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Role of bending mode in generation of angular momentum of fission fragments
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Based on the dinuclear system concept, the role of bending vibrations in creation of the angular momentum
of the primary fission fragments is investigated. EeiCf spontaneous fission, the angular momenta of the
fragments are calculated as a function of the neutron multiplicity and compared with available experimental
data.
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[. INTRODUCTION showed that the bending vibrations are the main source by
which the fragments gain angular momentum at scission

The phenomenon of nuclear molecular resonances, whog®int. A recent experimental study of spontaneous fission of
description requires one to consider the relative motion of>°Cf with the Gammasphere detector provides information
two nuclei, has been known for a long time from the study ofabout the average angular momentum of fission fragments
reactions with certain light nucldil—3]. For heavy nuclei, [16,26. While the fissioning nucleus has initially zero spin,
the experimental facts indicate the formation of a dinucleathe primary fission fragments have angular momenta of
system (DNS) with quite a long lifetime(a few units of about (2—8} [26]. These data result from the study of
102! s) that was detected in deep inelastic reactions withransitions between the levels of ground-state rotational
heavy ions at energies lower than 15 MeV/nuclddr].  bands of the fragments.

When the DNS evolves in masgshargé asymmetry, its de- The main purpose of our paper is the explanation and
cay in a relative coordinat® between the centers of nuclei description of the dependence of angular momenta of fission
determines the charge and mass distribution of reaction prodtagments of?>Cf on the number of emitted neutrons. We
ucts[4,5]. An evolution of a DNS to a compound nucleus by Will show that the temperature in our model is not a free
the transfer of nucleons from the light nucleus to the heavyparameter and corresponds to the excitation energy of the
one has been considered in RéB.7]. internal degrees of freedom. The production of angular mo-

Just before the scission, when the neck radius is small, th@entum in the fission fragments and the method of calcula-
fissioning system can be treated as a system of two alignetion of the DNS potential and excitation energies are de-
deformed nuclei separated by a constant distance betwe&gribed in Secs. Il and Ill, respectively. The angular
their tips[8—20]. Thermal equilibrium is usually assumed in momenta of fission fragments are calculated in Sec. IV as a
a DNS. In order to describe the dependence of experimenté¥inction of the number of postscission neutrons, under the
data on the total kinetic enerdfKE) of fission fragments, assumption of bending angular vibrations at the scission
we consider the pole-pole configuration of the DNS. Thepoint by which the fragments gain angular momentum. For
main observables, such as the distributions of mass, chargé>’Cf spontaneous fission, the calculated results are com-
and kinetic energy, in the fission of a wide range of nucleipared with the experimental data. A summary is given in Sec.
from Po to Fm are reproduced well within scission_pointv. The method of calculation of the potential energy of bend-
models[12]. Fragmentation theory3] treats fission as a ing mode is presented in the Appendix.
guantum-mechanical process in the relative distance and
mass asymmetry coordinates and qualitatively explains the
general features of fission mass distributions.

The experimental data show that the difference of the po- At the scission point, a fissioning system can be approxi-
tential energy between the saddle and scission configuratiomsately considered as a DNS whose intrinsic degrees of free-
(several tens of MeYis not completely transformed into the dom are in thermal equilibrium. However, a shape of the
total kinetic energy of relative motion of fission fragments, DNS is not equilibrated. In this paper, we assume that the
but other collective or intrinsic degrees of freedom absortangular momenta of fission fragments are generated by small
the rest of the energy. Different types of collective angularbending vibrations of DNS nuclei around the pole-pole ori-
vibrations, such as wriggling, bending, tilting, and twisting, entation. A similar assumption was earlier done in Refs.
are possible in the excited prescission DINg8,21-24. [8,9,11,16,20 In the bending mode, the rolling of nuclear
These collective modes do not contribute to the kinetic ensurfaces occurs. The slide of nuclear surfaces in the wrig-
ergy of fragments after the decay of the DNS. Angular vibra-gling mode is assumed to be suppressed by frictzin27
tions can generate the rotational energy and angular mand larger stiffness of the potential. Since the fissioning
menta of the fragments of binary and ternary fissif2fs]. nucleus has initially zero spin, the wriggling mode would
The generation of angular momenta of fission fragments waseed larger rotational energy because of larger orbital mo-
treated by several authors many years §8®,11. They = mentum compensating the spins of the fragments. Therefore,

II. BENDING VIBRATIONS
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Ry(7—6;)=—Ry0,. 3)

Using the constraing3), the problem under consideration is
simplified to the one-dimensional Sliinger equation with
analytical solution(see below. For almost symmetric DNS,
we checked that the approximati¢®) is suitable. Thus, the
bending degree of freedom is given by

6277_01. (4)

Under the assumption formulated above, the model Hamil-
tonian describing the rotation of the DNS as a whole and
small bending angular vibrations can be written 28]

FIG. 1. Schematic picture and definitions of various coordinates
of the DNS configuration. H=Tu+T+U,, %)

the wriggling mode is energetically unfavorable. whereT,, describes the rotation of DNS as a whdlg/is the
The Hamiltonian describing collective modes of a DNS Kinetic energy of bending motion

(nuclear molecule was analyzed in[22] where suitable 221 d d
coordinates were introduced, and an expression for the sz————(f—), (6)
kinetic energy operator was derived. The procedure of quan- 2J. edel de

tization of the classical Hamiltonian is described in Ra£]. =~

Below we consider the case of axially deformed DNS J=J31+(R1/R)"J3. (7)
nuclei and also eliminat@ and y vibrations of the clusters A .

and oscillations of an intercluster distance around the equiger.&‘:ﬁz aret m?mlents of mefrttl)a O;. clustertg forrtr;]mg DlNS’
librium value from the consideration. The frequency of os-~ € IS the potential energy of bending motion, the volume

cillations in R is at least three times as large as those foPIelTPTm |tsr?v= E%Et that the total | wm of
angular vibrations. The equilibrium distan&=R,,~R;[1 sing the condition that the tolal angular momentum or-a

decaying system is zero and constrd®t one can express
— B3 (4m) + 5I(4m) B1]+ Ro[ 1~ B3/ (47) + \/5I(47) B,] Ying =Y . P
) the angled throughe
+0.5 fm between the centers of nuclei corresponds to the

minimum of the nucleus-nucleus potential which is a sum of I R.— IR
nuclear and Coulomb potentialsy andU [28]: 9= vz w271

= €. (8)
Ro(uR%+J31+3)

UR.Bi, Q) =Uc(RBi, Q) TUNRBL ). (D i seen from Eq(8) that, for a nearly symmetric DNS)
~0 and the role ofl . in Eq. (5) is negligible.

