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Binding energies of T=0 and T=1 ground states ofN=Z nuclei in the interacting boson model

E. Baldini-Neto and C. L. Lima
Nuclear Theory and Elementary Particle Phenomenology Group, Instituto sleak-lUniversidade de"®aPaulo, Caixa Postal 66318,
05315-970 Sa Paulo, Sa Paulo, Brazil

P. Van Isacker
Grand Accéerateur National d’lons Lourds, BP 55027, F-14076 Caen Cedex 5, France
(Received 21 December 2001; published 23 May 2002

An algebraic model is developed to calculate The 0 andT=1 ground-state binding energies Nf=Z
nuclei. The method is tested in tsel shell and is then extended to the 28-50 shell that is currently the object
of many experimental studies.
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[. INTRODUCTION clei and has a cusplike behavior fi=Z. This treatment is
effective for known masses but, as the correctioad$og it

The investigation of the behavior of nuclei under extremehas the drawback that an extrapolation to unknown nuclei
conditions has become an important tool to reveal new facetéan be dangerous. It is, therefore, of interest to develop mod-
of nuclear matter. In particular, nuclei at the frontiers of the€ls based on simple physical principles that can account for
valley of stability constitute nowadays the most active re-the behavior of nuclear masses at e Z line.
search area of nuclear structure physics. With the advent of Many models have been used over the past years to in-
new radioactive beam facilities it is now possible to producevestigate the structure of heavidr=Z. We mention in par-
exotic nuclei that may have occurred naturally in the interiorticular recent applications of the Hartee-Fock-Bogoliubov
of exploding supernovddl]. In short, extremely proton- and method that includes proton-neutron pairing correlati@js
neutron-rich nuclei are now within experimental reach. OfThis approach is tailor-made for the treatment\Nof Z nu-
specific interest to the present paper are the considerable exlei but has the drawback of the lack of particle-number pro-
perimental efforts to study nuclei with roughly the samejection. Shell-model calculatiorf9] are generally extremely
number of neutrons and protori$~Z. successful in reproducing spectroscopic nuclear data but re-

On the theoretical side, the challenge is to investigatejuire large configuration space diagonalizations. This makes
whether models, developed for—and using the phenomenothe shell model less appropriate when a calculation of many
ogy of—stable nuclei, can still be applied in these new, agnasses is required. An algebraic appro@t@l, which has
yet uncharted regions and, if not, to propose new approachefinities with the one presented here, utilizes the concept of
to do so based on the data available up to now. One of thdynamical supersymmetry for the calculation of the binding
main open questions is the validity of the nuclear shell modegnergies in thesd shell but does not go beyond it.
with its traditional magic numbers and of the usual treatment In this paper the interacting boson mod&M) [11] in its
of the residual interaction among the valence nucld@@.  isospin invariant version is applied to proton-rish=Z nu-

The nuclear mass is a property of quintessential imporclei. Reliable estimates are obtained of binding energies of
tance as it directly determines the stability of a nucleusT=0 andT=1 ground states in self-conjugatdl€ Z) nu-
There are several theoretical approaches that reproduce thtei based on the concept of dynamical symmetry. The
systematics of masses of nuclei and it is worthwhile to menHamiltonian proposed is relatively simple and contains terms
tion here two of them. The extended Thomas-Fermi plugvith an intuitively understandable significance. A particular
Strutinsky integral4] (ETFS) is a high-speed approxima- ingredient is its treatment of the competition between isos-
tion to the Hartree-Fock method with pairing correlationscalar and isovector pairing.
taken into account through BCS theory. In earlier versions a
Wigner term was not included and this has been claimed to
be the reason for the systematically calculated underbinding
by about 2 MeV for even-eveN=2Z nuclei[5]. This effect The interacting boson model in its original version
persists forN=Z odd-odd systems and fad=Z=*=1 odd- (IBM-1) [12] successfully describes collective aspects of nu-
mass nuclei but with less prominence. The mass formulalei through the use of and d bosons that are thought to
based on the finite range droplet modERDM) [6] starts  approximate pairs of valence nucleons coupled to angular
from a sophisticated liquid drop mass formula to which mi-momenta 0 and 2. No distinction is made between neutron
croscopic corrections due to shell effects are added. Botand proton bosons. Whenever the difference between the
approaches have comparable numbers of param@bmit neutron and proton fluids is thought to play a role, one is
15) and make reliable predictions with impressive success. Ifiorced to use more elaborate versions of the IBM. The
the FRDM and also in a recent ETFSI calculatipfl a  neutron-proton interacting boson model, or IBM-2, was in-
Wigner (correction) term is included that specifically deals troduced mainly to provide a microscopic foundation to the
with the peculiar behavior of binding energiesf~Z nu-  model[13]. It uses as building blocks and d bosons con-

