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Role of bending mode in generation of angular momentum of fission fragments
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Based on the dinuclear system concept, the role of bending vibrations in creation of the angular momentum
of the primary fission fragments is investigated. For252Cf spontaneous fission, the angular momenta of the
fragments are calculated as a function of the neutron multiplicity and compared with available experimental
data.
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I. INTRODUCTION

The phenomenon of nuclear molecular resonances, wh
description requires one to consider the relative motion
two nuclei, has been known for a long time from the study
reactions with certain light nuclei@1–3#. For heavy nuclei,
the experimental facts indicate the formation of a dinucl
system ~DNS! with quite a long lifetime~a few units of
10221 s) that was detected in deep inelastic reactions w
heavy ions at energies lower than 15 MeV/nucleon@4,5#.
When the DNS evolves in mass~charge! asymmetry, its de-
cay in a relative coordinateR between the centers of nucle
determines the charge and mass distribution of reaction p
ucts@4,5#. An evolution of a DNS to a compound nucleus b
the transfer of nucleons from the light nucleus to the he
one has been considered in Refs.@6,7#.

Just before the scission, when the neck radius is small
fissioning system can be treated as a system of two alig
deformed nuclei separated by a constant distance betw
their tips@8–20#. Thermal equilibrium is usually assumed
a DNS. In order to describe the dependence of experime
data on the total kinetic energy~TKE! of fission fragments,
we consider the pole-pole configuration of the DNS. T
main observables, such as the distributions of mass, cha
and kinetic energy, in the fission of a wide range of nuc
from Po to Fm are reproduced well within scission-po
models @12#. Fragmentation theory@3# treats fission as a
quantum-mechanical process in the relative distance
mass asymmetry coordinates and qualitatively explains
general features of fission mass distributions.

The experimental data show that the difference of the
tential energy between the saddle and scission configura
~several tens of MeV! is not completely transformed into th
total kinetic energy of relative motion of fission fragmen
but other collective or intrinsic degrees of freedom abs
the rest of the energy. Different types of collective angu
vibrations, such as wriggling, bending, tilting, and twistin
are possible in the excited prescission DNS@5,8,21–24#.
These collective modes do not contribute to the kinetic
ergy of fragments after the decay of the DNS. Angular vib
tions can generate the rotational energy and angular
menta of the fragments of binary and ternary fissions@25#.
The generation of angular momenta of fission fragments
treated by several authors many years ago@8,9,11#. They
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showed that the bending vibrations are the main source
which the fragments gain angular momentum at sciss
point. A recent experimental study of spontaneous fission
252Cf with the Gammasphere detector provides informat
about the average angular momentum of fission fragme
@16,26#. While the fissioning nucleus has initially zero spi
the primary fission fragments have angular momenta
about (2 –8)\ @26#. These data result from the study ofg
transitions between the levels of ground-state rotatio
bands of the fragments.

The main purpose of our paper is the explanation a
description of the dependence of angular momenta of fiss
fragments of252Cf on the number of emitted neutrons. W
will show that the temperature in our model is not a fr
parameter and corresponds to the excitation energy of
internal degrees of freedom. The production of angular m
mentum in the fission fragments and the method of calcu
tion of the DNS potential and excitation energies are
scribed in Secs. II and III, respectively. The angu
momenta of fission fragments are calculated in Sec. IV a
function of the number of postscission neutrons, under
assumption of bending angular vibrations at the sciss
point by which the fragments gain angular momentum. F
252Cf spontaneous fission, the calculated results are c
pared with the experimental data. A summary is given in S
V. The method of calculation of the potential energy of ben
ing mode is presented in the Appendix.

II. BENDING VIBRATIONS

At the scission point, a fissioning system can be appro
mately considered as a DNS whose intrinsic degrees of f
dom are in thermal equilibrium. However, a shape of t
DNS is not equilibrated. In this paper, we assume that
angular momenta of fission fragments are generated by s
bending vibrations of DNS nuclei around the pole-pole o
entation. A similar assumption was earlier done in Re
@8,9,11,16,20#. In the bending mode, the rolling of nuclea
surfaces occurs. The slide of nuclear surfaces in the w
gling mode is assumed to be suppressed by friction@21,27#
and larger stiffness of the potential. Since the fission
nucleus has initially zero spin, the wriggling mode wou
need larger rotational energy because of larger orbital m
mentum compensating the spins of the fragments. Theref
©2002 The American Physical Society02-1
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the wriggling mode is energetically unfavorable.
The Hamiltonian describing collective modes of a DN

~nuclear molecule! was analyzed in@22# where suitable
coordinates were introduced, and an expression for
kinetic energy operator was derived. The procedure of qu
tization of the classical Hamiltonian is described in Ref.@22#.
Below we consider the case of axially deformed DN
nuclei and also eliminateb andg vibrations of the clusters
and oscillations of an intercluster distance around the e
librium value from the consideration. The frequency of o
cillations in R is at least three times as large as those
angular vibrations. The equilibrium distanceR5Rm'R1@1
2b1

2 / (4p)1A5/(4p)b1#1R2@12b2
2/ (4p)1A5/(4p)b2#

10.5 fm between the centers of nuclei corresponds to
minimum of the nucleus-nucleus potential which is a sum
nuclear and Coulomb potentialsUN andUC @28#:

U~R,b i ,V i !5UC~R,b i ,V i !1UN~R,b i ,V i !. ~1!

Here, the anglesV i5(u i ,f i) ( i 51,2) specify the orienta-
tion of the intrinsic coordinate system of ani th nucleus with
respect to the molecular frame whosez axis goes through the
centers of nuclei forming DNS,b i are deformation param
eters.

The coordinates used to describe the motion of clus
forming DNS are shown in Fig. 1. The center of this coor
nate frame lies at the DNS center of mass. The angleu is the
angle of rotation of DNS as a whole. The anglesu1 andu2
specify the orientation of the cluster with respect to the a
connecting the centers of mass of clusters. The anglesf1 and
f2 specify their azimuthal orientation. The anglesu1 andu2
are related via the condition that clusters touch each othe
the poles@22#. If this condition is not fulfilled, the potentia
energy increases considerably. Under this condition

R̃2

R̃1

'
sinup2u1u

sinuu2u
, ~2!

whereR̃i5Ri@12b i
2/(4p)1A5/(4p)b i # andRi5r 0Ai

1/3 are
the radii along the symmetry axis of clusters having prol
deformation and their spherical radii, respectively. If on
small values of (p2u1) andu2 are allowed, then

FIG. 1. Schematic picture and definitions of various coordina
of the DNS configuration.
06430
e
n-

i-
-
r

e
f

rs
-

s

at

e

R̃1~p2u1!52R̃2u2 . ~3!

