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Large-N. nuclear potential puzzle
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An analysis of the baryon-baryon potential from the point of view of la¥geQCD is performed. A
comparison is made between tNe-scaling behavior directly obtained from an analysis at the quark-gluon
level to theN, scaling of the potential for a generic hadronic field theory in which it arises via meson
exchanges and for which the parameters of the theory are given by their canonicall lasgaling behavior.

The purpose of this comparison is to use laikgjeeonsistency to test the widespread view that the interaction
between nuclei arises from QCD through the exchange of mesons. Although at the one- and two-meson
exchange level the scaling rules for the potential derived from the hadronic theory matches the quark-gluon
level prediction, at the three- and higher-meson exchange level a generic hadronic theory yields a potential
which scales with\ faster than that of the quark-gluon theory.
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I. HADRONIC DYNAMICS AND LARGE- N; COUNTING analysis conducted directly at the quark-gluon level. The use
of largeN, scaling rules to test ideas from nuclear physics is
The absence of a calculational scheme for properties angot new. It was argued more than a decade ago that nucleon
low-energy interactions of hadrons from the first principlesloop contributions based on pointlike nucleon-meson cou-
of the underlying microscopic theory of color dynamics callsplings, as was conventionally calculated in various quantum
for the treatment of this domain by means of effective theo-hadrodynamical models8], did not scale witiN. in a man-
ries with degrees of freedom other than quarks and gluonser consistent with largk, QCD and hence presumably did
Traditionally nuclear physicists have envisioned nucleonnot capture the underlying QCD dynamies.
nucleon interactions as emerging from the exchange of me- The physical spectrum of QCD consists of colorless had-
sons. When QCD was established as the theory of strongnic states — baryons and mesons. As discussed by 't Hooft
interactions three decades ago, the meson-exchange pictidd and Witten[2], largeN. QCD gives definite predictions
was viewed as arising from it: QCD gives rise to effective for the scaling of their characteristics wilh, . For example,
hadronic degrees of freedom and the interaction of thesthe baryon and meson masses are of omdgrand unity,
could then account for nuclear forces. Obviously, these efrespectively, and the single-meson-baryon coupdingis of
fective degrees of freedom can only describe the low-lyingorder /N, while meson-baryon scattering amplitudes are of
modes of the theory where the underlying quark and gluorbrder unity. More generally, reasoning along the lines sug-
degrees of freedom are not easy to disentangle. Thereforgested by Wittefi2] implies that the coupling dfl mesons to
one faces the long-standing problem of the correspondencgbaryon scales at most gg,~ N2~ 2.
between hadron and color dynamics. The problem we wish  apart from these generic counting rules there are addi-
to address is the extent to which QCD justifies the traditionational constraints coming from the spin-flavor structure of
meson-exchange picture of nuclear forces. the interaction. This can be seen by imposing the consistency
The largeN, approximation provides a possible frame- of two single meson-baryon interactions vertidésnomi-
work to investigate this issue since there are a number ofajly of orderN, in total) with the meson-baryon scattering
important simplifications of QCD in this regimi, 2. Of  \hich unitarity restricts to be of order unity. The cancella-
course, it is by no means obvious that one can directly detions required for this to come about imply a contracted
duce specific phenomenological consequences for the regly4) symmetry for two-flavor QCI)5-7]; for a review, see
world from the largeN, perspective. Recall, for example, Refs.[8,9]. This implies that baryons form towers of nearly
that the deuteron binding energy is of orderN; while the  degenerate states with=J and with splittings of order
delta-nucleon mass splittingM is of order 1N;. Thus, if  1/N.. The contracted S) relations hold for states in this
one were in a largé&, world, one would expect a hierarchy tower. The commutation algebra of the spirisospinl, and

of scales with eg~O(Nc)>oM~O(1/Nc). In the real  gpin-isospinX vertices is given schematically by
world, however, one finds these scales indeed widely sepa-

rated but with the opposite ordesz<SM. However, the [L1]~1, [3,9]~3, [1,X]~X

argument that a QCD description of low-energy nucleon- ’ ’ ’ ’ ’ '

nucleon interactions should be describable in a meson- 5

exchange picture does not appear to depend in any explicit [J,X]~X,  [X,X]~1/Ng. (€

way on the fact thall.=3 in the physical world. Thus, if the

argument is valid, it ought to apply equally well in a ficti- The last relation implies a suppression when commutators
tious multicolor world and one would then expect quantitiesarise. This occurs in treatments of the tree-level baryon-
deduced from the meson-exchange picture to scale Mjth meson scattering: for the-meson-baryon scattering ampli-
in the same way as the same quantities deduced from ande Ay the destructive interferendel0—12 leads to the
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4 p'—q the two-meson exchange do not occur for general multime-
g o— son exchanges. Thus, potentials derived from generic had-
i i i i i ronic theories calculated at a fixed number of meson ex-
ki A 4 & - A 4 ky changes do not give rise to potentials that respect the KSM
1 1 1 1 1
1 1 1 1 1
]

