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Shell model approach to construction of a hyperspherical basis foA identical particles:
Application to hydrogen and helium isotopes
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A new method to construct hyperspherical functions basisAfadentical particles, beyond the minimal
approximation, is presented. This method is based on the link between the hyperspherical function method
(HSFM) and the oscillator no-core shell model and uses a Slater determinant representation of the hyperspheri-
cal functions. It is shown that, because of this representation, the HSFM matrix elements are related to the
inverse Laplace transforms of the oscillator shell model matrix elements, on the condition that the center-of-
mass motion and the hyperradial excitations are removed from the shell model states. The applicability of the
proposed method is demonstrated for the case of tfid and “~*He isotopes.
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[. INTRODUCTION Revai coefficient$12], can be easily calculated. FAr>3, a
number of methods to calculate these coefficients have been
One of the possible ways to solve the many-body problenproposed over the last thirty years. The most recent ones can
for a system ofA identical particles is to introduce the hy- be found in Refs[13,14 together with the references to
perspherical coordinates and to expand the wave function adarlier works. However, numerical applications to the solu-
this system in the hyperspherical functions basis. Becauston of the physical problems using this technique have been
the hyperspherical functions form a complete orthonormapublished only forA=4 (see, for example, Ref9]) and no
set, such an expansion should provide a solution of thealculations forA>4 are known to the author.
many-body problem. This idea forms the foundation of the (2) The matrix elements of thN potential can be calcu-
hyperspherical functions meth@dlSFM), in which a many-  lated easily using two-particle coefficients of fractional par-
body wave function is represented as a sum of products aéntage(CFP introduced in Refd.15,16. A general recursive
the hyperradial and the hyperspherical functions. The HSFMrocedure to construct the HSFM one- and two-particle
and its advanced modifications have been reviewed, for exX2FPs has been described in Rg] about 25 years ago. It
ample, in Refs[1-3]. has also been shown that the hyperspherical GFR¥-P3
The hyperspherical expansion has been shown to corean be related to those of the translation-invariant shell
verge for three- and four-nucleon bound systems providingnodel (TISM) [15]. The HCFPs forA=3 andK=4 have
comparable results for binding energies and root meaibeen tabulated in Ref15]. However, no numerical calcula-
squared radii to other few-body metho-9]. For A>4, tions of the HCFPs foA>4 were done at that time. Re-
the number of the hyperspherical harmonics becomes vergently, a new recursive procedure, which provides the hyper-
large and no studies of convergence have been done withgpherical states with well-defined orthogonal and permu-
the traditional formulation of the HSFM. However, in Refs. tational symmetry, has been worked out and encddé&dl
[10,11 some p-shell nuclei have been studied within two This technique has been used to calculate the HCFPaIBind
modified versions of the HSFM. In R€fL0], a method com- matrix elements for thé=3—-6 nuclei and®Be and*°C in
bining the Faddeev approach and the pair-correlated hypeRefs.[10,11].
spherical harmonic method has been used to shudy ®Be, (3) The two approaches mentioned above use an explicit
and °C. In Ref.[11], the effective interaction method, tra- representation of the hyperspherical functions by the usual
ditionally used in the framework of the harmonic oscillator spherical functions and the Jacobi polynomials. Such a rep-
basis, has been applied to the hyperspherical formalism aksentation may not be necessary if the link between the
the A=3-6 nuclei. Both works report that, for the nucleon- HSFM and TISM is used to calculate the matrix elements.
nucleon (N) interactions chosen, convergence wasThis link has been previously investigated in Ref$8—
achieved with a relatively small number of hyperspherical20,15,3. In particular, it has been shown that for the mini-
functions. mum possible value of the hyperangular moment@min
The application of either a simple version of the HSFM, the so-called minimal or lowest order approximaji@nhy-
or its advanced modifications, requires a knowledge of howperspherical function can be related to a linear combination
to construct the matrix elements of thiN interaction for a  of oscillator shell model Slater determinahi8—20. In this
system of identical particles. Three approaches to calculatease, the HSFM matrix elements of the minimal approxima-
these matrix elements are known. tion can be derived from the#Qv oscillator shell model
(1) The transformation coefficients between the hypermatrix elements with the help of the inverse Laplace trans-
spherical functions constructed with different sets of Jacobform [20]. The shell model technique made it possible to
coordinates can be used to calculateXimatrix elements. perform the HFSM calculations for a wide range of the
For a three-body case, these coefficients, known as Raynak4 nuclei in the minimal approximation. Numerical calcu-

0556-2813/2002/66)/06430611)/$20.00 65 064306-1 ©2002 The American Physical Society



N. K. TIMOFEYUK PHYSICAL REVIEW C 65 064306

lations with this technique using different effectid inter-  the components of a single vectprin a 3(A—1) dimen-

actions have been performed for the-hell nuclei, the oxy-  gignal space and the hyperspherical coordinaigs)(can be

- O~n 56N 90,927, 17 12 20
gen |2§10topes, ar_uﬂ Ca, ™Ni, er,. ,GYb' Osr," b, introduced in this space. Then the square of the lengi, of
and ?*Pu nuclei[1,2,21-24. The binding energies of the called the hyperradius, is

Op-shell nuclei obtained in the minimal approximation of the

HSFM have been compared to the no-cofiaOshell model Al A 1 A
calculations[2]. It was shown that whedw is chosen in p?= 21 §i2=21 riZ—R,Z.\=K > (r—r)?, (1)
i= i= 1<J

such a way that the overlap between the HSFM and the os-
cillator shell model hyperradial wave functions is maximal, <A . . ,
the binding energies obtained in these two methods are ver\égv]here RA_(Eizlr‘)/‘/K IS the ”_0”'.“'%"'290‘ coord_mate of
close to each other. e center-of-mass ang is the individual coordlnateﬂof
Beyond the minimal approximation, a general procedurdhe ith nucleon. The set of 8—4 hyperangles p
to construct the hyperspherical functions with the help of the={61.62. - . . .03a—4} can be related to the/8-3 Cartesian
Slater determinants has been proposed in RiS]. How-  coordinatess; in a following way[28]:
ever, this procedure leads to highly complicated expressions
for the HSFM matrix elementfl9] in which the analogy
with the shell model is obscurd@5]. A straightforward way
to calculate these matrix elements using the method of Ref.
[20], in which the link to the shell model is clear, requires
matrix elements of many-body operators to be calculated. An
approach proposed in R€R25], which aims to avoid such

gl:p sin 03A—4' --sin 02 sin 01,

&,=pSiNfsa_4- - -SiN6H,COSH;,

operators, still looks very complicated and in 30 years it has £3a-4=p SiNB3a—4 COSO3A—s,
generated only one practical application, namely, the calcu- B p 5
lation of the %0 binding energy in thé pa=Kmint+2 ap- §3a-3=p COSO3a—4- 2

proximation[26].

