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Quark model and equivalent local potential
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In this paper, we investigate the short-range repulsion given by the quark cluster model employing an
inverse scattering problem. We find that the local potential which reproduces the same phase shifts as those
given by the quark cluster model has a strong repulsion at short distances in theNN 1S0 channel. There,
however, appears an attractive pocket at very short distances due to a rather weak repulsive behavior at very
high energy. This repulsion-attractive-pocket structure becomes more manifest in the channel which has an
almost forbidden state,SN(T53/2) 3S1. In order to see what kinds of effects are important to reproduce the
short-range repulsion in the quark cluster model, we investigate the contribution coming from the one-gluon-
exchange potential and the normalization separately. It is clarified that the gluon exchange constructs the
short-range repulsion in theNN 1S0 while the quark Pauli-blocking effect governs the feature of the repulsive
behavior in theSN(T53/2) 3S1 channel.
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I. INTRODUCTION

In nucleon-nucleon (NN) scattering, the phase shift be
comes negative as the relative energy increases. In ord
explain this behavior, the short-range strong repulsion
been introduced in theNN potential@1,2#. In a microscopic
model with a meson-exchange potential@3,4#, vector-meson
exchange has been shown to produce such a short-r
strong repulsion. There also have been many studies to
vestigate the short-range part of the potential by introduc
subnucleonic degrees of freedom. Among them, the mo
called the quark cluster model~QCM! @5–9# is one of the
most successful models which can explain the repulsive
havior of the phase shift in baryon-baryon scattering.

The characteristic features of the quark model poten
are its nonlocality and energy dependence. The former
pears by integrating the internal quark degrees of freed
out while the latter appears when interpreting its nonloca
to the energy dependence. The energy-dependent pote
shows that the core increases as the energy increases@10#.

By taking parameters to minimize the nucleon mass,
effect of the orbital@42# symmetry to lower the core wa
found to be diminished@6#. This has been confirmed by
calculation which takes into account not onlyNN but also
DD andCC channels. Therefore it is enough to consider
single-channel problem to discuss the short-range part o
baryon-baryon interaction.

It is known that nonlocal and energy-dependent ter
play an important role in producing the repulsive behavior
NN systems in the conventional model@11#. Nonlocality is
considered to be important also in the quark model; it
been studied qualitatively employing a simple nonlocal p
tential @12#. There, they found that the approximation whi
has usually been used to obtain the energy-dependent
potential from the nonlocal one is actually valid in ener
region concerned. Furthermore, it was shown that
equivalent local potential can be obtained from the sim
0556-2813/2002/65~6!/064006~10!/$20.00 65 0640
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nonlocal potential by solving the inverse scattering proble
namely, they obtained a unique local potential which giv
the same phase shifts as the nonlocal potential.

In this paper we employ a realistic baryon potential giv
by the quark model and solve the inverse scattering probl
In S-wave NN scattering, the norm kernel, which gives
rough estimate of the size of the Pauli-blocking effect,
known to be small. The one-gluon-exchange poten
~OGEP! appearing together with the quark exchanges, ho
ever, is large and highly nonlocal in this channel.

On the other hand, there are some channels where
norm kernel becomes very small. In this case we expect
there appears a large repulsive interaction due to the P
blocking effect@13#. In order to look into these two effects i
detail, we study two typical channels,NN 1S0 and SN(T
53/2) 3S1, and investigate each contribution coming fro
OGEP and the norm kernel separately.

In the next section we explain briefly the quark clus
model. The method to obtain the baryon potential from QC
~the QCM potential! is also discussed. In Sec. III, we expla
the inverse scattering problem; we use this method to de
the energy-independent local potential which reproduces
same phase shifts as those obtained from the QCM poten
We explain two types of quark cluster models in Sec. IV. O
is called the OGEP quark model, where the OGEP plays
dominant role in reproducing the mass difference betw
the nucleon andD, and also to produce theNN short-range
repulsion. The other is the hybrid chiral~HC! quark model
where the pseudoscalar- and scalar-meson-exchange p
tials between quarks including quark exchanges are ta
into account together with the OGEP. Numerical results
given in Sec. V. It is shown that the obtained local poten
has a strong short-range repulsion. It however also has
attractive pocket at very short distances which reflects
fact that the nonlocal repulsion becomes weaker as the
ergy increases. It is also shown that the channel which ha
almost forbidden state has such a structure in a more ex
©2002 The American Physical Society06-1
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SACHIKO TAKEUCHI AND KIYOTAKA SHIMIZU PHYSICAL REVIEW C 65 064006
sive way. Also, nonlocality seems to become more import
there. A summary is given in Sec. VI.

