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Shell model approach to construction of a hyperspherical basis forA identical particles:
Application to hydrogen and helium isotopes

N. K. Timofeyuk
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

~Received 14 December 2001; published 28 May 2002!

A new method to construct hyperspherical functions basis forA identical particles, beyond the minimal
approximation, is presented. This method is based on the link between the hyperspherical function method
~HSFM! and the oscillator no-core shell model and uses a Slater determinant representation of the hyperspheri-
cal functions. It is shown that, because of this representation, the HSFM matrix elements are related to the
inverse Laplace transforms of the oscillator shell model matrix elements, on the condition that the center-of-
mass motion and the hyperradial excitations are removed from the shell model states. The applicability of the
proposed method is demonstrated for the case of the3 –7H and 4 –10He isotopes.
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I. INTRODUCTION

One of the possible ways to solve the many-body prob
for a system ofA identical particles is to introduce the hy
perspherical coordinates and to expand the wave functio
this system in the hyperspherical functions basis. Beca
the hyperspherical functions form a complete orthonorm
set, such an expansion should provide a solution of
many-body problem. This idea forms the foundation of t
hyperspherical functions method~HSFM!, in which a many-
body wave function is represented as a sum of product
the hyperradial and the hyperspherical functions. The HS
and its advanced modifications have been reviewed, for
ample, in Refs.@1–3#.

The hyperspherical expansion has been shown to c
verge for three- and four-nucleon bound systems provid
comparable results for binding energies and root m
squared radii to other few-body methods@3–9#. For A.4,
the number of the hyperspherical harmonics becomes
large and no studies of convergence have been done w
the traditional formulation of the HSFM. However, in Ref
@10,11# somep-shell nuclei have been studied within tw
modified versions of the HSFM. In Ref.@10#, a method com-
bining the Faddeev approach and the pair-correlated hy
spherical harmonic method has been used to study6Li, 8Be,
and 12C. In Ref. @11#, the effective interaction method, tra
ditionally used in the framework of the harmonic oscillat
basis, has been applied to the hyperspherical formalism
the A53 –6 nuclei. Both works report that, for the nucleo
nucleon (NN) interactions chosen, convergence w
achieved with a relatively small number of hyperspheri
functions.

The application of either a simple version of the HSF
or its advanced modifications, requires a knowledge of h
to construct the matrix elements of theNN interaction for a
system of identical particles. Three approaches to calcu
these matrix elements are known.

~1! The transformation coefficients between the hyp
spherical functions constructed with different sets of Jac
coordinates can be used to calculate theNN matrix elements.
For a three-body case, these coefficients, known as Ray
0556-2813/2002/65~6!/064306~11!/$20.00 65 0643
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Revai coefficients@12#, can be easily calculated. ForA.3, a
number of methods to calculate these coefficients have b
proposed over the last thirty years. The most recent ones
be found in Refs.@13,14# together with the references t
earlier works. However, numerical applications to the so
tion of the physical problems using this technique have b
published only forA54 ~see, for example, Ref.@9#! and no
calculations forA.4 are known to the author.

~2! The matrix elements of theNN potential can be calcu
lated easily using two-particle coefficients of fractional pa
entage~CFP! introduced in Refs.@15,16#. A general recursive
procedure to construct the HSFM one- and two-parti
CFPs has been described in Ref.@2# about 25 years ago. I
has also been shown that the hyperspherical CFPs~HCFPs!
can be related to those of the translation-invariant sh
model ~TISM! @15#. The HCFPs forA53 and K<4 have
been tabulated in Ref.@15#. However, no numerical calcula
tions of the HCFPs forA.4 were done at that time. Re
cently, a new recursive procedure, which provides the hyp
spherical states with well-defined orthogonal and perm
tational symmetry, has been worked out and encoded@17#.
This technique has been used to calculate the HCFPs andNN
matrix elements for theA53 –6 nuclei and8Be and 12C in
Refs.@10,11#.

~3! The two approaches mentioned above use an exp
representation of the hyperspherical functions by the us
spherical functions and the Jacobi polynomials. Such a r
resentation may not be necessary if the link between
HSFM and TISM is used to calculate the matrix elemen
This link has been previously investigated in Refs.@18–
20,15,2#. In particular, it has been shown that for the min
mum possible value of the hyperangular momentum~or in
the so-called minimal or lowest order approximation! a hy-
perspherical function can be related to a linear combina
of oscillator shell model Slater determinants@18–20#. In this
case, the HSFM matrix elements of the minimal approxim
tion can be derived from the 0\v oscillator shell model
matrix elements with the help of the inverse Laplace tra
form @20#. The shell model technique made it possible
perform the HFSM calculations for a wide range of theA
.4 nuclei in the minimal approximation. Numerical calc
©2002 The American Physical Society06-1
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lations with this technique using different effectiveNN inter-
actions have been performed for the 0p-shell nuclei, the oxy-
gen isotopes, and40Ca, 56Ni, 90,92Zr, 176Yb, 120Sn, 208Pb,
and 244Pu nuclei@1,2,21–24#. The binding energies of the
0p-shell nuclei obtained in the minimal approximation of t
HSFM have been compared to the no-core 0\v shell model
calculations@2#. It was shown that when\v is chosen in
such a way that the overlap between the HSFM and the
cillator shell model hyperradial wave functions is maxim
the binding energies obtained in these two methods are
close to each other.

Beyond the minimal approximation, a general proced
to construct the hyperspherical functions with the help of
Slater determinants has been proposed in Ref.@18#. How-
ever, this procedure leads to highly complicated express
for the HSFM matrix elements@19# in which the analogy
with the shell model is obscured@25#. A straightforward way
to calculate these matrix elements using the method of R
@20#, in which the link to the shell model is clear, requir
matrix elements of many-body operators to be calculated
approach proposed in Ref.@25#, which aims to avoid such
operators, still looks very complicated and in 30 years it h
generated only one practical application, namely, the ca
lation of the 16O binding energy in theKmax5Kmin12 ap-
proximation@26#.