Using the constraint~3!, the problem under consideration
simplified to the one-dimensional Shro¨dinger equation with
analytical solution~see below!. For almost symmetric DNS
we checked that the approximation~3! is suitable. Thus, the
bending degree of freedom is given by

e5p2u1 . ~4!

Under the assumption formulated above, the model Ham
tonian describing the rotation of the DNS as a whole a
small bending angular vibrations can be written as@22#

H5Trot1Te1Ue , ~5!

whereTrot describes the rotation of DNS as a whole,Te is the
kinetic energy of bending motion

Te52
\2

2Je

1

e

d

de S e
d

de D , ~6!

Je5J11~R̃1 /R̃2!2J2 . ~7!

Here,J1,2 are moments of inertia of clusters forming DNS
Ue is the potential energy of bending motion, the volum
element isdV5ede.

Using the condition that the total angular momentum o
decaying system is zero and constraint~3!, one can express
the angleu throughe

u5
J1R̃22J2R̃1

R̃2~mRm
2 1J11J2!

e. ~8!

It is seen from Eq.~8! that, for a nearly symmetric DNS,u
'0 and the role ofTrot in Eq. ~5! is negligible.

The potential energy was considered in Ref.@22# only
schematically. The aim of the present paper is to apply
potential energy calculated by us in previous publicatio
@28# for calculations of angular momenta of fission fra
ments. It was applied for analysis of the experimental data
fusion and deep inelastic collisions. The potential energy
calculated in the Appendix taking Eq.~3! into account. We
neglect, as was mentioned above, the oscillations of the
tercluster distance. Due to the axial symmetry of the D
nuclei, the potential energy does not depend on the azimu
vibrations. Then for small deviations of the ratio of anglesu1
andu2 from Eq. ~3!, the potential energy of bending vibra
tions takes the form

Ue5
1

2
C11~p2u1!21C12~p2u1!u21

1

2
C22u2

2 . ~9!

The stiffness coefficientsC11, C12, andC22 are given in the
Appendix.

Using the condition~3! and notation~4!, we get from Eq.
~9!

Ue5
1

2
Cee

2, ~10!

s

2-2
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where

Ce5C1122~R̃1 /R̃2!C121~R̃1 /R̃2!2C22. ~11!

Thus, we get the following Schro¨dinger equation for the
bending vibrations:

2
\2

2Je

1

e

d

de
e

d

de
cn1

1

2
Cee

2cn5Encn . ~12!

The solutions of Eq.~12! are

cn~e!5N0Ln~Jevee
2/\!exp@2Jevee

2/~2\!#,

En5\ve~2n11!, n50,1,2, . . . , ~13!

whereve5ACe /Je; N05A2Jeve /\ andLn(x) are the nor-
malization coefficient and the Laguerre polynomial@29#, re-
spectively.

In order to estimate the angular momentum of the bend
mode, we expandcn5A2p(Lbn

LYL0(u,f50) into spheri-
cal harmonics. With the expansion coefficientsbn

L @9#

ubn
Lu25~2L11!g0

2$Ln@~L10.5!2g0
2#%2 exp@2~L10.5!2g0

2#,

we determine the average value of angular momentum^L&n
in the statecn as follows:

^L&n5(
L

Lubn
Lu2. ~14!

Here, g0
25\ve /Ce5\/AJeCe. If the DNS is in thermal

equilibrium with an excitation energyE* ~the corresponding
temperature isQ5AE* /a, a5A/12 MeV21), the average
angular momentum̂L& is calculated as

^L&5(
n

^L&nPn Y (
n

Pn , ~15!

where Pn5exp@2En /Q# is the Boltzmann-like occupation
probability of thenth bending state. The applicability of th
Boltzmann factor was demonstrated many times for the
scription of the mass, charge, angular, and kinetic ene
distributions of fission fragments in the scission-point mo
els. The exact population probability of a given bending st
is well approximated by the Boltzmann factor. Since the p
tential for the bending vibrations has a finite depth, in ad
tion to the smallness ofPn , the maximal value ofn in Eq.
~15! should be restricted by the capacity of this potential
hold a certain number of bound statescn . However, for the
temperatures considered, this restriction ofn does not affect
results. Note that the maximal value ofn is discussed only in
connection with the second fission mode of252Cf.

III. COMPARISON WITH OTHER APPROACHES

The multidimensional collective Hamiltonian of the d
nuclear systems was treated in Refs.@8,9,11,22–24#. The
states related to the bending and wriggling modes are
solutions of the Schro¨dinger equation for two coupled two
06430
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dimensional rotators@11#. Since the anglesu2 andp2u1 are
small, the Schro¨dinger equation is transformed into the for
of two coupled two-dimensional harmonic oscillators. Fo
lowing Ref. @22#, we simplified the problem to the one
dimensional equation~11! using the constraint~3!. The rela-
tion ~3! comes in a natural way because in the class
bending motion the DNS nuclei touch each other. Among
collective modes contributing to the angular momentum
fragments with Eq.~3! we select the one with maximal con
tribution because the potential energy significantly increa
when the anglesp2u1 andu2 change independently and th
touching condition~3! is not fulfilled. For almost symmetric
DNS, we obtained that the solutions of one- and tw
dimensional Schro¨dinger equations gave practically the sam
results. So, the condition~3! is correct for the problem unde
consideration.

As in the present paper, the spectrum of bending vib
tions is defined in Refs.@9,15,22# by \ve(2n11). Since in
Ref. @15# the moment of inertiaJe is calculated in irrotational
limit, the obtained values of\ve are a few times larger than
in our treatment. The generation of angular momentum
fission fragments is not considered in Ref.@15#.

The angular momenta of fragments in the neutronl
spontaneous fission of252Cf have been treated in Ref.@20#,
where the two coupled two-dimensional rotators are erro
ously changed by the two coupled one-dimensional osc
tors, for which these authors, of course, obtained an ana
cal expression for the average squared angular momentu
fragments. This leads to the spectra of bending and wrigg
modes given simply by the sum of two one-dimensional h
monic oscillator spectra. Indeed, the two coupled rotat
cannot be transformed by the two coupled one-dimensio
harmonic oscillators~or by the one-dimensional harmon
oscillator when the anglesu1 andu2 are connected by som
constraint!. The bending and wriggling modes are not ha
monic oscillator vibrations but the angular vibrations. T
metric tensor for the bending motion is different from th
for the harmonic oscillator motion~see the previous section!.

