PHYSICAL REVIEW C, VOLUME 65, 064006

Quark model and equivalent local potential

Sachiko Takeuchi
Japan College of Social Work, Kiyose, Japan

Kiyotaka Shimizu
Department of Physics, Sophia University, Chiyoda-ku, Tokyo, Japan
(Received 13 January 2002; published 31 May 2002

In this paper, we investigate the short-range repulsion given by the quark cluster model employing an
inverse scattering problem. We find that the local potential which reproduces the same phase shifts as those
given by the quark cluster model has a strong repulsion at short distances NNthkS, channel. There,
however, appears an attractive pocket at very short distances due to a rather weak repulsive behavior at very
high energy. This repulsion-attractive-pocket structure becomes more manifest in the channel which has an
almost forbidden stat& N(T=3/2) 3S,. In order to see what kinds of effects are important to reproduce the
short-range repulsion in the quark cluster model, we investigate the contribution coming from the one-gluon-
exchange potential and the normalization separately. It is clarified that the gluon exchange constructs the
short-range repulsion in tHéN S, while the quark Pauli-blocking effect governs the feature of the repulsive
behavior in theSN(T=3/2) 3S,; channel.
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[. INTRODUCTION nonlocal potential by solving the inverse scattering problem;
namely, they obtained a unique local potential which gives
In nucleon-nucleon NN) scattering, the phase shift be- the same phase shifts as the nonlocal potential.
comes negative as the relative energy increases. In order to In this paper we employ a realistic baryon potential given
explain this behavior, the short-range strong repulsion haby the quark model and solve the inverse scattering problem.
been introduced in thBIN potential[1,2]. In a microscopic In Swave NN scattering, the norm kernel, which gives a
model with a meson-exchange potenfid}4], vector-meson rough estimate of the size of the Pauli-blocking effect, is
exchange has been shown to produce such a short-ranggown to be small. The one-gluon-exchange potential
strong repulsion. There also have been many studies to iIfOGEP appearing together with the quark exchanges, how-
vestigate the short-range part of the potential by introducingever, is large and highly nonlocal in this channel.
subnucleonic degrees of freedom. Among them, the model On the other hand, there are some channels where the
called the quark cluster modéQCM) [5-9] is one of the norm kernel becomes very small. In this case we expect that
most successful models which can explain the repulsive behere appears a large repulsive interaction due to the Pauli
havior of the phase shift in baryon-baryon scattering. blocking effecf13]. In order to look into these two effects in
The characteristic features of the quark model potentiatietail, we study two typical channelsIN 1S, and SN(T
are its nonlocality and energy dependence. The former ap=3/2) 3S;, and investigate each contribution coming from
pears by integrating the internal quark degrees of freedoMDGEP and the norm kernel separately.
out while the latter appears when interpreting its nonlocality In the next section we explain briefly the quark cluster
to the energy dependence. The energy-dependent potentiabdel. The method to obtain the baryon potential from QCM
shows that the core increases as the energy incr¢a8es (the QCM potentiglis also discussed. In Sec. Ill, we explain
By taking parameters to minimize the nucleon mass, théhe inverse scattering problem; we use this method to derive
effect of the orbital[42] symmetry to lower the core was the energy-independent local potential which reproduces the
found to be diminished6]. This has been confirmed by a same phase shifts as those obtained from the QCM potential.
calculation which takes into account not oyN but also  We explain two types of quark cluster models in Sec. IV. One
AA andCC channels. Therefore it is enough to consider theis called the OGEP quark model, where the OGEP plays the
single-channel problem to discuss the short-range part of thdominant role in reproducing the mass difference between
baryon-baryon interaction. the nucleon and\, and also to produce thgN short-range
It is known that nonlocal and energy-dependent termgepulsion. The other is the hybrid chirgHC) quark model
play an important role in producing the repulsive behavior ofwhere the pseudoscalar- and scalar-meson-exchange poten-
NN systems in the conventional modéll]. Nonlocality is  tials between quarks including quark exchanges are taken
considered to be important also in the quark model; it hasnto account together with the OGEP. Numerical results are
been studied qualitatively employing a simple nonlocal po-given in Sec. V. It is shown that the obtained local potential
tential[12]. There, they found that the approximation which has a strong short-range repulsion. It however also has an
has usually been used to obtain the energy-dependent locaitractive pocket at very short distances which reflects the
potential from the nonlocal one is actually valid in energyfact that the nonlocal repulsion becomes weaker as the en-
region concerned. Furthermore, it was shown that theergy increases. It is also shown that the channel which has an
equivalent local potential can be obtained from the simplealmost forbidden state has such a structure in a more exten-
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sive way. Also, nonlocality seems to become more important

there. A summary is given in Sec. VI.