II. QUARK CLUSTER MODEL

Here we briefly summarize the quark cluster model
study the baryon-baryon scattering in terms of the const
ent quarks.

The total wave function of the six quark system is giv
by

C~jA ,jB ,RAB!5A@fA~jA!fB~jB!x~RAB!#, ~1!

wherefA and fB are the single-baryon wave function fo
baryonsA and B. They are given by a product of orbita
flavor-spin, and color parts as

f~j!5w~j!S~@3# f s!C~@111#c!. ~2!

ThejA andjB are internal coordinates of the baryonA andB,
x is the relative wave function,RAB is the relative coordinate
between the baryonsA andB, andA is the antisymmetriza-
tion operator among six quarks. Assuming that the inter
wave functionf(j) is known, we obtain the following reso
nating group method~RGM! equation to determine the rela
tive wave functionx,

E H~R,R8!x~R8!dR85EE N~R,R8!x~R8!dR8, ~3!

whereH and N are the Hamiltonian and normalization ke
nels:

H H~R,R8!

N~R,R8!
J 5E djAdjBdRABfA

†~jA!fB
†~jB!d~R2RAB!

3H H

1 J A@fA~jA!fB~jB!d~R82RAB!#. ~4!

Employing the Gaussian

g~r,b!5~Apb!23/2exp$2r 2/~2b2!%, ~5!

we take the orbital part of the internal wave functionw(j) as

w~j!5g~j1 ,A2b!g~j2 ,A3/2b!, ~6!

where

j5~j1 ,j2!5H S r12r2 ,
r11r2

2
2r3D for A,

S r42r5 ,
r41r5

2
2r6D for B.

~7!

In this case, the norm kernel is given by the equation
06400
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N~R,R8!5d~R2R8!29^P36
( f sc)&S 27

16pb2D 3/2

3expF2
15

16b2
~R21R8 2!1

9

8b2
R•R8G ~8!

5 (
n,l 50

` F129^P36
( f sc)&S 1

3D 2n1 l G (
m52 l

l

unlm~R!unlm~R8!* ,

~9!

whereunlm(R) is thenlm harmonic oscillator wave function
with size parameterA2/3b, and P36

( f sc) is the permutation
operator of the third and sixth quarks in the flavor, spin, a
color spaces. The expectation values of the permutation
eratorP36

( f sc) are recited in Table I for each of theNN 1S0

and theSN(T53/2) 3S1 channels.
To see the rough size of the quark effects on the sp

flavor-independent observables, it is useful to see the ma
element of the exchange operator in the flavor-spin-co
space. This corresponds to the normalization of the rela
0s state, which is affected most largely by the internal d
grees of freedom. As seen from Table I, we expect that
effect of Pauli blocking is not important for theNN 1S0

channel, because the factor (129^P36
( f sc)&) is 10/9, which is

close to 1. On the other hand, the factor is 2/9, much sma
than 1, in theSN(T53/2) 3S1 channel. Suppose this facto
is found to be zero; it indicates that there is a forbidden s
in the concerning channel. Thus, the 0s state in theSN(T
53/2) 3S1 channel can be called an almost-forbidden sta
We will later discuss the role of this almost-forbidden sta
on the phase shift and the equivalent local potential.

Here we present two ways to rewrite the RGM equat
~3! as the ‘‘Schro¨dinger equation.’’ One is to put the ex
change part of the norm kernel into the Hamiltonian; t
other is to divide the equation by the norm kernel. We e
plain them in the following.

The norm kernel and Hamiltonian kernel can be deco
posed as

N511Nex , ~10!

H5Kd1Kex1V, ~11!

whereNex is the exchange part of the norm kernel, andKd
andKex are direct and exchange parts of the kinetic ener
respectively. The potentialV is a part due to the quark-quar
potential term together with the quark exchanges. The RG
equation~3! can be written as the Schro¨dinger equation: viz.,

Hsx5Ex, Hs5H2ENex . ~12!

TABLE I. Coefficients ofl 5 even state.