The potential energy was considered in Rgf2] only
schematically. The aim of the present paper is to apply the
: X ; potential energy calculated by us in previous publications
centers of nuclei forming DNSg; are deformation param-  [2g] for calculations of angular momenta of fission frag-

eters. ments. It was applied for analysis of the experimental data on

The coordinates used to describe the motion of clusterggion and deep inelastic collisions. The potential energy is
forming DNS are shown in Fig. 1. The center of th|§ coordi- .5 1culated in the Appendix taking E8) into account. We
nate frame lies at the DNS center of mass. The afigethe  ogject, as was mentioned above, the oscillations of the in-
angle of rotation of DNS as a whole. The angt§sand 6, (ercjuster distance. Due to the axial symmetry of the DNS
specify 'Fhe orientation of the cluster with respect to the aXisyyclei, the potential energy does not depend on the azimuthal
connecting the centers of mass of clusters. The anfj@d  \jiprations. Then for small deviations of the ratio of angles

¢, specify their azimuthal orientation. The anglésandf,  anq g, from Eq. (3), the potential energy of bending vibra-
are related via the condition that clusters touch each other &ons takes the form

the poleg22]. If this condition is not fulfilled, the potential
energy increases considerably. Under this condition

Here, the angle$);=(6;,¢;) (i=1,2) specify the orienta-
tion of the intrinsic coordinate system of @ nucleus with
respect to the molecular frame whasexis goes through the

1 1
Uo=5Cua(m— 61)*+ Coo = 61) 6+ 5Co63.  (9)
ﬁz Sin| a— 01|
=TT (2)  The stiffness coefficientS,;, C,,, andC,, are given in the
R, sin| 0, A \

ppendix.
Using the condition(3) and notation(4), we get from Eq.
whereR, =R[1— B8%/(4m) + \/5/(47) B;] andR;=r A3 are  (9)
the radii along the symmetry axis of clusters having prolate
deformation and their spherical radii, respectively. If only U =£C 2 (10
small values of ¢&— 6,) and 6, are allowed, then €27
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where
Cc=C11—2(R1/Ry)Cyaot+ (R /R,)?Cop. (11

Thus, we get the following Schdinger equation for the
bending vibrations:

£21d d 1

—Z—JE;&G&'J/# Ecefzdln:Enl/fn- (12)
The solutions of Eq(12) are
n(€)=NoLn(J.w e/T)exd — .o €(21)],
E,=fw/ (2n+1), n=012..., (13)

wherew_=/C_./J,; Ng=+2J.w /% andL,(x) are the nor-
malization coefficient and the Laguerre polynonii2®], re-
spectively.
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dimensional rotatorgll]. Since the angled, and=— 6, are
small, the Schidinger equation is transformed into the form
of two coupled two-dimensional harmonic oscillators. Fol-
lowing Ref. [22], we simplified the problem to the one-
dimensional equatiofill) using the constrain3). The rela-
tion (3) comes in a natural way because in the classical
bending motion the DNS nuclei touch each other. Among all
collective modes contributing to the angular momentum of
fragments with Eq(3) we select the one with maximal con-
tribution because the potential energy significantly increases
when the angles— 6, and #, change independently and the
touching condition(3) is not fulfilled. For almost symmetric
DNS, we obtained that the solutions of one- and two-
dimensional Schidinger equations gave practically the same
results. So, the conditiof8) is correct for the problem under
consideration.

As in the present paper, the spectrum of bending vibra-
tions is defined in Ref49,15,29 by Aw.(2n+1). Since in

In order to estimate the angular momentum of the bendingRef.[15] the moment of inertid, is calculated in irrotational

mode, we expands,= 273 bLY, (6,¢=0) into spheri-
cal harmonics. With the expansion coefficiebts[9]

|bk|2=(2L+ 1) y3{L[(L+0.52y3]}2 ext — (L+0.522],

we determine the average value of angular momen(ujy
in the statey,, as follows:

<L>n=§ L by (14)

Here, y3=hw./C.=%/\JJ.C,. If the DNS is in thermal
equilibrium with an excitation energg* (the corresponding

temperature i9®=E*/a, a=A/12 MeV '), the average
angular momentuniL) is calculated as

<L>:§n: <L>npn/§n: Pn,

where P,,=exd —E,/0O] is the Boltzmann-like occupation

(19

limit, the obtained values dfw, are a few times larger than
in our treatment. The generation of angular momentum of
fission fragments is not considered in Rf5].

The angular momenta of fragments in the neutronless
spontaneous fission dP<Cf have been treated in R4R20],
where the two coupled two-dimensional rotators are errone-
ously changed by the two coupled one-dimensional oscilla-
tors, for which these authors, of course, obtained an analyti-
cal expression for the average squared angular momentum of
fragments. This leads to the spectra of bending and wriggling
modes given simply by the sum of two one-dimensional har-
monic oscillator spectra. Indeed, the two coupled rotators
cannot be transformed by the two coupled one-dimensional
harmonic oscillatordor by the one-dimensional harmonic
oscillator when the angle8, and 6, are connected by some
constraint. The bending and wriggling modes are not har-
monic oscillator vibrations but the angular vibrations. The
metric tensor for the bending motion is different from that
for the harmonic oscillator motiofsee the previous sectipn