Il. QUARK CLUSTER MODEL

Here we briefly summarize the quark cluster model to
study the baryon-baryon scattering in terms of the constitu-

ent quarks.

The total wave function of the six quark system is given

by

W(&n,85.Rap) = Al da(€n) d(&6) X(Rap) 1, (1

where ¢, and ¢g are the single-baryon wave function for
baryonsA and B. They are given by a product of orbital,

flavor-spin, and color parts as

#(6=(§S([3],)C([111]). 2
The &, and&g are internal coordinates of the baryarandB,
x is the relative wave functiorR,g is the relative coordinate
between the baryoma andB, and.A is the antisymmetriza-
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TABLE |. Coefficients ofl = even state.
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2 Unin(RUnin(R)*,
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whereu,(R) is thenlm harmonic oscillator wave function
with size parameter/2/3b, and P{Y® is the permutation
operator of the third and sixth quarks in the flavor, spin, and
color spaces. The expectation values of the permutation op-

* 2n+1
= E [1_9<p(f00)><£)
n1=0 % 3

tion operator among six quarks. Assuming that the internagrator P{’® are recited in Table | for each of tHeN 'S,
wave functiong(£) is known, we obtain the following reso- and theSN(T=3/2) 3S, channels.

nating group methodRGM) equation to determine the rela-

tive wave functiony,

f H(R,R')X(R’)dR’=Ef N(R,R")x(R")dR’, (3)

whereH andN are the Hamiltonian and normalization ker-

nels:

{H(R,R’)
)

N(R.R' ]: J déd€adRapdA(£x) bi(&B) S(R—Rap)

H
X | 1 } Al pa(€n) d5(&8) (R —Rag)]. (4)
Employing the Gaussian

g(r,b)=(\/mb) ~*2exp{—r?/(2b?)}, (5)

we take the orbital part of the internal wave functip(é) as

0(§=9(£.,\2b)g(£,\3/20), 6)
where
(rl—rz,rl;—rz—@) for A,
£=(4.6)= T (7)
(r4—r5,T—r6) for B.

In this case, the norm kernel is given by the equation

To see the rough size of the quark effects on the spin-
flavor-independent observables, it is useful to see the matrix
element of the exchange operator in the flavor-spin-color
space. This corresponds to the normalization of the relative
Os state, which is affected most largely by the internal de-
grees of freedom. As seen from Table |, we expect that the
effect of Pauli blocking is not important for theN 1S,
channel, because the factor9(P{®)) is 10/9, which is
close to 1. On the other hand, the factor is 2/9, much smaller
than 1, in theN(T=23/2) 3S, channel. Suppose this factor
is found to be zero; it indicates that there is a forbidden state
in the concerning channel. Thus, the 6tate in theX N(T
=3/2) 3S, channel can be called an almost-forbidden state.
We will later discuss the role of this almost-forbidden state
on the phase shift and the equivalent local potential.

Here we present two ways to rewrite the RGM equation
(3) as the “Schrdinger equation.” One is to put the ex-
change part of the norm kernel into the Hamiltonian; the
other is to divide the equation by the norm kernel. We ex-
plain them in the following.

The norm kernel and Hamiltonian kernel can be decom-
posed as

N=1+Ngy, (10)

H=Ky+ KextV, (11
whereN,, is the exchange part of the norm kernel, dtg
andK,, are direct and exchange parts of the kinetic energy,
respectively. The potentiddl is a part due to the quark-quark
potential term together with the quark exchanges. The RGM
equation(3) can be written as the Schdimger equation: viz.,
Hs=H—ENgy.

Hsx=Eyx, (12
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Since theK,., and V are highly nonlocal due to the quark nents becomes smaller and so the energy for thetate
exchanges, the Hamiltoniats becomes nonlocal as well as becomes higher than the one in the casbdlgf=0 [15]. See

energy dependent. Appendix B.
In order to avoid the energy-dependent Hamiltonian, we Since the(N®*) is positive in theNN S, channel, we
can rewrite the RGM equation in a different way: expect that the effect of the Pauli principle does not produce

the short-range repulsion there. There exist some channels
1 1 which have a large negativéN®*), such as theXN(T
HX:ENXH\/_NH \/_N‘/NX: WNx. 13 =3/2) 3S, channel as shown in Table I.

