displayed in the figure. In the ri
panel, level schemes of two PGCM’s and the shell model
compared. In the PGCM1, deformation points are tak
along the curved line corresponding to the deformation lim
We arrange 21 points at regular intervals (Dg53°) from g
50° to 60°. The effect of the configuration mixing concer
06430
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ing g can be estimated by the direct comparison between
levels in the PGCM1 and the PPES’s. The calculation of
PGCM2 is carried out by taking 31 deformation points. W
add ten deformation points to the 21 points in the PGCM
The placement of the additional ten points is indicated
open circles in Figs. 1~a–c!. The numerical analysis of the
PGCM2 is much more elaborate than that of the PGCM
since it necessitates the particle-number projection in
PGCM kernels out of 961 (531331) ones.

We recognize some features in these figures. To be
with, we pay attention to the PPES. SystemA shows simple
band structure, typical of well deformed nuclei. This ind
cates that the intrinsic state is not strongly affected by
collective motion. The intrinsic states withg50°;30° gen-
erate similar projected levels. This outcome is explained
Fig. 1~a!, from which we find that the correspondence b
tween g and tan21(q2 /q0) is not good in the deformation
8-3
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FIG. 2. Energy levels ~in
MeV! for systemA. Left: Func-
tional behavior of PPES’s in the
deformation limit. The solid
~dashed! lines represent PPES’
for even ~odd! spins. The spin
value with a suffix specifying the
level ordering is assigned to eac
PPES. The PES calculated withi
the mean-field~MF! approxima-
tion is indicated by a dotted line
Right: Comparison between th
shell model and PGCM levels
The shell model levels are indi
cated by open circles. The level
of the PGCM1 are specified by1
while those of the PGCM2 are
specified by3. See text for fur-
ther details.
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limit. In other words, the intrinsic states withg50° – 30°
correspond to a very small range of the fullq0-q2 plane.

The triaxiality-favoring tendency of systemsB and C is
extended to excited states. The systemB already exhibits
stable triaxial deformation in the stage of the mean-field
proximation. In this case, the competition between prot
~favoring prolate distribution! and neutrons~favoring oblate
distribution! gives rise to stable triaxiality as a whole. At an
rate, the triaxial spin projection plays a crucial role in ea
system from the viewpoint of the correction in energy.
strong effect drives the equilibrium shape toward large
axial deformation in the systemC. The triaxiality-driving
effect of the spin projection was our main concern in t
06430
-
s

h
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previous works@7–10#, but not in the present work. We
should keep in mind that such an effect is also seen in
proton-neutron system@12#, while we do not go too far into
this topic.

Now, we proceed to the analysis of PGCM spectra. T
PGCM1 gives an excellent description of the ground-st
band and the first quasi-g band, irrespective of the system
It can be recognized that the minima of the PPES’s a
reproduce the levels in the two bands fairly well. For syste
B and C, the projected levels constructed from an intrins
state withg530° simulate PGCM levels best of all. Othe
than these low-lying levels, it is difficult to find clear corre
spondence between the PGCM1 and the shell model.
.
s

FIG. 3. Energy levels for sys-
tem B. Left: Functional behavior
of PPES’s in the deformation
limit. Right: Comparison between
the shell model and PGCM levels
Other illustrations are the same a
those in Fig. 2.
8-4
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FIG. 4. Energy levels for sys-
tem C. Left: Functional behavior
of PPES’s in the deformation
limit. Right: Comparison between
the shell model and PGCM levels
Other illustrations are the same a
those in Fig. 2.
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By extending the deformation region in the PGCM
some new levels appear, and energies of many existing le
are lowered. In the range of higher energy, this extens
modifies the results of the PGCM1 to some extent. We fi
however, that the addition of states with a small deformat
is not essential in the energy range shown in the figu
Further modification is not attained by the increment of d
formation points.

In the case of the single-j shell model of protons or neu
trons only, the underlying physics is almost clarified in th
stage@7–10#. The physical situation is not so simple in th
p-n coupled system. There exist many levels even in
low-energy region that cannot be constructed by PGCM1
PGCM2. A rotational band starting fromI 511 of systemA
is a typical example. This band is interpreted as the scis
band stemming from the relative displacement of the pro
06430
,
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n
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and neutron distributions@13–15#. The PGCM’s in the
present section cannot describe such an excitation. In
following section, we intend to simulate various collectiv
modes in a unified manner.

Table I summarizes the number of levels appearing
PGCM1 and PGCM2 for the three systems. Dimensions
the Hamiltonian matrix in the exact shell model and thr
truncation schemes taken up in the following section are a
shown in the table.

There is one thing to be added with respect to the PP
SystemB, which is made up of four proton holes and fo
neutron particles, is very sensitive to the force paramete
the QQI. In Fig. 5, the PPES’s for the ground-state band
the first quasi-g band are displayed. The left panel shows t
PPES’s for thep-n QQI, and the right panel shows those f
the sum of thep-p and n-n components. There is larg
2

03
1
21
51
17
20
42
4586
TABLE I. The dimension of the Hamiltonian matrix for three model nuclei.