The approach different from the activation of spins

probability of thenth bending state. The applicability of the through collective degrees of freedom has been claimed in
Boltzmann factor was demonstrated many times for the deref. [18]. However, we think that this approach is not much
scription of the mass, charge, angular, and kinetic energyifferent from the approaches based on the collective model.
distributions of fission fragments in the scission-point mod-The experimentally observegquanta indicate the collective
els. The exact population probability of a given bending statgotation of fission fragments. The collective motion remains
is well approximated by the Boltzmann factor. Since the pocollective in spite of different descriptions. In our opinion, if
tential for the bending vibrations has a finite depth, in addithe so-called intrinsic wave function in RdfL8] was pure
tion to the smallness dP,, the maximal value oh in Eq.  intrinsic, the formalism of Ref[18] would lead to spurious
(15 should be restricted by the capacity of this potential toangular momenta and spurious electromagnetic transitions
hold a certain number of bound staigs. However, for the  for the separated deformed fragments. The expectation value
temperatures considered, this restrictiomafoes not affect  of the squared angular momentyiin?) in Ref.[18] can be
results. Note that the maximal valuerfs discussed only in  associated with the collective rotation if the probability am-
connection with the second fission mode %fCf. plitudesa, of the distribution of different angular momen-
tum L states in each deformed fragment are connected with
the zero-point fluctuations of orientation ang(based on the
minimal uncertainty relation of the fission fragments at
The multidimensional collective Hamiltonian of the di- scission. Indeed, if one takds(L+1) and(J;);y instead
nuclear systems was treated in Refi8,9,11,22-2% The  (L+0.5)? and y,?, respectively, the expression fay in
states related to the bending and wriggling modes are thRef.[18] is the same as the one fiof in present paper. Since
solutions of the Schinger equation for two coupled two- the deformed fragments are approximated as the two nonin-

[lI. COMPARISON WITH OTHER APPROACHES
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teracting rotors which are coupled to zero total spin, the ana-
lytical expression fofL?) in Ref.[18] seems to be a crude
approximation. In the present paper the interaction between
fragments is not disregarded and the motion of each frag-
ment at scission is the motion of a constrained rotor.

IV. EXCITATION ENERGY OF DNS AND TKE
OF FISSION FRAGMENTS

In order to calculate the average angular momentum of
fission fragments by Ed15), we should determine the exci-
tation energy of DNS before its decay. The dependence of
the average angular momentum of primary fission fragments
on the number of evaporated neutrons is extracted from the —_
experimen{16,26. For comparison with the theory, we have [

to establish a relation between the DNS excitation en&ffgy 70 i
and the number of evaporated neutrons after the DNS decay. ~ 60}
With the assumption that the prescission kinetic energy of % I
fission fragments is very smdll2], the total energyE .y of S 50 - g
DNS is estimated as z aol g
g -
Ecota= E* + En+ Ui+ BY*+B5, (16 s 30f
m> | . P e
where E,, Uiy=U(Rn,B;,Q) [see Eq.(1)], and B{*' (i o 2OF P AR
=1,2) are the energy of bending vibrations, the energy of 1 [ ’-‘,,/.-’--"’
interaction of DNS nuclei, and the binding energies of the e
DNS deformed nuclei, respectively. Note thaf®" differs oo L 0 L L
from the experimental binding ener@y of separated nuclei 0 2 4, 8 8 10

in their ground stat€30]. Since the energids,, of low-lying B2 Mo ) Ba
bending states, which give the main contributions to angular  FIG- 2. The values of&yo/Ag)E, "~ E," (upper figurg, E,",
momentum, does not exceed a few MeV and are comparabk:%v ,andE, (Io_vver figure: Iong-dashed, short-dashed, and solid
with an accuracy of calculation &f,, we can negledg, in curves, respectivelyas a functlon of the numper of gvaporated
Eq. (16). Indeed, this additional term in E¢16) does not neutrorlugv fro”;)ggth nu2<:5Ie| are presented for primary fission frag-
visibly change the calculated temperature. After the deca ents” 4M°+ a of ,:Sf' TheM%xcnatnonBaenerg(l)es of the pri-
. ary fission fragment&£>? and E° (E,=E-*+E)°) are taken
the total energyE,, of the system can be estimated as fol- ; . v v v
lows: rom experimental datf26].
DNS, we deal with two distinct nuclei. Therefore, the decay
Etota= E,+ TKE+ B3+ By, (17 of DNS is not the same as the scission in the traditional
) description of fission, and the comparison of prescission ex-
whereE, is the energy taken by evaporated neutrons. As- (isation energy obtained in this description wif cannot
suming that the interaction enerdyi, of DNS nuclei is  pe done. In this paper, we assume that the fissioning nucleus
approximately equal to the TKE and using the equality of theafter the scission lives for some time as the DNS.
two previous expressions, we define the excitation energy |f we consider the decay of®’Cf into the Mo-Ba frag-
E* as mentation, the value of&y,)/(Aga) EZ2—EM° cBharaf\:Aterizes
the distribution of the excitation enerdy,=E>+E"° be-
E*=E,—AB,~AB,=E,~(B{"~By)— (B;~By). tween primary fission fragments. Using the experimental
(18) data [26], we can calculate the dependence of
(Avo)! (Aga) EB2—EM° on v. In Fig. 2, one can see that up to
v=>5 the excitation energy is approximately distributed pro-
portionally to the masses of fragments. This indicates the

If the deformation energa B, + AB, required to deform the
DNS nuclei from their ground states is small, we obtain

v validity of Eq. (19). For v>5, the difference betweeB*
E*~E,= >, (Sn+20,,), (199 and E, becomes large, and we should take the value of
m=1 AB;+ AB, into consideration. From Fig. 2, we can see that

o the deformation energy is larger in Ba than in Mo.
where the average kinetic energy of mth evaporated neu-

tron is equal to twice the temperatug, of fragments. The V. RESULTS OF CALCULATIONS
separation energieS,,, of the mth neutron of the first or
second fragment are taken from RES0]. Since the number
of evaporated neutrons from each primary fission fragment is Calculating the nucleus-nucleus interaction is calculated
available[16,26], the value ofg, is easily calculated. In the with Eq. (1) and the deformation energy with the two-center

A. Different fission modes
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shell model[3,31], we found that the equilibrium deforma- 104190, there is discussiof85] about the existence of the
tions of the DNS nuclei deviate from their values in the second mode of highly excited fragment in the Mo-Ba split.
ground states due to the polarization effects. The quadrupol& low TKE means enormously elongated nuclei in the de-
deformations of **Mo and '*Ba are 8;=0.50 and B8,  caying DNS. Since the attractive nuclear part of nucleus-
=0.40, respectively. The interaction of the DNS nuclei withnucleus potential decreases with increasing deformation of
found deformations corresponds to the average total kinetithe DNS nuclei, the formation of the DNS consisting of
energy(TKE)=189+1 MeV for the first(standarg fission  highly deformed nuclei is strongly restricted. This could be a
mode of 2°°Cf leading to the Mo-Ba fragmentation. For reason for very small probability of a realization of the sec-
1040 and %%Ba, we obtainedAB;=0.4 MeV at8=0.5 ond mode, if it exists.