An alternative way to construct the hyperspherical basi
with the help of the Slater determinants has been discuss
in Ref.[27]. In this work, an optimal subset originating from R
the product of the total interaction and the hyperspherical PIMI= o BA- A2y ngy(p)yi"y(p), 3
function of the minimal order has been generated. However, Ky
no numerical HSFM calculations have been performed with ) ) My, )
this technique foA>4 beyond the minimal approximation. Where the antisymmetric functiong, *(p) are the eigen-

The possibility to construct the hyperspherical basis usingunctions of the angular part of the multidimensional Laplac-
the link to the shell model looks very attractive because it&n A,
could exploit the huge experience accumulated by shell M~ M~
model calculations over many years. In this paper, | present a ALY, (p)=—K(K+3A=5)Y,  (p). (4)
new method to construct the hyperspherical basis beyond the
minimal approximation, with the help of the Slater determi- They form a full set of orthonormal functions in thé\3-4
nant representation. This method is a further development gingular and 2 spin-isospin spaces. The quantum number
the ideas of Refg[18-20,25, leading to an improved ver- K=KT K7 +2, Ki7 +4,... is ahyperangular mo-
sion of the formalism proposed by these papers, which isnentum and the index denotes the set of all other possible
much more suitable for computational purposes. | show thaguantum numbers. The valme]nﬁn is state dependent and is
after a proper selection of the linear combinations of thegreater than or equal to the minimum possible value
Slater determinants, the HSFM matrix elements can be sim=” | (2n;+1;) of the oscillator shell model allowed by the
ply related to the inverse Laplace transforms of the matrixpauli principle. In the present paper, this value is denoted by
elemen_ts of the_ no-core oscillator shell model. In_ Sec. |l thngﬂn.

HSFM is described, in Sec. Il the Slater determinant repre- The hyperradial funCtioan{;(p) are found from the so-
sentation of the hyperspherical functions is mt_roduced, whilgtion of the coupled set of differential equations
in Sec. IV the HSFM and the shell model matrix elements for

In the HSFM, a wave function of nucledswith the total
Zs(Pin J, projectionM;, and paritys is represented d4,2]

arbitrary values of the hyperangular momentum are related. 2 Lu(Le+1) 2

. _ m
In Sec. V some examples of the numerical calculations are | — — ————— —[E+ V{7« (p)] | xk(p)
shown and the results are discussed in Sec. VI. dp P h
2m Jm Jm
Il. MANY-BODY HYPERSPHERICAL FUNCTIONS =— 2 Vi 0xer,(p), ®)
METHOD A% Ky 2Ky

A wave function of anA-body system is a function ok~ where L= KJr(3A—6)J/2, m is the nucleon mass, and the
—1 Jacobi coordinateg = i/(i+1)(Zj_,rj/i—ri;4). The  hyperradial potentiaIS/K’;,K,y,(p) are the matrix elements
3A—3 components of these coordinates can be considered a$ the NN interactions
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Ior My~ My - cients. Withk=0 one can get from Eqg¥8) and (10) an
Vicykry (P =(Yic, (P)|Zj Vi(ri=mYy.5.(p)), (6) explicit expression for the hyperspherical functiég,(p),

which contain contributions from the central, spin-orbit, ten- s -1 Ky K
sor, Coulomb, and any oth&N forces. Three-body forces Yy (P) =[P ood Ra)Rok(p)] 2.: CiDirer2, - ),
can also be included if necessary. (12
In what follows, the quantum numbedsM ;, and = are
omitted. where CK7=CKK” Since both the function® g, R,) and
Rok(p) are symmetrical with respect to the permutation of
IIl. A SHELL MODEL APPROACH TO CONSTRUCTION nucleons, the hyperspherical functions constructed in this
OF THE HYPERSPHERICAL BASIS way are antisymmetric. They do not depend on the choice of

) ) ) the origin of the coordinate system or on the oscillator radius
In the case of the harmonic oscillator, the internalp |f the linear combinations of the Slater determinants are
translation-invariant Hamiltonian of th&-body system in  chosen in such a way that the functioli,c, possesses
: : Y
the hyperspherical coordinates|s5,2] well-defined orbital momenta, spin, isospin, and permuta-

w2l 1 g ) 1 tional symmetry, then the hyperspherical functiofys,, ob-
1ol P ] T A
p p Pl p

_ tained from Eq.(11), will have the same properties.
2m

The expansion coefficien8? can be calculated in the
(7)  following way. First, we construct all possiblgK) linear
) ) ) combinations of the Slater determinam&(ry,r,, ... ra)
wheren=3A—3 is the dimension of the space formed by wjth the total number of oscillator quanta equalkpwhich
the translation-invariant coordinates awdis the oscillator provide the required set of quantum numberand contain
frequency. Since in this Hamiltonian the spatial and angulapnjy 0s motion of the center of mass,
variables are separated, its eigenfunctions corresponding to

the energy eigenvalues of 2-K+n/2)hw are factorized
as Dy y(ry,ro, - .. ,I’A)=§i: CiKaDiK(rer, o). (12

1
= + Emwzpz,

Wnky(P:0) =Rk (p) Yy (P), ®  Here, the coefficients* are the eigenvectors of the matrix
R,'i of the center-of mass radius squared, corresponding to the

whereN=2x+K is the total number of illator nta. 7 . . .
ere * s the total number of oscillator qua minimum possible eigenvaluesb?. The basis states

The hyperradial wave functioR,«(p) is [15,2]

Dy (r1,r, ... ) obtained in such a way will have a well-
24l V2l \ K defined value of the hypermoment only for the minimal
R (p)=b~ (K2 —) (—) —pfb value of the oscillator quanta associated with the chosen set
F(x+K+ni2) b of the quantum numbers. In the general case, these states
X LK+ (=202 p21p2?), (9 contain an admixture of the statesd,,
=®yo(Ra) Rk (p) Yk! with hypermomenK’<K and
whereb=yA/mw is the oscillator radius. Withoﬁ,‘g(,pé‘zraa‘faf’;)Xcﬁa‘ii(gr)m#0, yP
In this paper, Eq(8) is used to construct a full set of
hyperspherical function¥y,. For this purpose, a full set of Dy (o, oo fa)
functions¥ \, of fixed N andK, and thereforex, should be
generated and then divided by hyperradial functi®)g . _ E Ak aka® s o(T1iFas oo T p)
Although for a fixedK the values ofN and « are arbitrary, g CpRaTp Lz
the most sensible choice =K and k=0 because, in this (2k+K' =K)
case (i) the number of oscillator quanta of the wave function (13)