System

PGCM1 PGCM2 One axial state Axial PGCM Triaxial PGCMa Exactb

A B C A B C A,B C A,B C A,B C A,B C

I 50 7 8 7 16 18 15 11 10 168 196 149 141 205 25
I 51 10 9 164 187 398 378 509 639
I 52 13 17 13 31 35 30 30 27 482 551 680 638 895 11
I 53 6 8 6 13 17 15 28 25 466 527 904 846 1167 144
I 54 18 24 18 40 49 42 46 41 750 845 1148 1062 1501 18
I 55 11 15 11 23 30 24 43 38 714 793 1324 1216 1705 20
I 56 22 30 22 46 57 49 59 52 956 1049 1512 1372 1961 23
I 57 15 21 15 29 38 31 55 48 896 959 1629 1461 2082 24
I 58 25 33 25 49 60 50 69 60 1090 1143 1751 1549 2242 25
Total 117 156 117 247 304 256 351 310 5686 6250 9495 8663 12267 1

Sec. III Sec. III Sec. IV A Sec. IV B Sec. IV C

aNumerical results correspond to one intrinsic state withg520° for systemA, and that withg530° for systemsB andC.
bThe dimension of which is the same as that of full PGCM truncation.
8-5
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K. ENAMI, K. TANABE, AND N. YOSHINAGA PHYSICAL REVIEW C 65 064308
difference between the two PPES’s. The same is true for
unprojected PES. Thep-n component has a tendency to ca
cel the prominent triaxial minimum arising from thep-p and
n-n components. However, the stable triaxiality does not d
appear from the total PPES until the ratioxpn /xpp

(xpn /xnn) becomes extremely large. Such a characteri
effect appears when two kinds of nucleons are definit
separated into the prolate and oblate distributions. For
temsA andC, functional behavior of the PPES’s againstg is
not affected by the force parameter. SystemsB andC possess
some common features, including electromagnetic transi
properties, but theirx dependence is quite different.

It is still controversial whether such an ambiguity for th
QQI is also seen in real nuclei. It is known that the lon
range particle-holeT50 component of thep-n QQI is cru-
cial for the nuclear deformation. The requirement of t
identical proton and neutron mean fields makes thep-n com-
ponent dominant, in general. In many transitional nuclei
weakly deformedg-soft nuclei, a combination of valenc
particles and valence holes determines fundamental nuc
properties. It will be interesting to investigate a role of t
p-n interaction in connection with the triaxiality.

IV. PGCM TRUNCATION OF THE SHELL MODEL

Within the PGCM examined in the preceding section,
tal spinI is projected out directly from thep-n product wave
function uF&5uFp&uFn&. In such a construction of the
PGCM state, the proton and neutron bodies are tigh
coupled, and both states ofuFp& anduFn& undergo the same
rotation specified by the common set of Euler angles.

FIG. 5. Functional behavior of PPES’s in the deformation lim
for systemB. The PPES’s for the ground-state band and the quag
band are displayed up toI 56. Left panel shows the contributio
from the p-n QQI component~i.e., xpp5xnn50, xpn51!, and
right panel shows that from thep-p plusn-n QQI component~i.e.,
xpp5xnn51, xpn50!. We use the same convention as those
Figs. 2–4 for the classification of the states.
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theoretical framework cannot treat various collective mod
in which the relative motion of protons and neutrons is
sential. The extension of the framework is necessary to
scribe such modes.

One possibility is to exclude the assumption of comm
deformation between protons and neutrons. Each shape
gree of freedomqt (t5p,n) is regarded as two independe
generator coordinates, but total spin is still projected
from the p-n product wave function. This scheme can pa
tially take into account thep-n relative motion. At any rate,
many levels in oddK bands cannot be described as long
the PGCM is based on intrinsic states conserving theD2
symmetry.

An alternative method is to project out spins of the prot
and neutron parts~I p andI n! separately, and to construct th
total wave function from the angular momentum couplin
Then, the proton and neutron PGCM wave functions are p
vided independently, and the Hill-Wheeler equation is solv
twice. The PGCM wave function for each nucleon system
given by

uC I trM tNt

~t! &5E dqt (
Kt52I t

I t

FKtr
I tNt~qt!P̂M tKt

I t P̂NtuFt~qt!&,

~8!

whereNn5N, Np5Z, andqt integral is carried out over the
range relevant to protons or neutrons. The weight functi
FKtr

I tNt(qt) are solutions of the Hill-Wheeler equation

E dqt8 (
Kt852I t

I t

$^Ft~qt!uĤtP̂KtK
t8

I t P̂NtuFt~qt8!&

2EI tr^Ft~qt!uP̂KtK
t8

I t P̂NtuFt~qt8!&%F
K

t8r

I tNt~qt8!50.

~9!