andAB,=2.2 MeV atB=0.4, respectively. Thes&B; val- The large deformations of fragments in the second fission
ues are more than two times smaller than those obtained imode can be described, for example, by the following cluster
Ref. [19] with constrained HFBCS calculations using the states of the nuclei*®Ba— "“Ni+ "“Ni and °“Mo—°%Ca
Skyrme interaction SlIl. One of the imposed constraints in+ 54Ti. The deformation energies are equal to 20 and 15 MeV
Ref. [19] is that the excitation energy is accounted only by(AB=35 MeV) for such cluster configurations and are
the deformation energy. However, the differenceAiB; is  close to those for hyperdeformed nuc(@6]. The linear
within uncertainty 5 Me\[19] for such calculations. In order chain (“Ni+ "“Ni) + (°°Ca+ %*Ti) with the deformations of

to avoid the uncertainty created by the choice of the paramnuclei taken fron{32] reproduces théTKE) for the second
eters of microscopic calculations, we use the experimentdission mode. The excitation enerdyf of the system near
values of nuclear mass parameter and stiffness with respestission is about 30 MeV. After the scission, the systems

to the deformation for finding\B; from "Ni+ "Ni and %°Ca+%*Ti are transformed into"*®Ba and
B 5 5 104\0, respectively, with the transition of deformation ener-
ABi=D g0 (Bi—Bio)” (20 gies into intrinsic excitations. The systel?zr+*He+ *He

+2xe which supplies the experimental TKE could also be
whereD 5 andwg; are the mass parameter and the frequency,sed for the second fission mode. The calculation of the an-
of the,B vibration in theith nucleus, respectively. The quad- gu|ar momenta of the fragments can be done by assuming a
rupole deformations of*Mo and *Ba extracted from the rigid coupling between the particles and heavy nuclei. This
reducedE2 transition probabilities from the ground state to approximation can be applied because the bending frequency
the first 2" state areB;,=0.35 andB,,=0.22, respectively of a system consisting of am particle and a heavy nucleus is
[32]. Using the experimental data f@r; andwg; [32], one  much larger than that for the whole system. The analysis of
can show that the values afB; do not exceed 1.0 MeV for similar cluster configurations allows us to expect the second
considered fragmentations 8f°Cf. Since the excitation en- fission mode with very low TKE) for the charge splittings
ergy is shared between the fragments proportionally to theigr-Ce and Ru-Xe. Further experiments will give the answer
masses when the number of emitted neutrons does not ewhether our assumption is correct. In spite of small probabil-
ceed 5 unitgFig. 2), the deformation energy is expected to ity of the formation of three- and four-cluster configurations
be small as in E¢(20) and can be neglected in E4.8). The  in fission, they cannot be disregarded in the analysis of the
fact that the deformation energy is small is supported bysecond mode, if one exists. There is experimental evidence
microscopic calculations giving an energy difference of afor the cluster interpretation of prescission configurations in
few MeV between the superdeformed and ground states evésion [14]. The bending modes for the three- and four-
at zero angular momentuf83,34. Since AB; are quite  cluster configurations in fission can be considered analo-
small, the differenc®-TKE mainly corresponds to the exci- gously to the binary configuratiof&5].
tation energy of internal degrees of freedom of the DNS for
v<5 for the case of M&Ba splitting. This means that the
DNS is heated before the scission, and we can use the statis- B. Angular momentum generating by bending mode
tical treatment to find the average angular momentum of The potential energy of the DNS as a function of the
each fragment. In the calculations, we consider bending Virg|ative distanceR for the fission 252Cf— %Mo+ 14883 is
brations in the DNS with® <1 MeV that corresponds 0 shown in the upper part of Fig. 3. It is seen that the DNS

excitation energies less than 30 MeV. The coupling betweefgle-pole configuration has a minimal energy. The minimum

the internal degrees of freedom and the relative motion degf the pocket is located at the distanRg . This minimum
termines the distribution of TKE. To explain the TKE for the moyes to smaller values of the relative distance with increas-
fission events withv>5, larger deformations of DNS nuclei ing anglesd, (8,=7— 6, 8,= 6,). In the lower part of Fig.

should be taken into account for which the valuea & are ) ~
not negligible. Note that for other splittingB; could be 3, the dgpendence .Of the po.‘ef‘“a' energy on.the "’.‘@'E’S
sufficient starting with smaller shown in the following two limits(1) The relative distance

' corresponds to the minimum of the potential energy at all

The second fission mode in the fragmentationZeACt Bty L S
into Mo and Ba corresponds to unusually SmATKE) values of anglegadiabatic limi}. (2) The relative distance

=153+3 MeV and a large number of emitted neutrons. Indoes not changR=R,(6; =0)= cons{ with angles(diaba-

this mode, the fragments are highly excited and evaporattc limit). For|6,|<0.5, the potentials in these two limits are
more than seven neutrons. Due to the experimental difficulvery similar. It is seen that the oscillator approximation is
ties of resolving nearly identical transition energies inquite good for the description of the angular dependence of
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FIG. 3. Upper part: Dependence of the DNS potential energy on FIG. 4. Upper part: The DNS potential as a function of the
the relative distanc® between the centers of fragments for the relative distancék between the centers of fragments for the sym-
fission of 252Cf— Mo+ 148Ba. Calculations are done for different Metric system!®Zr+1%Zr with 8, = 8,=0.3. Lower part: The cal-
orientations of DNS nuclei withg;(1*Mo)=0.35 and,(%8a) culated stiffness paramet€, of the bending mode in DNS as a
=0.22. Lower part: Calculated potential enetgyof the DNS as a  function of the quadrupole deformation parametgys- 3 for the

~ i 0 10
function of the angle9; in the two limits. (1) R=R,, (adiabatic symmetric systemt®Zr+1Zr.