scaling rules of Eq(2). This result is puzzling in view of the
general expectation that the physics of QCD at low energies
P pt+q can be described in terms of hadronic degrees of freedom.
. _ We will refer to this as the “largéN. nuclear potential
FIG. 1. A generic exchange diagram for the baryon-baryony, 771 » There is a second puzzling aspect of this problem.
scattering. In studying exchanges of quark-antiquark pairs the role of
. . “static” pairs, i.e., pairs whose energy transfer is snal
appearance of multiple commutators of meson vertices leadsqer 1N, is special: the leading-order contribution of
ing to consistency with the largs; counting rules predict-  miipair exchanges to the potential requires all pairs to be
ing Ay~N¢ . . _static. If there were a one-to-one mapping between classes of
In the present study we address the issue of the consigpark-gluon diagrams with hadronic ones, this would corre-
tency of largeN. QCD with the conventional meson- spond to static meson exchanges. In fact, however, we will

exchange picture used to describe nuclear potentials. If thgee that the “dangerous” contributions at the hadronic level
latter adequately describes the real world, it must possess the: the ones which contradict the KSM rules of &) — all

same multicolor asymptotics as deduced from QCD for loogzome from nonstatic meson exchanges.

amplitudes. We consider the potential used for the baryon- The calculations of multimeson exchanges can get quite
baryon scattering shown Fig. 1. The problem at the quarlgomplicated. Accordingly, it is useful to develop tools which
level was discussed by Kaplan and Savét@ and by Ka-  greatly simplify the analysis. The non-Abelian generalization
plan and Manohaf14]; collectively, we refer to their analy- of the eikonal formulg12] which can be used to compute
sis as KSM. The basic strategy used by KSM was based ofhe sum of certain multimeson amplitudes will be quite
Witten’s Hartree picture where the interaction is identified asandy in this context. In the following section we will review
being due to quark-line-connected diagrams. KSM thenis formalism. In Sec. Il we show how sums of various
equate the nucleon-nucleon potential to the sum of the quarknyitimeson diagrams lead to contributions which are incom-
line-connected Feynman graphs which involve exchangegatible with the KSM rules. Finally, we conclude with a dis-

between two groups dfl; quark lines which represent bary- cyssion of possible resolutions of this apparent paradox.
ons. This is then analyzed using the contracted43Sym-

metry. The princ@pql res_ults of this analysis are that the II. NON-ABELIAN EIKONAL FORMULA
strength of the spin-isospin structures of the nucleon-nucleon
potential scale as follows: Following Ref.[12] we consider a baryon which emits or
absorbs a number of virtual mesons. Since the baryon is
Vi—3~Ng, V|¢J~N§l1 2) extremely heavy al.=oo, it can be treated as almost static.
It will be a nonrelativistic particle if its three-momentyris

where the subscript indicates the quantum numbers of thef O(NJ); the four-momentum is therM +p?/(2M),p). In
exchange in the channel. It is straightforward to see from this kinematic regime the heavy baryon propagator is ap-
the largeN,. scaling rules of meson-baryon couplings that aproximated by the product of the conventional eikonal
one-meson-exchange potential will satisfy E®). It is not ~ Ppropagator and a projection matriwhich will be omitted
immediately obvious, however, that multimeson-exchangéaten on the large components of the nucleon bispinor:
potentials will obey this rule since superficially they are
clearly larger than allowed by E@2). For example, at the 1 1 Ity
two-meson-exchange level, both the retardation effects from p+k—M’ +i€_> wtie 2
box graphs and the contributions from cross-box graphs en-
ter Vi—; and V,.; at orderNﬁ. However, as shown in a Taken literally, this expression which neglects the nucleon
detailed calculation in Ref15] cancellations between these recoil is only valid for meson energies, k= (w,k), of order
two yield potentials compatible with E§2). The contracted O(Ng). If o is of orderNc’l, then the denominator of the
SU(4) structure played an essential role in achieving thispropagator(3) is modified to include the recoil effect as fol-
goal. Note that to get consistency with. ; cancellations up  lows: w— w+ M +[p?— (p+k)?]/(2M), with the mass dif-
to orderN, % are needed; in fact they occurred up to orderference of the “degenerate” states in the baryon tovi,
N. 2. =M—M’. Note thatsM is O(N_ %) [17-19. For simplicity

The results of Refl15] raise the hope that similar cancel- we generally omit this modification in our expressions. This
lations might be expected for all multimeson exchanges. lapproximation has to be kept in mind since it leads to singu-
these were true, it would show consistency at lagebe- larities in the integrand of certain loop amplitudes. However,
tween the scaling of the potential at the quark-gluon andhey are easily identifiable and cured by the simple expedient
hadronic level and would help to justify meson-exchange-of reintroducing the recoil correction.
based potential models as arising from QCD. However, as There is an important kinematical constraint in this re-
will be shown in this paper, the type of cancellations seen fogime. Since the initial and final nucleons are on shell and