An essential point of this scheme is the separation ofI p and
I n rather than the discrimination between proton and neut
deformations. As mentioned in Sec. II, we utilize deform
tion pointsqp andqn determined from common paramete
~b, g!. Up to Eq.~9!, unlike nucleons are completely sep
rated.

In the practice of the numerical analysis, we project o
all the possible spin values forI p andI n to make up the total
spin I. The range ofI p , I n runs fromI p5I n50 to max(Ip)
5max(In)520 for systemsA and B, and max(Ip)5max(In)
518 for systemC. We also take account of theKt quantum
number correctly in order to count the dimension of t
Hamiltonian matrix without ambiguity. Needless to say, hi
spinsI t and highKt components as well as high-lying stat
specified by larger are not important for low-lying collec-
tive levels. In case of realistic nuclei, the contribution fro
these will be safely excluded without affecting key dyna
ics.

The p-n coupled state is constructed from the proton a
neutron PGCM wave functions

uC IMNZ~ I pr,I ns!&5@ uC I prZ
~p! &uC I nsN

~n! &] M
I . ~10!
8-6
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QUANTUM-NUMBER-PROJECTED GENERATOR . . . PHYSICAL REVIEW C 65 064308
What we intend in the following investigation is to constru
the p-n coupled state in terms of various kinds of PGCM
The p-n coupled PGCM states provide building blocks f
the truncation of the shell model. The truncated shell mo
wave function for thekth state of spinI is given by

uc IkMNZ&5(
I pr

(
I ns

f Ik~ I pr,I ns!uC IMNZ~ I pr,I ns!&.

~11!

The p-n correlation arising from theĤpn term does not ap-
pear until the total Hamiltonian matrix is diagonalized in t
(I pr,I ns) space.

Here, we give the Hamiltonian matrix element concern
the p-n coupled PGCM wave function of Eq.~10!. The ma-
trix for identical nucleons is diagonal, and its elements
just the PGCM energies given by the Hill-Wheeler equat

^C IMNZ~ I pr,I ns!u~Ĥp1Ĥn!uC IMNZ~ I p8 r8,I n8s8!&

5~EI pr1EI ns!d I p ,I
p8
dr,r8d I n ,I

n8
ds,s8 . ~12!

The matrix element of thep-n interaction is

^C IMNZ~ I pr,I ns!uĤpnuC IMNZ~ I p8 r8,I n8s8!&

52xpnW~ I p8 2II n ;I pI n8!3^C I prZ
~p! iQ̂~p!iC I

p8 r8Z
~p!

&

3^C I nsN
~n! iQ̂~n!iC I

n8s8N
~n!

&, ~13!

with the reduced matrix element

^C I trNt

~t! iQ̂~t!iC l
t8r8Nt

~t!
&

5A2I t11E dqtE dqt8 (
Kt52I t

I t

(
Kt852I t8

I t8

(
m522

2

3~ I t8Kt2m,2muI tKt!

3^Ft~qt!uQ̂m
~t!P̂

Kt2mK
t8

I t P̂NtuFt~qt8!&

3FKtr
I tNt* ~qt!FK

t8r8

I t8Nt ~qt8!, ~14!

where (j 1m1 , j 2m2u j 3m3) andW denote the Clebsch-Gorda
coefficient and the Racah coefficient, respectively. Throu
out this paper, the definition of the reduced matrix elem
for the irreducible spherical tensor of rankl and labelm,
T̂lm , is

^IM auT̂lmuI 8M 8a8&5
~ I 8M 8,lmuIM !

A2I 11
^IaiT̂li I 8a8&.

~15!
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A. PGCM with only one axial intrinsic state

In the first place, we consider the case of one axial intr
sic state (g50°) in the deformation limit. The PGCM stat
is obtained by replacing the weight function in Eq.~8! ac-
cording to

FKtr
I tNt~qt!→

dKt,0d~q0t2max@q0t# !d~q2t20!

^Ft~g50°!uP̂00
I t uFt~g50°!&

. ~16!

This theoretical framework is essentially equivalent to that
the extended version of the projected shell model@16#. The
spin I t has to be even, and only one state is allowed for e
spin. Then, the summation for the level indicesr and s in
Eq. ~11! can be dropped. The restriction to a prolate shape
the deformation limit allows us to omit the particle-numb
projection, and to replace the triaxial spin projection with t
axial one. Thus, the PGCM state becomes simple enou
but physical contents derived from it are still rich. In order
demonstrate this, we take a close look at the degene
2p1 f shell before the single-j shell.

It was shown that theSD-pair truncation of the shel
model exactly reproduces dominant irreps for the 2s1d shell
@17#. The 2p1 f shell, for which theSD-pair approximation is
obviously insufficient, is suitable for checking the validity o
the simplification. Let us consider a system with six proto
and six neutrons as an example.