Then the Schidinger equation becomes Ill. ENERGY-INDEPENDENT LOCAL POTENTIAL

_ In this section, we apply the inverse scattering method

Hy=Ey. (14 [16,17 to obtain the energy-independent local potential
- which gives the same phase shifts given by the quark cluster

Here the energy-independent Hamiltontdns defined in the  model. This equivalent local potential shows us a more in-

following way: tuitive picture of the nature of this nonlocal potential. Since
we are mainly interested in the short-range behavior of the

~ 1 1 potential, we look only into th&wave scattering here.
H= \/_NH \/_N (15 All the information on the scattering observables is in the

S matrix S(k). Once S(k) is known, the potentiaV/(r) is
obtained by the following equation called the Marchenko
equation[16,17]. First we calculate the followin& (r) from
the S matrix with poles atk=i«;},

=Kg+Vocm, (16)

where

1 (+= .
~ 1 1 1 1 F(ry=— — elkr k)—1 dk+ C-Zeik.r,
Voem= \/_N(Kd+Kex)\/_N_Kd +\/—NVW- 17) o 277'[700 {Sto-1} a||§,<}>o i€ s

Vocewm can be considered as the potential term in the usuavherec? is
Schralinger equation for the baryon-baryon scattering, A .
which is very nonlocal, but not energy dependent. The RGM cj=residugS(k)} at k=ix;j(x;>0). (19
H H N L12 . . . .
wave function can be obtained frofas y=N""y. Next we solve the following integral equation using the
Equations(3), (12), and (14) are equivalent to among F(r):
each other provided thad~ %2 is well defined. Their phase
shifts are the same and give the same equivalent local poten-
tial, which we will discuss in the next section. Though the
former treatment is more intuitive, the obtained potential de-
pends strongly on the enerd¢4]. When looking into the Then the potentiaV/(r) is given by
nonlocality of the potential, the latter treatment has an ad- d
vantage that it does not depend on the energy. 2uV(r)=—2—K(r,r), (22)
The origin of the short-range repulsion has been argued to dr
c.om(.a fro.m the quark potential and/or the_quark Pauli Iorln'where,u is the reduced mass for the baryon-baryon scatter-
ciple; which of these two reasons is more important depends
on the channel. The effect of the nonlocal potential has been

discussed employing the_ S'T"p!'f'eo' model in REEZ]. As (21) can be constructed uniquely from the givBrmatrix.
for the effect of the Pauli principle, we expect that the nor Also, for any local potentiald/y, V,, andV=V,+V,, sup
malization{N) gives a rough estimate. In the channel where ' . SR e Lt -
<P(fg—c)> is <po>si?ive (N®) isgnegative which causes a repul- pose we obtain th& matrix for each potential and recon-
N ’ L _ structVy, V5, andV’ by this method; theny’ =V;+V)
sion in the short-range part of the potent@cy - This can  pojds becaus¥=V', etc., hold. This is not the case if one of

be understood like this: negatiy8l.,) means that the short- V; is nonlocal. WherV' ~V.+V} holds, we call these po-

range parts are partially forbidden by the quark Pauli prin.'tentials “additive” and use the deviatiow’ —(V}+V5) as

ciple. When the wave function is expanded by the harmoni : - :
oscillator as in Eq(9), this effect appears mainly in the ;h:cr%%h estimate of the degrees of the nonlocality later in
—10 component, because the effect. is reduced by a factor o This method has been applied on the baryon-baryon scat-
(5)". The effect appears not only in the normalization buttering employing the simple Gaussian-type nonlocal poten-
also in the kinetic energy part. Then the diagonal part of thejal [12]. In this paper, we employ this method to the QCM
effective kinetic energy (JIN)(KdJr Kex)(ll\/ﬁ) remains  potential, which will be defined in the next section. The pro-
the same as that dfy, but the nondiagonal part becomes cedure is(1) to obtain theS matrix S(k) from the QCM
weaker. As a result the mixing betweeh &nd 1 compo-  potential up to very high momentunk{ 15 fm ) and(2)

o

K(r,r’)=—F(r+r’)—f F(r+r")K(r,r")dr"”. (20

r

Provided that the potential is local, the potentiain Eq.
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TABLE II. Parameters of OGEP quark mod&GEP and hy-
brid chiral quark mode(HC).

to construct a local potential from ttf&matrix by using Egs.
(18)—(21). See Appendix A for details.