¢

()
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have three-momenta of ordb, the kinetic energies of the : : CR[

initial and final states are thus of orddg * (due to the fact RN 5/ Y

thatM~N.) and thus the total exchanged energy is also of /" \ L \_:\ L

OrderNc_l. : : : Eﬂ_
The blob on the lower baryon line in Fig. 1 represents the

tree amplitude for production dfl mesonsAy; it includes (@) (b) )

all poss',ble permu_tatlon O_f S|r_1gle-meson emissions from the FIG. 2. Quark diagrams which can be interpreted as meson
baryon line and this contribution reads

exchanges.
ANEGE{;__ . Aloy- oyl (4 A;=A[1]2|3]+A[21)3]+ A[1]32]+ A[231]bf+ A[ 31|2]
where +A[321]. (10
Aoy o=V, V-V, a[og- - oy (5)  The proof is straightforward by the Fourier transformation of
a U'N 1

both sides of the equality.
with one of the matrice¥={1, I, J, X} associated with the The generalizations are obvious. The constructive formula

meson-baryon interaction vertex, and reads
N N-1 ]
aloy---on]=—27i E ; —1— (6) An= a[{o'(k)}])
1 NI= e @ T . e 4 ol) | k=1
i i
gl W T1E XV[{oMW .. V[{aW1], (11)

Obviously, for a single element (and neglecting recoil as with a number of partition$ of a given permutatiorr into
discussed aboyga[n]=—2mi §(w,). setso with elements{c®} =517, ... o{? constructed
As a result of the destructive Bose-Einstein 'nterferenceaccording to the definition given above. To make these nota-

Ay can be expressed by a multiple-commutator formula fokiong clear and in order to establish a contact with the previ-
the sum of non-Abelian eikonal amplitudes discussed in Refy ;g discussion, let us mention that there is a term in(Eg).

[11], of the form (8) where, for instance, the elements(!)}
~ =gV, ... 0V of the seto® are identified as follows:
A= 2 Aloyoy) N M=0,,..., oWP=0y, the elements {c?)}
oef{l,...| N} Ny
=0, ... 0l of ¢ are related ag{?=0s, ..., o)

The constructive definition of the multicommutator ampli- =0, etc. For a single element in a set the vertex function

tude A goes as follows. For a given ordering of lines, if the introduced in Eq(11), V[ n] coincides with the single vertex
rightmost element of the given permutation is smaller thany/, . For more than one element it is given by a multiple
any other element to its left, then there is only one partitioncommutator

and it is the whole tree. Otherwise, go to the first element

whose number is smaller and draw a partition just to the right VI{o®}=[V,0, ... [V,0 ,V,m0]---].

of that element. Next, start to the left of this partition and ' ek

repeat the procedure again. Through the cut separating thge energy-dependent functioasf a given set are defined

partitions, the amplitude factorizes: in Eq. (6). For the Abelian case, i.e., whan—1, all com-
~ mutators vanish and one gets the well-known eikonal
Aoy oyloz o4 -] formula

=Aloy- o) Alog - oal Al ] (®) IIl. BARYON-BARYON SCATTERING

whereo,<o,<---. The amplitudes without partitions are
given by the commutator formula with the innermost com-
mutator formed by the last two elements of the tree,

The baryon-baryon interaction at larje comes from the
exchange of pairs of quark constituents. A quark from one of
the hadrons switches places with any quark in the other
baryon and exchanges a gluon to neutralize the color charge.

Aloy - on-100] The quark exchange, in Fig(d, may naturally be reinter-

=[V,, [V V, 1 --la[oy - on_10,]. preted at the hadronic level as a meson exchange,
gy’ B B R}
) V() =ginD(— ), (12
The first two nontrivial examples read
~ ~ with D(g%)= ———,
A,=A[1]|2]+ A[21], (@ g’—m’+ie

064008-3



A. V. BELITSKY AND T. D. COHEN PHYSICAL REVIEW C65 064008

where for simplicity we have chosen the example of theby an iteration. Thus, nonrelativistic amplitudes satisfy the
scalar-isoscalar channel. Clearly, this correspondence béippmann-Schwinger equation
tween the meson and quark exchanges is not valid on a
diagram-by-diagram basis. Presumably the sum of all quark .
exchange diagrams including an arbitrary number of gluons
connecting the exchanged quaifkehich if planar are lead- Tp.p+a)= _V(Q)+f (277)3V(k)g(k)7'(p+ K.p+a),
ing order inN.) gets mapped onto the sum of all one-meson- (13)
exchange graphs for mesons with these quantum numbers.