Il. AN IBM-4 “MASS FORMULA"
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structed from neutron-neutrom) and proton-proton gp) The previous studie$17,18 suggest that the relevant
pairs solely. In the third and fourth versions of IBM, IBM-3, terms in a simple IBM-4 Hamiltonian must be taken from
and IBM-4, the isospin quantum number is introduced in atwo different symmetry classifications:

natural way. In IBM-3 the entire isospin tripl@t=1 is in-

cluded, leading tonn, np, and pp pairs with T,=+1,0,

—1 [14]. The IBM-4 considers botf =0 andT=1 pairs; u(6)>
the T=1 bosons are assigned an intrinsic sfin0 while

T=0 bosons carry an intrinsic spBr1 [15]. Ajustification A yetailed analysis of the chair@) is given in Ref.[19]

of this choice is that the two-particle isospin-spin combinayyhere the definition of all Casimir operators can be found.

tions (T'S)=(10) and [S)=(01) are lowest in energy and e gnes of interest for the calculation of binding energies of
that_ they give rise t,o an 349) allgebra that is the boson N _z nyclei are the following. First, the linear and quadratic
equivalent of Wigner's supermultiplet algetre6]. Casimir operators of (6) are included. The symmetric rep-
The mass region 28N~Z<50 has a very rich structural  osentations of (6) is labeled by the total number of bosons
behavior, presenting many aspects of nuclear motion. Itis ag;. a5 4 result, the (8) Casimir operators take account of the
ideal testing ground for various models since a proper dep|k properties of the nucleus and lead to a smooth variation
scription of the data relies on the interplay betwd@en0 as o the mass with particle number. The next two terms to be
well asT=1 pairing and deformation-driving interactions. In ;~juded are the quadratic Casimir operator of&tand the

addition, it is a region of intense experimental studies bufinear Casimir operator of §3). They are defined g<.9]
with few experimental data available up to now.

Very recently, the IBM-4 was applied to the spectroscopy
of exotic N~Z nuclei in thepfs;gg;, shell[17]. In this ap-
proach the IBM-4 Hamiltonian is derived from a realistic R R
shell-model Hamiltonian through a mapping carried out for C,[Ug(3)]=ngy1, 2
A=58 and 60 nuclei. The boson energies and the boson-
boson interactions are thus derived microscopically and nevith
parameter enters the calculati@ince the shell-model inter-
action is considered as an inpuThis microscopically de- VAN SN T s y(11)
rived Hamiltonian gives good results i#Ga (when com- Y= (S01X S10+ S10% Sor)
pared to the shell modeand predicts the energy spectra of

OSOH(3)®S0y(3). (1)

Ur(3)®Ug(3)

CLSU4)]=3(¥x 1)@ &4 72,

. . T ve 10
heavierN=2Z nuclei (such as®As and "°Br). The approach Tu=2(s]pX510 0,
is reasonably successful in obtaining a spectroscopy of low-
spin states iN~Z nuclei. It makes use, however, of a com- gM: ﬁ(sélxéoogi}’,

plicated Hamiltonian and, moreover, calculations beyond
%8r seem difficult.
Prompted by these considerations, in particular, the need
for reliable binding energy predictions at the=Z line and
the existence of a microscopically derived I1BM-4 Hamil- No1= (Sh1X S Y, )
tonian, we propose here a simple calculation of these binding
energies in the context of IBM-4. The calculation requires, hare the coupling is in spin and isospi, , is a Gamow-
the diagonalization of matrices of very low dimensiam the . . . [id . ~
order of half the number of bosonsAlthough it is not a Tellgr—llke operator that is a vector in spin and |§osﬂig,
mass formula as sudiit is not a closed formula the calcu- andsS, are the total isospin and spin operators, agdand
lation can be readily carried out for any nucleus. n,o are the number operators that count the isoscalar and
In a previous worK 18] one of us introduced an algebraic isovector §t)=(10) and (01) bosons. The operator
Hamiltonian(which can be regarded as thdoson channel ¢,[SuU(4)] implies equal T=0 and T=1 interaction
of the general IBM-4 Hamiltonian of Refl7]) with the
specific aim to study the competition between the isovecto
and isoscalar pairing modes in self-conjugate nuclei. Th
model is formulated in terms of bosons that do not have a
orbital structure but carry spin-isospin combinatiots)(