IV. QUARK MODEL HAMILTONIAN OGEP and HC _ S
Mass(in MeV) Scale(in fm™1)
The Hamiltonian of the nonrelativistic quark modéi8] m m,£ m, m m, b A
is the sum of the kinetic energy and two-body interaction: 313 675 139 494 547 0.6 4.2
3 as & & ae [MeVifm?]  g2/am  g%lam
HI=> | m+ >m —Kem V9, (22 OGEP 1517 0.603 0.110 26.6 0.592  0.782
' ! HC 1.003 0.683 0.258 11.6 0.592 0.956

whereK. ,, is the kinetic energy of the center of mass mo-
tion. The two-body potentialVe may consist of the

pseudoscalar- and scalar-meson-exchange potentials as well gi A2 e Mofij @ Arjj

as of the confinement and one-gluon exchange potential. Vi) =—7_-" 2( — /@
These potentials have been employed to describe the single AT—m, Y 4

baryon structur¢19]. The color-magnetic part of the OGEP

[20] is known to reproduce the mass difference between oc- 192 m2 A2

tet and decuplet baryons. On the other hand, the chiral quark VE(ri) =5 = —pz ————fi-fjoi- o

model [21] includes the pseudoscalar meson-exchange po- 34 am? A —Mps

tentials, which also contribute to the mass difference. The S A \2e- ATy
pseudoscalar mesons appear as Goldstone bosons together X e’ '_(_) € 'J. (29)
with their chiral partnels meson. Fij Mps/  Tij

In the following, we employ two types of quark models.

One is the OGEP quark model for the baryon-baryon scattefye introduce the cutoff\ for the meson-exchange poten-
ing, where only the long-range parts of the meson-exchangga|s. The SU3)-octet pseudoscalar mesons K, and 5 are
potentials are included in addition to the OGEP. The othejncluded.
one is the hybrid chiral quark model, where the Both of the models we employ include a few parameters.
pseudoscalar- and scalar-meson exchanges occur betwggnthe OGEP quark model, the quark massand size pa-
quarks. Thus the potenti&* becomes rameterb are taken to be 313 MeV and 0.6 fm. The quark-
gluon coupling constant; and confinement strengthy, are
va=> V| :\/iCJ,0nf+ViCJ?GEPJr iERYind (23  fixed by the nucleon and mass difference and the stability
i>] condition for the nucleon against the variation of the size
o o parameteb [6]. The long-range parts of the meson-exchange
The explicit form for each potential is as follows. We take potentials are included as an interaction between baryons
the two-body confinement term added to the potential term in E€L4) in order to reproduce
the phase shifts at low energies. The quarkaeson cou-
pling constant is adjusted to reproduce Mb 1S, scatter-
ing phase shift at the peak. These parameters are given in
Table II. In the table the coupling constants of the meson-
%xchange potentials are given in terms of the meson-quark
coupling; the baryon-meson coupling constant can be calcu-
lated from the meson-quark coupling constant and the quark
distribution in the baryon.

In the HC quark model, the quark-gluon coupling con-
(25 stantag is fixed to reproduce the nucleon admass differ-
ence together with the pseudoscalar-meson-exchange poten-
tials [21,22. Note that the coupling constamt,; becomes

Vicjonf(rij)=—)\i~)\jacri2j , (24)
where\,; is the color SWU3) generator of théth quark. The
OGEP consists of the color Coulomb, electric, and magneti
terms:

4 3

ag| 1 T 2
VSGEP(riJ-)=)\i~)\-—S{F—§”¥ 1+—0'|0'J)5(r”)]
1]

Here we have introduced the flavor &Y breaking factor

&j - This factor takes the following values:

1 for i,j#s quark,

&i= & for i or j=s quark, (26)
& for i and j=s quark.

smaller than the one in the OGEP quark model because
pseudoscalar-meson exchange also contributes to the mass
difference. The quark-exchange terms for the meson-
exchange potentials are also included. The parameters used
in the present model are also given in Table II.