An alternative way to construct the hyperspherical ba
with the help of the Slater determinants has been discu
in Ref. @27#. In this work, an optimal subset originating from
the product of the total interaction and the hyperspher
function of the minimal order has been generated. Howe
no numerical HSFM calculations have been performed w
this technique forA.4 beyond the minimal approximation

The possibility to construct the hyperspherical basis us
the link to the shell model looks very attractive because
could exploit the huge experience accumulated by s
model calculations over many years. In this paper, I prese
new method to construct the hyperspherical basis beyond
minimal approximation, with the help of the Slater determ
nant representation. This method is a further developmen
the ideas of Refs.@18–20,25#, leading to an improved ver
sion of the formalism proposed by these papers, which
much more suitable for computational purposes. I show t
after a proper selection of the linear combinations of
Slater determinants, the HSFM matrix elements can be s
ply related to the inverse Laplace transforms of the ma
elements of the no-core oscillator shell model. In Sec. II
HSFM is described, in Sec. III the Slater determinant rep
sentation of the hyperspherical functions is introduced, wh
in Sec. IV the HSFM and the shell model matrix elements
arbitrary values of the hyperangular momentum are rela
In Sec. V some examples of the numerical calculations
shown and the results are discussed in Sec. VI.

II. MANY-BODY HYPERSPHERICAL FUNCTIONS
METHOD

A wave function of anA-body system is a function ofA
21 Jacobi coordinatesji5Ai /( i 11)(( j 51

i r j / i 2r i 11). The
3A23 components of these coordinates can be considere
06430
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the components of a single vectorr in a 3(A21) dimen-
sional space and the hyperspherical coordinates (r,r̂) can be
introduced in this space. Then the square of the length or,
called the hyperradius, is

r25 (
i 51

A21

j i
25(

i 51

A

r i
22RA

25
1

A (
i , j

A

~r i2r j !
2, ~1!

where RA5(( i 51
A r i)/AA is the normalized coordinate o

the center-of-mass andr i is the individual coordinate of
the i th nucleon. The set of 3A24 hyperangles r̂
[$u1 ,u2 , . . . ,u3A24% can be related to the 3A23 Cartesian
coordinatesj i in a following way @28#:

j15r sinu3A24•••sinu2 sinu1 ,

j25r sinu3A24•••sinu2 cosu1 ,

•••

j3A245r sinu3A24 cosu3A25 ,

j3A235r cosu3A24 . ~2!

In the HSFM, a wave function of nucleusA with the total
spin J, projectionMJ , and parityp is represented as@1,2#

CA
JpMJ5r2(3A24)/2(

Kg
xKg

Jp ~r!YKg
JMJ~ r̂ !, ~3!

where the antisymmetric functionsYKg
JMJ( r̂) are the eigen-

functions of the angular part of the multidimensional Lapla
ian Dr̂ ,

Dr̂YKg
JMJ~ r̂ !52K~K13A25!YKg

JMJ~ r̂ !. ~4!

They form a full set of orthonormal functions in the 3A24
angular and 2A spin-isospin spaces. The quantum numb
K5Kmin

Jp , Kmin
Jp 12, Kmin

Jp 14, . . . is a hyperangular mo-
mentum and the indexg denotes the set of all other possib
quantum numbers. The valueKmin

Jp is state dependent and
greater than or equal to the minimum possible va
( i 51

A (2ni1 l i) of the oscillator shell model allowed by th
Pauli principle. In the present paper, this value is denoted
Kmin

0 .
The hyperradial functionsxKg

Jp (r) are found from the so-
lution of the coupled set of differential equations

S d2

dr2
2

LK~LK11!

r2
2

2m

\2
@E1VKg,Kg

Jp ~r!# D xKg
Jp ~r!

5
2m

\2 (
K8g8ÞKg

VKg,K8g8
Jp

~r!xK8g8
Jp

~r!, ~5!

whereLK5K1(3A26)/2, m is the nucleon mass, and th
hyperradial potentialsVKg,K8g8

Jp (r) are the matrix elements
of the NN interactions
6-2
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VKg,K8g8
Jp

~r!5^YKg
JMJ~ r̂ !u(

i , j
Vi j ~r i2r j !uYK8g8

JMJ ~ r̂ !&, ~6!

which contain contributions from the central, spin-orbit, te
sor, Coulomb, and any otherNN forces. Three-body force
can also be included if necessary.

In what follows, the quantum numbersJ, MJ , andp are
omitted.

III. A SHELL MODEL APPROACH TO CONSTRUCTION
OF THE HYPERSPHERICAL BASIS

In the case of the harmonic oscillator, the intern
translation-invariant Hamiltonian of theA-body system in
the hyperspherical coordinates is@15,2#

H52
\2

2mF 1

rn21

]

]r S rn21
]

]r D 1
1

r2
Dr̂G1

1

2
mv2r2,

~7!

wheren53A23 is the dimension of the space formed
the translation-invariant coordinates andv is the oscillator
frequency. Since in this Hamiltonian the spatial and angu
variables are separated, its eigenfunctions correspondin
the energy eigenvalues of (2k1K1n/2)\v are factorized
as

CNKg~r,r̂ !5RkK~r!YKg~ r̂ !, ~8!

where N52k1K is the total number of oscillator quanta
The hyperradial wave functionRkK(r) is @15,2#

RkK~r!5b2(K1n/2)S 2k!