St T (00
N10= (S]oX S10) 50

strengths whileC,[U(3)] splits states with different spi&
In Ref. [18] the quadratic Casimir operator of Sk(3) is
Considered while here thaear Casimir operator of (3)
s preferred. This choice is guided by a mapping argument:

In Ref. [20] it is sh that th -bod in-orbit t
=(01) or (10 and which will be denoted as{rs. They give nxe [20] it is shown that the one-body spin-orbit term

rise to the symmetric representation of the spin-isopin algel—’sol s ofthe nuclear. mefan—fleld pote.nt|a! 'S cA:onverteg viaa
bra U6). As an approximation to the full IBM-4 that in- DYSon boson mapping into a combination /f; and nyo
cludess andd bosons, this can be justified for even-even and=N—ny,; with coefficients that depend onZ,. Also, an
odd-oddN=Z nuclei (the only ones considered he¢mehere  eventual asymmetry between tiie=0 andT=1 pairing in-

the favored W6) representation is indeed symmetri]. It teractions can be represented in this Wa|. These impor-

is also justifiable inN+# Z nuclei when they are even-even tant structural effects, i.e., the spin-orbit term and the differ-
but not when they are odd-odd since in that case the favoreeince between the isoscalar and isovector pairing interactions,
U(6) representation of the full IBM-4 is nonsymmetfit5]. can thus be represented algebraically. The final term to be
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TABLE I. Core binding energies and parametérsMeV) for the 8-20 and 28-50 shells.

Shell BE, a B y 3 7

180 to %8s 138.851 16.0604 0.4765 0.1897 —6.1461 —3.0090
30p to “%Ca 408.638 —24.5379 0.1100 0.0649 —3.7348 —1.8460
56Ni to "8y 607.2890 22.8140 0.1175 —0.0672 —1.9584 —0.9020
8y to 1%%n 1172.9697 —28.4637 0.1183 -0.1877 —1.0450 —1.0248

included is the quadratic Casimir operat@,[SO(3)]

(ININTTXAsS|C[U(6)][[NINTTXAsS)=N,

=72, which is known to represent the nuclear symmetry and

Wigner energies.
In summary, the following Hamiltonian is taken:

H=BE+aC,[U(6)]+BC,[U(6)]+ yC,[SU4)]

+¢Cq[Ug(3)]+ 7C,[SOK(3)], (4)

whereBEj, is the binding energy of the doubly magic core,
specific for a given mass region. Note the absence from Eqm

(4) of operators associated withf{B) and SQ(3); these are

not needed because, in the context of the simple model dis-
cussed here, their effect is equivalent to the correspondingh

operators of Y(3) and SQ(3). The Hamiltonian (4) is a
straightforward extension of the one considered in Rif]

since it includes more terms in order to give a better descrip

tion of observed nuclear binding energies

All operators in Eq.(4) mutually commute, except for

C,[SU(4)] andC,[Ug(3)] and hence the solution ¢t in-

(INIATTX A S| Co[U(B)]ININTX A sS)=N(N+5),
(INIATTXASS|C1[U(3)]|ININTTX A S) =\,

(INIATTXAS|Co[SAB) | ININTTX AS) =T(T+1).
(6)

We end this section by summarizing our procedure for
ding the binding energy of the lowedt=0 and T=1
states in arN=2Z nucleus:

(1) Determine the number of bosohkoutside the closed
ell.

(2) Construct the Hamiltonian matrix in the basis
[ININTTXAGS) with A¢=T,T+2,...,N—S—1) or (N
—9S) andAg=N-—\;. The dimension of this matrix igN
—S—T)/2]+1 where| x| is the largest integer smaller than
or equal tox.