BB ^P36
( f sc)& 129^P36

( f sc)&

NN 1S0 2
1

81
10
9

SN(T53/2) 3S1
7

81
2
9

6-2
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QUARK MODEL AND EQUIVALENT LOCAL POTENTIAL PHYSICAL REVIEW C 65 064006
Since theKex and V are highly nonlocal due to the quar
exchanges, the HamiltonianHs becomes nonlocal as well a
energy dependent.

In order to avoid the energy-dependent Hamiltonian,
can rewrite the RGM equation in a different way:

Hx5ENx→ 1

AN
H

1

AN
ANx5ANx. ~13!

Then the Schro¨dinger equation becomes

H̃c5Ec. ~14!

Here the energy-independent HamiltonianH̃ is defined in the
following way:

H̃5
1

AN
H

1

AN
~15!

5Kd1ṼQCM , ~16!

where

ṼQCM5S 1

AN
~Kd1Kex!

1

AN
2KdD 1

1

AN
V

1

AN
. ~17!

ṼQCM can be considered as the potential term in the us
Schrödinger equation for the baryon-baryon scatterin
which is very nonlocal, but not energy dependent. The RG
wave function can be obtained fromc asx5N21/2c.

Equations~3!, ~12!, and ~14! are equivalent to among
each other provided thatN21/2 is well defined. Their phase
shifts are the same and give the same equivalent local po
tial, which we will discuss in the next section. Though t
former treatment is more intuitive, the obtained potential
pends strongly on the energy@14#. When looking into the
nonlocality of the potential, the latter treatment has an
vantage that it does not depend on the energy.

The origin of the short-range repulsion has been argue
come from the quark potential and/or the quark Pauli pr
ciple; which of these two reasons is more important depe
on the channel. The effect of the nonlocal potential has b
discussed employing the simplified model in Ref.@12#. As
for the effect of the Pauli principle, we expect that the n
malization^N& gives a rough estimate. In the channel whe
^P36

( f sc)& is positive,^Nex& is negative, which causes a repu

sion in the short-range part of the potentialṼQCM . This can
be understood like this: negative^Nex& means that the short
range parts are partially forbidden by the quark Pauli pr
ciple. When the wave function is expanded by the harmo
oscillator as in Eq.~9!, this effect appears mainly in then
50 component, because the effect is reduced by a facto

( 1
9 )n. The effect appears not only in the normalization b

also in the kinetic energy part. Then the diagonal part of
effective kinetic energy (1/AN)(Kd1Kex)(1/AN) remains
the same as that ofKd , but the nondiagonal part become
weaker. As a result the mixing between 0l and 1l compo-
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nents becomes smaller and so the energy for the 0l state
becomes higher than the one in the case ofNex50 @15#. See
Appendix B.

Since the^Nex& is positive in theNN 1S0 channel, we
expect that the effect of the Pauli principle does not prod
the short-range repulsion there. There exist some chan
which have a large negativêNex&, such as theSN(T
53/2) 3S1 channel as shown in Table I.

III. ENERGY-INDEPENDENT LOCAL POTENTIAL

In this section, we apply the inverse scattering meth
@16,17# to obtain the energy-independent local potent
which gives the same phase shifts given by the quark clu
model. This equivalent local potential shows us a more
tuitive picture of the nature of this nonlocal potential. Sin
we are mainly interested in the short-range behavior of
potential, we look only into theS-wave scattering here.

All the information on the scattering observables is in t
S matrix S(k). OnceS(k) is known, the potentialV(r ) is
obtained by the following equation called the Marchen
equation@16,17#. First we calculate the followingF(r ) from
the S matrix with poles at$k5 ik j%,

F~r !52
1

2pE2`

1`

eikr$S~k!21%dk1 (
all k j .0

cj
2e2k j r ,

~18!

wherecj
2 is

cj
25residue$S~k!% at k5 ik j~k j.0!. ~19!

Next we solve the following integral equation using th
F(r ):

K~r ,r 8!52F~r 1r 8!2E
r

`

F~r 1r 9!K~r ,r 9!dr9. ~20!

Then the potentialV(r ) is given by

2mV~r !522
d

dr
K~r ,r !, ~21!

wherem is the reduced mass for the baryon-baryon scat
ing.

Provided that the potential is local, the potentialV in Eq.
~21! can be constructed uniquely from the givenS matrix.
Also, for any local potentialsV1 , V2, andV5V11V2, sup-
pose we obtain theS matrix for each potential and recon
struct V18 , V28 , and V8 by this method; then,V85V181V28
holds becauseV5V8, etc., hold. This is not the case if one o
Vi is nonlocal. WhenV8;V181V28 holds, we call these po
tentials ‘‘additive’’ and use the deviationV82(V181V28) as
the rough estimate of the degrees of the nonlocality late
Sec. V C.