G~k1K1n/2! D
1/2S r

bD K

e2r2/2b2

3Lk
K1(n22)/2~r2/b2!, ~9!

whereb5A\/mv is the oscillator radius.
In this paper, Eq.~8! is used to construct a full set o

hyperspherical functionsYKg . For this purpose, a full set o
functionsCNKg of fixed N andK, and thereforek, should be
generated and then divided by hyperradial functionsRkK .
Although for a fixedK the values ofN andk are arbitrary,
the most sensible choice isN5K andk50 because, in this
case,~i! the number of oscillator quanta of the wave functi
CNKg is minimal and~ii ! the hyperradial functionR0K does
not have any nodes and can be safely used in a denomin

The wave functionsCNKg times the 0s center-of-mass
wave functionF000(RA) can be represented by some line
combinations of the Slater determinantsDi

N(r1 ,r2 , . . . ,rA)
with a total number of oscillator quanta ofN. Therefore,

CNKg~r,r̂ !5F000
21~RA!(

i
C̃i

NKgDi
N~r1 ,r2 , . . . ,rA!,

~10!

where the individual coordinatesr i are chosen in an arbitrar
fixed coordinate system that is not related to the center
mass motion. Here,C̃i

NKg are some unknown yet coeffi
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cients. With k50 one can get from Eqs.~8! and ~10! an
explicit expression for the hyperspherical functionYKg( r̂),

YKg~ r̂ !5@F000~RA!R0K~r!#21(
i

Ci
KgDi

K~r1 ,r2 , . . . ,rA!,

~11!

whereCi
Kg[C̃i

KKg . Since both the functionsF000(RA) and
R0K(r) are symmetrical with respect to the permutation
nucleons, the hyperspherical functions constructed in
way are antisymmetric. They do not depend on the choice
the origin of the coordinate system or on the oscillator rad
b. If the linear combinations of the Slater determinants
chosen in such a way that the functionsCNKg possesses
well-defined orbital momenta, spin, isospin, and permu
tional symmetry, then the hyperspherical functionsYKg , ob-
tained from Eq.~11!, will have the same properties.

The expansion coefficientsCi
Kg can be calculated in the

following way. First, we construct all possiblen(K) linear
combinations of the Slater determinantsDK(r1 ,r2 , . . . ,rA)
with the total number of oscillator quanta equal toK, which
provide the required set of quantum numbersa and contain
only 0s motion of the center of mass,

FKa~r1 ,r2 , . . . ,rA!5(
i

ci
KaDi

K~r1 ,r2 , . . . ,rA!. ~12!

Here, the coefficientsci
Ka are the eigenvectors of the matr

RA
2 of the center-of mass radius squared, corresponding to

minimum possible eigenvalues3
2 b2. The basis states

FKa(r1 ,r2 , . . . ,rA) obtained in such a way will have a wel
defined value of the hypermoment only for the minim
value of the oscillator quanta associated with the chosen
of the quantum numbersa. In the general case, these stat
contain an admixture of the states FkK8b

8

5F000(RA)RkK8(r)YK8b( r̂) with hypermomentK8,K and
with hyperradial excitationskÞ0,

FKa~r1 ,r2 , . . . ,rA!

5 (
k,K8b

(2k1K85K)

AkK8b,KaFkK8b
8 ~r1 ,r2 , . . . ,rA!.

~13!

The coefficientsAkK8b,Ka5^FKauFkK8b
8 &, which measure

the weights of the states with the hyperradial excitationsk in
the functionFKa and which will be calculated later, dete
mine also the inverse expansion

FkK8b
8 ~r1 ,r2 , . . . ,rA!5(

a
AkK8b,KaFKa~r1 ,r2 , . . . ,rA!.

~14!

If the contribution of the states with hyperradial excitatio
kÞ0 is subtracted both from the left- and right-hand sides
Eq. ~13!, the remainder will not contain any hyperradial e
citation. Therefore, using Eqs.~13! and ~14! one can intro-
6-3
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duce a set of new statesF̃Ka that are the eigenfunctions o
the angular part of the multidimensional Laplacian cor
sponding to the eigenvalue2K(K13A25),

F̃Ka~r1 ,r2 , . . . ,rA!5FKa~r1,r2, . . . ,rA!

2 (
kÞ0,K8b

(2k1K85K)

AkK8b,KaFkK8b
8 ~r1 ,r2 , . . . ,rA!

5(
a8

Baa8FKa8~r1 ,r2 , . . . ,rA!,

~15!

where

Baa85daa82 (
kÞ0,K8b

(2k1K85K)

AkK8b,KaAkK8b,Ka8 . ~16!

However, this set is overcomplete. Ifd(Ki) is the dimension
of the subspace, spanned by the set of the hypersphe
functions with the hypermomentKi,K, then the dimension
of the subspace, spanned byn(K) statesF̃Ka , is d(K)
5n(K)2d(K22)2d(K24)2•••2d(Kmin). To construct
the orthonormal basis for this subspace, a singular value
compositionB5U@diag(wj )#VT, where j 51, . . . ,n(K), of
the matrixB[Baa8 can be found. From the numerical poi
of view @29#, this procedure is more stable than the Gra
Schmidt orthogonalization. In this procedure,d(K) is equal
to the rank of the matrixB and thed(K) linear independen
basis statesFKg

0 are the range of the matrixB. They can be
constructed from theg columns of the matrixU correspond-
ing to nonzerowj ’s,

FKg
0 ~r1 ,r2 , . . . ,rA!5(

a
uagFKa~r1 ,r2 , . . . ,rA!.

~17!

Therefore, taking into account Eq.~12!, the expansion coef
ficientsCi

Kg5^Di
KuFKg

0 & can be found as a part of the pro
uct of the matricesU and$ci

Ka%,

Ci
Kg5(

a
uagci

Ka . ~18!

Thus, the problem of constructing the hyperspherical bas
the Slater determinants representation is solved if the co
cientsAkK8b,Ka , which determine the matrixB, are known.