(3) Diagonalize the Hamiltonian matrix. The largest ei-

volves a numerical diagonalization that is most convenientl)genvame gives the binding energy.

done in the second basis in E€l), labeled as|[N]\{T
X\gS). These states are simultaneous eigenstaté%oind

Note that the second step of this procedure must be done
for different values ofS and, of the binding energies found

No1 With eigenvalues\t and\ s, respectively, which are the in this way, the largest must be selected. We have found that
numbers of isovector and isoscalar bosons. The allowed vafor T=0,1 states ilfN=Z nuclei the largest binding energy is

ues of A\t and Ag follow from the U(6)DU+(3)XUg(3)
branching rule. For a symmetric(8) representatiofiN] the
allowed values are all those that satiafy+ X 5= N. Finally,
the allowed values of T and S follow from the
SU(3)DS0O(3) branching rul21]: T=A1,A1—2,...,10r0
andS=Ag,As—2,...,1 0r 0.

The matrix elements o€,[SU(4)] in this basis can be
calculated analytically18],

NTS
ATAGMAG

(ININTTXAsS|Co[SUA)TIININTT X A sS),
Vi ag=2 st BN+ T(T+1)+S(S+1),

VTS a2 = [ =T+ T+1) (A= S+2)
X (A g+S+3)]*2,
VNTS

Aphahg+2ng-2— L(AT=T+2) (A7 +T+3)(As—9)

X (Ag+S+1)]Y2, (5

obtained forS=T in even-even and foB=T—1 in odd-odd
nuclei.

Ill. RESULTS

A first application concerndl=Z nuclei in thesd shell,
from %0 to “°Ca, where the experimental masses are well
known[22]. The five parameters of the Hamiltonié#) are
adjusted to the binding energies of the lowest states With
=0 and those witlT=1 of all even-even and odd-odd self-
conjugatesd-shell nuclei. There are thus two data points per
nucleus, which is crucial for a reliable determination of the
parametersy, &, and . Binding energies are corrected for
Coulomb effects according to the prescription given in Ref.
[6]. The Coulomb-corrected binding energy of the cBit,,
is calculated in the same wdgee Table). A drawback of
the present formula is the occurrence of a discontinuity at
midshell, which is related to a change of c¢feom °0 to
40Ca). To avoid these mid-shells effects, two different fits are
performed for each half of the shell, a first one for nuclei
from ¥F up to 28Si (N=6 boson} and a second ongvith
40Ca as a conefor nuclei from 38K down to *°P. In Table |

while the other operators are diagonal with eigenvalueshe two parameter sets are given in the lines label€®“to

given by

285" and “ 3% to “°Ca.” The major difference between the
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TABLE 1. Binding energies(in MeV) of N=Z nuclei in the " ' ' " '
first half of thesd shell. Calculated values are obtained with the 15 O Expt 8
parameters given in Table I. - o < IBM-4 (L=0)

o 8 O Macchiavelli et al.

Nucleus T B Eypt BEigwa A % 10 - § 8 g . 1
18 0 151.662 152573  —0.912 e ° 8
= 1 150.620 152.701  —2.081 m 5 1
Ne 0 178.307 178.887  —0.580 < o
20Ne 1 168.033 167.755 0.278 it ol 2 ° g & 5 o |
2Na 0 195.476 195.332 0143 © ¢
22Na 1 194.819 194.722 0.097
2Mg 0 223.545 222.918 0.628 5 - . - s .
24\g 1 214.029 212.543 1.486 8 10 12 N“‘z 16 18 20
26 0 241.423 242.181 —0.758 a
2 1 241.195 240.774 0.421 FIG. 1. Calculated binding energy difference®E(T=0)
28gj 0 270.581 271.029 —0.448 —BE(T=1) in N=Z sd-shell nuclei for the parameters given in
28g;j 1 261.265 261.465 —0.200 Table I, compared with the experimental differences and those of

Macchiavelliet al. [23].