This method has been applied on the baryon-baryon s
tering employing the simple Gaussian-type nonlocal pot
tial @12#. In this paper, we employ this method to the QC
potential, which will be defined in the next section. The pr
cedure is~1! to obtain theS matrix S(k) from the QCM
potential up to very high momentum (k;15 fm21) and ~2!
6-3
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SACHIKO TAKEUCHI AND KIYOTAKA SHIMIZU PHYSICAL REVIEW C 65 064006
to construct a local potential from theSmatrix by using Eqs.
~18!–~21!. See Appendix A for details.

IV. QUARK MODEL HAMILTONIAN

The Hamiltonian of the nonrelativistic quark model@18#
is the sum of the kinetic energy and two-body interaction

Hq5(
i

S mi1
pi

2

2mi
D 2Kc.m.1Vq, ~22!

whereKc.m. is the kinetic energy of the center of mass m
tion. The two-body potentialVq may consist of the
pseudoscalar- and scalar-meson-exchange potentials as
as of the confinement and one-gluon exchange poten
These potentials have been employed to describe the s
baryon structure@19#. The color-magnetic part of the OGE
@20# is known to reproduce the mass difference between
tet and decuplet baryons. On the other hand, the chiral q
model @21# includes the pseudoscalar meson-exchange
tentials, which also contribute to the mass difference. T
pseudoscalar mesons appear as Goldstone bosons tog
with their chiral partners meson.

In the following, we employ two types of quark model
One is the OGEP quark model for the baryon-baryon sca
ing, where only the long-range parts of the meson-excha
potentials are included in addition to the OGEP. The ot
one is the hybrid chiral quark model, where th
pseudoscalar- and scalar-meson exchanges occur bet
quarks. Thus the potentialVq becomes

Vq5(
i . j

Vi j 5Vi j
con f1Vi j

OGEP1Vi j
s 1Vi j

ps . ~23!

The explicit form for each potential is as follows. We ta
the two-body confinement term

Vi j
con f~r i j !52li•ljacr i j

2 , ~24!

whereli is the color SU~3! generator of thei th quark. The
OGEP consists of the color Coulomb, electric, and magn
terms:

Vi j
OGEP~r i j !5li•lj

as

4 H 1

r i j
2j i j

p

m2 S 11
2

3
si•sj D d~r i j !J .

~25!

Here we have introduced the flavor SU~3! breaking factor
j i j . This factor takes the following values:

j i j 5H 1 for i , j Þs quark,

j1 for i or j 5s quark,

j2 for i and j 5s quark.
~26!

The parametersj1 and j2 are fixed so as to reproduce th
empirical octet baryon masses. The following scalar- a
pseudoscalar-meson-exchange potentials are taken into
count:
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Vi j
s~r i j !52

gs
2

4p

L2

L22ms
2 S e2msr i j

r i j
2

e2Lr i j

r i j
D , ~27!

Vi j
ps~r i j !5

1

3

gc
2

4p

mps
2

4m2

L2

L22mps
2

f i•f jsi•sj

3H e2mpsr i j

r i j
2S L

mps
D 2e2Lr i j

r i j
J . ~28!

We introduce the cutoffL for the meson-exchange poten
tials. The SU~3!-octet pseudoscalar mesonsp, K, andh are
included.

Both of the models we employ include a few paramete
In the OGEP quark model, the quark massm and size pa-
rameterb are taken to be 313 MeV and 0.6 fm. The quar
gluon coupling constantas and confinement strengthac are
fixed by the nucleon andD mass difference and the stabilit
condition for the nucleon against the variation of the s
parameterb @6#. The long-range parts of the meson-exchan
potentials are included as an interaction between bary
added to the potential term in Eq.~14! in order to reproduce
the phase shifts at low energies. The quark-s-meson cou-
pling constant is adjusted to reproduce theNN 1S0 scatter-
ing phase shift at the peak. These parameters are give
Table II. In the table the coupling constants of the mes
exchange potentials are given in terms of the meson-qu
coupling; the baryon-meson coupling constant can be ca
lated from the meson-quark coupling constant and the qu
distribution in the baryon.