The approach different from the activation of spi
through collective degrees of freedom has been claime
Ref. @18#. However, we think that this approach is not mu
different from the approaches based on the collective mo
The experimentally observedg quanta indicate the collective
rotation of fission fragments. The collective motion rema
collective in spite of different descriptions. In our opinion,
the so-called intrinsic wave function in Ref.@18# was pure
intrinsic, the formalism of Ref.@18# would lead to spurious
angular momenta and spurious electromagnetic transit
for the separated deformed fragments. The expectation v
of the squared angular momentum^L2& in Ref. @18# can be
associated with the collective rotation if the probability am
plitudesaL of the distribution of different angular momen
tum L states in each deformed fragment are connected w
the zero-point fluctuations of orientation angles~based on the
minimal uncertainty relation! of the fission fragments a
scission. Indeed, if one takesL(L11) and ^Ji& int instead
(L10.5)2 and g0

22, respectively, the expression foraL in
Ref. @18# is the same as the one forb0

L in present paper. Since
the deformed fragments are approximated as the two no
2-3
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teracting rotors which are coupled to zero total spin, the a
lytical expression for̂ L2& in Ref. @18# seems to be a crud
approximation. In the present paper the interaction betw
fragments is not disregarded and the motion of each fr
ment at scission is the motion of a constrained rotor.

IV. EXCITATION ENERGY OF DNS AND TKE
OF FISSION FRAGMENTS

In order to calculate the average angular momentum
fission fragments by Eq.~15!, we should determine the exc
tation energy of DNS before its decay. The dependence
the average angular momentum of primary fission fragme
on the number of evaporated neutrons is extracted from
experiment@16,26#. For comparison with the theory, we hav
to establish a relation between the DNS excitation energyE*
and the number of evaporated neutrons after the DNS de

With the assumption that the prescission kinetic energy
fission fragments is very small@12#, the total energyEtotal of
DNS is estimated as

Etotal5E* 1En1U int1B1
def1B2

def, ~16!

where En , U int5U(Rm ,b i ,V i) @see Eq.~1!#, and Bi
def ( i

51,2) are the energy of bending vibrations, the energy
interaction of DNS nuclei, and the binding energies of t
DNS deformed nuclei, respectively. Note thatBi

def differs
from the experimental binding energyBi of separated nucle
in their ground state@30#. Since the energiesEn of low-lying
bending states, which give the main contributions to angu
momentum, does not exceed a few MeV and are compar
with an accuracy of calculation ofU int , we can neglectEn in
Eq. ~16!. Indeed, this additional term in Eq.~16! does not
visibly change the calculated temperature. After the dec
the total energyEtotal of the system can be estimated as f
lows:

Etotal5En1TKE1B11B2 , ~17!

whereEn is the energy taken byn evaporated neutrons. As
suming that the interaction energyU int of DNS nuclei is
approximately equal to the TKE and using the equality of
two previous expressions, we define the excitation ene
E* as

E* 5En2DB12DB25En2~B1
def2B1!2~B2

def2B2!.
~18!

If the deformation energyDB11DB2 required to deform the
DNS nuclei from their ground states is small, we obtain

E* 'En5 (
m51

n

~Sm12Qm!, ~19!

where the average kinetic energy of anmth evaporated neu
tron is equal to twice the temperatureQm of fragments. The
separation energiesSm of the mth neutron of the first or
second fragment are taken from Ref.@30#. Since the number
of evaporated neutrons from each primary fission fragmen
available@16,26#, the value ofEn is easily calculated. In the
06430
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DNS, we deal with two distinct nuclei. Therefore, the dec
of DNS is not the same as the scission in the traditio
description of fission, and the comparison of prescission
citation energy obtained in this description withE* cannot
be done. In this paper, we assume that the fissioning nuc
after the scission lives for some time as the DNS.

If we consider the decay of252Cf into the Mo-Ba frag-
mentation, the value of (AMo)/(ABa)En

Ba2En
Mo characterizes

the distribution of the excitation energyEn5En
Ba1En

Mo be-
tween primary fission fragments. Using the experimen
data @26#, we can calculate the dependence
(AMo)/(ABa)En

Ba2En
Mo on n. In Fig. 2, one can see that up t

n55 the excitation energy is approximately distributed p
portionally to the masses of fragments. This indicates
validity of Eq. ~19!. For n.5, the difference betweenE*
and En becomes large, and we should take the value
DB11DB2 into consideration. From Fig. 2, we can see th
the deformation energy is larger in Ba than in Mo.

V. RESULTS OF CALCULATIONS

A. Different fission modes

Calculating the nucleus-nucleus interaction is calcula
with Eq. ~1! and the deformation energy with the two-cent

FIG. 2. The values of (AMo /ABa)En
Ba2En

Mo ~upper figure!, En
Ba,

En
Mo , and En ~lower figure: long-dashed, short-dashed, and so

curves, respectively! as a function of the number of evaporate
neutronsn from both nuclei are presented for primary fission fra
ments 104Mo1148Ba of 252Cf. The excitation energies of the pri
mary fission fragmentsEn

Ba and En
Mo (En5En

Ba1En
Mo) are taken

from experimental data@26#.
2-4
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shell model@3,31#, we found that the equilibrium deforma
tions of the DNS nuclei deviate from their values in t
ground states due to the polarization effects. The quadru
deformations of 104Mo and 148Ba are b150.50 and b2
50.40, respectively. The interaction of the DNS nuclei w
found deformations corresponds to the average total kin
energy^TKE&518961 MeV for the first~standard! fission
mode of 252Cf leading to the Mo-Ba fragmentation. Fo
104Mo and 148Ba, we obtainedDB150.4 MeV at b50.5
andDB252.2 MeV atb50.4, respectively. TheseDBi val-
ues are more than two times smaller than those obtaine
Ref. @19# with constrained HF1BCS calculations using the
Skyrme interaction SIII. One of the imposed constraints
Ref. @19# is that the excitation energy is accounted only
the deformation energy. However, the difference inDBi is
within uncertainty 5 MeV@19# for such calculations. In orde
to avoid the uncertainty created by the choice of the par
eters of microscopic calculations, we use the experime
values of nuclear mass parameter and stiffness with res
to the deformation for findingDBi from

DBi5Db ivb i
2 ~b i2b i0!2, ~20!

