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Large-Nc nuclear potential puzzle
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An analysis of the baryon-baryon potential from the point of view of large-Nc QCD is performed. A
comparison is made between theNc-scaling behavior directly obtained from an analysis at the quark-gluon
level to theNc scaling of the potential for a generic hadronic field theory in which it arises via meson
exchanges and for which the parameters of the theory are given by their canonical large-Nc scaling behavior.
The purpose of this comparison is to use large-Nc consistency to test the widespread view that the interaction
between nuclei arises from QCD through the exchange of mesons. Although at the one- and two-meson
exchange level the scaling rules for the potential derived from the hadronic theory matches the quark-gluon
level prediction, at the three- and higher-meson exchange level a generic hadronic theory yields a potential
which scales withNc faster than that of the quark-gluon theory.
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I. HADRONIC DYNAMICS AND LARGE- Nc COUNTING

The absence of a calculational scheme for properties
low-energy interactions of hadrons from the first princip
of the underlying microscopic theory of color dynamics ca
for the treatment of this domain by means of effective th
ries with degrees of freedom other than quarks and gluo
Traditionally nuclear physicists have envisioned nucle
nucleon interactions as emerging from the exchange of
sons. When QCD was established as the theory of str
interactions three decades ago, the meson-exchange pi
was viewed as arising from it: QCD gives rise to effecti
hadronic degrees of freedom and the interaction of th
could then account for nuclear forces. Obviously, these
fective degrees of freedom can only describe the low-ly
modes of the theory where the underlying quark and glu
degrees of freedom are not easy to disentangle. There
one faces the long-standing problem of the corresponde
between hadron and color dynamics. The problem we w
to address is the extent to which QCD justifies the traditio
meson-exchange picture of nuclear forces.

The large-Nc approximation provides a possible fram
work to investigate this issue since there are a numbe
important simplifications of QCD in this regime@1,2#. Of
course, it is by no means obvious that one can directly
duce specific phenomenological consequences for the
world from the large-Nc perspective. Recall, for example
that the deuteron binding energy«B is of orderNc while the
delta-nucleon mass splittingdM is of order 1/Nc . Thus, if
one were in a large-Nc world, one would expect a hierarch
of scales with «B;O(Nc)@dM;O(1/Nc). In the real
world, however, one finds these scales indeed widely se
rated but with the opposite order:«B!dM . However, the
argument that a QCD description of low-energy nucleo
nucleon interactions should be describable in a mes
exchange picture does not appear to depend in any exp
way on the fact thatNc53 in the physical world. Thus, if the
argument is valid, it ought to apply equally well in a fict
tious multicolor world and one would then expect quantit
deduced from the meson-exchange picture to scale withNc
in the same way as the same quantities deduced from
0556-2813/2002/65~6!/064008~9!/$20.00 65 0640
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analysis conducted directly at the quark-gluon level. The
of large-Nc scaling rules to test ideas from nuclear physics
not new. It was argued more than a decade ago that nuc
loop contributions based on pointlike nucleon-meson c
plings, as was conventionally calculated in various quant
hadrodynamical models@3#, did not scale withNc in a man-
ner consistent with large-Nc QCD and hence presumably di
not capture the underlying QCD dynamics@4#.

The physical spectrum of QCD consists of colorless h
ronic states — baryons and mesons. As discussed by ’t H
@1# and Witten@2#, large-Nc QCD gives definite predictions
for the scaling of their characteristics withNc . For example,
the baryon and meson masses are of orderNc and unity,
respectively, and the single-meson-baryon couplingg1m is of
orderANc while meson-baryon scattering amplitudes are
order unity. More generally, reasoning along the lines s
gested by Witten@2# implies that the coupling ofN mesons to
a baryon scales at most asgNm;Nc

12N/2 .
Apart from these generic counting rules there are ad

tional constraints coming from the spin-flavor structure
the interaction. This can be seen by imposing the consiste
of two single meson-baryon interactions verticesV ~nomi-
nally of orderNc in total! with the meson-baryon scatterin
which unitarity restricts to be of order unity. The cancell
tions required for this to come about imply a contract
SU~4! symmetry for two-flavor QCD@5–7#; for a review, see
Refs.@8,9#. This implies that baryons form towers of near
degenerate states withI 5J and with splittings of order
1/Nc . The contracted SU~4! relations hold for states in this
tower. The commutation algebra of the spinJ, isospinI , and
spin-isospinX vertices is given schematically by

@ I ,I #;I , @J,J#;J, @ I ,X#;X,

@J,X#;X, @X,X#;1/Nc
2 . ~1!