In analyzing the contributions to the potential one must
recall that the full amplitude is obtained from the potentialwith the potential and the two-baryon propagator

G(k)= - [ 52 ! 14
R (L BT B G LT B N oo L
om 2w )\ ¢Tam T Tam e

Here we definedj as the conventional nonrelativistic Green exchanges the correspondence between quark- and hadron-
function for a two-baryon system of the reduced mi®  level diagrams is lost.
and in the last form we reexpressed it in terms of the single- For the sake of concreteness, we illustrate the issues by
particle propagators neglectingM. The kinematics is cho- considering bosons with scalar-isoscalar quantum numbers.
sen according to Fig. 1 whene=(E,p) and p’=(E,—p) For other channels, the presence of nontrivial spin-isospin
with nonrelativistic expansiore~M + p?/(2M). The mo- indices introduces significant complications due to the non-
mentum transferredj=p—p’=(qy,q) has a small time commutativity of vertices but does not affect the main line of
component,~ O(1/N,) since it is inversely proportional to reasoning. We will return to the effects of noncommutativity
the baryon mass. when we consider ladder and crossed-ladder diagrams. We
When assessing the contribution of some hadronic-leveilso will neglect all effects of momentum dependence in the
Feynman diagram to the potential, it is essential to note thaneson-baryon couplings. Again it easy to see that they do
the Feynman diagrams sum to give the full amplitude andhot alter our conclusions.
not just the potential. Accordingly, to extract the contribu- Let us analyze what kinds of quark configurations give
tions to the potential, one must remove all contributionscontributions to the potential. The one quark-pair exchange
which correspond to iterates of the potential. Fortunatelyjn Fig. 2(a) is translated into the one-meson exchange of Fig.
they are easily identifiable. From the nonrelativistic form3(a). At the quark level, there is eui combinatorial factor
(14) it is clear that asdN.—«, G diverges sinceM ~N;. from the number of possibilities to join the quark lines in
Thus, in the largeN,, limit, these potential iterates are asso- both baryons and there is a YN.)? from the two gluon
ciated with infrared singularities and these are the only incouplings. This results in an overall scaling s which is
frared singularities in the problem. Thus, when one encouneompatible with Eq.(2). On the hadronic side the meson-
ters them in the integrals one may make the substitution baryon coupling behaves agN. and the one-meson-
exchange diagram thus also scales\Nas Note that the en-
J' do o(w) g (15) ergy transfer scales asN/ and vanishes foN,—~. Thus,
w+ie ' both the exchanged meson and the exchanged quark pair are
static with this kinematics.
where one inputg; with appropriate kinematics. More sig- The two-quark-pair-exchange diagram in Figb)2is of
nificantly, having identified these terms as arising from aorder N.: a combinatoric factor ofN2 and a factor of
potential iterate, one can remove them from the amplitude tq/(,/N.)* from the coupling constants. Note that this diagram
extract an irreducible contribution to the potential only. has both pairs of quarks Coup|ed to the same quark line in
The baryon-baryon interaction at the QCD level is generone of the baryons and thus corresponds to the diagram with
ated by various complicated quark-exchange processes
sampled in Fig. 2. One expects that these are connected dic ! — T Ty
grams which contribute to the potential while the quark-line ' b YA i
disconnected amplitudes, such as Fi¢c)2are associated *
with iterates of the potential which arise in the Lippmann-
Schwinger equation. On the hadronic side, the sum of the F|G. 3. Typical meson-exchange diagrams contributing to the
quark-level diagrams can presumably be interpreted as m@aryon-baryon scattering amplitude. They are expected to corre-
son exchanges. A few examples of these can be found in Figpond to the quark-pair exchange graphs in Fig. 2. The last two
3. As we will demonstrate momentarily, at multiple-mesongraphs(c) and(d) violate the KSM largeN, counting rule.

(a) (b) (¢} (d)
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a two-meson-baryolfseagul] vertex, Fig. 8b). The reason T AR N
for both pairs to couple to the same line in a baryon is [V . NJ

__,__
-

| - e
P
1

simple. If they do not, then the graph would be quark-line
disconnected and thus, by hypothesis, not associated with th
irreducible part of the potential. By th¥, counting for this
disconnected quark graph to agree with the seagull diagram
it would require an extra gluon exchange to yield the same
total largeN; behavior. On the quark level one again realizes
that the leading-order contribution of this type comes from
the exchange of static pairs. In this case the requirement goe.  (d) (¢) (f)
beyond simple kinematics. Kinematically the energies of the
two exchanges must be equal and oppogigeto 1N, cor-
rectiong but need not be static. However, the two affected
quark lines in the upper baryon in Fig(l2 do not commu-
nicate by a gluon and, therefore, if each quark exchang@e two-meson-exchange level one also has an iterate of the
carries an energy, then the energy of the final-state quarksfatic one-meson exchanges. This term presumably is associ-
would not correspond to the single-particle energies in thexted with the non-quark-line-connected part of the two-
Hartree ground state. On the other hand, if they do exchangguark-pair-exchange graphs at the quark-gluon level.

a gluon, there is an extraN{ suppression without an off-

setting combinatoric gain, so the term is not of leading order

b - - - -4
-
-

FIG. 4. Three-meson-exchange diagrams with one seagull
vertex.

in the 1N, expansion. On the hadronic level the static nature A. Problem at three-meson-exchange level
of the exchange can be seen to arises as follows from the
Feynman diagram of Fig.(B): The three-quark-pair exchange of the type displayed in

Fig. 2(c) is not quark-line connected. Rather two of the ex-
changes are connected while the third one is disconnected.