whereDb i andvb i are the mass parameter and the freque
of theb vibration in thei th nucleus, respectively. The qua
rupole deformations of104Mo and 148Ba extracted from the
reducedE2 transition probabilities from the ground state
the first 21 state areb1050.35 andb2050.22, respectively
@32#. Using the experimental data forDb i andvb i @32#, one
can show that the values ofDBi do not exceed 1.0 MeV for
considered fragmentations of252Cf. Since the excitation en
ergy is shared between the fragments proportionally to t
masses when the number of emitted neutrons does no
ceed 5 units~Fig. 2!, the deformation energy is expected
be small as in Eq.~20! and can be neglected in Eq.~18!. The
fact that the deformation energy is small is supported
microscopic calculations giving an energy difference o
few MeV between the superdeformed and ground states e
at zero angular momentum@33,34#. Since DBi are quite
small, the differenceQ-TKE mainly corresponds to the exc
tation energy of internal degrees of freedom of the DNS
n,5 for the case of Mo1Ba splitting. This means that th
DNS is heated before the scission, and we can use the s
tical treatment to find the average angular momentum
each fragment. In the calculations, we consider bending
brations in the DNS withQ,1 MeV that corresponds to
excitation energies less than 30 MeV. The coupling betw
the internal degrees of freedom and the relative motion
termines the distribution of TKE. To explain the TKE for th
fission events withn.5, larger deformations of DNS nucle
should be taken into account for which the values ofDBi are
not negligible. Note that for other splittingDBi could be
sufficient starting with smallern.

The second fission mode in the fragmentation of252Cf
into Mo and Ba corresponds to unusually small^TKE&
515363 MeV and a large number of emitted neutrons.
this mode, the fragments are highly excited and evapo
more than seven neutrons. Due to the experimental diffi
ties of resolving nearly identical transition energies
06430
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104,108Mo, there is discussion@35# about the existence of th
second mode of highly excited fragment in the Mo-Ba sp
A low TKE means enormously elongated nuclei in the d
caying DNS. Since the attractive nuclear part of nucle
nucleus potential decreases with increasing deformation
the DNS nuclei, the formation of the DNS consisting
highly deformed nuclei is strongly restricted. This could be
reason for very small probability of a realization of the se
ond mode, if it exists.

The large deformations of fragments in the second fiss
mode can be described, for example, by the following clus
states of the nuclei148Ba→74Ni174Ni and 104Mo→50Ca
154Ti. The deformation energies are equal to 20 and 15 M
(DB535 MeV) for such cluster configurations and a
close to those for hyperdeformed nuclei@36#. The linear
chain (74Ni174Ni) 1(50Ca154Ti) with the deformations of
nuclei taken from@32# reproduces thêTKE& for the second
fission mode. The excitation energyE* of the system near
scission is about 30 MeV. After the scission, the syste
74Ni174Ni and 50Ca154Ti are transformed into148Ba and
104Mo, respectively, with the transition of deformation ene
gies into intrinsic excitations. The system102Zr14He14He
1142Xe which supplies the experimental TKE could also
used for the second fission mode. The calculation of the
gular momenta of the fragments can be done by assumi
rigid coupling between thea particles and heavy nuclei. Thi
approximation can be applied because the bending freque
of a system consisting of ana particle and a heavy nucleus
much larger than that for the whole system. The analysis
similar cluster configurations allows us to expect the sec
fission mode with very loŵ TKE& for the charge splittings
Zr-Ce and Ru-Xe. Further experiments will give the answ
whether our assumption is correct. In spite of small proba
ity of the formation of three- and four-cluster configuratio
in fission, they cannot be disregarded in the analysis of
second mode, if one exists. There is experimental evide
for the cluster interpretation of prescission configurations
fission @14#. The bending modes for the three- and fou
cluster configurations in fission can be considered an
gously to the binary configurations@25#.

B. Angular momentum generating by bending mode

The potential energy of the DNS as a function of t
relative distanceR for the fission 252Cf→104Mo1148Ba is
shown in the upper part of Fig. 3. It is seen that the DN
pole-pole configuration has a minimal energy. The minimu
of the pocket is located at the distanceRm . This minimum
moves to smaller values of the relative distance with incre
ing anglesũ i ( ũ15p2u1 ,ũ25u2). In the lower part of Fig.
3, the dependence of the potential energy on the anglesũ i is
shown in the following two limits.~1! The relative distance
corresponds to the minimum of the potential energy at
values of angles~adiabatic limit!. ~2! The relative distance
does not change@R5Rm( ũ i50)5const# with angles~diaba-
tic limit !. For uũ1u,0.5, the potentials in these two limits ar
very similar. It is seen that the oscillator approximation
quite good for the description of the angular dependence
2-5
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the potential energy, if the amplitude does not exceed
rad. In Fig. 4, we present the dependence of the stiffn
parameter of the bending mode on deformation parame
for the 100Zr1100Zr system. The value of stiffness strong
increases with the deformation parametersb15b2 from zero
and reaches a nearly constant value at 0.12,b i,0.25. For
b i.0.25, the stiffness decreases slowly. Thus, forb i.0.12
the calculated results seem to be weakly sensitive to
value of the deformation parameters, because the stiffnes
the potential depends weakly onb i .

In order to estimate the mean angular momenta of
fission fragments by Eq.~15!, we calculated the spectrum o
the bending mode for various fragmentations of the252Cf
nucleus. The influence of the fragment deformationsb i and
moments of inertiaJi on the excitation of bending states
demonstrated in Table I. In this calculation, we use the
perimental moments of inertiaJi of DNS nuclei which are
obtained from the measured values of the energiesE21→01

of the 21→01 rotational transitions Ji53/E21→01

(\2/MeV) @32#. When both fragments are well deformed, t
energyE1 of the first excited state@n51 in Eq. ~13!# of the
bending mode is about~1.5–2.0! MeV. If one of the frag-

FIG. 3. Upper part: Dependence of the DNS potential energy
the relative distanceR between the centers of fragments for t
fission of 252Cf→104Mo1148Ba. Calculations are done for differen
orientations of DNS nuclei withb1(104Mo)50.35 andb2(148Ba)
50.22. Lower part: Calculated potential energyU of the DNS as a

function of the anglesũ i in the two limits. ~1! R5Rm ~adiabatic

limit ! and ~2! R5Rm( ũ i50) ~diabatic limit!. The relation ũ2

5(R̃1 /R̃2) ũ1 is used in the calculations.
06430
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ments is almost spherical, the value ofE1 is about~3.0–6.0!
MeV.