Our Hamiltonian consists of pure QQI withx5xpp

5xnn5xpn ~symmetric between protons and neutrons!. As a
result, Elliott’s SU~3! model can be applied to this situatio
@18,19#. Thep-n coupled system has the dynamical symm
try SU(3)p ^ SU(3)n.SU(3)pn . The leading representatio
is (l,m)t5(12,0)t (t5p,n) for identical nucleons. This
representation has the maximum orbital symmetry, i.e., z
intrinsic spinSp5Sn50, so thatI p , I n , and the total spinI
are identical with the orbital angular momentaLp , Ln , and
L, respectively. The energy spectra of the total system
given by using the eigenvalue of the second order SU(3pn

Casimir operator

EL~l,m!pn52
5x

32p
@4~l21lm1m213l13m!

23L~L11!#. ~17!

If the spin projection is applied to the prolate Nilsson sta
with six like nucleons in the degenerate 2p1 f shell, the
SU(3)t representation (12,0)t is exactly reproduced. Then
unlike nucleons are coupled through the diagonalization
the total Hamiltonian. This procedure generates rotatio
bands belonging to the SU(3)pn irreps, (12,0)p ^ (12,0)n
5(24,0)pn % (22,1)pn % ...% (0,12)pn . A total of 413 levels
belonging to the above irreps are exactly reproduced wit
the PGCM truncation. In Fig. 6, the energy spectra are d
played. We point out without details that only one repres
tation (24,0)pn , i.e., the ground-state band, is reproduc
when the spin projection is applied directly to the total Ni
son state as in the preceding section. The excited bands
from the relative motion between protons and neutrons, si
8-7
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both intrinsic states are in the irreps (12,0)p and (12,0)n ,
corresponding to their ground state@16#. The first excited
band starting fromI k511 , namely, theK51 band1 de-
scribed by the representation (22,1)pn , is interpreted as the
rotational band on the scissors vibrational mode.

We now leave the multi-j shell and apply the sam
method to systemA. The low-lying rotational bands ar
shown in Fig. 7. These consist of the lowest 25 levels ca
lated in the PGCM subspace and the corresponding e
levels. There appear 51 shell model levels in the ene
range of the lowest 25 approximate levels. It can be rec
nized that the band structure is similar to that of the deg
erate 2p1 f shell. In addition to the ground-state band, tw
bands interpreted as the first quasi-g band andb band are
reproduced qualitatively. TheI k511 band, which cannot be
simulated by the PGCM in Sec. III, is also reproduced wit
good accuracy. In spite of its drastic simplification, ma
correlations are already taken into account. The total num
of levels up toI 58 amounts to 351.

However, we must regard the success for systemA as an
exceptional case. The picture of the SU~3! model happens to
be suitable for this system owing to some conditions, e

1The assignment ofK is based on Elliott’s quantum numbe
Within the present PGCM state generated from any axial intrin
state, theK number is necessarily zero.

FIG. 6. Energy levels for the degenerate 2p1 f shell. For the
sake of convenience, the force parameter of the QQI is chosen
x532p/5 MeV. Each rotational band is specified by the SU(3)pn

irreps, (l,m)pn . With respect to Elliott’sK number, even~odd! K
bands are connected by solid~dashed! lines.
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the shell fillings and model Hamiltonian. Turning our atte
tion to systemsB and C, we see that the problem is not s
simple. The correspondence between the PGCM trunca
and the exact shell model is bad, though their figures are
displayed here. There is large discrepancy even in
ground-state energy. As we have seen in Figs. 3 and 4,
projected levels at prolate and oblate shapes are degen
in energy, and the minimum of the PPES appears ag
530°. It is obvious that one intrinsic state withg50° is
insufficient to simulate the complicated band structure
systemsB andC. Now that underlying physics for systemA
has been clarified, we place great emphasis on the analys
the systemsB andC in what follows.

B. Axial PGCM

One of the purposes of this paper is to investigate vari
kinds of PGCM’s by changing the choice of generator co
dinates. We cannot evade examining the capability of
axial PGCM, since its application is interesting from a pra
tical viewpoint. The restriction to axial shapes is still effe
tive to cut down the computation time, while the configur
tion mixing of many deformation points is required. In th
section, we focus on the truncation of the shell model
terms of the axial PGCM.

The wave function of the axial PGCM is obtained b
settingq2t50 (g50°) andKt50 in Eq. ~8!,

uC I trM tNt

~t! &5E dq0tF0r
I tNt~q0t!P̂M t0

I t P̂NtuFt~q0t!&,

~18!

whereq0t is integrated over all the possible axially symme
ic

be

FIG. 7. Energy levels in the exact shell model and the PGC
subspace with one prolate intrinsic state for systemA. From the left,
the ground-state band, the scissors band, the quasi-g band, and the
b band are depicted for both theoretical methods. See text for
ther details.
8-8
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QUANTUM-NUMBER-PROJECTED GENERATOR . . . PHYSICAL REVIEW C 65 064308
ric shapes. We take about 50 deformation points uniform
over the whole range ofq0t . For all the systems, the numbe
of levels already reaches the maximum within its theoret
framework~cf. Table I!, and the convergence of each level
confirmed.