2 33k By hypothesis, then, this graph is not to be associated with
i7= gmeZmJ H J3(277)35(3)(k1+ k,—q) the potential but presumably with a potential iterate. Using
i=1(2m) the analysis similar to what was done previously in this pa-
2 per it is easy to see that all of the exchanged quark pairs must
dw; (S((l)1+ (,!)2) . . . . .
xf I1 2—'(2w)—.D(k§)D(k§) be static at leading order in theNyJ expansion(which for
=17 w1~ le this class of graph is formally of ord(Ng — larger than the
2 43k allowed scaling of the potential — due to the disconnected
=j ngmgsz H 13(277)35(3)(k1+ k,—q) nature of the gra_lph _ _ _
i=1(2m) At the hadronic level this graph should be associated with
2 4 a seagull exchange as in Fig(bB dressed with an extra
X J' 11 ﬂ(Zw)é(wl) S(w,)D(—K3)D(—K2), single-meson exchange, FigaR This generates the six dia-
j=1 2m grams displayed in Fig. 4. The generalized eikonal formula

(16) of Sec. Il can be applied to describe the lower line in Fig. 4
in a straightforward manndwith the “seagull” vertex tak-
whereg;~ VN is the single meson-nucleon coupling con- ing the place of a single-particle oneBecause the vertices
stant, g, ~N° is the “seagull” coupling, andD(—k?) commute, only theS function contributes for the propagators
’ C ’

=(—k®—m?+i€)~Lis the meson propagator for a meson of IN appropriate pgirs of graph_s. This implies a cancellation of
massm, three-momentunk, and zero energy. The second the fully nonstatic parts of diagrams Figa# with 4(c) and
equality follows from the fact that the meson propagators ar&i9. 4(d) with 4(f), where “fully nonstatic” implies that all
even functions of the meson energiesso that one imme- the mesons exchanged are nonstatic. These cancellations are
diately finds that the principal value part of the baryonreéminiscent of the ones of the retardation effects in box
propagator cancels under integration and onlydHenction ~ graphs against crossed-box graphs discussed in [RBF.
piece survives. Thus only static-exchange mesondhe é-function contributions to Figs.(d), 4(c) and Fig. 4d),
contribute. 4(f) give combinations of propagators of the form seen in Eq.
In addition to the seagull-type two-meson exchange therél5). Obviously, they are iterates of the lowest-order
are also box and crossed-box contributions to the potentiaLippmann-Schwinger kernel and do not affect the potential
As discussed at length in R¢fL5], the retardation effects in itself. Finally, there is a-function contribution to Figs. @),
the box and crossed-box graphs separately violate the courd(e). This term is not an iterate of the potential but rather an
ing rules of Eq.(2). Moreover, the contributions from these
graphs come entirely from nonstatic meson exchanges. How=——
ever, these terms when summed cancel one another, yieldingwe use the eikonal formula on the lower line since it is simpler.
the total result consistent with E(2) and without contribu-  When applied to the upper line, the potential iterate contributions
tions from nonstatic mesons. At the level of the amplitude atre not identifiable as easily.
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irreducible contribution to it given by

i s
[
=
e

[~ S ——

v
hd
’

glmgzm

3
35(3)( 2

FIG. 5. A crossed-ladder diagrafan the right-hand side of the

3
haied | 2 equality which generates a superleading contribution to the baryon
f H (277) 5( 2 )( H D(k ) potential. Dashes on the baryon line denote the on-shell condition
(the cutg of the corresponding propagators.
1

X~ —Iew1+w2—l (—2i) 8(wy). (17)

with multimeson couplings such as exemplified in Figd)3

. . Note, though, that this diagram corresponds to the same
Note that there are twé functions in energy but three ener- g g b

gies. Thus, they do not force all three mesons to be static quark-level topology in Fig. @), hinting at a possible con-
Rather, the single exchanged meson is static, while the twgplr?cgt of the seagull and three-meson vertex
mesons connected to the seagull vertex have equal and oﬁon rioutions.
posite (but generally nonzejoenergy transfer. Performing

the energy integrations yields B. Ladders and crossed ladders

A similar problem shows up in the contributions form

@) 3 ladder and crossed-ladder diagrams. Here, we will consider
glmQZmJ (277 2 21 Ki—d the effect ofN identical mesons with nonderivative pointlike
couplings to the baryons. Derivative couplings will not alter
D(—K5)Ro(e1,€3). (18)  the conclusions, but as seen in Rf5], greatly complicate