The experimental@16# and calculated angular momenta
fission fragments as a function of the total number of eva
rated neutronsn are presented in Figs. 5 and 6 for the fra
mentations Mo1Ba and Zr1Ce of 252Cf. The value ofE* is
estimated by formula~19! for the standard fission mode a
suming thatDBi is small. Since the potential for the bendin
oscillation in this fission mode is deep enough and conta
quite a large number of states, the calculated values of^L&
practically do not depend on the upper limit of sums in E
~15!. The calculations of angular momentum for the stand
fission mode were performed by using the experimental
rigid body moments of inertia of the nuclei. The experime
tal moment of inertia of a nucleus is smaller than the rig
body one. However, for a system of two interacting nuclei
the field of each other, realistic moments of inertia of nuc
must take values between two considered limits. For
ample, the measured moments of inertia for superdeform
and hyperdeformed states are about 85% of the rigid b
value @33,34,36#. A possibility to consider highly deformed
states in heavy nuclei as DNS configurations was dem
strated in Ref.@36#. Indeed, the corresponding DNS hav
the same quadrupole moments and moments of inertia
those measured for the superdeformed states and for the

n FIG. 4. Upper part: The DNS potential as a function of t
relative distanceR between the centers of fragments for the sy
metric system100Zr1100Zr with b15b250.3. Lower part: The cal-
culated stiffness parameterCe of the bending mode in DNS as
function of the quadrupole deformation parametersb15b2 for the
symmetric system100Zr1100Zr.
2-6
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TABLE I. Calculated values of the frequency\ve and the moment of inertiaJe of the bending mode for
even-even fragmentations of252Cf. Q is the temperature for the dinuclear configuration with given quad
pole deformationsb1 andb2 of nuclei.

Light fragment b1 Heavy fragment b2 \ve ~keV! Je (\2/MeV) Q ~MeV!

100Sr 0.372 152Nd 0.274 569 58.1 0.84
102Zr 0.421 150Ce 0.274 754 46.1 0.68
104Zr 0.42 148Ce 0.246 799 39.7 0.73
104Mo 0.325 148Ba 0.22 792 34.39 0.82
106Mo 0.353 146Ba 0.218 768 33.13 0.67
108Mo 0.354 144Ba 0.193 779 32.49 0.65
112Ru 0.302 140Xe 0.11 1030 21.28 0.60
120Cd 0.2 132Sn 0.05 1770 6.81 0.10
s
pr
t

nt

tory

The
al

oth
ults

re-

al-
pri-

e

t
rt
os
pp
p
e
re e
perdeformed states in actinides@36#. Taking these facts into
consideration, we suppose that correct theoretical value
average angular momenta must lie between two lines
sented in Figs. 5 and 6 for the standard fission mode. For
splitting Mo1Ba, the calculated average angular mome

FIG. 5. Calculated and experimental@16# ~solid circles! angular
momenta~in units of \) of fission fragments as a function of th
total number of evaporated neutronsn from both nuclei for the
Mo1Ba primary fragmentation of252Cf. The secondary fragmen
pairs involve 104Mo with different Ba isotopes. The upper pa
shows the values for the Mo daughter nuclei; the lower part, th
of the corresponding Ba daughter nuclei. The numbers in the u
figure are the adjusted numbers of emitted neutrons from the
mary Mo fragments. The calculations for the first fission mode p
formed with experimental and rigid body moments of inertia a
shown by solid and dashed lines, respectively.
06430
of
e-
he
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of fragments carried by the bending mode are in satisfac
agreement with the experimental data forn,5. The experi-
mental points are located between two theoretical lines.
theoretical curves correctly describe the function
dependence of data onn up to n55. For the Zr1Ce frag-
mentation, the experimental points are located below b
theoretical curves, but the deviations of theoretical res
from the experimental data would not exceed 1.5\ for n
,5, if we image the theoretical data between two lines p
sented in Fig. 6.

Comparing the experimental data with results of the c
culations, we should note that the angular momenta of

e
er
ri-
r- FIG. 6. The same as in Fig. 5, but for the fragmentation of252Cf
into the fragments Zr1Ce. The secondary fragment pairs involv
102Zr with different Ce isotopes.
2-7
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mary fragments were not directly measured in experime
From the intensities of theg transitions between differen
levels of the spontaneous fission fragment~secondary! the
experimentalists determine the level populations and ca
late the average angular momentum of the secondary f
ment. At this step, the experimental uncertainties~about 2\)
come from the difficulties of subtraction of the backgroun
from the ignorance of exact rotational spectra of spontane
fission fragments, and from the cases when different isoto
of the same nucleus have the same energy of 21 rotational
state. To obtain the angular momentum of the primary fr
ment, the mean number of evaporated neutrons from
fragments and the spin reduction due to the neutron eva
ration are calculated within statistical model. This model c
rection of the angular momenta leads to uncertainties in
experimental results as well. Taking these facts and the
cussion in Ref.@35# on the method of extraction of the da
from the set ofg transitions into consideration, the agre
ment of theoretical calculations with the present data is q
satisfactory.

Forn.5, the calculated values of the angular momenta
the fragments deviate from the experimental ones. Since
n.5, the deformation energyDB cannot be disregarded i
Eq. ~18!, we overestimate the value ofE* with Eq. ~19! and
the values of̂ L&. Large values of the neutron multiplicit
are connected with the second mode of fission that co
have a different cluster composition, more complicated th
the dinuclear system. Since the interpretation of the sec
mode, if exists, is not unique, in present paper we did
look for ^L& at n.6.