The coupling constant is determined to reproduce the
mass difference between the nucleon and Ahparticle by

The parameterg, and &, are fixed so as to reproduce the employing the single-Gaussian wave function. Therefore,

empirical octet baryon masses. The following scalar- andDGEP here should be considered as the effective interaction,
pseudoscalar-meson-exchange potentials are taken into amnd its coupling constant is larger than the one given by an
count: analysis of heavy quark system. It has been reported that the
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o — ] 500 .
T o NN'S, 1 1
= 1k i NN 'S .
= 1T — OGEP ] o
- —_— HCQM 4 - OGEP 1
i ] —-—— HCQM
i ] =
r T O
[ ] =3 '
of — S0
_1-| L L |.° L L L L L L ]
0 » 10 :
k [fm™] 0 [ 2

FIG. 1. Phase shifts for thN 1S, channel. Dots are experi- . . 1 .
FIG. 3. Equivalent local potential for tiéN =S, channel using
mental values. OGEP and HCQM stand for the OGEP quark mOdekhe OGEP or HCQM models. The dotted line indicates the local part

where only gluon exchange is considered between quarks, and tr(l)(? the quark model potential in the OGEP model.

HC quark model, where the pseudoscalar and scalar meson ex-
changes are also included between quarks, respectively. is shown. From the figure, we see that there exists a strong
epulsion even at low energies. This is due to a smallness of
e norm Kkernel in this channel. Though the original quark
potential is different, the OGEP quark model and HC quark
model give results similar to each other.
V. RESULTS In Figs. 3 and 4, we show the results of the equivalent
local potential given by solving the inverse scattering prob-
) i , lem. There, dotted lines denote the local part of the original
In this section, we show the numerical results of the scatygtential of the OGEP quark model. We see that the nonlocal
tering phase shifts and their equivalent local pote_ntlals. part of the quark model potential plays an important role
F'ESt we show the results of the phase shift for theegpecially at short distances. It is noteworthy that there is a
NN “S, channel in Fig. 1 together with the observed phasg,ery-short-range attraction in addition to the usual short-
shift. We employ the OGEP and HC quark models to obtainange repulsion in both channels. This reflects the fact that
the QCM phase shifts. Both mogjizls reproduce the phasge nonlocal part, which is repulsive in the intermediate re-
shifts up to momenturk=2.5 fm™*. Both phase shifts, gion, is reduced effectively in the very-high-energy region.
howeyt;:r, go to zero rapidly whekbecomes beyond about |, the NN system, some of the conventional soft-core models
5 fm™". As will be seen later, this weak repulsive behavior give a similar attractiofi24]. This property is more manifest
at high energies partially originated from the nonlocality of, theSN(T=3/2) 3S, channel. There, the very-short-range
the potential. _ , attraction is due to the existence of the almost forbidden
In Fig. 2, the phase shift for teN(T=3/2) °S, channel  giate, which will be discussed later in more details.

value becomes smaller when the refined wave function i
employed, for example, if23].

A. Phase shifts and equivalent local potential

6 [rad]
/
/
/
/
!
)
|
I
|
]
.'
V() [MeV]

IN®S, T=3/2 =N, T=3/2 |
1 — OGEP | —— OGEP ]
- ——— HCOM ——— HCQM J
-1000p b
ol L L L L ) ) ' ' ' L
0 - 10 0 1 ¢ [fm] 2
FIG. 2. Phase shifts for thEN(T=3/2) S, channel. For fur- FIG. 4. Equivalent local potential for th&N(T=3/2) 3s;
ther explanations see Fig. 1. channel. For further explanations see Fig. 3.

064006-5



SACHIKO TAKEUCHI AND KIYOTAKA SHIMIZU PHYSICAL REVIEW C 65 064006

T
5 [ ] /2 1
gL . R NN 'S,
g 1r ] \ |
o | ] | KN
[ ] 500f /' \ —— GN :
r ] =~ (K+G)/N .
N T O
or % Full
- ] > \ ]
-1 . 1
B s 7 ] ]
L1 ) ) L '—.’/ ) ) ) L L 1 ,
_ 10
K [fm™] 0 Y ) 2
FIG. 5. Calculated phase shifts for theN 'S, channel in the FIG. 6. Equivalent local potential for tHéN S, channel in the

OGEP quark modeK/N denotes the contribution from the normal- oggp quark model. For further explanations see Fig. 5.

ization and kinetic energy term&/N denotes the contribution from

the normalization and OGEP terms, ar¢H G)/N is the contribu-  phase shift becomes positive at low energies as shown by the

tion from the normalization, kinetic energy, and OGEP terms.qgid line (denoted as “Full” in the figurg