In the HC quark model, the quark-gluon coupling co
stantas is fixed to reproduce the nucleon andD mass differ-
ence together with the pseudoscalar-meson-exchange p
tials @21,22#. Note that the coupling constantas becomes
smaller than the one in the OGEP quark model beca
pseudoscalar-meson exchange also contributes to the
difference. The quark-exchange terms for the mes
exchange potentials are also included. The parameters
in the present model are also given in Table II.

The coupling constantas is determined to reproduce th
mass difference between the nucleon and theD particle by
employing the single-Gaussian wave function. Therefo
OGEP here should be considered as the effective interac
and its coupling constant is larger than the one given by
analysis of heavy quark system. It has been reported tha

TABLE II. Parameters of OGEP quark model~OGEP! and hy-
brid chiral quark model~HC!.

OGEP and HC
Mass~in MeV! Scale~in fm21)

m ms mp mK mh b L

313 675 139 494 547 0.6 4.2

as j1 j2 ac @MeV/fm2# gc
2/4p gs

2/4p
OGEP 1.517 0.603 0.110 26.6 0.592 0.78
HC 1.003 0.683 0.258 11.6 0.592 0.956
6-4
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QUARK MODEL AND EQUIVALENT LOCAL POTENTIAL PHYSICAL REVIEW C 65 064006
value becomes smaller when the refined wave function
employed, for example, in@23#.

V. RESULTS

A. Phase shifts and equivalent local potential

In this section, we show the numerical results of the sc
tering phase shifts and their equivalent local potentials.

First we show the results of the phase shift for t
NN 1S0 channel in Fig. 1 together with the observed pha
shift. We employ the OGEP and HC quark models to obt
the QCM phase shifts. Both models reproduce the ph
shifts up to momentumk52.5 fm21. Both phase shifts
however, go to zero rapidly whenk becomes beyond abou
5 fm21. As will be seen later, this weak repulsive behav
at high energies partially originated from the nonlocality
the potential.

In Fig. 2, the phase shift for theSN(T53/2) 3S1 channel

FIG. 1. Phase shifts for theNN 1S0 channel. Dots are experi
mental values. OGEP and HCQM stand for the OGEP quark mo
where only gluon exchange is considered between quarks, an
HC quark model, where the pseudoscalar and scalar meson
changes are also included between quarks, respectively.

FIG. 2. Phase shifts for theSN(T53/2) 3S1 channel. For fur-
ther explanations see Fig. 1.
06400
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is shown. From the figure, we see that there exists a str
repulsion even at low energies. This is due to a smallnes
the norm kernel in this channel. Though the original qua
potential is different, the OGEP quark model and HC qua
model give results similar to each other.

In Figs. 3 and 4, we show the results of the equival
local potential given by solving the inverse scattering pro
lem. There, dotted lines denote the local part of the origi
potential of the OGEP quark model. We see that the nonlo
part of the quark model potential plays an important ro
especially at short distances. It is noteworthy that there
very-short-range attraction in addition to the usual sho
range repulsion in both channels. This reflects the fact
the nonlocal part, which is repulsive in the intermediate
gion, is reduced effectively in the very-high-energy regio
In theNN system, some of the conventional soft-core mod
give a similar attraction@24#. This property is more manifes
in theSN(T53/2) 3S1 channel. There, the very-short-rang
attraction is due to the existence of the almost forbidd
state, which will be discussed later in more details.

l,
the
x-

FIG. 3. Equivalent local potential for theNN 1S0 channel using
the OGEP or HCQM models. The dotted line indicates the local p
of the quark model potential in the OGEP model.

FIG. 4. Equivalent local potential for theSN(T53/2) 3S1

channel. For further explanations see Fig. 3.
6-5
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B. Roles of the norm kernel and OGEP

In order to see what kinds of effects are important
produce the short-range repulsive interaction in the qu
cluster model, we investigate contributions from norm ker
and OGEP separately in the OGEP model. The potential t
in the OGEP quark model in Eq.~14! can be rewritten as

V5ṼQCM1Vm , ~29!

ṼQCM5ṼK/N1ṼG/N , ~30!

ṼK/N5
1

AN
~Kd1Kex!

1

AN
2Kd , ~31!

ṼG/N5
1

AN
VOGEP

1

AN
. ~32!

We denote the above three terms asK/N for ṼK/N , G/N for
ṼG/N, andVm in the figures. Note that the meson-exchan
term is taken into account as the baryon-baryon interactio
the OGEP quark model.