The coefficientsAkK8b,Ka5^FKauFkK8b
8 & can be found

using the following procedure. Let us expand the functio
FkK8b

8 in the Slater determinant basis

FkK8b
8 ~r1 ,r2 , . . . ,rA!5F000~RA!RkK8~r!YK8b~ r̂ !

5(
i

ai
kK8bDi

K~r1 ,r2 , . . . ,rA!.

~19!
06430
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Then, using the recurrence relations for the hyperradial fu
tions RkK(r),

RkK~r!5S 2k221K1
n

2
2

r2

b2D FkS k1K1
n

2
21D G21/2

3Rk21K~r!2S k221K1
n

2D
3S k21

kS k1K1
n

2
21D S k1K1

n

2
22D D 1/2

3Rk22K~r!, ~20!

we can obtain for the coefficientsai
kK8b5^Di

KuFkK8b
8 &,

ai
kK8b52

FkS k1K1
n

2
21D G21/2

b2

3^Di
Kur2uF000~RA!Rk21K8~r!YK8b~ r̂ !&. ~21!

Here we use ^Di
KuF000Rk21K8YK8b&50 and

^Di
KuF000Rk22K8YK8b&50. Now, with the help of Eqs.~19!,

~21!, and~1!, we can rewrite Eq.~21! as

ai
kK8b52

FkS k1K1
n

2
21D G21/2

b2

3(
i 8

ai 8
k21K8b^Di 8

K22u
1

A (
i 1, i 2

A

~r i 1
2r i 2

!2uDi
K&

~22!

and get the coefficientsAkK8b,Ka ,

AkK8b,Ka5(
i

ci
Kaai

kK8b . ~23!

Therefore, the coefficientsAkK8b,Ka can be constructed re
cursively using the fact that forK5Kmin the functionsFKa
already have a well-defined value of the hypermomentKmin

and thatCi
Kming

5ci
Kming

5ai
0Kming .

IV. MATRIX ELEMENTS IN THE HYPERSPHERICAL
FUNCTIONS BASIS

Due to the Slater determinant representation of hyp
spherical functions~11!, the matrix elementsOKg,K8g8(r)
5^YKg( r̂)uÔ(r,r̂)uYK8g8( r̂)& of an arbitrary operator
Ô(r,r̂) can be related to those calculated in the oscilla
shell model. Using the integral representation of an arbitr
function f (x),

f ~z!5
1

p i E0

`

dxx f~x!E
2 i`

i`

dse2s(x22z2), ~24!
6-4
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where the integration path bypasses the origin in the co
terclockwise direction, we can express a quan
rK1K81n22OKg,K8g8(r) as

rK1K81n22OKg,K8g8~r!

5
1

p i E2 i`

i`

dsesr2E
0

`

dr̃ r̃K1K81n21e2sr̃2

3E dr̂YKg~ r̂ !Ô~ r̃,r̂ !YK8g8~ r̂ !. ~25!

Then we substituteYKg( r̂) by its representation~11! with s
5b2, multiply Eq. ~25! by F000

2 (RA), integrate it overRA

and, taking into account that

dRAdr̃dr̂5dRAdj1dj2•••djA215dr1dr2•••drA ,
~26!

we find that the matrix elementsOKg,K8g8(r) are the inverse
Laplace transforms

OKg,K8g8~r!5
@G~K1n/2!G~K81n/2!#1/2

rK1K81n22

1

2p i

3E
2 i`

i`

dsesr2
s2(K1K81n)/2OKg,K8g8~s!

~27!

of the usual oscillator shell model matrix elemen
OKg,K8g8(s) calculated with the oscillator radiusb5s21/2,

OKg,K8g8~s!5(
i i 8

Ci
KgCi 8

K8g8E dr1dr2•••drA

3Di 8
K8†

~r1 ,r2 ,•••,rA!ÔDi
K~r1 ,r2 ,•••,rA!.

~28!

In the case ofK5Kmin
0 the inverse Laplace transform rep

resentation~27!–~28! coincides with the one derived in Re
@20#, and for K.Kmin

0 it still formally resembles the one
from Ref. @20#. However, the difference is that forK
5Kmin

0 the expressions~27!–~28! are valid for any choice of

the coefficientsC
i

Kmin
0 g

while for K.Kmin
0 these expression

are only valid for specially selected coefficientsCi
Kg ,

namely, for those that guarantee that the center-of-mass
tion and the hyperradial excitations are excluded from
shell model wave functions. On the other hand, forK
.Kmin

0 , Eqs.~27!–~28! are much simpler than those derive
in Refs.@19,25#.

If the operatorÔ is a sum of theNN interaction potentials,
Ô(r,r̂)5( i , jVi j (r i2r j ), the shell model matrix element
OKg,K8g8(s) are just numbers that do not depend on spa
coordinates but depend on the oscillator radius as a pa
eter. By contrast, the hyperradial potentialsOKg,K8g8(r) ex-
plicitly depend on a collective spatial coordinate, the hyp
radius, and their shapes are determined by the shapes
06430
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strengths of theNN interactions. These potentials play th
role of a self-consistent collective mean field. Unlike t
self-consistent Hartree-Fock mean field that generates sin
particle wave functions, the hyperspherical mean field g
erates the hyperradial wave functions that describe the
lective motion of nucleons interacting with the chosenNN
force.

In the particular case when theNN potentialV(r ) has a
Gaussian shape,V(r )}e2(r /a)2

, the shell model matrix ele-
ments ~28! are sums of the type(

l 50
l maxCl y312l , where y

5(112b2/a2)21/2 and l is the relative orbital momentum
between two nucleons. It is easy to show that in this case
HSFM matrix elementsVKg,K8g8(r) can be obtained from
the shell model ones by replacing everywherey312l by

@G~K1n/2!G~K81n/2!#1/2

G@~K1K81n!/2#
1F1S 3

2
1l ;

K1K81n

2
;2

2r2

a2 D ,

where 1F1 is the confluent hypergeometrical function. F
larger, asymptotic expressions can be used to calculate
hypergeometrical functions, which leads to the asympto
inverse power expansion of the hyperradial potenti
VKg,K8g8(r),

VKg,K8g8~r!'VKg,K8g8
as

~r!5 (
n50

nmax

vKg,K8g8
(n) /r312n. ~29!