A correlation between the maxima of yields of fissio
fragment pairs and of the angular momenta of the fragme
is experimentally observed@16,26#. One can assume that th
maximal yields of pairs originating from fission events a
associated with the minima of the potential energy at
scission point as a function ofb i and of theN/Z ratios in the
fragments. The corresponding DNS has the maximal inte
excitation energy at the minimum of the potential energy
the fissioning system as compared with the neighboring c
figurations. As follows from formula~15!, the maximal ex-
citation energy leads to a maximal mean angular momen
of the fragments under the same conditions. The value
angular momentum increases with decreasing moment o
ertia but not so strongly as with temperature. For exam
for the charge splittings~secondary! 104Mo1Ba and
102Zr1Ce of 252Cf, the maxima of yields correspond to 4n
and to (2 –4)n evaporation channels, respectively. So,
these reactions, the angular distributions of fragments
functions ofn have maxima corresponding to the evapo
tion of 4n and (2 –4)n neutrons. For the neutronless char
splittings 104Mo1148Ba and 102Zr1150Ce, the values of
yields and of mean total angular momenta are smalles
compared to the channels with evaporation of neutrons
order to describe the yields of fission fragment pairs and
the angular momenta of the fragments simultaneously,
should perform calculations of the multidimensional pote
tial energy surface for the DNS. The latter will allow us
define the DNS temperature in a more correct way.
06430
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C. The Coulomb excitation after the DNS decay

In order to calculate the changes of angular momentum
the fragments due to the Coulomb excitation after the D
decay, we use the following simplified model. The classi
HamiltonianHcl for two flying away fragmentsP and T is
given as

Hcl5
PR

2

2m
11

PuP

2

2JP
1

PuT

2

2JT
1

ZPZTe2

R

1
3

5

e2ZPZT

R3 (
i 5T,P

Ri
2b iY2~u i !. ~21!

Since after the DNS decay the distance between the f
ments is sufficiently large, one can disregard the interacti
between the nuclei in Eq.~21! due to the nuclear forces an
higher electric~magnetic! multipole moments. We assum
that the interaction between the fragments is dominated
monopole-monopole and monopole-quadrupole terms
Coulomb potential. AnglesuP , anduT describes the orien
tation of the DNS nuclei with respect to the axis connect
the centers of fragments.PR , PuP

, andPuT
are the canoni-

cally conjugated momenta to the coordinatesR, uP, anduT ,
respectively. In Eq.~21! Ji ( i 5T,P) is the moments of in-
ertia of the DNS fragments calculated either from the exp
mental energies of first excited rotational states or from
rigid body approximation.

We consider the relative motion of nuclei starting fro
R5RB5ZPZTe2/^TKE& with zero initial velocity~initial ki-
netic energyEkin

0 50). Solving a set of six first order differ
ential equations describing the classical Hamiltonian dyna
ics for coordinatesR, u i and momentaPR , Pu i

( i 5P,T), we

find the changes of angular momentaDLi

5DLi(uP
0 ,uT

0 ,LP
0 ,LT

0)5DLi(e,L) of the DNS fragments as
functions of predecay orientation defined by the initial ang
uP

0 and uT
0 and predecay angular momentaLP

0 and LT
0 . For

values of uP
0 , uT

0 , LP
0 , and LT

0 we haveuP
0 5e, LP

0 5L,

sinuuP
0u/sinuuT

0u'R̃T /R̃P and uLP
0 cos(uP

0)u5uLT
0 cos(uT

0)u. The ini-
tial conditions are given by the states of bending mode. T
average change of angular momentum for the state w
quantum numbern of the bending mode is determined as

^DLi&n5(
L

ubn
Lu2E deeucn~e!u2DLi~e,L !. ~22!

Since the sign ofDLi depends on the initial angular mome
tum Li

0 , the Coulomb excitation can either increase or d
crease the angular momenta of fragments. The ave
change of angular momentum is calculated as

^DLi&5(
n

Pn^DLi&n . ~23!

Before the presentation of numerical results, we give
classical estimate of the Coulomb excitation effect. We w
go beyond the sudden approximation taking into consid
ation the finite moment of inertia of fragments. We assu
2-8
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TABLE II. Calculated values of the average change of angular momentum^DLP&n @^DLP&n
n and^DLP&n

a

are numerical and analytical results using Eq.~26!, respectively# of 104Mo nucleus due to the Coulomb
excitation for the state with the quantum numbern of the bending mode for104Mo1148Ba split of 252Cf. ^L&n

is the average angular momentum for the bending state with the quantum numbern. The results with the
experimental~rigid body! moment of inertia of fragments are on left~right! side of the table.

n ^L&n ^DLP&n
n ^DLP&n

a ^DLP&n
n

^L&n

n ^L&n ^DLP&n
n ^DLP&n

a ^DLP&n
n

^L&n

0 3.9 1.7 2.0 0.44 0 5.4 1.4 1.6 0.26
1 7.3 1.8 1.9 0.24 1 9.8 1.8 2.0 0.18
2 9.5 1.5 1.6 0.15 2 12.9 1.8 1.9 0.14
3 11.4 1.1 1.1 0.09 3 15.3 1.6 1.8 0.11
4 13.0 0.9 0.8 0.07 4 17.2 1.5 1.5 0.08
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that the angleu i of rotation approximately changes linear
in time t with frequencyL/Ji : u i(t)5u i

01Lt/Ji . This as-
sumption is correct if the change of angular momentumL is
small. Solving the equationL̇P(t)52dHcl /duP , we obtain
the classical change of angular momentum of the fragmeP
due to the Coulomb excitation

DLP'
3

4
e2ZTQPE

0

`

dt

sinF2S e1
L

JP
t D G

R~ t !3
, ~24!

where the fragmentP with intrinsic quadrupole momentQP
feels a torque which depends on timet. The angular momen
tum transferred to rotor is a function of initial orientatione.
If the angle of rotation 2Lt/Ji remains small during the pro
cess considered andR(t) follows the analytical Coulomb
trajectory of spherical nuclei@37#, the expression~24! can be
integrated over time:

DLP'S e2mZT

2ZP
D 1/2 QP

RB
3/2

sin@2e#1
6mQP

5ZP

L

JP
cos@2e#.

~25!

Here, the first term is the well-known result of sudden a
proximation. Taking Eq.~24! and averaging it over the initia
conditions which are given by bending staten (0<n
!p/8g0

2), we obtain

^DLP&n'
3

4
e2ZTQP cos@2A2n11g0#E

0

`

dt

sinF2^L&n

JP
t G

R~ t !3
.

~26!

If sin(x)'x, then ^DLP&n'$6mQP cos@2A2n11g0#/5ZP%
3(^L&n /JP) which gives us the evident dependences onn,
g0 , m, QP , ZP , ^L&n , andJP . One can see from calcula
tions that forn>1, ^DLP&n decreases with increasingn be-
cause cos@2A2n11g0# decreases faster than̂L&n grows.
^DLP&n decreases with increasing moment of inertiaJP . In
our approacĥDLP&n does not practically depend on^TKE&.
We checked by numerical calculations that this depende
is very weak.
06430
-

ce

The calculated values of^DLP&n (n50 –4) are shown in
Table II for the fragmentation104Mo1148Ba of 252Cf. These
analytical results are obtained by using the Eq.~26! and the
analytical Coulomb trajectoryR(t) for spherical nuclei. Cal-
culations with rigid body and experimental moment of ine
tia of nuclei give practically the same results. It is seen t
^DLP&n are quite small as compared to the average ang
momentum generated by bending vibrations for fission w
neutrons evaporation.