“Full” i_s, the contribution from (K+ G)/N and the meson-exchange Employing the calculated phase shifts shown in Fig. 5, the

potentialVi,. equivalent local potential is calculated fdN S, by solv-

ing the inverse scattering problem. The results are shown in

Fig. 6. As seen in the figure, there exists a strong repulsion
In order to see what kinds of effects are important todue to the norm and OGEP tern@/N, at short distances. It,

produce the short-range repulsive interaction in the quarkowever, becomes weak at very short distances; there ap-

cluster model, we investigate contributions from norm kernelpears an attractive pocket at short distances. By including the

and OGEP separately in the OGEP model. The potential terrmeson-exchange potential consistingogfsr, and  meson-

in the OGEP quark model in E414) can be rewritten as exchange potentials, the long-range part of the potential be-

comes attractive.

B. Roles of the norm kernel and OGEP

V=VocutVa, (29 The results for th& N(T=23/2) 3S, channel are shown in
Figs. 7 and 8 by employing the OGEP quark model. The
T/QCM:\"/K/N+\“/G/N, (30) reason why we are interested in this channel is that there

exists the almost-forbidden state; we can study the role of the
1 1 Pauli-blocking effect more clearly in this channel. In Fig. 7,
Vion=—=(Kg+Kg)—=—Kg, (3)  we show the contributions fromd/N, G/N, (K+G)/N, and
VN N “Full” calculations which includes the meson-exchange po-
tential V,. As seen in the figureK/N gives the negative

1 1 @2 phase shift in the low-energy region, which indicates strong
32

Ven=—=Vogep—-
G/N \/N OGEP\/N .

We denote the above three termskaddN for Vy,n, G/N for

Vgn: andV,, in the figures. Note that the meson-exchange
term is taken into account as the baryon-baryon interaction in
the OGEP quark model.

We first show the calculated phase shift from this poten-
tial for theNN 1S, channel in Fig. 5. Here each contribution -1t
from K/N or G/N is shown. We see that the contribution
from the norm kerneK/N is rather weak and attractive at

6 [rad]
o

low energies. This is because of a small enhancement of the —TT (KGN
norm kernel due to the quark exchange as seen in Table | — R
[7,8,15. The contribution from the the OGEP, nameB/N, -2r .
is strongly repulsive, and the contribution from both terms, LS
(K+G)/N, is almost the same &/N. Therefore we can 0 K [fm™] 10

conclude that the most important term to reproduce the short-
range repulsion in th&IN 'Sy channel is the OGEP. When  FIG. 7. Calculated phase shifts for tBeN(T=3/2) 3S, chan-
the meson-exchange potentidl, is taken into account, the nel in the OGEP quark model. For further explanations see Fig. 5.
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> | | _
= 1 NN 'S,
> S Y L K/N 1
° S500f --—- GN |
1 Z ———  (K+G)/N
2 KIN+G/N
1 =
ool | Towen 1 b _
1 0 oS
0 — 2 I 1 2

r [fm]

FIG. 8. Equivalent local potential for th& N(T=3/2) 3S,
channel in the OGEP quark model. For further explanations se%
Fig. 5.

FIG. 9. Equivalent local potential for tHéN S, channel in the
GEP quark model. K+ G)/N and K/N+G/N are shown for a
comparison. For further explanations see Fig. 5.

repulsion at long ranges. It is also interesting to see that th tential shoul mol for h a pur in the chan-
phase shifts increase sharply around2—-4 fm L. These Eglewitr? asn (;Lljn?ozifirb?d%)éids?atzuc apurpose echa

are due to the Pauli-blocking effect, because this sharp in-
crease of the phase shift is seen in the cases which include
the K/N. Since(PY®) is ¢ in this channel, the ® compo- C. Roles of nonlocality