The last relation implies a suppression when commuta
arise. This occurs in treatments of the tree-level bary
meson scattering: for theN-meson-baryon scattering ampl
tude AN the destructive interference@10–12# leads to the
©2002 The American Physical Society08-1
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A. V. BELITSKY AND T. D. COHEN PHYSICAL REVIEW C65 064008
appearance of multiple commutators of meson vertices le
ing to consistency with the large-Nc counting rules predict-
ing AN;Nc

12N/2 .
In the present study we address the issue of the con

tency of large-Nc QCD with the conventional meson
exchange picture used to describe nuclear potentials. If
latter adequately describes the real world, it must posses
same multicolor asymptotics as deduced from QCD for lo
amplitudes. We consider the potential used for the bary
baryon scattering shown Fig. 1. The problem at the qu
level was discussed by Kaplan and Savage@13# and by Ka-
plan and Manohar@14#; collectively, we refer to their analy
sis as KSM. The basic strategy used by KSM was based
Witten’s Hartree picture where the interaction is identified
being due to quark-line-connected diagrams. KSM th
equate the nucleon-nucleon potential to the sum of the qu
line-connected Feynman graphs which involve exchan
between two groups ofNc quark lines which represent bary
ons. This is then analyzed using the contracted SU~4! sym-
metry. The principal results of this analysis are that
strength of the spin-isospin structures of the nucleon-nucl
potential scale as follows:

VI 5J;Nc , VIÞJ;Nc
21 , ~2!

where the subscript indicates the quantum numbers of
exchange in thet channel. It is straightforward to see from
the large-Nc scaling rules of meson-baryon couplings tha
one-meson-exchange potential will satisfy Eq.~2!. It is not
immediately obvious, however, that multimeson-exchan
potentials will obey this rule since superficially they a
clearly larger than allowed by Eq.~2!. For example, at the
two-meson-exchange level, both the retardation effects f
box graphs and the contributions from cross-box graphs
ter VI 5J and VIÞJ at order Nc

2 . However, as shown in a
detailed calculation in Ref.@15# cancellations between thes
two yield potentials compatible with Eq.~2!. The contracted
SU~4! structure played an essential role in achieving t
goal. Note that to get consistency withVIÞJ cancellations up
to orderNc

23 are needed; in fact they occurred up to ord
Nc

24 .
The results of Ref.@15# raise the hope that similar cance

lations might be expected for all multimeson exchanges
these were true, it would show consistency at largeNc be-
tween the scaling of the potential at the quark-gluon a
hadronic level and would help to justify meson-exchan
based potential models as arising from QCD. However,
will be shown in this paper, the type of cancellations seen

FIG. 1. A generic exchange diagram for the baryon-bary
scattering.
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the two-meson exchange do not occur for general multim
son exchanges. Thus, potentials derived from generic h
ronic theories calculated at a fixed number of meson
changes do not give rise to potentials that respect the K
scaling rules of Eq.~2!. This result is puzzling in view of the
general expectation that the physics of QCD at low energ
can be described in terms of hadronic degrees of freed
We will refer to this as the ‘‘large-Nc nuclear potential
puzzle.’’ There is a second puzzling aspect of this proble
In studying exchanges of quark-antiquark pairs the role
‘‘static’’ pairs, i.e., pairs whose energy transfer is small~of
order 1/Nc), is special: the leading-order contribution o
multipair exchanges to the potential requires all pairs to
static. If there were a one-to-one mapping between classe
quark-gluon diagrams with hadronic ones, this would cor
spond to static meson exchanges. In fact, however, we
see that the ‘‘dangerous’’ contributions at the hadronic le
— the ones which contradict the KSM rules of Eq.~2! — all
come from nonstatic meson exchanges.

The calculations of multimeson exchanges can get q
complicated. Accordingly, it is useful to develop tools whic
greatly simplify the analysis. The non-Abelian generalizati
of the eikonal formula@12# which can be used to comput
the sum of certain multimeson amplitudes will be qu
handy in this context. In the following section we will revie
this formalism. In Sec. III we show how sums of variou
multimeson diagrams lead to contributions which are inco
patible with the KSM rules. Finally, we conclude with a di
cussion of possible resolutions of this apparent paradox.

II. NON-ABELIAN EIKONAL FORMULA

Following Ref.@12# we consider a baryon which emits o
absorbs a number of virtual mesons. Since the baryon
extremely heavy atNc5`, it can be treated as almost stati
It will be a nonrelativistic particle if its three-momentump is
of O(Nc

0); the four-momentum is then (M1p2/(2M ),p). In
this kinematic regime the heavy baryon propagator is
proximated by the product of the conventional eikon
propagator and a projection matrix~which will be omitted
later! on the large components of the nucleon bispinor:

1

p”1k”2M 81 i e
→ 1

v1 i e

11g0

2
. ~3!

Taken literally, this expression which neglects the nucle
recoil is only valid for meson energiesv, k5(v,k), of order
O(Nc

0). If v is of orderNc
21 , then the denominator of the

propagator~3! is modified to include the recoil effect as fo
lows: v→v1dM1@p22(p1k)2#/(2M ), with the mass dif-
ference of the ‘‘degenerate’’ states in the baryon tower,dM
5M2M 8. Note thatdM is O(Nc

21) @17–19#. For simplicity
we generally omit this modification in our expressions. Th
approximation has to be kept in mind since it leads to sin
larities in the integrand of certain loop amplitudes. Howev
they are easily identifiable and cured by the simple exped
of reintroducing the recoil correction.