VI. SUMMARY

The angular momenta of fission fragments are calcula
under the assumption that the bending angular vibration
DNS are responsible for the generation of angular mome
of the fragments. The calculated results are in qualitat
agreement with the experimental data for the252Cf sponta-
neous fission. No attempt is made to adjust parameters t
the experimental data. In contrast to some phenomenolog
calculations, the angular momenta were not normalized
the experimental value obtained for certain fragments
spontaneous fission. We should stress that the temperatu
the system is not a free parameter in our model. It is sho
that, for n,5, the differenceQ-TKE mainly corresponds to
the excitation energy of internal degrees of freedom of
DNS. This means that the fissioning system is heated be
the scission in the case of postscission evaporation of
than five neutrons. The second fission mode of252Cf, if ex-
ists, could deserve complicated cluster interpretation.
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APPENDIX: POTENTIAL ENERGY OF DNS
AND STIFFNESS OF BENDING MODE

1. Nuclear part of nucleus-nucleus potential

Following the method proposed in Ref.@28#, the double-
folding procedure is used to calculate the nuclear part of
nucleus-nucleus potential
2-9
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UN~R,b i ,V i !5E r1~r1!r2~r2!F~r12r21R!dr1dr2

5C0FF in2Fex

r0
S E r1

2~r !r2~R1r !dr

1E r1~r !r2
2~R1r !dr D

1FexE r1~r !r2~R1r !dr G . ~A1!

with the effective density-dependent nucleon-nucleon in
action

F~r12r21R!5C0FF in

r1~r1!1r2~r2!

r0

1FexS 12
r1~r1!1r2~r2!

r0
D Gd~r12r21R!,

F in,ex5 f in,ex1 f in,ex8
N12Z1

A1

N22Z2

A2
, ~A2!

which is known from the theory of finite Fermi systems@38#.
Here,A5A11A2 andNi (Zi) are neutron~proton! numbers
of nuclei. The values ofC0 and the dimensionless paramete
f in,ex and f in,ex8 are fitted to describe a large number of expe
mental data@38#. These forces were seriously tested
nuclear structure calculations. For example, the sing
particle spectra and characteristics of low-lying collect
excitations are well described with these forces~see Ref.
@38#, and references there!. The repulsive core and the pock
in the double-folding nucleus-nucleus potential is obtain
naturally when one uses density-dependent nucleon-nuc
interactions. In the pocket of the nucleus-nucleus poten
the dinuclear system has the continues shape due to the
lap of diffusion tails of nuclear densities. For the density
deformed nuclei withA.16, one can use the two-paramet
symmetrized Woods-Saxon function within the intrinsic re
erence frame of a nucleus (r5r ,u8,f8)

r i~r ,ai !5
r0 sinh@Ri~u8,f8!/ai #

cosh@Ri~u8,f8!/ai #1cosh~r /ai !
, ~A3!

where r050.17 fm23 is the density at the center of
nucleus andai50.55 fm denotes the diffuseness parame
of an i th nucleus. The shapes of DNS nuclei are described

Ri~u8,f8!5Ri S 12
b i

2

4p
1b iY20~u8,f8! D . ~A4!

The angles with the prime sign are the angles ofr with
respect to the intrinsic coordinate frames of each nucleus
are interested in the dependence of the DNS potential en
on the orientation anglesu i with respect to the internuclea
axis ~molecular frame!. Since the functions in Eq.~A1! de-
pend on angles measured in the intrinsic reference fram
each nucleus, we rewrite them with respect to the molec
06430
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frame of reference usingD functions. TheD functions do not
depend on integration variables and can be taken out of
integrals@28#.

For the analytic calculation ofUN and the reduction of the
number of terms in the expansion, we introduce the follo
ing modified expansions in the quadrupole deformation
rametersb i for the nuclear density and for the square of t
density in the intrinsic coordinate frames:

r i~r ,ai !5r i~r ,ai !1jFRi

dr i~r ,bi !

dRi
b iY20~u8,f8!

1
Ri

2

2

d2r i~r ,bi !

dRi
2

b i
2Y20

2 ~u8,f8!G ,

r i
2~r ,ai !5r i

2~r ,ai !1j8FRi

dr i
2~r ,bi8!

dRi
b iY20~u8,f8!

1
Ri

2

2

d2r i
2~r ,bi8!

dRi
2

b i
2Y20

2 ~u8,f8!G . ~A5!

The coefficientsj, j8, b, and b8 in Eq. ~A5! are resulted
from the fit of the radial dependences ofr i(r ,ai) and
r i

2(r ,ai) calculated with Eq.~A3! at u85a i and f850
where the anglea i corresponds to the nuclear surface po
nearest to the other nucleus@28#. Therefore, expression~A5!
can be used for any values ofb i and should be considered a
an approximation to the correct dependences ofr i(r ,ai) and
r i

2(r ,ai) on R at fixedu i . Note that the terms proportional t
b i

2 in Eq. ~A5! were introduced to increase the accuracy
calculations. The assumption of a small overlap of nuclei
the DNS allows us to neglect the dependence ofj, j8, bi ,
andbi8 onu8 andf8 in the calculations ofUN at fixedb i and
u i .

Since we are interested in the potential energy under
condition ~3!, further calculations are performed assumi
a small deviation of the ratio betweenũ1 and ũ2 from the
ratio ~3!. If the anglesũ15p2u1 and ũ25u2 are small
~small bending vibrations! at R'Rm5R̃11R̃21s, where
R̃i5Ri@12b i

2/(4p)1A5/4pb i # are the major axes o
prolately deformed nuclei, we can use analytic expressi
for a i :

a15c11ũ11c12ũ2 ,

a25c21ũ11c22ũ2 . ~A6!

Here, c11512(R̃21sg2
2)(g1

221)/(R̃1g2
21R̃2g1

21sg1
2g2

2),

c125R̃2(12g2
2)/(R̃1g2

21R̃2g1
21sg1

2g2
2), c215R̃1(12g1

2)/

(R̃1g2
21R̃2g1

21sg1
2g2

2), c22512(R̃11sg1
2)(g2

221)/(R̃1g2
2

1R̃2g1
21sg1

2g2
2), and gi5@12b i

2/(4p)1A5/4pb i #/@1
2b i

2/(4p)2A5/(16p)b i ] is the major-to-minor axis ratio of
the i th nucleus.