two sets is the sign change in which is required SINCE N~ first half of thesd shell and 0.245 MeV in the second half.
the first halfN counts the pairs of nucleoreddedto O gjnce reasonable results are obtained with parameters that
‘%h”e in the second half it counts the pasebtractedfrom  can pe qualitatively understood from simple arguments, an
Ca. One also notes that has a larger absolute value in extension towards the 28-50 shell can be considered.
first half than in the second: this must be so since, insttie We begin with a discussion of the first half of the 28-50
shell, the binding energy per nucleon increases as the size ghe|l. for nuclei ranging fron¥Cu to 78Y. The ground state
the nucleus grows. Furthermore, the paramefers, and»  of all these self-conjugate nuclei hag=0", with eitherT
decreasein absolute valugas a result of the average inter- — g iy even-even of = 1 in odd-odd nuclei, with the excep-
action strength that decreases with mass. Nevertheless, opgn, of 58Cy that has al”,T)=(1",0) ground state. Up to
notes that this decrease is strongerjathan it is for¢, that 6456 the masses are well known and can be taken from the
is, the ratio|£/y| is larger in the second half of tred shell compilation of Audi and Wapstr&22]. Of the heavierN
than it is in the first. Again, this is understandable intuitively — 7 nclei. the masses d”Kr and 7“Rb are also listed by
because one expects the Wigner(&Usymmetry to be in-  aydj and Wapstra. The masses $s and %8Se are avail-
creasingly broken by the spin-orbit tefdg(3)]. The result-  ohie from a recent measuremday] and that of °Sr from
ing binding energies for each half of the shell are shown ingq¢. [25]. The latter experiment also gives a mass fége
Tables Il and IIl, respectively. Also the isospin of each stat, ; since it is far off the systematics of Audi and Wapstra, the
is indicated as well as the difference between the calcu- o it from Ref[24] is used. The mass dfBr is not known
lated and measured binding energies. In Fig. 1 the differg,perimentally but as it is in the middle of a region of nuclei
ences in energy between tiie-1 andT=0 states are Com- ith measured masses close to the extrapolations of Audi
pared with the observed ones and also with they g \wapstra, we have adopted their extrapolated value for
semiempirical formula for this quantity given in R423]. 705, The mass of®Y is not known and not included in the
The root-mean-squarems) deviation is 0.876 MeV in the g The binding energies of the loweSt=1 states in even-
even N=Z nuclei are derived from those of the isobaric
analoguegalso taken from Ref[22]) after an appropriate
Coulomb correction. The evolution of the splitting between
(3™, T)=(0",1) and 07, T)=(1",0) states in odd-odd nu-

TABLE lII. Binding energies(in MeV) of N=2Z nuclei in the
second half of thesd shell. Calculated values are obtained with the
parameters given in Table I.

Nucleus T BEg: BE gy A clei is of par_tipular interest as regards th_e questioff f0
and T=1 pairing and is currently the object of several ex-

p 0 289.433 289.456  —0.024 perimental studies. The (Q1) state in°8Cu lies 0.202 MeV
0p 1 288.756 288.968  —0.213 above the (1,0) ground stat¢26]. This order is reversed in
323 0 315.655 315.300 0.350  %%Ga where the (1,0) state is 0.571 MeV above the (1)
%25 1 308.653 308.507 0.146  ground statg27]. The BE(0",1)—BE(1",0) splitting then
¥l 1 334.744 334.723 0.021  continues to rise to 0.837 MeV if°As [28]. A very recent
34c 0 334.598 334.938  —0.340 experiment on’°Br [29] has not observed a (10) level; the
SeAr 0 361.450 361.513 —0.063 lowest observed =0 level (with J7"=3") is at an excitation
36Ar 1 354.839 354.456 0.383 energy of 1.337 MeV. Similarly, the lowe§i=0 state in
38K 0 381.186 381.351 ~0.165 "“Rb measured by Rudolp#t al.[30] at an excitation energy
38 1 381.056 381.393 —0.337 of 1.006 MeV hasl= 3 and the energy of th&"=1" state is

unknown. With these data as input, the parameters inf4q.
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8 - O Expt 4 9r O Expt 1
O IBM—4 (L=0) & 1BM—4 (L=0)
0O Macchiavelli et al. O Macchiavelli et al.
7" N
- 6F . S
S
(] [m] [0)
2 a] 2 O o ©
= o o 8 8 S st 0 g @ 8 8 .
o 8 8 i 3 8 ® D o g § §
e 4T ] =
;i 2 o -
. |z
— - 1 - <> .
&@ @ o
g . o
of Q i 41 B 8 g 8 3 8 0 oo o .
0 & 8 g 8 0
le) (o4
_3 1 1 1 1 1 1 1 1 1 1 1
_2 L L L 1 L
28 30 3 3d 36 28 20 27 29 31 33 35 37 39 41 43 45 47 49 51

N=Z N=Z

FIG. 4. Binding energy differenceBE(T=0)—BE(T=1) for
the entire 28-50 shell with parameters fitted separately for each half
see text for details In the first half(up to ®Y) “Expt” refers to
measured masses while in the second half it refers to the extrapo-
lations of Ref[22]. Also the results of Ref.23] are shown.