Equation ~29! shows that the hyperradial potentials a
strongly anharmonic and that atr→` they decrease as 1/r3.
Such a slow decrease originates from the fact that two nu
ons can still interact at small distances when some or all
other nucleons are far away from them. The wave functio
generated by these potentials decrease asymptotically
more realistic way as compared to the oscillator wave fu
tions generated by the mean field parabolically increasin
large hyperradii.

V. APPLICATION TO THE HYDROGEN
AND HELIUM ISOTOPES

This section illustrates the applicability of the approa
described above and presents results of the numerical ca
lations of the ground state binding energies for hydrogen
helium isotopes with central and CoulombNN interactions.
The aim of these calculations is to investigate how far
hyperangular momentum one can go within the stand
HSFM, using the shell model technique proposed in t
paper.

The actualNN potential used in this work, was the Volko
V1 effective potential@30#. Its triplet even and singlet eve
components are equal,V31(r )5V13(r )5144.86e2(r /0.82)2

283.34e2(r /1.6)2 MeV, and the singlet and triplet odd com
ponents are related to the even ones as follows:V33(r )
5V11(r )5(122M )V31(r ), where M is the Majorana ex-
change parameter. In the present calculations, the stan
value M50.6 was used. Also,\2/m541.47 MeV fm2 was
always used.

To construct the hyperspherical basis, the Slater dete
6-5
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nants of the oscillator shell model in thels-coupling were
used. The Slater determinants were made of the single
ticle oscillator wave functions with the quantum numbe
$n,l ,m,s,t%, wheres andt are the spin and isospin projec
tions. Matrices of total orbital momentumL2, total spinS2,
and total isospinT2 have been diagonalized to find stat
with well-definedLST values and the matrixRA

2 was diago-
nalized in order to remove the center-of-mass excitatio
The hyperradial excitations were then excluded accordin
the algorithm described in Sec. III.

The basis states obtained in such a way do not gene
possess any permutational or orthogonal symmetry. In
particular case of the Volkov force, mixing between t
states with different permutational symmetries is absent.
get states with well-defined permutational symmetry, the s
ond Casimir operator( i , i 8

A ( i ,i 8) of the symmetric group ha
been diagonalized, as suggested in Ref.@17#. The eigenval-
ues of this operator, equal to12 ( ig i(g i22i 11), are repre-
sented by the Young diagrams@f# with g i boxes in thei th
row. In the present calculations, only the states correspo
ing to the largest eigenvalues were constructed, because
states have the lowest binding energies. At the present s
the hyperspherical basis has not been symmetrized with
spect to the orthogonal groupOA21. This leads to larger
number of hyperradial functions to be coupled by a set
differential equations, many of which contribute negligib
to the binding energy.

The actual values of@ f #LST for the 327H and 4210He

nuclei considered in this paper are:3H @3#(0 1
2

1
2 ), 4H

@31#~111!, 5H @32#(0 1
2

3
2 ), 6H @321#~112!, 7H @322#(0 1

2
5
2 ),

4He @4#~000!, 5He @41#(1 1
2

1
2 ), 6He @42#~001!, 7He @421#

(1 1
2

3
2 ), 8He @422#~002!, 9He @4221#(1 1

2
5
2 ), and 10He

@4222#~003!. With the currently available computer code,
was possible to go up toDKmax516 for 3H, DKmax512 for
4He, DKmax510 for 4,5H, DKmax58 for 5,6He, DKmax
56 for 6,7H, and 8He andDKmax54 for 7,9,10He, where
DKmax5Kmax2Kmin . The numberN(K) of the hyper-
spherical basis states with chosen@ f #LST for 327H and
4210He as a function ofDK5K2Kmin is shown in Fig. 1.
As expected, the numberN(K) increases strongly with the
increasing number of nucleons.

For the nuclei from Fig. 1 the hyperradial potentia
VKg,K8g8(r) were calculated up to somermax in about 25 to
50 points with the stepDr varying from 0.1 to 0.5 fm de-
pending on the number of nucleons. Beyondrmax the inverse
power expansion~29! was used to calculateVKg,K8g8(r),
which significantly reduced the size of the arrays where
hyperradial potentials were stored. The expansion coe
cients vKg,K8g8

(n) were calculated up to somenmax that de-
pended onDKmax andA. In the majority of cases, the choic
nmax59 has provided at least six correct digits for large a
1% for smallVKg,K8g8(r)max. However, in some cases, t
get the same accuracy,nmax has been increased up to 15.

An example of the inverse power expansion for the c
of 10He is shown in Fig. 2 where the hyperradial potent
V(r) of theKmin approximation is compared with its asym
totics Vas(r) calculated fornmax from 0 to 7. One can see
06430
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that, because of the slow decrease, the hyperradial pote
still significantly differs from zero even for very large value
of r. In the particular case of10He, the nuclear hyperradia
potential atr'200 fm is still about 10% of the centrifuga
potential. Using only a few points in the inverse power e
pansion helps to avoid the calculation of the nuclear hyp
radial potentials at such large distances. Generally, the q
ity of the inverse power approximation deteriorates w
increasingA andK.

After the hyperradial potentials are calculated, the syst
of hyperradial differential equations~5! has been solved with
the computer codeSTURMXX that is based on the algorithm
described in Ref.@31#. This code uses an expansion on
Sturmian basis and explicitly treats the long-ran
asymptotic tails of the hyperradial potentials represented
the inverse power expansion~29!. For the present calcula
tions, the total number of the hyperradial channels is l
than 400.