Wk, is minimal and(ii) the hyperradial functiofRok does

not have any nodes and can be safely used in a denominatdthe coefficientsA g k.= (®xa|® Ly, 5, Which measure
The wave functions¥,, times the @ center-of-mass  the weights of the states with the hyperradial excitatieris

wave function®qoRa) can be represented by some linearthe function®, and which will be calculated later, deter-

combinations of the Slater determinamg(rl,rz, e ,rA) mine also the inverse expansion

with a total number of oscillator quanta bf Therefore,

q);K/B(r]_,rz, B JA)Z; AKK/ﬁ’KQCDKa(rl,rQ, cofa).

Wiky(p:p) = Pogi Ra) 20 THOD(ryrz, ), 10
(10

o ) . ) If the contribution of the states with hyperradial excitations
where the individual coordinatesare chosen in an arbitrary =0 is subtracted both from the left- and right-hand sides of
fixed coordinate system that is not related to the center-ofgq, (13), the remainder will not contain any hyperradial ex-

mass motion. HereCNK” are some unknown yet coeffi- citation. Therefore, using Eq$13) and (14) one can intro-
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duce a set of new statas,, that are the eigenfunctions of Then, using the recurrence relations for the hyperradial func-
the angular part of the multidimensional Laplacian corre-tions R (p),
sponding to the eigenvalue K(K+3A—-5),

n p2 n -1/2
Balr1ola, o FA=Pralrl2 M) Ruc(p)= 2K_2+K+E_? “ K+K+§_1”
’ n
- 2 AKK’B’KQ¢KK’B(r1|r2| ---nrA) XRK—lK(p)_(K_2+K+ E)
k#0K'pB
(2k+K'=K) 1 112
X
n n
:E, Baa’q)Ka’(rlerI"'vrA)a K K+K+E_1 K+K+§—2)
’ (15
X RK—ZK(p)Y (20)
where ,
we can obtain for the coefficients™ #= (D@, ,),
Baa’ = 5&(1’ - E AKK’B,KaAKK’,B,Ka’ . (16) n -1/2
K #0K'p k| k+tK+ -1
(2k+K'=K) K’ B 2

: . . : . ai" F=— 2
However, this set is overcomplete.d{K;) is the dimension b
of the subspace, spanned by the set of the hyperspherical Kl 2 -
functions with the hypermomeiit; <K, then the dimension X(D;"|p?| P oo Ra)Rc— 1k (p) Yk g(p)). (21)
of the subspace, spanned WK) states®y,, is d(K) ere we use (D D oodR, Yo g)=0 and
=n(K)—d(K-2)—d(K—=4)—---—d(Kyin. To construct 5)=0. Now, with the help of Eqs(19),
the orthonormal basis for this subspace a singular value d§21) and(l) we can rewrite Eq(21) as
compositionB= U[dlag(wj)]vT wherej= . .n(K), of q

the matrixB=B,,, can be found. From the numerical point

n -1/2
of view [29], this procedure is more stable than the Gram- K( K+K+ 5—1”

Schmidt orthogonalization. In this procedutéK) is equal ak'B= _
to the rank of the matriB and thed(K) linear independent ' b2
basis state@ﬁy are the range of the matrB&. They can be
ponstructed from’ the columns of the matriU correspond- XZ as” 1K’ 3 2 (r —r, )2|DK>
Ing to nonzerow;’s, o2
0 (22
CI)Ky(rl,l’z, ...,I’A)=2 Uayq)Ka(rl,I’z, ...,I’A). .
@ and get the coefficient8, /g ko »
17
Therefore, taking into account E€L2), the expansion coef- Ak’ pra=2 CRoai®'P, (23
f|C|entsCKy (D{‘|PR,) can be found as a part of the prod- !
Ka
uct of the matrices) and{c b Therefore, the coefficientd sk, can be constructed re-
cursively using the fact that fd =K ,;, the functions®y,,
CKV 2 UyyC . ) (18) already have a well-defined value of the hypermoniépt,
and thatC Kmin¥ — CKm|n7 aiOKminV.
Thus, the problem of constructing the hyperspherical basis in
the Slater determinants representation is solved if the coeffi- V- MATRIX ELEMENTS IN THE HYPERSPHERICAL
cientsA /s ko, Which determine the matriB, are known. FUNCTIONS BASIS
The coefficientsA g ko= (Pral P4 can be found Due to the Slater determinant representation of hyper-
using the following procedure. Let us expand the functionsspherical functiong11), the matrix elementOy, i<, (p)
@, 5 in the Slater determinant basis =(Yi,(p)|O(p.p)|Ykr,(p)) of an arbitrary operator
, _ - O(p,p) can be related to those calculated in the oscillator
P p(raifzs o 1a) = Pood Ra) R () Yicr p(P) shell model. Using the integral representation of an arbitrary
, function f(x),
=Z ar PDE(r,rp, .. a). L .
f(z =—.f dxxf(x j dse S0, 24
19 (2)= 5 dxxfoo | (24
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where the integration path bypasses the origin in the counstrengths of theNN interactions. These potentials play the
terclockwise direction, we can express a quantityrole of a self-consistent collective mean field. Unlike the

K+K'+n-20 (p) as self-consistent Hartree-Fock mean field that generates single-
P Ky, K"y P . ) ) )
particle wave functions, the hyperspherical mean field gen-
pK+K’+n720Ky ki (p) erates the hyperradial wave functions that describe the col-
' ' lective motion of nucleons interacting with the chodéN
1 i force.