There is an important kinematical constraint in this r
gime. Since the initial and final nucleons are on shell a

n

8-2
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LARGE-Nc NUCLEAR POTENTIAL PUZZLE PHYSICAL REVIEW C 65 064008
have three-momenta of orderNc
0 , the kinetic energies of the

initial and final states are thus of orderNc
21 ~due to the fact

that M;Nc) and thus the total exchanged energy is also
orderNc

21 .
The blob on the lower baryon line in Fig. 1 represents

tree amplitude for production ofN mesonsAN ; it includes
all possible permutation of single-meson emissions from
baryon line and this contribution reads

AN[ (
sP$1, . . . ,N%

A@s1•••sN#, ~4!

where

A@s1•••sN#5Vs1
Vs2

•••VsN
a@s1•••sN#, ~5!

with one of the matricesV5$1, I , J, X% associated with the
meson-baryon interaction vertex, and

a@s1•••sN#[22p idS (
j 51

N

v j D )
j 51

N21
1

(
k51

j

vsk
1 i e

. ~6!

Obviously, for a single elementn ~and neglecting recoil as
discussed above!, a@n#522p id(vn).

As a result of the destructive Bose-Einstein interferen
AN can be expressed by a multiple-commutator formula
the sum of non-Abelian eikonal amplitudes discussed in R
@11#,

AN5 (
sP$1, . . . ,N%

Ã@s1•••sN#. ~7!

The constructive definition of the multicommutator amp
tudeÃ goes as follows. For a given ordering of lines, if th
rightmost element of the given permutation is smaller th
any other element to its left, then there is only one partit
and it is the whole tree. Otherwise, go to the first elem
whose number is smaller and draw a partition just to the ri
of that element. Next, start to the left of this partition a
repeat the procedure again. Through the cut separating
partitions, the amplitude factorizes:

Ã@s1•••s2us3•••s4u•••#

5Ã@s1•••s2#Ã@s3•••s4#Ã@•••#, ~8!

wheres2,s4,••• . The amplitudes without partitions ar
given by the commutator formula with the innermost co
mutator formed by the last two elements of the tree,

Ã@s1•••sn21sn#

5@Vs1
,•••,@Vsn21

,Vsn
#•••#a@s1•••sn21sn#.

~9!

The first two nontrivial examples read

A25Ã@1u2#1Ã@21#,
06400
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A35Ã@1u2u3#1Ã@21u3#1Ã@1u32#1Ã@231#b f1Ã@31u2#

1Ã@321#. ~10!

The proof is straightforward by the Fourier transformation
both sides of the equality.

The generalizations are obvious. The constructive form
reads

AN5 (
s5s(1)1•••1s( j )

S )
k51

j

a@$s (k)%# D
3V@$s (1)%#•••V@$s ( j )%#, ~11!

with a number of partitionsj of a given permutations into
setss (k) with elements$s (k)%5s1

(k) , . . . ,snk

(k) constructed

according to the definition given above. To make these no
tions clear and in order to establish a contact with the pre
ous discussion, let us mention that there is a term in Eq.~11!
of the form ~8! where, for instance, the elements$s (1)%
5s1

(1) , . . . ,sn1

(1) of the sets (1) are identified as follows:

s1
(1)[s1, . . . , sn1

(1)[s2; the elements $s (2)%

5s1
(2) , . . . ,sn2

(2) of s (2) are related ass1
(2)[s3, . . . , sn2

(2)

[s4, etc. For a single element in a set the vertex funct
introduced in Eq.~11!, V@n# coincides with the single vertex
Vn . For more than one element it is given by a multip
commutator

V@$s (k)%#5@Vs
1
(k), . . . ,@Vs

nk21
(k) ,Vs

nk

(k)#•••#.

The energy-dependent functionsa of a given set are defined
in Eq. ~6!. For the Abelian case, i.e., whenV→1, all com-
mutators vanish and one gets the well-known eiko
formula.

III. BARYON-BARYON SCATTERING

The baryon-baryon interaction at largeNc comes from the
exchange of pairs of quark constituents. A quark from one
the hadrons switches places with any quark in the ot
baryon and exchanges a gluon to neutralize the color cha
The quark exchange, in Fig. 2~a!, may naturally be reinter-
preted at the hadronic level as a meson exchange,

V~q!5g1m
2 D~2q2!, ~12!

with D~q2!5
1

q22m21 i e
,

FIG. 2. Quark diagrams which can be interpreted as me
exchanges.
8-3
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where for simplicity we have chosen the example of
scalar-isoscalar channel. Clearly, this correspondence
tween the meson and quark exchanges is not valid o
diagram-by-diagram basis. Presumably the sum of all qu
exchange diagrams including an arbitrary number of glu
connecting the exchanged quarks~which if planar are lead-
ing order inNc) gets mapped onto the sum of all one-meso
exchange graphs for mesons with these quantum numbe

In analyzing the contributions to the potential one m
recall that the full amplitude is obtained from the potent
n
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by an iteration. Thus, nonrelativistic amplitudes satisfy t
Lippmann-Schwinger equation

T~p,p1q!52V~q!1E d3k

~2p!3
V~k!G~k!T~p1k,p1q!,

~13!