nent of the norm kernel is reduced by a factor of 2/9 In order to estimate the degrees of the nonlocality, we
=2/9. Similarly, the -1s off-diagonal component of the jnyestigate whether the contributions frogIN, G/N, and
kinetic term and the § diagonal component are reduced by v are additive or not. Each local potential given by solving
this factor of 2/9. After being divided by the norm kemel, the the inverse scattering and their sum are plotted in Figs. 9 and
diagonal parts of the klne_tlc energy ter/N are not re- 19 | Fig. 9, we see that the sum of local potentils,,
duced, but the Q_ns nondiagonal parts are reduced t.)y- a+V(';/N (solid line) is similar tOV(IK+G)/N (dashed ling so the
factor of \J2/9. This smaller-than-1 factor causes less m'x'ngnonlocality is weak as we mentioned in the end of Sec. Il
between the 81s component. Thus, th&/N term has a g - o
. o o y including the meson-exchange potentM[K+G),N+Vm
node in the phase shift with the repulsion in the Iower-energ)(dot_dashed lineare also compared tVfK+G)/N+m (solid

region[15]. See Appendix B, where this mechanism is imi- . N ) . !
tatged b[y a]simple rr)r?odel. Suppose the factor is zero indicaﬂne) in Fig. 10. As seen in these figures, the equivalent local

ing that the system has a forbidden state; the phase shiﬁt?éegrr'gfstgg;;ti% isr:)I;/rllg\?Nthle mZﬁ;en;C?Lei;msgu prggim
decreases continuously towardm atk=c in order to sat- that the nonlocality of the QCMSO otential {s rather \?v?aak in
isfy Levinson’s theorem. y P

This feature is also seen in the equivalent local potential
shown in Fig. 8. In the equivalent local potential, there ap- .
pears a very strong attractive potential at short distances with RS NN 'S,
a strong repulsion in the intermediate range. There is a qua- i A

sibound state in this attractive pocket, which corresponds to 500f | O S/K"G)/ N
the sharp increase of the phase shift. If the factor were zero, _ ] m .
S = S —-—- (K+GYN+V,,

the resonance would become a bound state, which is the way ) S Ful _

to simulate a forbidden state in terms of a local potential % |

because all other real states are forced to be orthogonal to the =

bound state. S ]
The attraction of the local potential at short distances here 0 \\/———

simulates the Pauli-blocking effect. This local potential can

reproduce the same phase shifts to those given by the origi-
nal nonlocal potential. The off-shell behaviors of these on-

shell equivalent potentials, however, may be quite different

from each other when the original potential has a high non- 0 1 ¢ fm] 2

locality. Therefore, it may be dangerous to apply the local

potential with this short-range attraction on the structure cal- FIG. 10. Equivalent local potential for tH¢N 'S, channel in
culation, such as th& matrix, and discuss the effects of the the OGEP quark modelK(+ G)/N+V,, and “Full” are shown for
attractive pocket of the local potential. The original nonlocala comparison. For further explanations see Fig. 5.
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L 1 = |
400t NN 'S, 1 2
> — Equiv.V = _
2 ——— Modified V >
> 200}t 1 0
0 --— GNN
N — ———  (K+G)N -
—— KIN+GIN
—200 L -1000 "
0 [ 2 0 L 2

FIG. 13. Equivalent local potential for thEN(T=3/2) 3S;
channel in the OGEP quark model. For further explanations see
Figs. 5 and 9.

this channel, and that the potential may be simulated by the
equivalent local potential, which has the same on-shell bechannel shown in Figs. 9 and 10, however, we see that addi-
havior. tivity does not hold so well as in thdN S, channel. This
Also, we investigate the effect of the short-range attracsuggests that the nonlocality of the QCM potential is much

tive pocket by performing a calculation without the pocket inhigher in this channel.

the NN system. In Fig. 11, we show the modified local po-
tential without the attractive pocket as well as the original
equivalent local potential with the attractive pocket. The

phase shifts given by both of the two potentials are shown in In this paper, we have investigated the short-range part of

Fig. 12. From these figures, we understand that the modifieglueaﬂ(0 tsgﬂﬁ.ltﬂgfkrilnbyégzgga;ﬁgl?séeag?ggl iﬂﬁcg%itnhe
potential gives the stronger repulsion at high energies. Th 9 9

difference between these phase shifts in the region fkom fom the quark potential. An energy-independent local poten-

=3 fm~ ! and higher produces the attractive pocket at shortIal can be reconstru_cted from a given phase shift by solvm_g
. ) . . he inverse scattering problem. We have employed this
distances in the equivalent local potential.

g 3 5044 e s e ooy o100 [0 AT 0 anry et o gl
the QCM potential in theSN(T=3/2) 3S; channel by P P

from the QCM potential.

checking whether the contributions from each term are addi- We h d fth K cl dels. O
tive or not. As seen in the figures, the equivalent local po- & have used two types of the quark cluster models. One

. e ' is called the OGEP quark model, where the OGEP plays the
tentials coming from each term shows the tendency to b

" ; T Bominant role to reproduce the mass difference between
additive. If we compare them with those for theN “S nucleon andA, and also to produce thgN short-range re-

FIG. 11. Equivalent and modified local potential for the
NN 1S, channel in the OGEP quark model.