* 2% ~~ P 2
- dser dppK+K +n 1e sp
0

I In the particular case when thi¢N potential V(r) has a

Gaussian shapa/(r)<e” (/@ the shell model matrix ele-
xf dpYi,(P)O(p.0) Yir (). (25) ments(28) are sums of the typéj@"gc/y“”, wherey

=(1+2b% a?) Y2 and/ is the relative orbital momentum
between two nucleons. It is easy to show that in this case the
HSFM matrix elements/y,, /., (p) can be obtained from
the shell model ones by replacing everywhgié? by

Then we substituté(Ky(ﬁ) by its representatiofill) with s
=b?, multiply Eq. (25) by ®3,{(R,), integrate it overR,
and, taking into account that

- L(K+n/2)T(K' +n/2)]¥2 (3  K+K'+n 2p?
dRAdpdp=dRAd§1d§2-~-d§A_1=dr1dr2---drA, [ ( ) ( )] F /——i

=+ ; ,
(26) TI(K+K'+n)2]  © *2 2 a?
we find that the matrix elemen@, «,/(p) are the inverse where ;F; is the confluent hypergeometrical function. For
Laplace transforms large p, asymptotic expressions can be used to calculate the
" hypergeometrical functions, which leads to the asymptotic
o ( _[M(K+n2I(K +n/2)]7 1 inverse power expansion of the hyperradial potentials
Ky,K'y' (P PRI +n=2 27i Viy.k 4 (P),
1 2o~ (K+K'+n)/2 < v v
X f_iocdsesp S ( n) OK)/,K’)/’(S) VKy,K’y’(p)mviSy,K’y’(p): VZ:Q U(Kj),‘K/)/;/ngrz . (29)

27 Equation (29) shows that the hyperradial potentials are
of the usual oscillator shell model matrix elementsStrongly anharmonic and that at-c they decrease ast!.
Oy k() calculated with the oscillator radits=s™*2 Such a slow decrease originates from the fact that two nucle-
PR ons can still interact at small distances when some or all the

KyK' other nucleons are far away from them. The wave functions

OKy,K/y/(S):Z Ci'Cy fdfldrz' --dra generated by these potentials decrease asymptotically in a
" more realistic way as compared to the oscillator wave func-

><DiK,’T(r1,r21 ) '-rA)éDiK(rl.fz. ). tions generated by the mean field parabolically increasing at

large hyperradii.
(28)
0 . V. APPLICATION TO THE HYDROGEN
In the. case oK = Kmi_n the inverse Laplace tra_nsform rep- AND HELIUM ISOTOPES
resentation(27)—(28) coincides with the one derived in Ref.
[20], and for K>K, it still formally resembles the one This section illustrates the applicability of the approach
from Ref. [20]. However, the difference is that foK described above and presents results of the numerical calcu-
=K?O. the expression&7)—(28) are valid for any choice of lations of the ground state binding energies for hydrogen and
. KO o o . helium isotopes with central and CoulomNN interactions.
the coefficientsC; ™" while for K>Kp;, these expressions the aim of these calculations is to investigate how far in
are only valid for specially selected coefficien®”,  hyperangular momentum one can go within the standard
namely, for those that guarantee that the center-of-mass metSFM, using the shell model technique proposed in this
tion and the hyperradial excitations are excluded from thepaper.

shell model wave functions. On the other hand, #r The actuaNN potential used in this work, was the Volkov
>K2.,, Egs.(27)—(28) are much simpler than those derived V1 effective potentia[30]. Its triplet even and singlet even
in Refs.[19,25. components are equalysy(r)=V,(r)=144.86 (10827

If the operatorO is a sum of thé\N interaction potentials, — g3 34~ (1/1.6 MeV, and the singlet and triplet odd com-

6(p,ﬁ)=2i<jvij(ri—rj), the shell model matrix elements ponents are related to the even ones as folloVig{(r)
Ok,,k’4(8) are just numbers that do not depend on spatial=V(r)=(1—2M)V3(r), where M is the Majorana ex-
coordinates but depend on the oscillator radius as a paranchange parameter. In the present calculations, the standard
eter. By contrast, the hyperradial potenti@lg, «/,(p) ex-  valueM=0.6 was used. Als0h?/m=41.47 MeV fnf was
plicitly depend on a collective spatial coordinate, the hyper-always used.

radius, and their shapes are determined by the shapes andTo construct the hyperspherical basis, the Slater determi-
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nants of the oscillator shell model in the-coupling were ' ' ' '
used. The Slater determinants were made of the single par 1
ticle oscillator wave functions with the quantum numbers  4gq | b
{n,I,m,o, 7}, whereo andr are the spin and isospin projec- a) v H sl
tions. Matrices of total orbital momentuir?, total spinS?, N PR ',_—"""
and total isospinT? have been diagonalized to find states £ 6H ,/‘/,4H -
with well-definedL ST values and the matriRs was diago- = 10k v ISP i
nalized in order to remove the center-of-mass excitations. ‘ o
The hyperradial excitations were then excluded according to '
the algorithm described in Sec. IlI. ;

The basis states obtained in such a way do not generally /
possess any permutational or orthogonal symmetry. In the 18- ! g * .
particular case of the Volkov force, mixing between the A . "
states with different permutational symmetries is absent. To 100 L b) *He /He . I |
get states with well-defined permutational symmetry, the sec- LA PHe /He’ o
ond Casimir operatoEiA<i,(i ,i") of the symmetric group has P /’,//,'/ ,,"jHe'
been diagonalized, as suggested in R&7]. The eigenval- & //H?// "
ues of this operator, equal 5;y,(y,—2i+1), are repre- = ﬁ/ / APt
sented by the Young diagranii§ with v, boxes in theith 10¢ R Al i i
row. In the present calculations, only the states correspond- ///,E RS
ing to the largest eigenvalues were constructed, because suc //',’//ﬁf/ SO e o-- 1
states have the lowest binding energies. At the present stag //’ e
the hyperspherical basis has not been symmetrized with re 1 Ve L L - -
spect to the orthogonal group,_;. This leads to larger 0 2 4 Wy 6 8 10

number of hyperradial functions to be coupled by a set of

differential equations, many of which contribute negligibly  FIG. 1. The numbeN(K) of the hyperspherical basis states

to the binding energy. with choser[ f]LST for 3~ 7H (a) and *~'°He (b) as a function of
The actual values off]LST for the > "H and " ®He = AK=K—K,.