I'm'f) ﬁndfz_) R_R”?(ai_o) (d'ab_atlc limig. The relation 6, ments is almost spherical, the valuef is about(3.0—6.0
=(R;,/R,) 6, is used in the calculations. MeV.

The experimentdl16] and calculated angular momenta of
the potential energy, if the amplitude does not exceed O.§ission fragments as a function of the total number of evapo-
rad. In Fig. 4, we present the dependence of the stiffnesgted neutrons’ are presented in Figs. 5 and 6 for the frag-
parameter of the bending mode on deformation parametetpentations Ma-Ba and Zr-Ce of 252Cf. The value ofE* is
for the 1°%Zr+1%%Zr system. The value of stiffness strongly estimated by formul&l9) for the standard fission mode as-
increases with the deformation parametgys- 8, from zero  suming thatAB; is small. Since the potential for the bending
and reaches a nearly constant value at €.82<0.25. For  oscillation in this fission mode is deep enough and contains
Bi>0.25, the stiffness decreases slowly. Thus,8gr0.12  quite a large number of states, the calculated valued pf
the calculated results seem to be weakly sensitive to thgractically do not depend on the upper limit of sums in Eq.
value of the deformation parameters, because the stiffness fs). The calculations of angular momentum for the standard
the potential depends weakly ¢ . fission mode were performed by using the experimental and

In order to estimate the mean angular momenta of theigid body moments of inertia of the nuclei. The experimen-
fission fragments by Ed15), we calculated the spectrum of tal moment of inertia of a nucleus is smaller than the rigid
the bending mode for various fragmentations of f%&Cf  body one. However, for a system of two interacting nuclei in
nucleus. The influence of the fragment deformatigpsand  the field of each other, realistic moments of inertia of nuclei
moments of inertial; on the excitation of bending states is must take values between two considered limits. For ex-
demonstrated in Table I. In this calculation, we use the example, the measured moments of inertia for superdeformed
perimental moments of inertidy of DNS nuclei which are and hyperdeformed states are about 85% of the rigid body
obtained from the measured values of the enerBies o+ value [33,34,38. A possibility to consider highly deformed
of the 2"—0% rotational transitions J;=3/E,+ o+ states in heavy nuclei as DNS configurations was demon-
(h2/MeV) [32]. When both fragments are well deformed, the strated in Ref[36]. Indeed, the corresponding DNS have
energyE; of the first excited staten=1 in Eq.(13)] of the  the same quadrupole moments and moments of inertia as
bending mode is abouil.5-2.0 MeV. If one of the frag- those measured for the superdeformed states and for the hy-
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TABLE I. Calculated values of the frequenéyo, and the moment of inertid, of the bending mode for
even-even fragmentations 8¥°Cf. @ is the temperature for the dinuclear configuration with given quadru-
pole deformationg3, and 3, of nuclei.

Light fragment B Heavy fragment B ho, (keV) J. (h%IMeV) 0 (MeV)
1005 0.372 52\d 0.274 569 58.1 0.84
1027y 0.421 5%ce 0.274 754 46.1 0.68
1047y 0.42 148ce 0.246 799 39.7 0.73
0410 0.325 14883 0.22 792 34.39 0.82
108vi0 0.353 14533 0.218 768 33.13 0.67
10810 0.354 144Ba 0.193 779 32.49 0.65
HRu 0.302 140xe 0.11 1030 21.28 0.60
120cq 0.2 1325 0.05 1770 6.81 0.10

perdeformed states in actinidg36]. Taking these facts into of fragments carried by the bending mode are in satisfactory
consideration, we suppose that correct theoretical values @fgreement with the experimental data fer5. The experi-
average angular momenta must lie between two lines pramental points are located between two theoretical lines. The

sented in Figs. 5 and 6 for the standard fission mode. For thineoretical

curves correctly describe the functional

splitting Mo+Ba, the calculated average angular momentadependence of data onup to v=5. For the Zr-Ce frag-

Angular momentum of primary fragments
=) o0 5 [\

S

FIG. 5. Calculated and experimenfalb] (solid circles angular
momenta(in units of #) of fission fragments as a function of the
total number of evaporated neutromsfrom both nuclei for the
Mo-+Ba primary fragmentation of>’Cf. The secondary fragment
pairs involve 1Mo with different Ba isotopes. The upper part 3
shows the values for the Mo daughter nuclei; the lower part, those
of the corresponding Ba daughter nuclei. The numbers in the upper

Mo

-

-
rd

R,

1.3 E

2.1

2.6
9

8

Number of neutrons (v)

10

mentation, the experimental points are located below both
theoretical curves, but the deviations of theoretical results
from the experimental data would not exceed#lfor v
<5, if we image the theoretical data between two lines pre-
sented in Fig. 6.

Comparing the experimental data with results of the cal-
culations, we should note that the angular momenta of pri-

8

7_

w - (2] =
T T v 1T v 17

[
T

Angular momentum of primary fragments
17} =) ~ R =

=
T

0 2 4 6

Number of neutrons (v)

figure are the adjusted numbers of emitted neutrons from the pri-

mary Mo fragments. The calculations for the first fission mode per-

FIG. 6. The same as in Fig. 5, but for the fragmentatioR°étf

formed with experimental and rigid body moments of inertia areinto the fragments ZrCe. The secondary fragment pairs involve
shown by solid and dashed lines, respectively.

1027y with different Ce isotopes.
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mary fragments were not directly measured in experiment. C. The Coulomb excitation after the DNS decay