with the potentialV and the two-baryon propagator
G~k![
1

p2

M
2

~k1p!2

M
1 i e

5E dv

2p i

1

S v2
p2

2M
1

~k1p!2

2M
2 i e D S v1

p2

2M
2

~k1p!2

2M
1 i e D . ~14!
dron-
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Here we definedG as the conventional nonrelativistic Gree
function for a two-baryon system of the reduced massM /2
and in the last form we reexpressed it in terms of the sing
particle propagators neglectingdM . The kinematics is cho-
sen according to Fig. 1 wherep5(E,p) and p85(E,2p)
with nonrelativistic expansionE'M1p2/(2M ). The mo-
mentum transferredq5p2p85(q0 ,q) has a small time
componentq0;O(1/Nc) since it is inversely proportional to
the baryon mass.

When assessing the contribution of some hadronic-le
Feynman diagram to the potential, it is essential to note
the Feynman diagrams sum to give the full amplitude a
not just the potential. Accordingly, to extract the contrib
tions to the potential, one must remove all contributio
which correspond to iterates of the potential. Fortunat
they are easily identifiable. From the nonrelativistic for
~14! it is clear that asNc→`, G diverges sinceM;Nc .
Thus, in the large-Nc limit, these potential iterates are ass
ciated with infrared singularities and these are the only
frared singularities in the problem. Thus, when one enco
ters them in the integrals one may make the substitution

E dv
d~v!

v1 i e
→G , ~15!

where one inputsG with appropriate kinematics. More sig
nificantly, having identified these terms as arising from
potential iterate, one can remove them from the amplitud
extract an irreducible contribution to the potential only.

The baryon-baryon interaction at the QCD level is gen
ated by various complicated quark-exchange proce
sampled in Fig. 2. One expects that these are connected
grams which contribute to the potential while the quark-li
disconnected amplitudes, such as Fig. 2~c!, are associated
with iterates of the potential which arise in the Lippman
Schwinger equation. On the hadronic side, the sum of
quark-level diagrams can presumably be interpreted as
son exchanges. A few examples of these can be found in
3. As we will demonstrate momentarily, at multiple-mes
-
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a
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ig.

exchanges the correspondence between quark- and ha
level diagrams is lost.

For the sake of concreteness, we illustrate the issues
considering bosons with scalar-isoscalar quantum numb
For other channels, the presence of nontrivial spin-isos
indices introduces significant complications due to the n
commutativity of vertices but does not affect the main line
reasoning. We will return to the effects of noncommutativ
when we consider ladder and crossed-ladder diagrams.
also will neglect all effects of momentum dependence in
meson-baryon couplings. Again it easy to see that they
not alter our conclusions.

Let us analyze what kinds of quark configurations gi
contributions to the potential. The one quark-pair exchan
in Fig. 2~a! is translated into the one-meson exchange of F
3~a!. At the quark level, there is aNc

2 combinatorial factor
from the number of possibilities to join the quark lines
both baryons and there is a 1/(ANc)

2 from the two gluon
couplings. This results in an overall scaling asNc which is
compatible with Eq.~2!. On the hadronic side the meson
baryon coupling behaves asANc and the one-meson
exchange diagram thus also scales asNc . Note that the en-
ergy transfer scales as 1/Nc and vanishes forNc→`. Thus,
both the exchanged meson and the exchanged quark pa
static with this kinematics.

The two-quark-pair-exchange diagram in Fig. 2~b! is of
order Nc : a combinatoric factor ofNc

3 and a factor of
1/(ANc)

4 from the coupling constants. Note that this diagra
has both pairs of quarks coupled to the same quark line
one of the baryons and thus corresponds to the diagram

FIG. 3. Typical meson-exchange diagrams contributing to
baryon-baryon scattering amplitude. They are expected to co
spond to the quark-pair exchange graphs in Fig. 2. The last
graphs~c! and ~d! violate the KSM large-Nc counting rule.
8-4
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LARGE-Nc NUCLEAR POTENTIAL PUZZLE PHYSICAL REVIEW C 65 064008
a two-meson-baryon~seagull! vertex, Fig. 3~b!. The reason
for both pairs to couple to the same line in a baryon
simple. If they do not, then the graph would be quark-li
disconnected and thus, by hypothesis, not associated with
irreducible part of the potential. By theNc counting for this
disconnected quark graph to agree with the seagull diagr
it would require an extra gluon exchange to yield the sa
total large-Nc behavior. On the quark level one again realiz
that the leading-order contribution of this type comes fro
the exchange of static pairs. In this case the requirement
beyond simple kinematics. Kinematically the energies of
two exchanges must be equal and opposite~up to 1/Nc cor-
rections! but need not be static. However, the two affect
quark lines in the upper baryon in Fig. 2~b! do not commu-
nicate by a gluon and, therefore, if each quark excha
carries an energy, then the energy of the final-state qu
would not correspond to the single-particle energies in
Hartree ground state. On the other hand, if they do excha
a gluon, there is an extra 1/Nc suppression without an off
setting combinatoric gain, so the term is not of leading or
in the 1/Nc expansion. On the hadronic level the static nat
of the exchange can be seen to arises as follows from
Feynman diagram of Fig. 3~b!:

iT5g1m
2 g2mE )

j 51

2
d3kj

~2p!3
~2p!3d (3)~k11k22q!