nuclei considered in this paper aréH [3](0:3), °H that, because of the slow decrease, the hyperradial potential
[31](11D, °H [32](033), °H [321](112, "H [322](033), still significantly differs from zero even for very large values
“He [4](000), °He [41](1%1), ®He [42](001), "He [421] of p. In the particular case of®He, the nuclear hyperradial
(112), BHe [422(002, °He [4221)(13%), and °He potential atp~200 fm is still about 10% of the centrifugal
220 . ’ ; 220 . potential. Using only a few points in the inverse power ex-
[4222](003)' With the currentlx a"a"a'%,'e computSr code, it pansion helps to avoid the calculation of the nuclear hyper-
\gvas possmle_to 90 “pjj@Kmax— 16 ior H, Aslémax_ 12 for radial potentials at such large distances. Generally, the qual-
_He, AKG@""X_ 10 fgor H, AKmaX__S for7gi—|e, AKimax ity of the inverse power approximation deteriorates with
=6 for ®H, and 8He andAK =4 for ">He, where increasingA andK.
AKma=Kmax~ Kmin. The numberN(K) of tg‘i hyper- After the hyperradial potentials are calculated, the system
39*1‘3”0‘5" basis states with chospfILST for = 'H and ¢\ nerradial differential equatior(s) has been solved with
He as a function oAK=K =Ky, is shown in Fig. 1. 0 ‘computer codeTurmxx that is based on the algorithm
As expected, the numbed(K) increases strongly with the  jescribed in Ref[31]. This code uses an expansion on a
Increasing numbgr of nuclgons. . _Sturmian basis and explicitly treats the long-range
For the nuclei from Fig. 1 the hyperradial potentials 5qymntotic tails of the hyperradial potentials represented by
Viy,kry(p) were calculated up 0 SOME,a, in about 2510 he inverse power expansid9). For the present calcula-
50 points with the step\p varying from 0.1 to 0.5 fm de-  ons, the total number of the hyperradial channels is less
pending on the number of nucleons. Beygngh, the inverse 14 400.

power expansior(29) was used to calculat®y, k,(p), The present method has been tested for3Heand *He
which significantly reduced the size of the arrays where the, ,clei for which the results obtained with the sarNal
hyperradial potentials were stored. The expansion Coefﬁpotential by different authors exig4,7,8. The binding
cients vff;K,y, were calculated up to somen,y that de-  energies of°H, calculated in the present paper upKg,.y
pended om\K .« andA. In the majority of cases, the choice =16, are in excellent agreement with those in R¢4s8].
vmax=9 has provided at least six correct digits for large andThe binding energy ofHe has been calculated up kg
1% for smallVy, k', (P)max- HOwever, in some cases, to =12. The Coulomb interaction has been switched off for this
get the same accuracyy,,x has been increased up to 15.  test case. A very good agreement has been obtained for lower
An example of the inverse power expansion for the caséiarmonics with the results of Ref7]. For K,,,,=10 the
of %He is shown in Fig. 2 where the hyperradial potentialbinding energies obtained in the present work, are about
V(p) of theK,;, approximation is compared with its asymp- 0.05% lower than the corresponding values from R&f.
totics V3(p) calculated forv,,,, from 0 to 7. One can see Such a difference may arise because only the optimal set of
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30 0 . :
AK =2
& P
2t ; E )/ e i
- ; ’r //
20 § , yAKmax =4
15 | > 4l . Y 1
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10 | > //////&\\\\1
> -6r G TN e AK L =8 .
= St =
; ST -g v z AKmax =10
[eb) mM ///,///’
= @ 8L A7 O — O Experiment |
a exact ¢ Hydrogen isotopes
= =5 centrifugal 1
_ _10 1 1 1 1 1
Vinax = 0 2 3 4 5 6 7 8
-10 | Vmax =1 7] A
Vmax = 2
a5 | Vinax = 3 1 FIG. 3. The gro_und _state binding energies of the hydrogen iso-
Voax = 4 topes calculated with differemfK -
20 F Vmax = g n
v = .
N mental one. FofHe, the converged energy is about 1 MeV
25 F max 3 lower than the experimental one. In fact, the binding energies
of 3H and “He are not very sensitive to increases in the
30 . model space. These energies, calculated in the minimal ap-

30 40 proximation, are already close to the converged ones and the
contribution of the lowest order hyperharmonics to the total

FIG. 2. Hyperradial potential(p) for He calculated fokK ., norm of the wave functions ofH and “He are 99.3% and

0,
and its inverse power approximatio8%(p). The centrifugal and 99'_|:1'h/°(3$e Iablgs(;.;nd )”tf Il the other isot id
Coulomb potentials are included in all the curves and the centrifu- € Situation IS difierent for all the otheér 1Sotopes consia-

gal potential is also shown separately. ered_, as, for them, the contribu_tion of high_er order hyperhar-
monics is very important. To illustrate this, the calculated

robabilities P,k =2 ,Pk, of the hypermomenK =K,
hyperspherical basis states has been used i Refhile all P HES Fak=25"ky vp min

the basis states have been taken into account in the present

work. Another source of this difference can be a lack of ' ' ' ' ' ' ' ' '
accuracy while solving the coupled set of differential equa- 14 | Helium isotopes A ]
tions (5) either in the present work or in R€f7]. A

For GaussiaNN potentials, the HSFM binding energies 16 | _
converge exponentiallyf3]. Since the V1 potential has ‘A A AK.=0
Gaussian shape, exponential extrapolation can be usedtoe__ -18 - A . .
timate the converged binding energies. Fét, the extrapo- % T4 . /,’
lated energy is-8.448 MeV and—8.476 MeV for thek = 20T ; PN ‘m 1
=4,...,16 andK=6,...,16 model spaces, respectively, > ool ‘m ; ‘ AKpa = 2 ]
which means that the accuracy of the exponential extrapola g LN ! Y
tion in this case is 0.3%. FotHe, the exponential extrapo- & .4 | iy N /!\\ PN -
lation gave the binding energy of 30.46 MeV for K o , n ‘v AK =4
=4,...,12 and—30.40 MeV forK=6,...,12. With this T -26 | '.',’I/,I’,*\\\\ v v ]
accuracy, the value obtained agrees well with the bindingg ;’//,'/)Q\‘\\\v
energies of—30.40 MeV and—30.42 MeV obtained with 28 | /’/\\5 ------ ® AK,,. =6 1
the optimal set of the hyperspherical functions in H&f. -
and by the stochastic variational method in R8g], respec- B0r AK, =8 AN _ALO=0 1
tively. 3o L ot~ Experiment