the analysis. Non-point-like couplings can also be easily in-
For simplicity, have introduced a general functi®p which  cluded and do not alter the qualitative results either. Simi-
shows commonly in expressions for multimeson contribudarly, the restriction to identical mesons is done for simplic-
tions with two nonstatic mesons, ity; again, the conclusions will not be strongly dependent on

this. Since we are interested in the possibility of effects

which violate the KSM rules by having a “super-leading?;

do 1 5 dependence, we will consider the exchanges of mesons
Roleje= | 5= (o—ie) D(w?~k})D(w?~ k) which have couplings to baryons of ordgN, the maxi-
mum allowable. From the analysis of the contracted 48U
1 e}‘*l—sE“ symmetry in Ref[16] these will be a scalar-isoscalar vertex
T el e2_g? (19 or a spin one, isospin ok, type. As will be seen below,
17k k the superleading effect depends on the nonvanishing of the
with sjE\/E-ZJr_mZ. commutators of the vertices. Thus, the scalar-isoscalar ex-

changes, which commute, will not contributenless other

noncommuting exchanges are also presécordingly we

will restrict our attention to mesons that couple in a non-

derivative way toX;, . An example of such a meson is the

spatial part of theA; (recalling that for nonrelativistic bary-

ons, the couplings to the temporal and spatial parts of vector

mesons can be separated

Note that our result will depend on the fact that our prob-
is [X,a,XJb]aﬁO Of course, for contracted $4) this

A couple of comments are in order at this point. The first
is that 5V as given in Eq(18) scales a3\|2 This is easily
seen since;,~ N, while gy~ N and bothD (—k3 5) a
Rn(ej,ei) are independent ol . The second is that thls
contribution to §V does not vanlsh BotD(—k3) and

Rn(ej, &) are positive definite, so no cancellations are pos-
sible in the integral. This is the heart of our puzzle. The
three-meson-exchange contribution to the potential is of or-
derN2 This is incompatible with Eq.2) which was derived
at the quark level. Moreover, the contribution comes entlrelycommutator is zero. However, one only has the contracted
from nonstatic meson contributions. At the three-quark-pair- SU(4) symmetry for |nf|n2|teN For finite N the commuta-
exchange level the amplitude only gets contributions fronf©r iS sSmall, scaling abl; © but not zero. If the commutator is
nonstatic pairs at ordeN. (even including quark-line- Multiplied by a function which grows withN. rapidly
disconnected piecgs enough, it will contribute and can indeed be associated with

In the explicit computation done above, pointlike meson-superleading effects.
nucleon couplings were used. It is clear that had momentum- For any given number of meson exchanges one has to
dependent vertices been included the functional form of theum the blob in Fig. 5 representing the emission of mesons
integral used to derive the potential would be altered but thevith all orderings. For this purpose the non-Abelian gener-
N, counting would not. Similarly, it is clear that this problem alization of the eikonal formula in Eq11) is indispensable.
is not restricted to effects from seagull graphs. It is trivial to  The amplitude for the exchange of point-coupledA,;
see that ordeN? contributions will arise in other topologies mesons is given by

064008-6



LARGE-N. NUCLEAR POTENTIAL PUZZLE PHYSICAL REVIEW C 65 064008

N 33k N spond to an iterate and directly contributes to the potential.
T,\,z(—i)'\‘gmf 1T (2—;3(277)35(3)( > k]-—q) This term is unique and leads to a contribution of the form
=1 (2m =1
N d f‘[ d3kJ N
@ 2 8V =(—1)N+192Nf —(277)35(3)(2 k-—q)
xf,-ﬂlﬁ(;ﬂlmki)) " ) L 2m)? =
1 1 XVi- - VN®[VN,V1]Va - - Vg
XVlwl_i€V2w1+w2_i€ N-1 )
. x| 1L D) | Ruter.en). (2D
XV3- Vo Vn® Ay, (20
w—ie ote that apart from th¥ factors(which are multiplicativ
J N h f hy f (which Itiplicative
=1

the integrand is positive definite. Th#d’ cannot vanish af-

ter integration. Recall that the commutator of tW& is of
where Ay is the sum of all permutations of the positions of order 1NZ. Note also that there are contractions of the spin
the mesons coupling to the lower line; see EQ. The gen-  and isospin on the lower baryon line with the upper. Thus the
eralization of the eikonal formula in E{L1) gives a straight-  commutator on the lower line induces a commutator on the
forward way to expressly . The notation in Eq(20) isto be  upper line in a fashion similar to that seen in Réf]. Thus
understood as follows. The vertex factdrg represent the one expects the commutators to give rise to an overall sup-
Spin-isospin -StrU-CtUre of the COUplingS.-Since in this -e)(-ampl%ression factor 0NE4 . The Coup”ng Constanmm scales as
we are considering, exchange at leading order M, itis  /N_ combining the suppression due to the commutator with
simply represented by th¥, of the contracted SW) sym-  he coypling constants producasy~NY~* in the potential.