For systemA, we only point out a few facts without show
ing the figure. In comparison with the result in the previo
section~Fig. 7!, the agreement between the levels calcula
in the axial PGCM subspace and the exact ones beco
even better, but no drastic change is made in the low-ly
levels. This validates an assumption of a fixed intrinsic st

The numerical results for systemsB andC are shown in
the upper and lower panels of Fig. 8, respectively. The le
schemes calculated in the PGCM subspace are comp
with the exact ones. The truncation by the axial PGCM is
very good as a whole. The axial intrinsic state includes o
even spin components so that the odd spinI t does not appea
in the axial PGCM. All the even and odd spins of thep-n
coupled PGCM state are constructed by the angular mom
tum coupling of evenI p andI n . The absence of the odd sp
I t is a main reason for the discrepancy between the PG
truncation and the exact shell model. This view is eventua
reduced to the absence of the triaxial intrinsic state.

However, the accuracy of lower-spin states is satisfact
Above all, the states ofI 50, for which I p5I n , are well
reproduced. This is because shell model states of oddI p (I n)

FIG. 8. Energy levels in the exact shell model and the ax
PGCM subspace for systemsB and C. The shell model levels are
indicated by open circles, and the levels of the PGCM truncation
crosses.
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are not dominant in the low-energy range for the prot
~neutron! system. Moreover, the accuracy of the ground-st
band is not so bad. It is worthwhile to mention that b
results in the case of one prolate intrinsic state are impro
substantially. What must be stressed is that the axial PG
has an ability to reproduce many states of even spinI t ,
including the members of quasi-g bands, whileKt is re-
stricted to zero@8#. Many of these levels are usually class
fied into states in theKtÞ0 bands in other theories. Thu
capabilities hidden in each identical nucleon system lead
the improvement of spectra.

It can be safely said that the truncation by the ax
PGCM will be a good and practical approximation for ma
deformed nuclei. Also, it may be conveniently utilized as t
first approximation even for the triaxial org-soft nucleus.

C. Triaxial PGCM

The consequence of the preceding section requires u
withdraw the assumption of the axially symmetric deform
tion for further progress. Let us consider the PGCM st
generated from a triaxial intrinsic state in the deformati
limit

uC I trM tNt

~t! &5 (
Kt52I t

I t

FKtr
I tNt~g!P̂M tKt

I t uFt~g!&. ~19!

Other than the triaxiality, there is no large difference betwe
the triaxial PGCM state and that in Sec. IV A.

In Fig. 9, the lowest 300 shell model levels and the c
responding levels calculated in the PGCM subspace are
played for systemsB andC. The numerical analysis is per
formed by using an intrinsic state withg530° for both
systems. The number of levels increases drastically du
the triaxial degree of freedom, though the configuration m
ing of deformation points is not carried out. There appe
274 ~235! levels in the figure for systemB ~C!.

The strong influence of the triaxial intrinsic state can
also read from the dimension of the Hamiltonian mat
shown in Table I. In comparison with the axial PGCM tru
cation, the dimension increases except for the state ofI 50.
The axial PGCM truncation can produce at most half of
total levels. This implies that many additional levels orig
nate from the triaxiality. In addition to the scissors mode,
triaxiality of the proton and neutron distributions excites ne
modes such as the twist mode, scissors plus twist mode,
so forth @20#. These modes are also visualized as a coun
rotational oscillation of the triaxial proton and neutro
bodies.

There is still room to make an improvement, but the ov
all trend of exact spectra is well simulated. Considering
fact that the result is obtained by using an only intrinsic st
with g530°, we may say that the triaxial PGCM is ver
successful.

For systemA, we abbreviate the figure, and only refer
some outcomes. The result is almost perfect. The trunca
is already successful in the stage of the axial PGCM,
further modification is achieved. For instance, the band h
energy of the first quasi-g band, which is not quantitatively

l

y

8-9
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FIG. 9. Energy levels in the exact shell model and theg530° triaxial PGCM subspace for systemsB ~left! andC ~right!. The shell model
levels are indicated by open circles, and the levels of the PGCM truncation by crosses. The lowest 300 shell model levels are di
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reproduced by the axial PGCM, is improved with the help
triaxiality. The number of levels amounts to 282 in the e
ergy range of the lowest 300 shell model levels, when
intrinsic state withg520° is employed.

Indeed the truncation is successful, but the underly
physics derived from it is not so clear. It is not always s
nificant to extend the theoretical framework at the cost of
intuitive physical picture that simpler schemes have. In
PGCM, such a picture is provided by intrinsic states. As
the preceding section, we can depict the PPES in the spa
deformation parameters.

In Fig. 10, the PPES’s of the systemsB and C are dis-
played as functions ofg. Because of a large number of lev
els, we confine our investigation to low-lying states ofI
50, 1, and 2. Some levels are not smooth around the ax
symmetric shape~g;0° or 60°!. Through this range, the
dimension of the Hamiltonian matrix increases rapidly, a
new levels appear. The levels constructed atg530° give the
best description of exact levels. This result is easily und
stood from the above investigations. It is noted that
triaxiality-favoring tendency is extended to the states oI
51. The scissorsI k511 state and the ground state posse
common properties with respect to the triaxiality. In the fo
lowing section, we will examine this issue, in connecti
with the M1 andE2 transition probabilities.