The calculated ground state binding energies ofH and
4-10He, together with experimental data, taken from Refs. .34 S S S S
[33,34], are shown in Figs. 3 and 4 and Table I. For Mis 3 4 5 6 7 8 9 10 M 12 13

potential chosen the binding energies ¥4 and “He have A

almost converged foAK,,,=12. The converged energy of  FIG. 4. The ground state binding energies of the helium isotopes
3H, shown in Table II, is very close to the experi- calculated with different\K yqay.
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TABLE I. The binding energie€ (in MeV) and the probabili-
ties P,k (in %) of the hypermomenK=K,;,+AK for the ground
states of the>~"H and *~®He nuclei in the model space deter-

mined byAK,ax-

Nucleus AK ax E Py P, P, Ps Pg

3H 4 —8.078 99571 O 0.429

SH 6 —8.329 99.385 O 0.464 0.151

3H 8 —-8.376 99.359 0 0.470 0.152 0.019
3H 10 —8.416 99.337 O 0.477 0.154 0.019
3H 12 —8.443 99.318 0 0.486 0.155 0.019
3H 14 —8451 99311 O 0.490 0.156 0.019
3H 16 —8.457 99.303 O 0.495 0.158 0.019
“H 2 —1.450 91.407 8.593

“H 4 —3.318 80.990 12.547 6.463

“H 6 —4.284 73.165 14.776 9.503 2.556

“H 8 —4.918 65.249 16.648 12.556 4.081 1.466
‘H 10 —5.387 57.994 17.742 15.064 5.748 2.494
5H 2 —1.745 89.806 10.194

5H 4 —3.925 81.917 11.739 6.344

5H 6 —5.316 75.116 13.131 8.459 3.294

5H 8 —6.070 69.435 13.976 10.539 4.526 1.524
5H 10 —6.589 64.536 14.326 12.106 5.880 2.233
5H 6 —-155 70.26 14.15 10.88 4.71

H 6 —1.878 71.077 13.429 10.498 4.997

“He 4 —28450 99506 0  0.494

‘He 6 —28.978 99.308 0  0.495 0.197

‘He 8 —29.328 99.209 0  0.493 0.193 0.105
‘He 10 —29.444 99.182 0  0.494 0.190 0.104
‘He 12 —-29532 99.150 O  0.508 0.189 0.102
SHe 2 —21.821 91.420 8.580

SHe 4  —23.957 82.818 12.763 4.419

SHe 6 —25.017 76.217 15.121 7.097 1.565

SHe 8 —25.780 70.578 16.330 9.384 2.829 0.088
SHe 2 —24.726 88.893 11.107

SHe 4  —27.205 82.134 13.427 4.439

SHe 6 —28.418 76.998 14.980 6.358 1.662

fHe 8 —29.140 73.576 15512 7.742 2.446 0.723
He 2 —19.655 88.295 11.705

"He 4  —23.204 78.632 14.754 6.614

8He 2 —22.255 89.051 10.949

8He 4  —26.036 80.245 13.184 6.571

8He 6 —27.866 73.429 15.079 8.922 2.570

%He 2 —18.024 88.608 11.392

‘He 4  —22.461 78.318 13.564 8.119

0He 2 —20.560 90.287 9.713

10He 4 —25165 80.354 11.438 8.208
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TABLE Il. Experimental binding energieg.,, (in MeV) and
the exponentially extrapolated binding enerdigs,, (in MeV) and
weights of the lowest order hyperharmonR§" (in %).

Eexp Eextr PSX"
5H —8.48 —8.45 99.3
“H —5.57 —5.90
5H —6.78 -7.34 41.2
™ -7.61
“He —28.30 —29.63 99.1
SHe —27.40 —26.80 34.2
fHe —29.27 —29.67 66.8
8He —31.41 —31.60 47.3

+AK in the model space determined B¥K . are shown in
Table I. For the model space used, convergence gf has
only been achieved fofH and “He. The results of the cal-
culations clearly indicate that for the neutron-rich isotopes of
hydrogen and helium the weights of the lowest hyperhar-
monics can be significantly smaller than one. One can see
from Tabk | a general trend that the decreased contribution
of the minimal hypermoment with enlargement of the model
space is somehow correlated to the cluster structure of the
nuclei under consideration.

For “H, which is a two-body resonance in thiél + n
continuum, the contribution of the lowest order hyperhar-
monic P, decreases almost linearly for the model space used
in the calculations, which makes it impossible to estimate its
convergent value by exponential extrapolation. One can only
say that the contribution of lowest order hyperharmonic is
less than 57%. Thé&H binding energy starts to converge and
an exponential extrapolation gives for the converged energy
—5.90 MeV, which is slightly lower than the experimental
one—5.57 MeV.

For °H and >®He, the decreasing contributions of the
lowest order hyperharmonics with increasing model space
follows an exponential law. The possible converged weights
P§*!" of the lowest hyperharmonic for these nuclei are given
in Table Il. One can see that the weight of the minimal hy-
perharmonic for the particle-stable nuclefisle, is larger
than for the particle unstable isotopéSH and °He. The
binding energies of these isotopes tend to converge. The ex-
ponential  extrapolation gives E(°H)=—7.34 MeV,
E(°He)=—26.80 MeV, andE(°He)=—29.67 MeV (see
Table 1), which are reasonably close to the experimental
values—6.7+0.3, —27.40, and—29.27 MeV, respectively.
However, in these cases the estimates of the converged val-
ues are less accurate than in caséldfand “He because of
smaller model space used.

For all the other isotopes considered, the model space is
not large enough to make any definite conclusions about con-
vergence. The only case where the binding enerﬁiggmax

follow approximately an exponential decrease®lde. An
exponential extrapolation made with,, E,, E,, and Eg
gives an estimate foE(®He)=—31.60 MeV, which is un-
expectedly close to the experimental value of
—31.41 MeV. The extrapolated converged contribution of
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the lowest order hyperharmonics f8He is 47.3%. matrix elements are just the inverse Laplace transforms of
The ®H and "H isotopes become particle stable with re- the matrix elements of the large scale no-core oscillator shell
spect to the six- and seven-body decays onlyX#r, ,,.=6. model, on the condition that the center-of-mass motion and
In the case of'H a possible value of the converged energythe hyperradial excitations are removed from the shell model
has been estimated by calculating the positions of the sevestates. Such a condition is the crucial point that makes the
body resonances foAK =2 and AK.,,=4. With E,  shell model formalism applicable in the calculations of the
=2.85 MeV, E4;=0.133 MeV, andEg=—1.878 MeV the HSFM matrix elements. Unlike the HCFP technique, the
estimated possible value for converged energy is —7.61 Me\§hell model based method is not recursive and can be di-
which is about 300 keV below the estimated binding energyectly applied to any nucleus including nonclosed shell nu-
of °H obtained in this work. It should be mentioned, how- clej and nuclei far from stability. For these purposes, existing
ever, that such an extrapolation is not very reliable. It shouldhell model computer codes can be adapted to perform the
only be used to give a rough idea of where the convergegisem calculations.
energy m%lbe. _ _ The method proposed in this paper is a further develop-
As for "%1He, the numerical calculations haye been perment of the ideas of Ref§18-20,25. However, the expres-
formed only up toAKpa,=4 and these calculations clearly gjons for the HSFM matrix elements derived here are simpler

show the importance of the higher order hyperharmonicsaEd better suited to the numerical calculations than those

chor thf‘ar?rzdﬁli spiacaurse?hmntggi/e cases the contribution g ggested in these works. Such an improvement has been
ese onics 1S more tha o achieved by the independent choice of the individual nucleon