3E )
j 51

2
dv j

2p
~2p!

d~v11v2!

v12 i e
D~k1

2!D~k2
2!

5 ipg1m
2 g2mE )

j 51

2
d3kj

~2p!3
~2p!3d (3)~k11k22q!

3E )
j 51

2
dv j

2p
~2p!d~v1!d~v2!D~2k1

2!D~2k2
2!,

~16!

whereg1m;ANc is the single meson-nucleon coupling co
stant, g2m;Nc

0 is the ‘‘seagull’’ coupling, andD(2k2)
5(2k22m21 i e)21 is the meson propagator for a meson
massm, three-momentumk, and zero energy. The secon
equality follows from the fact that the meson propagators
even functions of the meson energiesv j so that one imme-
diately finds that the principal value part of the bary
propagator cancels under integration and only thed-function
piece survives. Thus only static-exchange mes
contribute.

In addition to the seagull-type two-meson exchange th
are also box and crossed-box contributions to the poten
As discussed at length in Ref.@15#, the retardation effects in
the box and crossed-box graphs separately violate the co
ing rules of Eq.~2!. Moreover, the contributions from thes
graphs come entirely from nonstatic meson exchanges. H
ever, these terms when summed cancel one another, yie
the total result consistent with Eq.~2! and without contribu-
tions from nonstatic mesons. At the level of the amplitude
06400
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the two-meson-exchange level one also has an iterate o
static one-meson exchanges. This term presumably is as
ated with the non-quark-line-connected part of the tw
quark-pair-exchange graphs at the quark-gluon level.

A. Problem at three-meson-exchange level

The three-quark-pair exchange of the type displayed
Fig. 2~c! is not quark-line connected. Rather two of the e
changes are connected while the third one is disconnec
By hypothesis, then, this graph is not to be associated w
the potential but presumably with a potential iterate. Us
the analysis similar to what was done previously in this p
per it is easy to see that all of the exchanged quark pairs m
be static at leading order in the 1/Nc expansion~which for
this class of graph is formally of orderNc

2 — larger than the
allowed scaling of the potential — due to the disconnec
nature of the graph!.

At the hadronic level this graph should be associated w
a seagull exchange as in Fig. 3~b! dressed with an extra
single-meson exchange, Fig. 3~a!. This generates the six dia
grams displayed in Fig. 4. The generalized eikonal form
of Sec. II can be applied to describe the lower line in Fig
in a straightforward manner~with the ‘‘seagull’’ vertex tak-
ing the place of a single-particle one!.1 Because the vertice
commute, only thed function contributes for the propagato
in appropriate pairs of graphs. This implies a cancellation
the fully nonstatic parts of diagrams Fig. 4~a! with 4~c! and
Fig. 4~d! with 4~f!, where ‘‘fully nonstatic’’ implies that all
the mesons exchanged are nonstatic. These cancellation
reminiscent of the ones of the retardation effects in b
graphs against crossed-box graphs discussed in Ref.@15#.
Thed-function contributions to Figs. 4~a!, 4~c! and Fig. 4~d!,
4~f! give combinations of propagators of the form seen in E
~15!. Obviously, they are iterates of the lowest-ord
Lippmann-Schwinger kernel and do not affect the poten
itself. Finally, there is ad-function contribution to Figs. 4~b!,
4~e!. This term is not an iterate of the potential but rather

1We use the eikonal formula on the lower line since it is simpl
When applied to the upper line, the potential iterate contributio
are not identifiable as easily.

FIG. 4. Three-meson-exchange diagrams with one sea
vertex.
8-5
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irreducible contribution to it given by

dV52g1m
4 g2mE )

j 51

3
d3kj

~2p!3
~2p!3d (3)S (

j 51

3

kj2qD
3E )

j 51

3
dv j

2p
~2p!dS (

j 51

3

v j D S )
j 51

3

D~kj
2!D

3
1

v12 i e

1

v11v22 i e
~22p i !d~v2!. ~17!

Note that there are twod functions in energy but three ene
gies. Thus, they do not force all three mesons to be sta
Rather, the single exchanged meson is static, while the
mesons connected to the seagull vertex have equal and
posite ~but generally nonzero! energy transfer. Performing
the energy integrations yields

dV52g1m
4 g2mE )

j 51

3
d3kj

~2p!3
~2p!3d (3)S (

j 51

3

kj2qD
3D~2k2

2!R2~«1 ,«3!. ~18!

For simplicity, have introduced a general functionRn which
shows commonly in expressions for multimeson contrib
tions with two nonstatic mesons,

Rn~« j ,«k![E dv

2p i

1

~v2 i e!n
D~v22kj

2!D~v22kk
2!

5
1

2~« j«k!
n11

« j
n112«k

n11

« j
22«k

2
, ~19!

with « j[Akj
21m2.