metry. The tensor product is used to describe the spin—isospi||3Or N> 3 this is incompatible with KSM scaling rules of Eq.
structures which appear on each of two baryon lines. Not 2)

that Ay also contains the structurdg - - -Vy. There is an
implicit contraction of spin and isospin indices when we
write V,®V,, so that, for this example,

One could continue in the application of the non-Abelian
generalization of the eikonal formula in the evaluation of
Ay . All additional terms will have two or more commuta-
tors. Some of these terms will correspond to potential iter-

_ _ ‘ ates, but some will be contributions to the potential. Recall,
Vi@ Vie= % Xia®Xia however, that commutators typically lead to suppression fac-
tors in the largeN, expansion. For example, two single com-
This contraction comes about for obvious reasons: when afutators will be suppressed from the single commutator by a
A; meson is exchanged the spatiaind isospina compo-  factor och’2 (with an additional factoNc’2 induced on the
nents couple to both the upper and lower baryon lines.  upper ling. Similarly a triple commutator is suppressed by a

The generalized eikonal formula allows us to evaludfe factor of NC_Z. Such contributions are therefore subleading
is a straightforward way. There is a large number of termsompared to the result in E€R1). However, the double com-
contained inAy . These can be organized by the number ofmutator is not down by powers ch‘l. It is a simple exer-
commutators they contain. From the form of E@l) one cise to see that such terms have a different dependence on
sees that each time a commutator is added there is one fews#ie momentum transfer than the contribution in E21).

6 function in energy. The term with no commutators has aThus, such a contribution cannot generally cancel terms
total of N & functions. Thus, these meson exchanges areoming from a single commutator. Thus one concludes that
static. However, it is straightforward to see that this termthe sum of ladder and crossed-ladder diagrams Withngs
when combined with the meson propagators and the uppefontributes to the potential with the stren@sz~N§_4.

baryon line containsN—1 combinations of propagators
which are divergent in the infrared and have the form of Eq.
(15). They obviously correspond thl iterates of the one-
meson-exchange potentidThis can be checked by adding  As discussed in the Introduction, the principal reason for
back the recoil corrections and observing that Lippmannundertaking the present investigation is to try to understand
Schwinger propagator emergedhus, this term does not whether the traditional meson-exchange picture of nucleon-
contribute to the potential. Next there are terms with a singlenucleon forces can be understood as arising from QCD. The
commutator inAy . The term with the commutat¢V;, V] central idea was that the general argument that a meson ex-
(wherei andj label the position of the meson vertex in the change picture ought to work was not based on the details of
standard orderingi>j) containsN—1—(i—j) combina- QCD other than confinement and hence ought to work for all
tions of the form of Eq(15). Fori—j<N-—1, these terms N.. Thus, the fact that thél. counting of the nucleon-
again are iterates of some lower meson-exchange potentiafgicleon potential calculated at the quark-gluon level does
and do not contribute to the potential itself. However, ifor not match theN. counting based on a meson-exchange pic-
—j=N-1, i.e.,, wherei=N and j=1, there are no such ture might be taken as a strong evidence against the latter.
combinations of propagators and, thus, this does not corréFhe conclusion that QCD is not compatible with a meson-

IV. DISCUSSION
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exchange dynamics of nucleon-nucleon interactions at lovthe hadronic level. Since we do not know the structure of this
momenta is quite radical. In the first place it goes against théheory, it is very difficult to conceive of how such cancella-
conventional wisdom of nuclear physics. Moreover, it mighttions would come about in practice and why they would hold
be troubling from the perspective of lar@g-QCD. Hereto-  for arbitrary momentum transfers. We note also that if this
fore in all known examples in the purely mesonic sector thescenario were correct, it becomes hard to justify the use of
largeN, QCD counting matches what would be found in athe meson exchange in practice. In any practical implemen-
purely hadronic theory with parameters scaling in a mannetation of a potential based on a meson exchange, the number
consistent with largéd, QCD. In the baryon-number one of mesons included and the forms of the particular interac-
sector problems discussed so far in the literature have a cotions are necessarily restricted. It is very implausible that the
respondence between hadronic- and quark-gluon-based deestricted form chosen would be capable of enforcing these
scriptions. This was demonstrated so far for the tree-levehongeneric cancellations.
Compton (multi-)meson-baryon scattering amplitudes An alternative class of explanations focuses on the valid-
[5—7,19 and chiral corrections to decay constaits Note, ity of KSM rules. Equation(2) is supposed to apply in the
however, that on the basis of the considerations advocatddnematic regimg~N2. However, it is conceivable that this
presently one expects a potential inconsistency in the mesomegime is simply not suitable for a lardé: expansion. It was
baryon Compton amplitude from the loop diagrams of thelong ago noted by Witten that scattering observables cannot
type 3d) (obviously, with the bottom baryon line being re- have a smooth largk. limit in this kinematic regime2];
moved. Before one accepts this radical conclusion, it is esthus, Refs[13,14] focus on the potential rather than the am-
sential to explore other ways to resolve the puzzle of why thelitude. However, there has never been a systematic demon-
two descriptions haveéN.-scaling behaviors which do not stration that the potential in this regime has a smooth limit.
match. There are a number of possible explanations whic®f course, the derivation of Eq2) is very plausible. It is
are consistent with what we know about the system. Howbased on the Hartree picture which in turn implies that only
ever, all of them are unattractive in one way or another.  quark-line-connected graphs contribute. It is worth noting,