It Is very important to note here that the parts of thecoordinates from the center-of-mass of the many-nucleon
many-body wave function described by the lowest order hy- y

perharmonics correspond to théi® no-core shell model system. However, the price that has to be paid is the require-
with all possible oscillator frequencid®]. Therefore, the ment to remove the center-of-mass excitations from the shell

probabilitiesP, of these hyperharmonics show how good themOdeI functions. This removal is simply done by the well-

standard shell model description is for the nucleus of interd€fined procedure of diagonalizing the mafiy. Other im-

est. For nuclei withPy~1, the shell model description is Provements relate to a different choice of methods for the
well justified. However th’e case d%, being significantly elimination of hyperradial excitations and the orthogonaliza-

less than one indicates a strong presence of particle-hole e§lon Procedure used to construct the orthonormal set of hy-

citations. For some of the hydrogen and helium isotopes cor€rSpherical functions. , _
The Slater determinant representation of hyperspherical

sidered above, the probabiliti®*'", obtained by exponen- function : d'in this work. d not have any rel
tial extrapolation, are shown in Table 1l. OnfiH and “He unctions, a“s P qpqs”e S WOrk, does not have any refa-
h'[|on to the “realistic” shell model with the experimentally

have displayed a well defined shell model structure wit determined single particle wave functions and energies. This
nucleons occupying thesGshell. In the particle unstable nu- sihgle p gies.
representation only helps to express one mathematical func-

clei °H and °He the probabilities for their nucleons to oc- .. v ah herical functi hich is a full
cupy only s and Qo shell model states are 41.2% and tion, namely, a hyperspherical function, which is a fully an-
: tisymmetric function of 2 —4 angular variables andA3

A ) \
34.2%, respectively. For the particle stable nucléHsg, the spin and isospin variables, by some linear combination of

iﬁi:;;‘gdiﬁl tﬁécg”:h;r i: .5!;;;%32‘:‘]Teltl) pl6u§ SE;VOT\;]aeIerre]:Est other mathematical functions, namely, by exponentials, poly-
J y by 65.670. nomials, and spherical functions, oA3spatial and 2 spin

are the particle-hole excitations that are responsible for th?ind isospin variables. It is this apparent increase of the num-

t_hree—clus_ter nature .O.f this nucleus displayed n fragmentaber of variables that makes it possible to replace the difficult
tion reactions. Surprisingly, the present calculations have re

l . . problem of calculating the HSFM matrix elements by the
0, -
\éealed only 47'3/0 probability for the particle-stable ISOtOpewell-known easier problem of calculating the matrix ele-
He to be described as a closesl¢bre plus four @ valence . .
particles. 8He is more bound thaffHe and has a smaller ments in the oscillator shell model,
radius Which was considered as a consequence opdhe From the fact that the hyperspherical functions with the

0
subshell closure. The HSFM calculations suggest one ha

ypermomentK =K;,+AK can be constructed using the
probability for the nucleons ifHe to spend in other energy KA w oscillator shell model space it follows that the upper
shells. At the same time, the HSFM calculations reproduc

éimit on K, ,ax,» achievable with the technique of the present
the enhanced binding energy 8fle as compared t6He. work, is determined by the dimension of K pafi @ no-

core shell model space that modern computers are able to
deal with. It should be noticed, however, that the hyperradial
functionRg,(p) can be represented by the sum over all pos-
In this paper a new method to calculate the matrix elesible monopole excitations of the oscillator hyperradial wave
ments in the hyperspherical basis beyond the minimal apf-UﬂCtiOﬂS Rsc(f()(p) with an arbitrarily chosen oscillator fre-
proximation has been presented, and applied to the calculguencyw: RKy(p)=2fzocKKYRfﬁg(p). Therefore, with the
tion of binding energies of the hydrogen and helium isotopessame value ofAK ., the HSFM takes more basis states
The method is based on the link between the translationinto account than the no-core shell model where the number
invariant shell model and the hyperspherical functionsof radial monopole excitations is restricted by the condition
method and uses the Slater determinant representation of tRe+K=K,,,,. Besides, in the shell model, the oscillator
hyperspherical functions. It has been shown that the HSFMrequencyw, chosen to minimize the total binding energy, is

VI. DISCUSSION AND CONCLUSIONS
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the same for all the single particle wave functions and, thereenes. It is also important to note that the binding energy of
fore, for all the hyperradial functions. By contrast, in the 'H estimated by exponential extrapolation is about 300 keV
HSFM, the hyperradial functions are the superpositions ofower that that for®H. If this result is confirmed by more
the oscillator wave functions with the oscillator frequenciesdetailed calculations, this would agree with the hypothesis of
determined by the spatial separations of nucldafsor they ~ Ref.[34] that "H may exist as a low lying resonance with the
can be represented by an integral of oscillator wave functiongnly decay channel beingH —°H+n-+n+n+n.
over all possible frequenci¢g]. In both cases the weights of N general, to solve the many-body problem, modern re-
such configurations are generated by a self-consistent hypedlistic NN potentials should be used instead of V1. With
radial field, which, in turn, is generated by tN&l interaction ~ realistic potentials, the convergence of the simple HSFM will
potential. Therefore, the HSFM hyperradial functions, corre-deteriorate. However, the hyperspherical basis can still be
sponding to different values df, have their own unique Used in many-body calculations if, for example, either short-
shapes. range correlation factors or effective interactions are intro-
Until now, for light nuclei the no-core shell model calcu- duced. The increase in binding wikh obtained in this paper
lations have been performed up td® and 4o for A<7  for V1, gives arough idea of what one can expect when such
and 8<A=<11, respectively{35]. Recently, calculations of Convergenc_e_accglergtmg methods are used.
8Be up to 1@ w have been reportd@6]. Therefore, one can Summar!zmg, |n_th|s paper a new r_nethod to construct the
expect that, using the proposed shell model technique, thl@yperspherlcal basis fak !dent|cal particles using the Slat_er
hyperspherical basis for these nuclei can be constructed dgtérminant representation of the hyperspherical functions
least up toK i a,= Kmin+4 or Kmnin+ 6. With the current ver- has been proppsed. Th|_s method _made it possible to apply
sion of the computer code written for the purposes of thdhe hyperspherical functions technique to real systems up to

present paper, it was possible to go UpA .= 10 for A=10 fermions using a_simple mod_el for tNNinteraction_.
454, AK =8 for 5He, AK,,.,=6 for H, and ®He and The presented calculations suffer in some cases, seriously,