It is interesting to compare the PPES’s in this section w
those in Sec. III. Over the whole range ofg, the energy of
each level is lower than those of Figs. 3 and 4, while
06430
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appearance of the PPES’s is preserved as a whole. T
variation againstg turns out to be small, in general. In othe
words, the minima of the PPES’s become shallow compa
with Figs. 3 and 4.~One clear example for this feature is se
in systemA, where the ground-state energy atg;60° is
lowered by almost 20 MeV, in comparison with the PPES
Fig. 2.! This fact implies that a large correlation is taken in
account through thep-n coupling scheme, even if a selecte
intrinsic state is not the most suitable. On the other ha
some levels, e.g., the state ofI k502 , become less accurat
than the axial PGCM case. The restriction to a fixed shap
not appropriate to reproduce these levels quantitatively.

As inferred from the above excellent results, the config
ration mixing of some triaxial intrinsic states completes t
work at least for thep-n single-j shell model. As a matter o
fact, the ‘‘full’’ PGCM in Eq. ~8! makes a perfect reproduc
tion of all the shell model levels for the three systems. To
number of levels up toI 58 already amounts to 10 000. Th
fact indicates that the single-j shell model for the identica
nucleon system is exactly solved in terms of the PGCM. T
purpose of this paper is not to bring the PGCM truncation
perfection. It goes without saying that this kind of endeav
makes no sense from a practical point of view. Therefore,
do not take up the ‘‘full’’ PGCM in detail.

The excellence of the PGCM may conversely suggest
difficulty in the numerical calculation. Namely, as is alwa
the case with the spherical shell model, the PGCM trunca
may be confronted with the diagonalization of the Ham
8-10
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FIG. 10. Functional behavior
of PPES’s calculated in the tri
axial PGCM subspace for system
B ~left! and C ~right!. The lowest
PPES’s for I 50 ~solid lines!, 1
~dotted lines!, and 2~dashed lines!
are displayed. For comparison, ex
act shell model levels ofI 50, 1,
and 2~open circles! are plotted in
the lines ofg525°, 30°, and 35°,
respectively. See text for furthe
details.
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tonian matrix with huge dimension, if it is faithfully applie
to the analysis of a real heavy nucleus. It is natural to
whether the ‘‘full’’ PGCM truncation is still applicable to
realistic cases. The present model nuclei are not suitable
answering this question, since the full PGCM truncation
no longer an approximation within thep-n single-j shell
model. The perfect reproduction is simply due to the sm
ness and simplicity of the system. It is impossible to conn
the result of thep-n single-j shell directly to realistic nuclei.
However, we can give some comments on this issue.

The dimension of the Hamiltonian matrix can be ke
small as long as the number of deformation points is sm
Inclusion of a few triaxial intrinsic states has a large effect
the PGCM wave function. The minimum number of points
attain the perfect reproduction of the shell model is only t
for systemsA andB, and three for systemC. What must not
be forgotten is that the PGCM2 examined in Sec. III tak
account of as many as 30 points, the results of which
inferior to the present ones. In any case, a small numbe
deformation points is sufficient to reproduce low-lying co
lective levels. We consider that this view is correct even
real nuclei. In addition to some implicit assumptions in t
intrinsic state, imposing a restriction on deformation poi
works to suppress the dimension of the Hamiltonian mat
Some simplifications of the PGCM state may be inevitab
but the knowledge of intrinsic states and PPES’s is expe
to offer a useful ansatz for the truncation.

V. ELECTROMAGNETIC PROPERTIES

It is interesting to examine electromagnetic~EM! proper-
ties as an application of the PGCM. Such a study also g
a chance to test the validity of the wave function. In th
section, we employ thep-n coupled state constructed from
two PGCM wave functions of Eqs.~18! and ~19!, and ana-
lyze B(M1/E2) values for the systemsB andC. In parallel
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with this, we pay attention to theirg dependence.
Here, we give some expressions for the sake of compl

ness. We start from the irreducible tensor operatorT̂lm of
rank l and labelm,

T̂lm5T̂lm
~p!1T̂lm

~n! . ~20!

By using the truncated shell model wave function of E
~11!, a reduced EM multipole transition probability is give
by

B~El/Ml;I ik i→I fk f !5
1

2I i11
u^c I fk fNZiT̂lic I ik iNZ&u2

~21!

with

^c I fk fNZiT̂lic I ik iNZ&

5A~2I i11!~2I f11!(
I pr

(
I ns

(
I p8 r8

(
I n8s8

3@~21! I f1I p8 2I n2ld I n ,I
n8
ds,s8

3^C I prZ
~p! iT̂l

~p!iC I
p8 r8Z

~p!
&W~ I pI p8 I f I i ;lI n!