From the intensities of the/ transitions between different In order to calculate the changes of angular momentum of
levels of the spontaneous fission fragmesiecondarythe  the fragments due to the Coulomb excitation after the DNS
experimentalists determine the level populations and calcldecay, we use the following simplified model. The classical
late the average angular momentum of the secondary frag4amiltonianH, for two flying away fragment$ and T is
ment. At this step, the experimental uncertaintigsout 2:) given as

come from the difficulties of subtraction of the background,

from the ignorance of exact rotational spectra of spontaneous P ng PET ZpZ.€?
fission fragments, and from the cases when different isotopes Hclzm ++ 23, + 23, R
of the same nucleus have the same energy ‘of@&ational
state. To obtain the angular momentum of the primary frag- 3 e’ZpZ; )
= R BiY,(6)). (21
ment, the mean number of evaporated neutrons from the + 5 R3 i:ETP i i Y200

fragments and the spin reduction due to the neutron evapo-

ration are calculated within statistical model. This model cor-gjnce after the DNS decay the distance between the frag-
rection of the angular momenta leads to uncertainties in thenents is sufficiently large, one can disregard the interactions
experimental results as well. Taking these facts and the digsetween the nuclei in Eq21) due to the nuclear forces and
cussion in Ref[35] on the method of extraction of the data higher electric(magneti¢ multipole moments. We assume
from the set ofy transitions into consideration, the agree- that the interaction between the fragments is dominated by
ment of theoretical calculations with the present data is quitenonopole-monopole and monopole-quadrupole terms of
satisfactory. Coulomb potential. Angle®,, and 6; describes the orien-
For v>5, the calculated values of the angular momenta otation of the DNS nuclei with respect to the axis connecting

the fragments deviate from the experimental ones. Since fdhe centers of fragment®g, ng, and P,,T are the canoni-

v>5, the deformation energ&B cannot be disregarded in cally conjugated momenta to the coordina®®)p, and
Eq. (18), we overestimate the value Bf with Eq.(19) and  respectively. In Eq(21) J; (i=T,P) is the moments of in-
the values of(L). Large values of the neutron multiplicity ertia of the DNS fragments calculated either from the experi-
are connected with the second mode of fission that couldnental energies of first excited rotational states or from the
have a different cluster composition, more complicated thamigid body approximation.
the dinuclear system. Since the interpretation of the second We consider the relative motion of nuclei starting from
mode, if exists, is not unique, in present paper we did noR=Rg=ZpZ:e?(TKE) with zero initial velocity(initial ki-
look for (L) at v>6. netic energyER, =0). Solving a set of six first order differ-

A correlation between the maxima of yields of fission ential equations describing the classical Hamiltonian dynam-
fragment pairs and of the angular momenta of the fragmentigs for coordinate®, ¢, and momentdg, P, (i=P,T), we
is experimentally observeld 6,26. One can assume that the fing  the changes of angular ImomentaALi
maximal yields of pairs originating from fission events are:ALi(eo ,9$,L° ,L$)=ALi(e,L) of the DNS fragments as

associated with the minima of the potential energy at thgynctions of predecay orientation defined by the initial angles
scission point as a function ¢@; and of theN/Z ratios in the 0 and 62 and predecay angular momem% and L. For
fragments. The corresponding DNS has the maximal internal " ! o

e - , values of 63, 6%, L%, and LY we havedd=¢, L3=L,
excitation energy at the minimum of the potential energy of " . ~ L B o o
the fissioning system as compared with the neighboring corﬁ'”|0g|/s'r_‘| _0$|%RT/Rp_and|Lpcos(ag)|=|LTcos(6Q)_|. The ini-
figurations. As follows from formuld15), the maximal ex- tial conditions are given by the states of bending mode. The
citation energy leads to a maximal mean angular momenturverage change of angular momentum for the state with
of the fragments under the same conditions. The value ofiuantum numben of the bending mode is determined as
angular momentum increases with decreasing moment of in-

ertia but not so strongly as with temperature. For example, N = L 2J 271

for the charge splittings(secondary °Mo+Ba and (ALin ; [bnl” | deelgn(FALi(e L) (22
1027r+Ce of 2°Cf, the maxima of yields correspond tm4

and to (2—4h evaporation channels, respectively. So, forSince the sign oAL; depends on the initial angular momen-
these reactions, the angular distributions of fragments aim L, the Coulomb excitation can either increase or de-
functions of » have maxima corresponding to the evapora-crease the angular momenta of fragments. The average
tion of 4n and (2—4) neutrons. For the neutronless chargechange of angular momentum is calculated as

splittings *®Mo+*%8Ba and 1°%Zr+%%Ce, the values of

yields and of mean total angular momenta are smallest as _

compared to the channels with evaporation of neutrons. In <ALi>_; Pr{ALin- 23
order to describe the yields of fission fragment pairs and of

the angular momenta of the fragments simultaneously, one Before the presentation of numerical results, we give a
should perform calculations of the multidimensional poten-classical estimate of the Coulomb excitation effect. We will
tial energy surface for the DNS. The latter will allow us to go beyond the sudden approximation taking into consider-
define the DNS temperature in a more correct way. ation the finite moment of inertia of fragments. We assume
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TABLE II. Calculated values of the average change of angular mome(lm),, [(ALp)j and(ALp)a
are numerical and analytical results using E26), respectively of °Mo nucleus due to the Coulomb
excitation for the state with the quantum numhbeaf the bending mode fot*Mo+ 148Ba split of 52Cf. (L),
is the average angular momentum for the bending state with the quantum nombes results with the
experimentalrigid body) moment of inertia of fragments are on léfight) side of the table.

n (L)n (ALp)n  (ALp)y  (Alp)n n (L)n  (ALp)n  (ALp)y  (ALp)y
(L)n (L)n

0 3.9 1.7 2.0 0.44 0 5.4 1.4 1.6 0.26

1 7.3 1.8 1.9 0.24 1 9.8 1.8 2.0 0.18

2 9.5 1.5 1.6 0.15 2 12.9 1.8 1.9 0.14

3 11.4 1.1 1.1 0.09 3 15.3 1.6 1.8 0.11

4 13.0 0.9 0.8 0.07 4 17.2 1.5 1.5 0.08

that the angley; of rotation approximately changes linearly  The calculated values ¢iALp), (n=0-4) are shown in
in time t with frequencyL/J;: 6;(t)=6°+Lt/J;. This as- Table Il for the fragmentation®Mo+***Ba of 2°°Cf. These
sumption is correct if the change of angular momentuia  analytical results are obtained by using the Ef) and the
small. Solving the equatiobp(t) = —dH,, /dfp, we obtain analytical Coulomb trajectoriR(t) for spherical nuclei. Cal-

the classical change of angular momentum of the fragiRent c_ulations W_ith_rigid boc_JIy and experimental moment of iner-
due to the Coulomb excitation tia of nuclei give practically the same results. It is seen that

(ALp), are quite small as compared to the average angular

L momentum generated by bending vibrations for fission with
3 . sir{z €+ J—t” neutrons evaporation.
~ a2 LT N |
Alp=7ze ZTQPL dt R(1)3 (29 VI. SUMMARY