AKpa=4 for 7%MHe. On the other hand, foA=6, the Convergence problems, but this drawback can be overcome

calculations have been performed up to the same value ¢ different convergence accelerating methods. Future im-
K .ay that was achieved in Ref11] with the HCFP tech- provements of the_proposed me_:thod, and_m computer power,
nique. It should be mentioned, however, that for the sam&°uld allow realistic microscopic calculations f8r>4 nu-

K .., the model space of the present work is larger than thatlel a prob!em that is still very difficult to tackle. Such ca}l—
in Ref. [11] because the states with well-defined orthogonaFl{la“_O”S will help to understand nuclear. structu're from first
symmetry have not been selected here. principles, and will test models for tHeN interactions.

In this work the Volkov V1 effectiveNN interaction has
been used only for simplicity. With this potential, tAgl and
“He ground states binding energies are found to converge | am grateful to Professor I. J. Thompson for providing
rapidly. The binding energies of*H and >5%He decrease me with his computer codsTurMxx and for many useful
exponentially withK and, for K., used, these nuclei are comments in preparation of this paper. | am grateful to Dr. L.
underbound by maximum of 12% with respect to the values/. Grigorenko for calculating the positions of tHé reso-
obtained by the exponential extrapolation. Exponential exnances corresponding to the hyperradial potentials calculated
trapolation estimates of the converged energies for’tie  for AK =2 andAK ,,,=4. | am also grateful to Professor
468e isotopes agree surprisingly well with experimentB. V. Danilin for many useful comments and discussions
while the estimated converged energies“sf and °H are  during preparation of this paper. Support from EPSRC, Grant
only 0.33 MeV and 0.6 MeV lower than the experimental No. GR/M/82141, is acknowledged.

ACKNOWLEDGMENTS

[1] A. I. Baz', Yu. T. Grin’, V. F. Demin, and M. V. Zhukov, Sov. [10] N. Barnea, W. Leidemann, and G. Orlandini, Nucl. Phys.

J. Part. Nucl3, 137(1972. A650, 427 (1999.

[2] Yu. F. Smirnov and K. V. Shitikova, Sov. J. Part. Nug).344  [11] N. Barnea, W. Leidemann, and G. Orlandini, Phys. Re61C
(1977. 054001(2000.

[3] R. Krivec, Few-Body Syst25, 199 (1998. [12] J. Raynal and J. Revai, Nuovo Cimentdb8, 612 (1970.

[13] V. D. Efros, Few-Body Syst19, 167 (1995.
[14] M. Viviani, Few-Body Syst25, 177 (1998.
[15] I. V. Kurdyumov, Yu. F. Smirnov, and K. V. Shitikova, Theor.

[4] G. Erens, J. L. Visscher, and R. Van Wageningen, Ann. Phys
(N.Y.) 67, 461 (1972).

[5] V. F. Demin, Yu. E. Pokrovsky, and V. D. Efros, Phys. Lett. Math. Fizika7, 45 (1979.
448, 227 (1973. [16] V. V. Vanagas, A. K. Petrauskas, and K. I. Yankauskas, Sov. J.
[6] B. A. Fomin and V. D. Efros, Sov. J. Part. Nu@1, 748 Nucl. Phys.14, 408(1972.
(1980. [17] N. Barnea and A. Novoselsky, Ann. Phy@\.Y.) 256 192
[7] J. L. Ballot, Z. Phys. A302, 347 (1981). (1997; Phys. Rev. A57, 48 (1998.
[8] J. L. Ballot, M. Fabre de la Ripelle, and J. S. Levinger, Phys.[18] Yu. A. Simonov, Sov. J. Nucl. Phyg, 722 (1968.
Rev. C26, 2301(1982. [19] A. M. Badalyan and Yu. A. Simonov, Sov. J. Nucl. Ph9s42
[9] H. Kamadaet al, Phys. Rev. B4, 044001(2001). (1969.

064306-10



SHELL MODEL APPROACH TO CONSTRUCTION OF A.. .. PHYSICAL REVIEW 65 064306

[20] A. I. Baz' and M. V. Zhukov, Sov. J. Nucl. Phyd1, 435 dence, RI, 1968, \Vol. 22.

(1970. [29] W. H. Press, S. A. Teukovsky, W. T. Vetterling, and B. P. Flan-
[21] A. |. Baz' et al, JETP Lett.12, 105(1970. nery, Numerical Recipes if ORTRAN(Cambridge Univer-
[22] M. Sotona and J. @ka, Phys. Lett57B, 27 (1975. sity Press, Cambridge, 1992
[23] G. L. Strobel, Phys. Rev. @8, 2395(1978. [30] A. B. Volkov, Nucl. Phys.74, 33 (1965.

[24] N. K. Timofeyuk, P. Descouvemont, and I. J. Thompson, J.[31] . J. Thompsoret al, Phys. Rev. (51, 024318(2000).

Phys.(London G25, 933(1999. [32] K. Varga and Y. Suzuki, Phys. Rev. &2, 2885(1995.

[25] A. A. Sadovoi and Yu. A. Simonov, Sov. J. Nucl. Ph§8, 569 [33] G. Audi, O. Bersillon, J. Blanchot, and A. H. Wapstra, Nucl.

(197D. _ _ Phys.A624, 1 (1997).

[26] A. A. Sadovoi and Yu. A. Simonov, Sov. J. Nucl. Phgg, 31

[34] A. A. Korsheninnikov et al, Phys. Rev. Lett.87, 092501
(2002).

[35] P. Navrdil and B. R. Barrett, Phys. Rev. 67, 3119(1998.

[36] E. Caurier, P. Navtd, W. E. Ormand, and J. P. Vary, Phys.
Rev. C64, 051301R) (2001).

(1975.

[27] M. Fabre de la Ripelle, H. Fiedeldey, and G. Wiechers, Ann.
Phys.(N.Y.) 138 275(1982.

[28] N. Ya. Vilenkin, Special Functions and the Theory of Group
Representation, AMS Translations of Math. Monogr., Provi-

064306-11