1~21! I i1I n2I p2ld I p ,I
p8
dr,r8

3^C I nsN
~n! iT̂l

~n!iC I
n8s8N

~n!
&W~ I nI n8I f I i ;lI p!#

3 f I fk f
* ~ I pr,I ns! f I ik i

~ I p8 r8,I n8s8!. ~22!
8-11
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In the single-j shell model, both the orbital angular mo
mentumL̂ and the intrinsic spinŜ are identical with the tota
spin Ĵ multiplied by a trivial factor so that theM1 operator is
given by

T̂~M1;m!5A 3

4p (
t5p,n

S gl
t1

gs
t2gl

t

2 j D Ĵm
~t! , ~23!

where we employ the choicej 5 l 11/2 throughout this paper
In the numerical analysis, we use thebare orbital and spin
gyromagnetic factors, i.e.,gl

p51, gs
p55.5857 for protons

andgl
n50, gs

n523.8263 for neutrons. The dynamical effe
on the M1 strength arises only from the coefficie
f Ik(I pr,I ns) of the shell model wave function, since th
reduced matrix element does not connect different PG
states, giving a geometrical contribution only,

^C I trNt

~t! i Ĵ~t!iC I
t8r8Nt

~t!
&5d I t ,I

t8
dr,r8AI t~ I t11!~2I t11!.

~24!

The E2 operator is defined as

T̂~E2;m!5epQ̂m
~p!1enQ̂m

~n! , ~25!

whereep anden indicate the effective charges of protons a
neutrons, respectively. The general form of the reduced
trix element is already given in Eq.~14!. In the practice of
the numerical analysis, we utilize the effective charg
(ep ,en)5(1.5,0.5) as an example. For the present mo
nucleus, theB(M1/E2) value is given as a dimensionle
quantity.

We put our emphasis mainly on the EM transitions, wh
have a connection with theI k511 state excited through th
scissors mode. For the systems of thep-n single-j shell, the
M1 transition from the ground state to the lowestI k511
scissors state exhausts almost the totalM1 strength

B~M1;01→11!

(
k51

all

B~M1;01→1k!

.0.95. ~26!

Clear fragmentation of theM1 strength, which is typical of
realistic nuclei, does not occur in thep-n single-j shell
model within the present framework.

Table II summarizes someB(M1/E2) values relevant to
the I k511 scissors state for systemsB and C. We also
present other transitions in order to understand the interr
tion between the scissors and neighboring states. The e
B(M1/E2) values are compared with the results of tw
kinds of PGCM truncations; one is the axial PGCM in Se
IV B and the other is the triaxial PGCM in Sec. IV C. For th
triaxial PGCM, we employ an intrinsic state withg530° in
view of the triaxiality-favoring tendency of the PPES.

It can be said that both truncation schemes reproduce
eral trends of the exact results very well. In Sec. IV B, w
have pointed out the potentiality of the axial PGCM even
06430
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theg-soft nucleus. Such an effectiveness of the axial PGC
is reconfirmed. Also, the validity of theg530° intrinsic state
is justified again.

Many properties derived from Table II are understo
from the proton and neutron interacting boson mo
~IBM2!. In theO(6) dynamical symmetry limit of the IBM2,
a strong 11→22 M1 decay is anticipated and the 11→21
M1 decay is strictly forbidden@21#. Conversely, the 11
→22 E2 decay is forbidden and the 11→21 decay is pre-
dicted to have anE2 character in theO(6) limit of the
IBM2. These features can be seen in the two systems. S
characteristic EM properties have been reported in so
g-unstable nuclei@22–24#.

For systemC, the selection rules completely coincid
with those in theO(6) limit of the IBM2. We observe the
vanishing B(M1;11→23) and B(E2;23→21) values as
well as a strong 11→23 E2 transition. According to the
IBM2, the I k523 state is interpreted as a mixed symme
state. The strength of theE2 transition between the mixe
symmetry and fully symmetric states is sensitive to the d
ference of the proton and neutron effective charges,ep

2en . We confirm that B(E2;23→01) vanishes and
B(E2;11→23) is unchanged when we putep5en51. This
validates the assignment of theI k523 state as a mixed sym
metry state. The systemB has a close resemblance to th
systemC, while strict selection rules do not hold true an
longer. Remembering the fact that the triaxial deformation
essential for systemsB and C, these consequences are n
surprising.

TABLE II. Comparison of exactB(M1/E2) values with the
results of the PGCM truncations for systemsB andC.