The angular momenta of fission fragments are calculated
where the fragmerf with intrinsic quadrupole mome®,  under the assumption that the bending angular vibrations of
feels a torque which depends on timm@he angular momen- DNS are responsible for the generation of angular momenta
tum transferred to rotor is a function of initial orientatien  of the fragments. The calculated results are in qualitative
If the angle of rotation Rt/J; remains small during the pro- agreement with the experimental data for #%éCf sponta-
cess considered ang(t) follows the analytical Coulomb neous fission. No attempt is made to adjust parameters to fit
trajectory of spherical nucl¢B7], the expressiofi24) can be the experimental data. In contrast to some phenomenological

integrated over time: calculations, the angular momenta were not normalized to
the experimental value obtained for certain fragments of
uZ\ Y2 Qp 61Qp L spontaneous fission. We should stress that the temperature of
ALP~( 57 ) —3Sin2e] + 57 J—cos{Ze]_ the system is not a free parameter in our model. It is shown
P Rg P P that, for v<<5, the differenceQ-TKE mainly corresponds to

(25  the excitation energy of internal degrees of freedom of the
. ) DNS. This means that the fissioning system is heated before
Here, the first term is the well-known result of sudden ap+he scission in the case of postscission evaporation of less
proximation. Taking Eq(24) and averaging it over the initial than five neutrons. The second fission mode&3€f, if ex-
conditions which are given by bending state (O<n ists, could deserve complicated cluster interpretation.
<7/8y2), we obtain
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Y0, 4 Qp, Zp, (L)n, andJp. One can see from calcula- APPENDIX: POTENTIAL ENERGY OF DNS

tions that forn=1, (ALp), decreases with increasimgbe- AND STIFENESS OF BENDING MODE

cause cd®+2n+1y,] decreases faster thai), grows. _

(ALp), decreases with increasing moment of inedja In 1. Nuclear part of nucleus-nucleus potential

our approaclALp), does not practically depend ¢MKE). Following the method proposed in R¢28], the double-
We checked by numerical calculations that this dependenci®lding procedure is used to calculate the nuclear part of the
is very weak. nucleus-nucleus potential
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frame of reference usinD functions. TheD functions do not
Un(R, Bi in):J p1(r1)pa(r2)F(ry—ry+R)drdr, depend on integration variables and can be taken out of the
integrals[28].
Fin—Fex 2 For the analytic calculation df and the reduction of the
=Co b f pi(r)pa(R+T)dr number of terms in the expansion, we introduce the follow-

ing modified expansions in the quadrupole deformation pa-
rametersB; for the nuclear density and for the square of the

2
+f pl(r)pz(RJrr)dr) density in the intrinsic coordinate frames:

dpi(r,bj)

oW R~gr el 0',0)

+Faf pinaRnr pir,2)=pi(r,2)+ &

with the effective density-dependent nucleon-nucleon inter-

action +R_i2dzpi(r*bi)Bng(0, o)
2 dR-2 i 20 ’ d
r)+pa(r i
F(rl_r2+R):CO[FinM
0 2 ’
p1(ry)+pa(ry) pi(r,a)=pf(r,a)+¢ Ri%ﬁﬂzo@'@')
+Fex(1—p—”5(r1—r2+R), '
0
R? d2p(r,b!)
Ni=2Z3 No=2, to o BIYR0¢) | (A5
Finex= finext f (A2) d RIZ

|n,e><A—l A, ,
C . ; The coefficientsé, &', b, andb’ in Eq. (A5) are resulted
which is known from the theory of finite Fermi systefi38]. . .
Here,A=A;+A, andN; (Z;) are neutror(proton numbers frgm the fit of the r.ad|al dependenclzes pi(r.a) ,and
(r,a;) calculated with Eq.(A3) at #'=«; and ¢’'=0

of nuclei. The values of, and the dimensionless parametersFi )
/ where the angley; corresponds to the nuclear surface point

finexandfy, ., are fitted to describe a large number of experi- :
mental data[38]. These forces were seriously tested in nearest to the other nucle[28]. Therefore, express_lo(m\S)
can be used for any values gf and should be considered as

nuclear structure calculations. For example, the single S h d d d
particle spectra and characteristics of low-lying collectiveag approxmanon to the correct depen encepi(:lf,ai)_ an
(r,a;) onRat fixed §; . Note that the terms proportional to

excitations are well described with these fordsse Ref. Pit’ ! :
[38], and references therdThe repulsive core and the pocket Bi in EQ. (AS) were introduced to increase the accuracy of
in the double-folding nucleus-nucleus potential is obtainedFalculations. The assumption of a small overlap of nuclei of
naturally when one uses density-dependent nucleon-nucledie DNS allows us to neglect the dependence,of’, b;,
interactions. In the pocket of the nucleus-nucleus potentiakndb{ on ¢’ and¢’ in the calculations ol at fixed 8; and

the dinuclear system has the continues shape due to the ovét-

lap of diffusion tails of nuclear densities. For the density of ~ Since we are interested in the potential energy under the
deformed nuclei withA>16, one can use the two-parameter condition (3), further calculations are performed assuming
symmetrized Woods-Saxon function within the intrinsic ref-a small deviation of the ratio betwe€91 and~02 from the

erence frame of a nucleus<r,¢',¢") ratio (3). If the angles#,==—6; and 6,=6, are small
. C small bending vibrationsat R~R.=R,+R,+s, where
poSINR (6,6} /2] om ng 0 m=RitRe
— . (A3) Ri=R/[1-pB{/(4m)+ J5/4wB;] are the major axes of
costiRi(6',¢")/a]+ costir/a;) prolately deformed nuclei, we can use analytic expressions
for «;:

pi(r!ai):

where p,=0.17 fm 3 is the density at the center of a
nucleus andy;=0.55 fm denotes the diffuseness parameter

of anith nucleus. The shapes of DNS nuclei are described by @1=C1161 7+ C1202,

2

’ ’ B ’ ' C!2:C2~é +C22‘52' (A6)