One general class of possibilities is that the way thehowever, that despite its plausibility, the derivation may be
hadronic-level calculation is organized is in some way defecflawed. Witten justified the Hartree picture fid, quarks in
tive and this hides cancellations which might bring consis-their ground state where it can be shown that non-Hartree-
tency. Here we have seen that diagrams for generic exype correlations are suppressed in the 1éxpansion. On
changes of mesons of some fixed type do not cancel amortge other hand, the potential only has meaning as an ingre-
themselves. It is certainly logically possible that they maydient in a Schrdinger (or Lippmann-Schwinge@requation.
cancel with some other class of graphs to preserve the scalhe Schrdinger wave function implies strong correlations
ing results of Eq(2). One might hope that there is some way between the nucleons which at the quark level does not cor-
to reorganize the calculation so that the cancellations do oaespond to a Hartree-type wave function. Thus, the question
cur. We see no simple way for this to come about. We do searises of whether the Hartree- and quark-line-connected ap-
two obvious scenarios where these cancellations could conm@roximation can be justified. Indeed at a philosophical level
about but have serious drawbacks as a resolution. one might ask whether the potential, which, after all, is not

In the first scenario the cancellations would still occur forexperimentally accessible in any direct way, can even be
generic meson coupling constants with the lakgerules but  assigned ai, scaling. At a more practical level the problem
would require a larger class of graphs. Since additional meis that quark-line-disconnected pieces certainly contribute to
son exchanges lead to increasingly superleading terms, it emplitudes but by hypothesis do not contribute to the poten-
conceivable that they can be resummed. Such a resummatidial. Thus, for the approach to be consistent, these contribu-
could lead to a small result. If, for example, the series werdion must be associated with iterates of the potential. How-
essentially geometric —N.+N2+N3+... — one could ever, there is no general argument of which we aware of
sum it to 1/(1- N.) — 1 which goes tdminus 1 in the large- which demonstrates that the quark-line-disconnected contri-
N, limit. Unfortunately, this scenario has a manifest draw-butions are in fact described by iterating the potential.
back: we see no reason from the mathematical structures as Explanations of the mismatch M, counting based on the
to why we might expect this to happen. possibility that Eqg.(2) is invalid face a major hurdle. The

A second scenario is that the cancellations will not occuproblem is that most likely that Eq2) could fail is that its
for a generic hadronic theory with parameters consistent witfdlerivation assumes that the quark-line-disconnected parts are
generalN.-counting rules but depend rather on a conspiracyassociated with potential iterates and that this assumption
between the coupling constants, masses, and so on for tigeuld be wrong. However, this mismatch between khe
various mesons to yield cancellations. As a matter of prindependence at the quark-gluon level from the hadronic one
ciple, of course, this cannot be ruled out. Two-flavor isospin-occurs even at the amplitude level where the question of
symmetric QCD is a theory with essentially two free param-determining which contribution is an iterate does not arise.
eters Agcp and m, (defined with some schemend all ~ Note that although the amplitude for the three-quark-pair ex-
hadronic parameters derived from QCD depend on these twehange is of ordeN?, this contribution comes from purely
in a very complicated way. Thus, there are very complexquark-line-disconnected contributions and for the reason dis-
correlations between the hadronic parameters and one coutdissed above is necessarily associated with the static quark-
imagine that these correlations conspire to enforce massiveair exchanges. The leading contribution arising from two
cancellations between diagrams with different topologies ompairs being nonstatic and one being static is of ofdgfsee
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Fig. 2(c) and add a gluon connecting exchanged quarks irthat an understanding of the roles played by static and non-
the top baryon line in the subgragh) of (c)]. However, at static exchanges of mesons in the hadronic picture and
the hadronic level the term with a static and two nonstatiqquark-antiquark pairs in the quark-based formalism is essen-
mesons, as discussed in Sec. lll A, contributed to the totaial to resolve this puzzle definitively. The resolution of the
amplitude at ordeNZ. Thus, even at the amplitude level the problem is of real importance as it provides insights into the
contribution from the exchange of one static and two non+elationship of nuclear phenomenology to QCD.
static mesons does not match the contribution from the ex-
change of two nonstatic quark pairs and a static pair. This
mismatch cannot be ascribed to the distinction in how things
are apportioned between the potential and its iterates.

In summary, the mismatch between tNe counting of We would like to thank X. Ji who initiated the present
contributions to the potential between quark- and hadroneollaboration. We acknowledge conversations with B. A.
based descriptions remains puzzling. It seems likely to usselman, D. B. Kaplan, A. V. Manohar, and S. J. Wallace.
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