We first show the calculated phase shift from this pot
tial for theNN 1S0 channel in Fig. 5. Here each contributio
from K/N or G/N is shown. We see that the contributio
from the norm kernelK/N is rather weak and attractive a
low energies. This is because of a small enhancement o
norm kernel due to the quark exchange as seen in Tab
@7,8,15#. The contribution from the the OGEP, namely,G/N,
is strongly repulsive, and the contribution from both term
(K1G)/N, is almost the same asG/N. Therefore we can
conclude that the most important term to reproduce the sh
range repulsion in theNN 1S0 channel is the OGEP. Whe
the meson-exchange potentialVm is taken into account, the

FIG. 5. Calculated phase shifts for theNN 1S0 channel in the
OGEP quark model.K/N denotes the contribution from the norma
ization and kinetic energy terms,G/N denotes the contribution from
the normalization and OGEP terms, and (K1G)/N is the contribu-
tion from the normalization, kinetic energy, and OGEP term
‘‘Full’’ is the contribution from (K1G)/N and the meson-exchang
potentialVm .
06400
rk
l
m

e
in

-

he
I

,

rt-

phase shift becomes positive at low energies as shown by
solid line ~denoted as ‘‘Full’’ in the figure!.

Employing the calculated phase shifts shown in Fig. 5,
equivalent local potential is calculated forNN 1S0 by solv-
ing the inverse scattering problem. The results are show
Fig. 6. As seen in the figure, there exists a strong repuls
due to the norm and OGEP terms,G/N, at short distances. It
however, becomes weak at very short distances; there
pears an attractive pocket at short distances. By including
meson-exchange potential consisting ofs, p, andh meson-
exchange potentials, the long-range part of the potential
comes attractive.

The results for theSN(T53/2) 3S1 channel are shown in
Figs. 7 and 8 by employing the OGEP quark model. T
reason why we are interested in this channel is that th
exists the almost-forbidden state; we can study the role of
Pauli-blocking effect more clearly in this channel. In Fig.
we show the contributions fromK/N, G/N, (K1G)/N, and
‘‘Full’’ calculations which includes the meson-exchange p
tential Vm . As seen in the figure,K/N gives the negative
phase shift in the low-energy region, which indicates stro

.

FIG. 6. Equivalent local potential for theNN 1S0 channel in the
OGEP quark model. For further explanations see Fig. 5.

FIG. 7. Calculated phase shifts for theSN(T53/2) 3S1 chan-
nel in the OGEP quark model. For further explanations see Fig
6-6
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repulsion at long ranges. It is also interesting to see that
phase shifts increase sharply aroundk;2 –4 fm21. These
are due to the Pauli-blocking effect, because this sharp
crease of the phase shift is seen in the cases which inc
theK/N. Since^P36

( f sc)& is 7
81 in this channel, the 0s compo-

nent of the norm kernel is reduced by a factor of 127/9
52/9. Similarly, the 0s-1s off-diagonal component of the
kinetic term and the 0s diagonal component are reduced
this factor of 2/9. After being divided by the norm kernel, t
diagonal parts of the kinetic energy termK/N are not re-
duced, but the 0s-ns nondiagonal parts are reduced by
factor ofA2/9. This smaller-than-1 factor causes less mix
between the 0s-1s component. Thus, theK/N term has a
node in the phase shift with the repulsion in the lower-ene
region @15#. See Appendix B, where this mechanism is im
tated by a simple model. Suppose the factor is zero, indi
ing that the system has a forbidden state; the phase
decreases continuously toward2p at k5` in order to sat-
isfy Levinson’s theorem.

This feature is also seen in the equivalent local poten
shown in Fig. 8. In the equivalent local potential, there a
pears a very strong attractive potential at short distances
a strong repulsion in the intermediate range. There is a q
sibound state in this attractive pocket, which correspond
the sharp increase of the phase shift. If the factor were z
the resonance would become a bound state, which is the
to simulate a forbidden state in terms of a local poten
because all other real states are forced to be orthogonal t
bound state.

The attraction of the local potential at short distances h
simulates the Pauli-blocking effect. This local potential c
reproduce the same phase shifts to those given by the o
nal nonlocal potential. The off-shell behaviors of these o
shell equivalent potentials, however, may be quite differ
from each other when the original potential has a high n
locality. Therefore, it may be dangerous to apply the lo
potential with this short-range attraction on the structure c
culation, such as theG matrix, and discuss the effects of th
attractive pocket of the local potential. The original nonloc

FIG. 8. Equivalent local potential for theSN(T53/2) 3S1

channel in the OGEP quark model. For further explanations
Fig. 5.
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potential should be employed for such a purpose in the ch
nel with an almost-forbidden state.