A couple of comments are in order at this point. The fi
is that dV as given in Eq.~18! scales asNc

2 . This is easily
seen sinceg1m;ANc while g2m;Nc

0 and bothD(2k2
2) and

Rn(« j ,«k) are independent ofNc . The second is that this
contribution to dV does not vanish. BothD(2k2

2) and
Rn(« j ,«k) are positive definite, so no cancellations are p
sible in the integral. This is the heart of our puzzle. T
three-meson-exchange contribution to the potential is of
derNc

2 . This is incompatible with Eq.~2! which was derived
at the quark level. Moreover, the contribution comes entir
from nonstatic meson contributions. At the three-quark-p
exchange level the amplitude only gets contributions fr
nonstatic pairs at orderNc ~even including quark-line-
disconnected pieces!.

In the explicit computation done above, pointlike meso
nucleon couplings were used. It is clear that had moment
dependent vertices been included the functional form of
integral used to derive the potential would be altered but
Nc counting would not. Similarly, it is clear that this proble
is not restricted to effects from seagull graphs. It is trivial
see that orderNc

2 contributions will arise in other topologie
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with multimeson couplings such as exemplified in Fig. 3~d!.
Note, though, that this diagram corresponds to the sa
quark-level topology in Fig. 2~c!, hinting at a possible con
spiracy of the seagull and three-meson ver
contributions.

B. Ladders and crossed ladders

A similar problem shows up in the contributions for
ladder and crossed-ladder diagrams. Here, we will cons
the effect ofN identical mesons with nonderivative pointlik
couplings to the baryons. Derivative couplings will not alt
the conclusions, but as seen in Ref.@15#, greatly complicate
the analysis. Non-point-like couplings can also be easily
cluded and do not alter the qualitative results either. Si
larly, the restriction to identical mesons is done for simpl
ity; again, the conclusions will not be strongly dependent
this. Since we are interested in the possibility of effe
which violate the KSM rules by having a ‘‘super-leading’’Nc

dependence, we will consider the exchanges of mes
which have couplings to baryons of orderANc, the maxi-
mum allowable. From the analysis of the contracted SU~4!
symmetry in Ref.@16# these will be a scalar-isoscalar verte
or a spin one, isospin oneXia type. As will be seen below
the superleading effect depends on the nonvanishing of
commutators of the vertices. Thus, the scalar-isoscalar
changes, which commute, will not contribute~unless other
noncommuting exchanges are also present!. Accordingly we
will restrict our attention to mesons that couple in a no
derivative way toXia . An example of such a meson is th
spatial part of theA1 ~recalling that for nonrelativistic bary
ons, the couplings to the temporal and spatial parts of ve
mesons can be separated!.

Note that our result will depend on the fact that our pro
lem is @Xia ,Xjb#Þ0. Of course, for contracted SU~4! this
commutator is zero. However, one only has the contrac
SU~4! symmetry for infiniteNc . For finiteNc the commuta-
tor is small, scaling asNc

22 but not zero. If the commutator is
multiplied by a function which grows withNc rapidly
enough, it will contribute and can indeed be associated w
superleading effects.

For any given number of meson exchanges one ha
sum the blob in Fig. 5 representing the emission of mes
with all orderings. For this purpose the non-Abelian gen
alization of the eikonal formula in Eq.~11! is indispensable.

The amplitude for the exchange ofN point-coupledA1
mesons is given by

FIG. 5. A crossed-ladder diagram~on the right-hand side of the
equality! which generates a superleading contribution to the bar
potential. Dashes on the baryon line denote the on-shell cond
~the cuts! of the corresponding propagators.
8-6
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TN5~2 i !Ng1m
2NE )

j 51

N
d3kj

~2p!3
~2p!3d (3)S (

j 51

N

kj2qD
3E )

j 51

N
dv j

2p S )
j 51

N

D~kj
2!D

3V1

1

v12 i e
V2

1

v11v22 i e

3V3•••VN21

1

(
j 51

N21

v j2 i e

VN^ AN , ~20!

whereAN is the sum of all permutations of the positions
the mesons coupling to the lower line; see Eq.~4!. The gen-
eralization of the eikonal formula in Eq.~11! gives a straight-
forward way to expressAN . The notation in Eq.~20! is to be
understood as follows. The vertex factorsVN represent the
spin-isospin structure of the couplings. Since in this exam
we are consideringA1 exchange at leading order inNc , it is
simply represented by theXia of the contracted SU~4! sym-
metry. The tensor product is used to describe the spin-iso
structures which appear on each of two baryon lines. N
that AN also contains the structuresV1•••VN . There is an
implicit contraction of spin and isospin indices when w
write Vk^ Vk , so that, for this example,

Vk^ Vk[(
ia

Xia ^ Xia .

This contraction comes about for obvious reasons: when
A1 meson is exchanged the spatiali and isospina compo-
nents couple to both the upper and lower baryon lines.