FIG. 2. Calculated binding energy differencd8E(T=0)
—BE(T=1) in N=Z nuclei betweerr®Cu and®Y for the param-
eters given in Table |, compared with the experimental difference
and those of Macchiavelt al.[23].

can be adjusted through a fit procedure that minimizes th
rms deviation in the binding energies of two states pe
nucleus(if known). The resulting parameters are shown in
the line labeled ®®Ni to “8y” of Table | and lead to an rms

deviation of 0.396 MeV. In Fig. 2 the differences in energy
between theT=1 andT=0 states are compared to the ob-
served ones. One notes the good agreement that is obtain
which gives confidence in the energy splittings of 0.847,
1.037, and 1.214 MeV predicted ifBr, "Rb, and 78y,  State energy.

respectively. As already mentioned, the energy difference For the second half of the 28-50 shell the situation is more
BE(0" 1)—I§E(1+ 0) is not known e;<perimentally in these complicated since there are no data available. The core is

10 : ) ; i
isotopes. In the former two/°Br and "“Rb, the energy dif- “Sn with a ground-state mass measured in fa. Since

. _ : g so little is known experimentally, we use the extrapolations
ference with the lowestkknown) T=0 state is shown in Fig. from Audi and Wapstré22] for the masses of even-even and

3 odd-odd nuclei, complemented with the results ¥ from

the fit to the first half of the 28-50 shell. The resulting pa-
—— Expt rameters are shown in the line labeled®y to °°Sn” of
---- IBM-4 (L=0) Table I. The predictions for the splitting betwe&s1 and
2r . T=0 states for the entire 28-50 shell are shown in Fig. 4.
8 One notes a satisfactory agreement with the data, when avail-
- 3 -- able. The use of extrapolated data, however, should weaken
the confidence in the predictions for thBE(0",1)
—TT -- - —BE(17,0) splitting in odd-odd nuclei.

,3. To emphasize the point that these energy splittings result
from a calculation of total binding energies, the odd-odd re-
sults are represented in a different way in Fig. 3. Note that
this plot implies a comparison @bsolutebinding energies:

for representation purposes the measured binding energy of
élae ground state of a particular nucleus is drawn at zero and
other levels of that nucleus are given relative to that ground-

e
T
L

o
T
I
|
I
|
|
I
|
}
[}
L

Energy (MeV)
1
[}

R IV. CONCLUSIONS

A simple approach based on IBM-4 has been proposed to
-1 58 62 66 70 7478, calculate the binding energies of the low@st0 andT=1
states of self-conjugate nuclei. It has linear and quadratic
terms in the boson number that account for the smooth varia-
-2 tion of the mass with particle number, supplemented with
FIG. 3. Experimental and calculated energies of (I=0) and three contributions that pave a clear physical meaning: an
(0*,T=1) levels in odd-oddN=Z from 5¢Cu to 78Y. In "Br, SU(4), a spin-orbit, and &2 term. It can be considered as a
"Rb, and’®Y the (1*,T=0) levels are not known experimentally local “mass formula” that gives predictions of a specific in-

and in the former two nuclei the angular momentum of the lowesfe€rest to current experiments at tNe=Z line. As an appli-
(known) T=0 state is indicated. cation we considered nuclei frorfNi to "8y where predic-
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tions could be made for some of the heavier isotope®dd-odd nuclei withN+#Z have a dominant nonsymmetric
currently under study. Also the second half of the 28-50 shelU(6) representation that cannot be constructed fedmnsons
was considered although there predictions are more questionnly. Also, deformation effects that are present vsitand d
able due to the lack of reliable data. bosons and which must be included through orbital operators

The advantage with respect to previous IBM-4 wptk]  are outside the scope of the simple approach presented here.
is that the Hamiltonian used is much simpler and that only

the L=0 channel is considered. The numerical diagonaliza-
tion then becomes trivial and the calculations can be per-
formed, without much effort, for arbitrary numbers of
bosons. This is much harder to achieve with the full version One of us(E.B.N.) would like to thank FAPESP for fi-

of IBM-4. On the down side it should be noted that, for nancial support and also the people from GANIL, where part
odd-odd nuclei, this approach is restricted Ne=Z since  of this work was carried out for their kindness.
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