The present method has been tested for the3H and 4He
nuclei for which the results obtained with the sameNN
potential by different authors exist@4,7,8#. The binding
energies of3H, calculated in the present paper up toKmax
516, are in excellent agreement with those in Refs.@4,8#.
The binding energy of4He has been calculated up toKmax
512. The Coulomb interaction has been switched off for t
test case. A very good agreement has been obtained for lo
harmonics with the results of Ref.@7#. For Kmax>10 the
binding energies obtained in the present work, are ab
0.05% lower than the corresponding values from Ref.@7#.
Such a difference may arise because only the optimal se

FIG. 1. The numberN(K) of the hyperspherical basis state
with chosen@ f #LST for 327H ~a! and 4210He ~b! as a function of
DK5K2Kmin .
6-6
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hyperspherical basis states has been used in Ref.@7# while all
the basis states have been taken into account in the pre
work. Another source of this difference can be a lack
accuracy while solving the coupled set of differential equ
tions ~5! either in the present work or in Ref.@7#.

For GaussianNN potentials, the HSFM binding energie
converge exponentially@3#. Since the V1 potential ha
Gaussian shape, exponential extrapolation can be used t
timate the converged binding energies. For3H, the extrapo-
lated energy is28.448 MeV and28.476 MeV for theK
54, . . . ,16 andK56, . . . ,16 model spaces, respectivel
which means that the accuracy of the exponential extrap
tion in this case is 0.3%. For4He, the exponential extrapo
lation gave the binding energy of230.46 MeV for K
54, . . . ,12 and230.40 MeV for K56, . . .,12. With this
accuracy, the value obtained agrees well with the bind
energies of230.40 MeV and230.42 MeV obtained with
the optimal set of the hyperspherical functions in Ref.@8#
and by the stochastic variational method in Ref.@32#, respec-
tively.

The calculated ground state binding energies of327H and
4210He, together with experimental data, taken from Re
@33,34#, are shown in Figs. 3 and 4 and Table I. For theNN
potential chosen the binding energies of3H and 4He have
almost converged forDKmax512. The converged energy o
3H, shown in Table II, is very close to the exper

FIG. 2. Hyperradial potentialV(r) for 10He calculated forKmin

and its inverse power approximationsVas(r). The centrifugal and
Coulomb potentials are included in all the curves and the centr
gal potential is also shown separately.
06430
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mental one. For4He, the converged energy is about 1 Me
lower than the experimental one. In fact, the binding energ
of 3H and 4He are not very sensitive to increases in t
model space. These energies, calculated in the minimal
proximation, are already close to the converged ones and
contribution of the lowest order hyperharmonics to the to
norm of the wave functions of3H and 4He are 99.3% and
99.1%~see Tables I and II!.

The situation is different for all the other isotopes cons
ered, as, for them, the contribution of higher order hyperh
monics is very important. To illustrate this, the calculat
probabilities PDK5(gPKg of the hypermomentK5Kmin

-

FIG. 3. The ground state binding energies of the hydrogen
topes calculated with differentDKmax.

FIG. 4. The ground state binding energies of the helium isoto
calculated with differentDKmax.
6-7
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TABLE I. The binding energiesE ~in MeV! and the probabili-
ties PDK ~in %! of the hypermomentK5Kmin1DK for the ground
states of the327H and 4210He nuclei in the model space dete
mined byDKmax.

Nucleus DKmax E P0 P2 P4 P6 P8

3H 4 28.078 99.571 0 0.429
3H 6 28.329 99.385 0 0.464 0.151
3H 8 28.376 99.359 0 0.470 0.152 0.01
3H 10 28.416 99.337 0 0.477 0.154 0.01
3H 12 28.443 99.318 0 0.486 0.155 0.01
3H 14 28.451 99.311 0 0.490 0.156 0.01
3H 16 28.457 99.303 0 0.495 0.158 0.01

4H 2 21.450 91.407 8.593
4H 4 23.318 80.990 12.547 6.463
4H 6 24.284 73.165 14.776 9.503 2.556
4H 8 24.918 65.249 16.648 12.556 4.081 1.4
4H 10 25.387 57.994 17.742 15.064 5.748 2.4

5H 2 21.745 89.806 10.194
5H 4 23.925 81.917 11.739 6.344
5H 6 25.316 75.116 13.131 8.459 3.294
5H 8 26.070 69.435 13.976 10.539 4.526 1.5
5H 10 26.589 64.536 14.326 12.106 5.880 2.2

6H 6 21.55 70.26 14.15 10.88 4.71

7H 6 21.878 71.077 13.429 10.498 4.997

4He 4 228.450 99.506 0 0.494
4He 6 228.978 99.308 0 0.495 0.197
4He 8 229.328 99.209 0 0.493 0.193 0.10
4He 10 229.444 99.182 0 0.494 0.190 0.10
4He 12 229.532 99.150 0 0.508 0.189 0.10

5He 2 221.821 91.420 8.580
5He 4 223.957 82.818 12.763 4.419
5He 6 225.017 76.217 15.121 7.097 1.565
5He 8 225.780 70.578 16.330 9.384 2.829 0.0

6He 2 224.726 88.893 11.107
6He 4 227.205 82.134 13.427 4.439
6He 6 228.418 76.998 14.980 6.358 1.662
6He 8 229.140 73.576 15.512 7.742 2.446 0.7

7He 2 219.655 88.295 11.705
7He 4 223.204 78.632 14.754 6.614

8He 2 222.255 89.051 10.949
8He 4 226.036 80.245 13.184 6.571
8He 6 227.866 73.429 15.079 8.922 2.570

9He 2 218.024 88.608 11.392
9He 4 222.461 78.318 13.564 8.119

10He 2 220.560 90.287 9.713
10He 4 225.165 80.354 11.438 8.208
06430
1DK in the model space determined byDKmax are shown in
Table I. For the model space used, convergence ofPDK has
only been achieved for3H and 4He. The results of the cal
culations clearly indicate that for the neutron-rich isotopes
hydrogen and helium the weights of the lowest hyperh
monics can be significantly smaller than one. One can
from Table I a general trend that the decreased contribut
of the minimal hypermoment with enlargement of the mod
space is somehow correlated to the cluster structure of
nuclei under consideration.