The generalized eikonal formula allows us to evaluateAN
is a straightforward way. There is a large number of ter
contained inAN . These can be organized by the number
commutators they contain. From the form of Eq.~11! one
sees that each time a commutator is added there is one f
d function in energy. The term with no commutators has
total of N d functions. Thus, these meson exchanges
static. However, it is straightforward to see that this te
when combined with the meson propagators and the up
baryon line containsN21 combinations of propagator
which are divergent in the infrared and have the form of E
~15!. They obviously correspond toN iterates of the one-
meson-exchange potential.~This can be checked by addin
back the recoil corrections and observing that Lippma
Schwinger propagator emerges.! Thus, this term does no
contribute to the potential. Next there are terms with a sin
commutator inAN . The term with the commutator@Vi ,Vj #
~where i and j label the position of the meson vertex in th
standard ordering,i . j ) contains N212( i 2 j ) combina-
tions of the form of Eq.~15!. For i 2 j ,N21, these terms
again are iterates of some lower meson-exchange poten
and do not contribute to the potential itself. However, foi
2 j 5N21, i.e., wherei 5N and j 51, there are no such
combinations of propagators and, thus, this does not co
06400
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spond to an iterate and directly contributes to the poten
This term is unique and leads to a contribution of the for

dVN5~21!N11g1m
2NE )

j 51

N
d3kj

~2p!3
~2p!3 d (3)S (

j 51

N

kj2qD
3V1•••VN^ @VN ,V1#V2•••VN21

3S )
j 52

N21

D~2kj
2!DRN~«1 ,«N!. ~21!

Note that apart from theV factors~which are multiplicative!
the integrand is positive definite. ThusdV cannot vanish af-
ter integration. Recall that the commutator of twoX’s is of
order 1/Nc

2 . Note also that there are contractions of the s
and isospin on the lower baryon line with the upper. Thus
commutator on the lower line induces a commutator on
upper line in a fashion similar to that seen in Ref.@15#. Thus
one expects the commutators to give rise to an overall s
pression factor ofNc

24 . The coupling constantsg1m scales as
ANc. Combining the suppression due to the commutator w
the coupling constants producesdVN;Nc

N24 in the potential.
For N.3 this is incompatible with KSM scaling rules of Eq
~2!.

One could continue in the application of the non-Abeli
generalization of the eikonal formula in the evaluation
AN . All additional terms will have two or more commuta
tors. Some of these terms will correspond to potential it
ates, but some will be contributions to the potential. Rec
however, that commutators typically lead to suppression f
tors in the large-Nc expansion. For example, two single com
mutators will be suppressed from the single commutator b
factor ofNc

22 ~with an additional factorNc
22 induced on the

upper line!. Similarly a triple commutator is suppressed by
factor of Nc

22 . Such contributions are therefore subleadi
compared to the result in Eq.~21!. However, the double com
mutator is not down by powers ofNc

21 . It is a simple exer-
cise to see that such terms have a different dependenc
the momentum transfer than the contribution in Eq.~21!.
Thus, such a contribution cannot generally cancel ter
coming from a single commutator. Thus one concludes t
the sum of ladder and crossed-ladder diagrams withN rungs
contributes to the potential with the strengthdVN;Nc

N24 .

IV. DISCUSSION

As discussed in the Introduction, the principal reason
undertaking the present investigation is to try to underst
whether the traditional meson-exchange picture of nucle
nucleon forces can be understood as arising from QCD.
central idea was that the general argument that a meson
change picture ought to work was not based on the detail
QCD other than confinement and hence ought to work for
Nc . Thus, the fact that theNc counting of the nucleon-
nucleon potential calculated at the quark-gluon level d
not match theNc counting based on a meson-exchange p
ture might be taken as a strong evidence against the la
The conclusion that QCD is not compatible with a meso
8-7
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exchange dynamics of nucleon-nucleon interactions at
momenta is quite radical. In the first place it goes against
conventional wisdom of nuclear physics. Moreover, it mig
be troubling from the perspective of large-Nc QCD. Hereto-
fore in all known examples in the purely mesonic sector
large-Nc QCD counting matches what would be found in
purely hadronic theory with parameters scaling in a man
consistent with large-Nc QCD. In the baryon-number on
sector problems discussed so far in the literature have a
respondence between hadronic- and quark-gluon-based
scriptions. This was demonstrated so far for the tree-le
Compton ~multi-!meson-baryon scattering amplitud
@5–7,12# and chiral corrections to decay constants@7#. Note,
however, that on the basis of the considerations advoc
presently one expects a potential inconsistency in the me
baryon Compton amplitude from the loop diagrams of
type 3~d! ~obviously, with the bottom baryon line being re
moved!. Before one accepts this radical conclusion, it is
sential to explore other ways to resolve the puzzle of why
two descriptions haveNc-scaling behaviors which do no
match. There are a number of possible explanations wh
are consistent with what we know about the system. Ho
ever, all of them are unattractive in one way or another.

One general class of possibilities is that the way
hadronic-level calculation is organized is in some way def
tive and this hides cancellations which might bring cons
tency. Here we have seen that diagrams for generic
changes of mesons of some fixed type do not cancel am
themselves. It is certainly logically possible that they m
cancel with some other class of graphs to preserve the s
ing results of Eq.~2!. One might hope that there is some w
to reorganize the calculation so that the cancellations do
cur. We see no simple way for this to come about. We do
two obvious scenarios where these cancellations could c
about but have serious drawbacks as a resolution.