C. Roles of nonlocality

In order to estimate the degrees of the nonlocality,
investigate whether the contributions fromK/N, G/N, and
Vm are additive or not. Each local potential given by solvi
the inverse scattering and their sum are plotted in Figs. 9
10. In Fig. 9, we see that the sum of local potentialsVK/N8
1VG/N8 ~solid line! is similar toV(K1G)/N8 ~dashed line!, so the
nonlocality is weak as we mentioned in the end of Sec.
By including the meson-exchange potential,V(K1G)/N8 1Vm

~dot-dashed line! are also compared toV(K1G)/N1m8 ~solid
line! in Fig. 10. As seen in these figures, the equivalent lo
potentials given by solving the inverse scattering probl
are almost additive in theNN 1S0 channel. This suggest
that the nonlocality of the QCM potential is rather weak

e FIG. 9. Equivalent local potential for theNN 1S0 channel in the
OGEP quark model. (K1G)/N and K/N1G/N are shown for a
comparison. For further explanations see Fig. 5.

FIG. 10. Equivalent local potential for theNN 1S0 channel in
the OGEP quark model. (K1G)/N1Vm and ‘‘Full’’ are shown for
a comparison. For further explanations see Fig. 5.
6-7
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SACHIKO TAKEUCHI AND KIYOTAKA SHIMIZU PHYSICAL REVIEW C 65 064006
this channel, and that the potential may be simulated by
equivalent local potential, which has the same on-shell
havior.

Also, we investigate the effect of the short-range attr
tive pocket by performing a calculation without the pocket
the NN system. In Fig. 11, we show the modified local p
tential without the attractive pocket as well as the origin
equivalent local potential with the attractive pocket. T
phase shifts given by both of the two potentials are show
Fig. 12. From these figures, we understand that the mod
potential gives the stronger repulsion at high energies.
difference between these phase shifts in the region fromk
53 fm21 and higher produces the attractive pocket at sh
distances in the equivalent local potential.

In Figs. 13 and 14, we again investigate the nonlocality
the QCM potential in theSN(T53/2) 3S1 channel by
checking whether the contributions from each term are a
tive or not. As seen in the figures, the equivalent local
tentials coming from each term shows the tendency to
additive. If we compare them with those for theNN 1S0

FIG. 11. Equivalent and modified local potential for th
NN 1S0 channel in the OGEP quark model.

FIG. 12. Calculated phase shifts given by the equivalent
modified potentials for theNN 1S0 channel in the OGEP quar
model.
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channel shown in Figs. 9 and 10, however, we see that a
tivity does not hold so well as in theNN 1S0 channel. This
suggests that the nonlocality of the QCM potential is mu
higher in this channel.

VI. SUMMARY

In this paper, we have investigated the short-range par
the potential given by the quark cluster model, especially
quark Pauli-blocking effects and the nonlocal term com
from the quark potential. An energy-independent local pot
tial can be reconstructed from a given phase shift by solv
the inverse scattering problem. We have employed
method to derive the energy-independent local poten
which reproduces the same phase shifts as those obta
from the QCM potential.

We have used two types of the quark cluster models. O
is called the OGEP quark model, where the OGEP plays
dominant role to reproduce the mass difference betw
nucleon andD, and also to produce theNN short-range re-

d

FIG. 13. Equivalent local potential for theSN(T53/2) 3S1

channel in the OGEP quark model. For further explanations
Figs. 5 and 9.

FIG. 14. Equivalent local potential for theSN(T53/2) 3S1

channel in the OGEP quark model. For further explanations
Figs. 5 and 10.
6-8
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QUARK MODEL AND EQUIVALENT LOCAL POTENTIAL PHYSICAL REVIEW C 65 064006
pulsion. The other is the hybrid chiral quark model where
pseudoscalar- and scalar-meson-exchange potentials bet
quarks including quark exchanges are taken into accoun
gether with the OGEP. In theNN 1S0 channel, once the
peak value is fitted, there is almost no difference betw
these two models, but there appears a small differenc
SN(T53/2) 3S1channel. Since there is no essential diffe
ence between these two models, we have restricted ours
to the OGEP quark model to investigate the details of
potential derived from the quark model.