Ri(6".¢")=Ri| 1= 7=+ B Yo 0',¢") | (A4) o
he andles with the orime s e andlearain | E c11=1-(Ro+3g) (97— 1)/(Rig3+ Ro03 + 5003),

e angles with the prime sign are the anglesr ofvi e Ro(1— a2V/(Ro 024 Roa2t SPAD) . Core R (1—02)/
respect to the intrinsic coordinate frames of each nucleus. W ;2 » Z(Fe 292) (2132 zgil gl|~g2)’ 2 2 11( / ~R91)2
are interested in the dependence of the DNS potential ener y~192;L 2921239192), Coo=1—( 12+S 1) (95— 1)/(R195
on the orientation angleg with respect to the internuclear +Rp91+s0193), and g;=[1—g7/(4m)+ 547 B;]/[1
axis (molecular framg Since the functions in EJA1) de- —,8?/(477)— V5/(16m) B;] is the major-to-minor axis ratio of
pend on angles measured in the intrinsic reference frame dheith nucleus.

each nucleus, we rewrite them with respect to the molecular Inserting the expression
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piz(r.a)=—poasinr<§ %L’S) U CoﬁlﬁszzR (:3 bbb
| Si”*<—' dR2dR,
d R ) +£165M5(b2)1o(b1,05) + &1 €21 (b1,02)],
dR| cot)‘( pi(r,a) 2 % 4
:#Ai(a)pi”'a) (A7) UsiCoBt6: argarg - E12a(PL)o(b1.b2)

_ _ _ + &80 5(0y)1o(b1,by) + &6l 0(by,b2)]  (A9)
into Eq. (A1), using Egs.(A2), (A5), and taking¢,= ¢,

=0, the nuclear part of the potential energy is approxmatelydepend only on the relative distanReand quadrupole defor-

written as mation parameterg;. With the Fourier transform of the
Un(R,Bi . 6) function p;(r,a;)
~U 11+ UpyY oo 62) + U2oY ool 61) + Ut Y @2) V2maRipo
pi(p.a) =~
p sinh(7a;p)

+U3pY o0 @1) Yool @) + UssY3(ay)

ma;
X | —=—sin(pR;)coth(7a;p) —cogpR) |,
+U41Y20(a1)Y§0(a2)+U42Y§0(a1)Y20 Ri

2 2 (A10)
X (@) +Us1Y5( 1) Yoo @2), (A8)
where the coefficients the following integrals are calculated:
U11=ColA1(as) +Az(az) +Feyllo(as,az), * . 5
Io(a,b)=—4wf0 p1(p,a)p2(p,b)jo(pPR)pdp,
d
U21=C0,81R1ﬁ[§1j\2(a2)|1(b1,a2)
1 [ee]
+EA1(B)11(D],a0) + Feyéal1(by,a,)], l1(a,b)= —(47r)2f0 dpp?j2(pPR)p2(p.b)
d ®
Uzz=CoBaRa gy [ €2 1(a1)1 (1 by) % [ “arripnpr @)
0
+ &M (b))l 5(a1,by) + Feuéola(ag,by)],
RS o2 Iz(a,b)=—(4w)2fo dpp?j2(PR)pa(P, @)
U3=CoB5—5 —[&A1(ay)lg(ag,b
31 OBZ 2 dR%[§2 1( 1) O( 1 2) )
) , , X | drr?j,(pr)p,(r,b). A1l
A (bPlo(ar.b3) + Fedsloar by)], J arrtiateeatr (A

R? d2

Ugs= COBl > on 2[§iA1(bi)|o(bi,az) Here, j,(pR) and jo(pR) are spherical Bessel functions.

Due to the small overlap of DNS nuclei, the spherical func-
tions in some integrands in EGA1) are replaced by their
+&1A ()l o(by,az) +Feyéalo(by,az)], values atf! = a; to obtain Eq.(A8). Direct calculations of
the corresponding integrals show that this approximation
works well [28]. Thus, using Eq(A6) and expanding the
spherical harmonics in small angiés up to the second or-
der, we obtain

d2
Uso= CoﬂlﬁleRzm[fiszl(bi) lo(b1,by)

+&1E5A5(by)lo(by,b5) + €165l 0(bg,bo) ],
2 3

R1R2 d _ 1 n 72 N, g 1 n %2
Us=CoBis—— iR dR2[51§2A1<b> o(b7,by) Un=Unot 5C101+Crof165+ 5C505, (A1)
1

+&165A (o)1 o(by, b)) + €165l 0(by,bo) ], where
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5 5 5 5
Uno=Uqt \/E(U21+U22)+E UgptUgptUgst \/E(U41+U42)+ EUSl)’
) 5 5 5 5
1= 3 Euzz+ 2 Ci1 2U 33+ Ugy+ E(2U42+ U+ ZUM

5 /5 5
+EC§1(2U31+U32+ E(2U41+U42)+ EU51>:|,

n —_——

12~ 41

5 5
C12‘311( 2U3zst Uzt + 1 E(2U42+ Uy + Eum)
5 5
+C21Co0 2U31+U32++ E(2U41+ U42)+ EUEL s
n ® S 5 S) 5
C22:_3 EUZJ_"_ ECZZ 2U31+ U32+ E(2U41+ U42)+ Zusl

5 [ 5 5
+EC%2( 2U33+ U32+ E(2U42+ U41)+ ZUS]'):| (A13)

2. Coulomb part of nucleus-nucleus potential where

For the Coulomb interaction, we use the form[88]

2 2 12
2,7,6% 37,7,8% & Ll Lo (9, 3
UC: R + g R3 Z:l Rlzﬁle(al) UCO_ R 1+ Rz i;l ROi 207 BI+ 777ﬁl ’
127,7,6% 2

B g LAY (ALY

Z,7,€2 9 |2 6 _
Ci=-3 R? RS{(E) Bi+ﬁﬁi2 (i=1,2.

For the small overlap of DNS nuclei, the effect of density
diffuseness is relatively small and is neglected in this for-
mula. The expansion of EGA14) in 6, (i=1,2) results in

(A16)

Finally, using Eqs(A12) and (A15), we obtain the expres-
sion for the total potential enerdy of DNS in the form of

1 1 -
_ T ACTH2L T ACH2
Uc=Ucot 5 Cufit 2 C220>, (AL5) Eq. (1), whereC;;=C{;+ Cj; .
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