In the first scenario the cancellations would still occur
generic meson coupling constants with the large-Nc rules but
would require a larger class of graphs. Since additional m
son exchanges lead to increasingly superleading terms,
conceivable that they can be resummed. Such a resumm
could lead to a small result. If, for example, the series w
essentially geometric —Nc1Nc

21Nc
31••• — one could

sum it to 1/(12Nc)21 which goes to~minus! 1 in the large-
Nc limit. Unfortunately, this scenario has a manifest dra
back: we see no reason from the mathematical structure
to why we might expect this to happen.

A second scenario is that the cancellations will not oc
for a generic hadronic theory with parameters consistent w
generalNc-counting rules but depend rather on a conspira
between the coupling constants, masses, and so on fo
various mesons to yield cancellations. As a matter of p
ciple, of course, this cannot be ruled out. Two-flavor isosp
symmetric QCD is a theory with essentially two free para
eters LQCD and mq ~defined with some scheme! and all
hadronic parameters derived from QCD depend on these
in a very complicated way. Thus, there are very comp
correlations between the hadronic parameters and one c
imagine that these correlations conspire to enforce mas
cancellations between diagrams with different topologies
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the hadronic level. Since we do not know the structure of t
theory, it is very difficult to conceive of how such cancell
tions would come about in practice and why they would ho
for arbitrary momentum transfers. We note also that if t
scenario were correct, it becomes hard to justify the use
the meson exchange in practice. In any practical implem
tation of a potential based on a meson exchange, the num
of mesons included and the forms of the particular inter
tions are necessarily restricted. It is very implausible that
restricted form chosen would be capable of enforcing th
nongeneric cancellations.

An alternative class of explanations focuses on the va
ity of KSM rules. Equation~2! is supposed to apply in the
kinematic regimep;Nc

0 . However, it is conceivable that thi
regime is simply not suitable for a large-Nc expansion. It was
long ago noted by Witten that scattering observables can
have a smooth large-Nc limit in this kinematic regime@2#;
thus, Refs.@13,14# focus on the potential rather than the am
plitude. However, there has never been a systematic dem
stration that the potential in this regime has a smooth lim
Of course, the derivation of Eq.~2! is very plausible. It is
based on the Hartree picture which in turn implies that o
quark-line-connected graphs contribute. It is worth notin
however, that despite its plausibility, the derivation may
flawed. Witten justified the Hartree picture forNc quarks in
their ground state where it can be shown that non-Hartr
type correlations are suppressed in the 1/Nc expansion. On
the other hand, the potential only has meaning as an in
dient in a Schro¨dinger ~or Lippmann-Schwinger! equation.
The Schro¨dinger wave function implies strong correlation
between the nucleons which at the quark level does not
respond to a Hartree-type wave function. Thus, the ques
arises of whether the Hartree- and quark-line-connected
proximation can be justified. Indeed at a philosophical le
one might ask whether the potential, which, after all, is n
experimentally accessible in any direct way, can even
assigned anNc scaling. At a more practical level the proble
is that quark-line-disconnected pieces certainly contribute
amplitudes but by hypothesis do not contribute to the pot
tial. Thus, for the approach to be consistent, these contr
tion must be associated with iterates of the potential. Ho
ever, there is no general argument of which we aware
which demonstrates that the quark-line-disconnected co
butions are in fact described by iterating the potential.

Explanations of the mismatch inNc counting based on the
possibility that Eq.~2! is invalid face a major hurdle. The
problem is that most likely that Eq.~2! could fail is that its
derivation assumes that the quark-line-disconnected parts
associated with potential iterates and that this assump
could be wrong. However, this mismatch between theNc
dependence at the quark-gluon level from the hadronic
occurs even at the amplitude level where the question
determining which contribution is an iterate does not ari
Note that although the amplitude for the three-quark-pair
change is of orderNc

3 , this contribution comes from purely
quark-line-disconnected contributions and for the reason
cussed above is necessarily associated with the static qu
pair exchanges. The leading contribution arising from t
pairs being nonstatic and one being static is of orderNc @see
8-8
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Fig. 2~c! and add a gluon connecting exchanged quarks
the top baryon line in the subgraph~b! of ~c!#. However, at
the hadronic level the term with a static and two nonsta
mesons, as discussed in Sec. III A, contributed to the t
amplitude at orderNc

2 . Thus, even at the amplitude level th
contribution from the exchange of one static and two n
static mesons does not match the contribution from the
change of two nonstatic quark pairs and a static pair. T
mismatch cannot be ascribed to the distinction in how thi
are apportioned between the potential and its iterates.

In summary, the mismatch between theNc counting of
contributions to the potential between quark- and hadr
based descriptions remains puzzling. It seems likely to
6
s
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that an understanding of the roles played by static and n
static exchanges of mesons in the hadronic picture
quark-antiquark pairs in the quark-based formalism is ess
tial to resolve this puzzle definitively. The resolution of th
problem is of real importance as it provides insights into
relationship of nuclear phenomenology to QCD.
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