We have found that such an equivalent local potential
a strong repulsion at short distances in theNN 1S0 in both
quark models. We have, however, also found that there i
attractive pocket at very short distances. It is considered
such a pocket appears because the nonlocal repulsion
comes weaker effectively in the very-high-energy regio
This repulsion-attractive-pocket structure becomes m
manifest in the channel which has an almost-forbidden st
SN(T53/2) 3S1. There we have clarified the mechanism
to how the sharp increase of the phase shift occurs in c
nection with the norm kernel when there exists the almo
forbidden state. From the shape of the equivalent local
tentials, it is clearly seen that the gluon exchange constr
the short-range repulsion in theNN 1S0 while the quark
Pauli-blocking effect governs the feature of the scatter
phase shifts in theSN(T53/2) 3S1 channel.
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APPENDIX A: INVERSE SCATTERING PROBLEM

Here we briefly show how to derive an equivalent loc
potential from a given phase shift: Eqs.~18!–~21!.

We assume that theS matrix is given by the extende
Eckert potential

S~k!5
g~k!1 i f ~k!

g~k!2 i f ~k!
, ~A1!

tand~k!5 f ~k!/g~k!, ~A2!

with

f ~k!5k (
m50

n21

f mk2m, ~A3!

g~k!5 (
m50

n

gmk2m. ~A4!

The parametersn, $ f m%, and$gm% are determined so that thi
S matrix gives the given phase shiftd(k) up to about
15 fm21. Moreover, we use the condition,gn51, f (k0)
50 at d(k0)50, etc., andf n is determined to give the Born
term,
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f n52
2pm

\2
^V&. ~A5!

By using this form of theS matrix, Eq.~18! becomes

F~r !5
1

2p i E2`

1`

eikr
2 f ~k!

g~k!2 i f ~k!
dk1 (

all k j .0
cj

2e2k j r .

~A6!

Becauseg(k)2 i f (k) is the polynomial function ofk of up to
the 2nth order, we have 2n poles atk5t i ( i 51 –2n) in the
integrand of the above equation in general. Thus, we ha

F~r !5 (
all Itm.0

Res
2 f ~ tm!

g~ tm!2 i f ~ tm!
eit mr1 (

all k j .0
cj

2e2k j r .

~A7!

So the equation to solve, Eq.~20!, becomes a simple in
tegral equation with the known functionF, which can be
solved numerically. The potential in Eq.~21! is derived di-
rectly from the kernelK.

The local potential which gives a given phase shift
uniquely determined. Since the systems we are conce
with in this paper do not have a bound state, the equiva
local potential can also be obtained by fitting the phase s
directly. We also use this fitting to check the above meth
The reconstructed potentials by these two methods are s
lar to each other with a small numerical error, which cann
be distinguished in the figures.

APPENDIX B: MODEL FOR AN ALMOST-FORBIDDEN
STATE

Here we explain a simplified model to investigate t
mechanism of the role of an almost-forbidden state. T
model is simplified in a way that the quark exchange do
not occur among thens (n.0) states.

First we introduce a projection operatorP which selects
the 0s state:

P5u0s&^0su.

Then we consider the one-body scattering problem given
the following normalizationN and HamiltonianH:

Hx5ENx,

N512aP,

H5T2a~PT1TP!1aPTP,

whereT is the kinetic energy operator,E is the energy eigen-
value, anda is a parameter which is smaller than 1. Wh
a51, the state 0s is called the forbidden state, and ifa is
close to 1, the state 0s is called the almost-forbidden state
Introducing the projection operatorQ512P, we rewrite the
N andH as follows:

N5Q1~12a!P,
6-9
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H5QTQ1~12a!~QTP1PTQ1PTP!.

This shows that the 0s state in the normalizationN is re-
duced by a factor of (12a) and the matrix elements of th
HamiltonianH between the 0s andns states are also reduce
by the factor of (12a). Now let us calculate theH/N. When
a,1, 1/AN is given by

1

AN
5Q1

1

A12a
P.

Then we obtain
.

.

06400
1

AN
H

1

AN
5QTQ1PTP1A12a~PTQ1QTP!.

This tells us that only the nondiagonal matrix elements
tween the 0s and ns (nÞ0) are reduced by a factor o
A12a. Therefore the state which contains a large part of
0s component, namely, the low-energy scattering state, fe
effectively a repulsion when the factorA12a is smaller
than 1.
s
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