Inserting the expression
2-10
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r i
2~r ,a!52r0a sinhS Ri

a D d

dRi

r i~r ,a!

sinhS Ri

a D
52r0Fa

d

dRi
2cothS Ri

a D Gr i~r ,a!

5
r0

Fin2Fex
L i~a!r i~r ,a! ~A7!

into Eq. ~A1!, using Eqs.~A2!, ~A5!, and takingf15f2
50, the nuclear part of the potential energy is approximat
written as

UN~R,b i ,u i !

'U111U21Y20~u2!1U22Y20~u1!1U31Y20
2 ~a2!

1U32Y20~a1!Y20~a2!1U33Y20
2 ~a1!

1U41Y20~a1!Y20
2 ~a2!1U42Y20

2 ~a1!Y20

3~a2!1U51Y20
2 ~a1!Y20

2 ~a2!, ~A8!

where the coefficients

U115C0@L1~a1!1L2~a2!1Fex#I 0~a1 ,a2!,

U215C0b1R1

d

dR1
@j1L2~a2!I 1~b1 ,a2!

1j18L1~b18!I 1~b18 ,a2!1Fexj1I 1~b1 ,a2!#,

U225C0b2R2

d

dR2
@j2L1~a1!I 2~a1 ,b2!

1j28L2~b28!I 2~a1 ,b28!1Fexj2I 2~a1 ,b2!#,

U315C0b2
2

R2
2

2

d2

dR2
2 @j2L1~a1!I 0~a1 ,b2!

1j28L2~b28!I 0~a1 ,b28!1Fexj2I 0~a1 ,b2!#,

U335C0b1
2

R1
2

2

d2

dR1
2 @j18L1~b18!I 0~b18 ,a2!

1j1L2~a2!I 0~b1 ,a2!1Fexj1I 0~b1 ,a2!#,

U325C0b1b2R1R2

d2

dR1dR2
@j18j2L1~b18!I 0~b18 ,b2!

1j1j28L2~b2!I 0~b1 ,b28!1j1j2I 0~b1 ,b2!#,

U415C0b1b2
2

R1R2
2

2

d3

dR1dR2
2 @j18j2L1~b18!I 0~b18 ,b2!

1j1j28L2~b2!I 0~b1 ,b28!1j1j2I 0~b1 ,b2!#,
06430
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U425C0b1
2b2

R1
2R2

2

d3

dR1
2dR2

@j18j2L1~b18!I 0~b18 ,b2!

1j1j28L2~b2!I 0~b1 ,b28!1j1j2I 0~b1 ,b2!#,

U515C0b1
2b2

2
R1

2R2
2

4

d4

dR1
2dR2

2 @j18j2L1~b18!I 0~b18 ,b2!

1j1j28L2~b2!I 0~b1 ,b28!1j1j2I 0~b1 ,b2!# ~A9!

depend only on the relative distanceR and quadrupole defor
mation parametersb i . With the Fourier transform of the
function r i(r ,ai)

r i~p,ai !5
A2paiRir0

p sinh~paip!

3S pai

Ri
sin~pRi !coth~paip!2cos~pRi ! D ,

~A10!

the following integrals are calculated:

I 0~a,b!524pE
0

`

r1~p,a!r2~p,b! j 0~pR!p2dp,

I 1~a,b!52~4p!2E
0

`

dpp2 j 2~pR!r2~p,b!

3E
0

`

drr 2 j 2~pr !r1~r ,a!,

I 2~a,b!52~4p!2E
0

`

dpp2 j 2~pR!r1~p,a!

3E
0

`

drr 2 j 2~pr !r2~r ,b!. ~A11!

Here, j 2(pR) and j 0(pR) are spherical Bessel functions
Due to the small overlap of DNS nuclei, the spherical fun
tions in some integrands in Eq.~A1! are replaced by their
values atu i85a i to obtain Eq.~A8!. Direct calculations of
the corresponding integrals show that this approximat
works well @28#. Thus, using Eq.~A6! and expanding the
spherical harmonics in small anglesũ i up to the second or-
der, we obtain

UN5UN01
1

2
C11

n ũ 1
2 1C12

n ũ1ũ21
1

2
C22

n ũ 2
2 , ~A12!

where
2-11
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UN05U111A 5

4p
~U211U22!1

5

4p S U311U321U331A 5

4p
~U411U42!1

5

4p
U51D ,

C11
n 523FA 5

4p
U221

5

4p
c11

2 S 2U331U321A 5

4p
~2U421U41!1

5

2p
U51D

1
5

4p
c21

2 S 2U311U321A 5

4p
~2U411U42!1

5

2p
U51D G ,

C12
n 52

15

4p Fc12c11S 2U331U3211A 5

4p
~2U421U41!1

5

2p
U51D

1c21c22S 2U311U3211A 5

4p
~2U411U42!1

5

2p
U51D G ,

C22
n 523FA 5

4p
U211

5

4p
c22

2 S 2U311U321A 5

4p
~2U411U42!1

5

2p
U51D

1
5

4p
c12

2 S 2U331U321A 5

4p
~2U421U41!1

5

2p
U51D G . ~A13!
ity
or

-

2. Coulomb part of nucleus-nucleus potential

For the Coulomb interaction, we use the formula@39#

UC5
Z1Z2e2

R
1

3

5

Z1Z2e2

R3 (
i 51

2

Ri
2b iY2~u i !

1
12

35

Z1Z2e2

R3 (
i 51

2

Ri
2@b iY2~u i !#

2. ~A14!

For the small overlap of DNS nuclei, the effect of dens
diffuseness is relatively small and is neglected in this f
mula. The expansion of Eq.~A14! in ũ i ( i 51,2) results in

UC5UC01
1

2
C11

c ũ1
21

1

2
C22

c ũ2
2 , ~A15!
-

l-

06430
-

where

UC05
Z1Z2e2

R H 11
1

R2 (
i 51

2

R0i
2 F S 9

20p D 1/2

b i1
3

7p
b i

2G J ,

Cii
c 523

Z1Z2e2

R3
R0i

2 F S 9

20p D 1/2

b i1
6

7p
b i

2G ~ i 51,2!.

~A16!

Finally, using Eqs.~A12! and ~A15!, we obtain the expres
sion for the total potential energyU of DNS in the form of
Eq. ~1!, whereCi j 5Ci j

n 1Ci j
c .
n
.

.

s.
-
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