Exact g530° Axial

SystemB B(M1;11→01) 0.6565 0.6496 0.6754
B(M1;11→21) 0 0 0
B(M1;11→22) 1.3104 1.3309 1.3294
B(M1;11→23) 0.0946 0.1122 0.0753
B(E2;11→21) 0.6862 0.6697 0.7032
B(E2;11→22) 0.1032 0.1063 0.3473
B(E2;11→23) 64.6279 71.1025 60.2517
B(E2;21→01) 26.5242 26.3983 26.4811
B(E2;22→01) 1.0640 1.1585 1.0411
B(E2;23→01) 0.2563 0.2235 0.2299
B(E2;22→21) 36.5153 36.4979 35.2698
B(E2;23→21) 0.4322 0.2636 0.5776

SystemC B(M1;11→01) 0.8160 0.8237 0.8007
B(M1;11→21) 0 0 0
B(M1;11→22) 1.0737 1.2676 1.0070
B(M1;11→23) 0 0 0
B(E2;11→21) 0.6158 0.5896 0.6109
B(E2;11→22) 0 0 0
B(E2;11→23) 44.8753 44.7753 46.8495
B(E2;21→01) 21.3720 21.2188 20.9008
B(E2;22→01) 0 0 0
B(E2;23→01) 0.3677 0.3760 0.3461
B(E2;22→21) 29.6375 29.2248 28.0001
B(E2;23→21) 0 0 0
8-12
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Let us examine theg dependence of theB(M1) values in
a manner similar to the PPES’s. In Fig. 11, threeB(M1)
values, i.e.,B(M1;11→01,21,22), are shown as functions o
g for systemsB andC. We can draw some features comm
to two systems. As for theM1 transition from the scissor
state to the ground state, theB(M1) value calculated atg
530° gives the best description of the exact value as
pected from the PPES’s. The functional behavior
B(M1;11→01) turns out to be similar to that of the PPES
of I k501,11 ~cf. Fig. 10!. The large triaxial deformation is
advantageous to produce the strongM1 decay from the scis
sors state to theI k522 quasi-g band head. This view is
applied more explicitly to systemC, where the strength in
creases with triaxiality and reaches its maximum atg
530°. TheB(M1) value atg530° also accounts for the
vanishing 11→21 decay. Its strength is small but nonzero f
gÞ30°.

With respect to theE2 transitions, we are interested in th
g dependence ofB(E2;11→21,22). As mentioned above
the functional behavior of the twoE2 transitions is strongly
dependent on the choice of effective charges. An ambig
arising from the effective charges is inevitable for the mo

FIG. 11. B(M1;11→01,21,2) values of systemsB andC as func-
tions ofg. The results correspond to those calculated in the tria
PGCM subspace. For the sake of convenience, the exactB(M1)
values of the shell model calculation are shown in the figure.
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nucleus. AnyB(E2) value is always symmetric with respe
to g530° for systemC. The same is true only in the case
ep5en for systemB, and theE2 strength is stronger on th
prolate side, ifep.en . This is because systemB is roughly
regarded as a model nucleus made up of the prolate pr
and oblate neutron bodies. The strong~weak! 11→21(22)
E2 decay is well reproduced, irrespective ofg. Also, the
value of B(E2;11→22) vanishes atg530° for systemC.
However, as for the twoB(E2) values, physical information
obtained from theg dependence is not so rich as in the ca
of E2 transitions between symmetric states, e
B(E2;21,22→01) andB(E2;22→21) @7#.

The fundamental EM properties presented in this sec
are not strongly affected by the force parameter of the Q
if xpp andxnn are not artificially large compared withxpn .

VI. CONCLUSION

We have investigated various kinds of PGCM’s on t
basis of the proton-neutron single-j shell model. By using
pure QQI, the quadrupole collectivity has been examined
three model nuclei.

We have begun our investigations from the stand
PGCM, where the collective motion is described by the c
herent motion of protons and neutrons. The results of
present work together with those in previous works@7–10#
lead us to the conclusion that the correlations essential to
low-lying states can be correctly taken into account by
PGCM. Even for thep-n coupled system, its theoretica
framework is reasonable as far as thep-n coherent motion is
concerned.

In order to describe collective modes relevant to thep-n
relative motion such as a scissors mode, we have exten
the theoretical framework by explicitly separating the prot
and neutron parts. We have proposed a truncation schem
means of the PGCM. The truncation of the shell model h
been carried out for three types of PGCM’s, i.e., the simp
PGCM using a prolate intrinsic state, the axial PGCM, a
the triaxial PGCM using a fixed intrinsic state. The mer
and demerits of each truncation are transparent from its
gredients. A comparative study of respective truncatio
makes it easy to disclose collective contents hidden in
complicated band structure of the shell model. With sm
revision of the program code, we can perform many kinds
PGCM’s for cross checking. This kind of flexibility is cha
acteristic of the PGCM, and will be also useful for the ana
sis of real nuclei.

Along the lines of these investigations, we could clar
some properties of the model nuclei. For instance, the e
librium deformation of theI k511 scissors state is found t
be realized atg530° for systemsB and C. Namely, the
PPES of the scissors state shows the triaxiality-favoring t
dency similar to that of the ground state. As for the E
transition probabilities of the two triaxial model nuclei, th
decay branches of theI k511 scissors state are similar t
those predicted in theO(6) limit of the IBM2.
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