For 4H, which is a two-body resonance in the3H 1 n
continuum, the contribution of the lowest order hyperh
monicP0 decreases almost linearly for the model space u
in the calculations, which makes it impossible to estimate
convergent value by exponential extrapolation. One can o
say that the contribution of lowest order hyperharmonic
less than 57%. The4H binding energy starts to converge an
an exponential extrapolation gives for the converged ene
25.90 MeV, which is slightly lower than the experiment
one25.57 MeV.

For 5H and 5,6He, the decreasing contributions of th
lowest order hyperharmonics with increasing model sp
follows an exponential law. The possible converged weig
P0

extr of the lowest hyperharmonic for these nuclei are giv
in Table II. One can see that the weight of the minimal h
perharmonic for the particle-stable nucleus6He, is larger
than for the particle unstable isotopes4,5H and 5He. The
binding energies of these isotopes tend to converge. The
ponential extrapolation gives E(5H)527.34 MeV,
E(5He)5226.80 MeV, andE(6He)5229.67 MeV ~see
Table II!, which are reasonably close to the experimen
values26.760.3, 227.40, and229.27 MeV, respectively.
However, in these cases the estimates of the converged
ues are less accurate than in case of3H and 4He because of
smaller model space used.

For all the other isotopes considered, the model spac
not large enough to make any definite conclusions about c
vergence. The only case where the binding energiesEDKmax

follow approximately an exponential decrease is8He. An
exponential extrapolation made withE0 , E2 , E4, and E6
gives an estimate forE(8He)5231.60 MeV, which is un-
expectedly close to the experimental value
231.41 MeV. The extrapolated converged contribution

TABLE II. Experimental binding energiesEexp ~in MeV! and
the exponentially extrapolated binding energiesEextr ~in MeV! and
weights of the lowest order hyperharmonicsP0

extr ~in %!.

Eexp Eextr P0
extr

3H 28.48 28.45 99.3
4H 25.57 25.90
5H 26.78 27.34 41.2
7H 27.61
4He 228.30 229.63 99.1
5He 227.40 226.80 34.2
6He 229.27 229.67 66.8
8He 231.41 231.60 47.3
6-8
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the lowest order hyperharmonics for8He is 47.3%.
The 6H and 7H isotopes become particle stable with r

spect to the six- and seven-body decays only forDKmax56.
In the case of7H a possible value of the converged ener
has been estimated by calculating the positions of the se
body resonances forDKmax52 and DKmax54. With E2
52.85 MeV, E450.133 MeV, andE6521.878 MeV the
estimated possible value for converged energy is –7.61 M
which is about 300 keV below the estimated binding ene
of 5H obtained in this work. It should be mentioned, ho
ever, that such an extrapolation is not very reliable. It sho
only be used to give a rough idea of where the conver
energy may be.

As for 7,9,10He, the numerical calculations have been p
formed only up toDKmax54 and these calculations clear
show the importance of the higher order hyperharmon
For the model space used in these cases the contributio
these harmonics is more than 20%.

It is very important to note here that the parts of t
many-body wave function described by the lowest order
perharmonics correspond to the 0\v no-core shell mode
with all possible oscillator frequencies@2#. Therefore, the
probabilitiesP0 of these hyperharmonics show how good t
standard shell model description is for the nucleus of in
est. For nuclei withP0'1, the shell model description i
well justified. However, the case ofP0 being significantly
less than one indicates a strong presence of particle-hole
citations. For some of the hydrogen and helium isotopes c
sidered above, the probabilitiesP0

extr , obtained by exponen
tial extrapolation, are shown in Table II. Only3H and 4He
have displayed a well defined shell model structure w
nucleons occupying the 0s shell. In the particle unstable nu
clei 5H and 5He the probabilities for their nucleons to o
cupy only 0s and 0p shell model states are 41.2% an
34.2%, respectively. For the particle stable nucleus6He, the
shell model picture of a closed 0s shell plus two valent
nucleons in the 0p shell is justified only by 66.8%. The res
are the particle-hole excitations that are responsible for
three-cluster nature of this nucleus displayed in fragme
tion reactions. Surprisingly, the present calculations have
vealed only 47.3% probability for the particle-stable isoto
8He to be described as a closed 0s core plus four 0p valence
particles. 8He is more bound than6He and has a smalle
radius, which was considered as a consequence of thep3/2
subshell closure. The HSFM calculations suggest one
probability for the nucleons in8He to spend in other energ
shells. At the same time, the HSFM calculations reprod
the enhanced binding energy of8He as compared to6He.

VI. DISCUSSION AND CONCLUSIONS

In this paper a new method to calculate the matrix e
ments in the hyperspherical basis beyond the minimal
proximation has been presented, and applied to the calc
tion of binding energies of the hydrogen and helium isotop
The method is based on the link between the translat
invariant shell model and the hyperspherical functio
method and uses the Slater determinant representation o
hyperspherical functions. It has been shown that the HS
06430
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matrix elements are just the inverse Laplace transforms
the matrix elements of the large scale no-core oscillator s
model, on the condition that the center-of-mass motion a
the hyperradial excitations are removed from the shell mo
states. Such a condition is the crucial point that makes
shell model formalism applicable in the calculations of t
HSFM matrix elements. Unlike the HCFP technique, t
shell model based method is not recursive and can be
rectly applied to any nucleus including nonclosed shell n
clei and nuclei far from stability. For these purposes, exist
shell model computer codes can be adapted to perform
HSFM calculations.

The method proposed in this paper is a further devel
ment of the ideas of Refs.@18–20,25#. However, the expres
sions for the HSFM matrix elements derived here are simp
and better suited to the numerical calculations than th
suggested in these works. Such an improvement has b
achieved by the independent choice of the individual nucle
coordinates from the center-of-mass of the many-nucl
system. However, the price that has to be paid is the requ
ment to remove the center-of-mass excitations from the s
model functions. This removal is simply done by the we
defined procedure of diagonalizing the matrixRA

2 . Other im-
provements relate to a different choice of methods for
elimination of hyperradial excitations and the orthogonaliz
tion procedure used to construct the orthonormal set of
perspherical functions.

The Slater determinant representation of hyperspher
functions, as proposed in this work, does not have any r
tion to the ‘‘realistic’’ shell model with the experimentall
determined single particle wave functions and energies. T
representation only helps to express one mathematical f
tion, namely, a hyperspherical function, which is a fully a
tisymmetric function of 3A24 angular variables and 3A
spin and isospin variables, by some linear combination
other mathematical functions, namely, by exponentials, po
nomials, and spherical functions, of 3A spatial and 3A spin
and isospin variables. It is this apparent increase of the n
ber of variables that makes it possible to replace the diffic
problem of calculating the HSFM matrix elements by t
well-known easier problem of calculating the matrix el
ments in the oscillator shell model.

From the fact that the hyperspherical functions with t
hypermomentK5Kmin

0 1DK can be constructed using th
DK\v oscillator shell model space it follows that the upp
limit on Kmax, achievable with the technique of the prese
work, is determined by the dimension of theDKmax\v no-
core shell model space that modern computers are abl
deal with. It should be noticed, however, that the hyperrad
functionRKg(r) can be represented by the sum over all p
sible monopole excitations of the oscillator hyperradial wa
functions RkK

(v)(r) with an arbitrarily chosen oscillator fre
quencyv: RKg(r)5(k50

` ckKgRkK
(b)(r). Therefore, with the

same value ofDKmax, the HSFM takes more basis stat
into account than the no-core shell model where the num
of radial monopole excitations is restricted by the conditi
2k1K5Kmax. Besides, in the shell model, the oscillat
frequencyv, chosen to minimize the total binding energy,
6-9
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the same for all the single particle wave functions and, the
fore, for all the hyperradial functions. By contrast, in th
HSFM, the hyperradial functions are the superpositions
the oscillator wave functions with the oscillator frequenc
determined by the spatial separations of nucleons@1#, or they
can be represented by an integral of oscillator wave functi
over all possible frequencies@2#. In both cases the weights o
such configurations are generated by a self-consistent hy
radial field, which, in turn, is generated by theNN interaction
potential. Therefore, the HSFM hyperradial functions, cor
sponding to different values ofK, have their own unique
shapes.

Until now, for light nuclei the no-core shell model calcu
lations have been performed up to 6\v and 4\v for A<7
and 8<A<11, respectively@35#. Recently, calculations o
8Be up to 10\v have been reported@36#. Therefore, one can
expect that, using the proposed shell model technique,
hyperspherical basis for these nuclei can be constructe
least up toKmax5Kmin14 or Kmin16. With the current ver-
sion of the computer code written for the purposes of
present paper, it was possible to go up toDKmax510 for
4,5H, DKmax58 for 5,6He, DKmax56 for 6,7H, and 8He and
DKmax54 for 7,9,10He. On the other hand, forA56, the
calculations have been performed up to the same valu
Kmax that was achieved in Ref.@11# with the HCFP tech-
nique. It should be mentioned, however, that for the sa
Kmax the model space of the present work is larger than
in Ref. @11# because the states with well-defined orthogo
symmetry have not been selected here.

In this work the Volkov V1 effectiveNN interaction has
been used only for simplicity. With this potential, the3H and
4He ground states binding energies are found to conve
rapidly. The binding energies of4,5H and 5,6,8He decrease
exponentially withK and, for Kmax used, these nuclei ar
underbound by maximum of 12% with respect to the valu
obtained by the exponential extrapolation. Exponential
trapolation estimates of the converged energies for the3H,
4,6,8He isotopes agree surprisingly well with experime
while the estimated converged energies of4H and 5H are
only 0.33 MeV and 0.6 MeV lower than the experimen
.

y

tt.

ys

06430
e-

f
s

s

er-

-

he
at

e

of

e
at
l

e

s
-

t

l

ones. It is also important to note that the binding energy
7H estimated by exponential extrapolation is about 300 k
lower that that for5H. If this result is confirmed by more
detailed calculations, this would agree with the hypothesis
Ref. @34# that 7H may exist as a low lying resonance with th
only decay channel being7H →3H1n1n1n1n.

In general, to solve the many-body problem, modern
alistic NN potentials should be used instead of V1. Wi
realistic potentials, the convergence of the simple HSFM w
deteriorate. However, the hyperspherical basis can still
used in many-body calculations if, for example, either sho
range correlation factors or effective interactions are int
duced. The increase in binding withK, obtained in this paper
for V1, gives a rough idea of what one can expect when s
convergence accelerating methods are used.

Summarizing, in this paper a new method to construct
hyperspherical basis forA identical particles using the Slate
determinant representation of the hyperspherical functi
has been proposed. This method made it possible to a
the hyperspherical functions technique to real systems u
A510 fermions using a simple model for theNN interaction.
The presented calculations suffer in some cases, serio
convergence problems, but this drawback can be overc
by different convergence accelerating methods. Future
provements of the proposed method, and in computer po
could allow realistic microscopic calculations forA.4 nu-
clei, a problem that is still very difficult to tackle. Such ca
culations will help to understand nuclear structure from fi
principles, and will test models for theNN interactions.
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