VI. SUMMARY

T T T
=R NN 180 ] = 4
iy (5]

o 1 —— OGEP ] = 1

r ——— Modified V ] § J
L ] 0
i 1 =N, T=3/2 |

g (K+GYN 1
L —-—= V, |
i 1000} == (K+G)/N+V,,
L —— Full

-1 -| L L ) ) ' ' L
0 K i 10 0 1 ¢ [fm] 2

FIG. 12. Calculated phase shifts given by the equivalent and FIG. 14. Equivalent local potential for thEN(T=3/2) 3S,

modified potentials for th&IN 'S, channel in the OGEP quark channel in the OGEP quark model. For further explanations see
model. Figs. 5 and 10.
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pulsion. The other is the hybrid chiral quark model where the 27
pseudoscalar- and scalar-meson-exchange potentials between fo=— 5 (V). (A5)
quarks including quark exchanges are taken into account to- f
gether with the OGEP. In th& N 180 channel, once the ) ) )
peak value is fitted, there is almost no difference between BY using this form of theS matrix, Eq.(18) becomes
these two models, but there appears a small difference in
SN(T=3/2) 3S,channel. Since there is no essential differ- F(r)= ijmeikrﬂdk_}_ > e nr
ence between these two models, we have restricted ourselves 2mi) o~ g(k)—if(k) " anfg>o '
to the OGEP quark model to investigate the details of the (A6)
potential derived from the quark model. _ ) _ )

We have found that such an equivalent local potential ha§ecaus& (k) —if (k) is the polynomial function ok of up to
a strong repulsion at short distances in Ml 1S, in both  the 2nth order, we have @ poles atk=t; (i=1-2n) in the
quark models. We have, however, also found that there is aftegrand of the above equation in general. Thus, we have
attractive pocket at very short distances. It is considered that

such a pocket appears because the nonlocal repulsion be-(,y— E Re Zf(t_m) eltm' 4 Z c2e il
comes weaker effectively in the very-high-energy region. al >0 9ty —if(ty) al “g>0
This repulsion-attractive-pocket structure becomes more (A7)

manifest in the channel which has an almost-forbidden state, ] ) )
SN(T=3/2) 3S,. There we have clarified the mechanism as SO the equation to solve, EQO0), becomes a simple in-

to how the sharp increase of the phase shift occurs in corf€gral equation with the known functioR, which can be
nection with the norm kernel when there exists the almostsolved numerically. The potential in E(R1) is derived di-
forbidden state. From the shape of the equivalent local potectly from the kemeK. _ o
tentials, it is clearly seen that the gluon exchange constructs The local potential which gives a given phase shift is
the short-range repulsion in theN 1S, while the quark uniquely determined. Since the systems we are concerned

Pauli-blocking effect governs the feature of the scatteringVith in this paper do not have a bound state, the equivalent
phase shifts in th&N(T=3/2) 3S, channel. ocal potential can also be obtained by fitting the phase shift

directly. We also use this fitting to check the above method.
The reconstructed potentials by these two methods are simi-
lar to each other with a small numerical error, which cannot

This work was supported in part by Grant-in-Aid for Sci- e distinguished in the figures.
entific Research from JSHS8los. 11640258 and 12640290

ACKNOWLEDGMENTS

APPENDIX B: MODEL FOR AN ALMOST-FORBIDDEN

APPENDIX A: INVERSE SCATTERING PROBLEM STATE

Here we explain a simplified model to investigate the
mechanism of the role of an almost-forbidden state. This
model is simplified in a way that the quark exchange does
not occur among thas (n>0) states.

First we introduce a projection operatBrwhich selects

Here we briefly show how to derive an equivalent local
potential from a given phase shift: Eq4.8)—(21).

We assume that th& matrix is given by the extended
Eckert potential

. the Os state:
g(k) +if (k)
S(k)= ——+, Al
0= g0 =it (A1) P—(08)(0s.
tand(k) = f(k)/g(k), (A2) Then we consider the one-body scattering problem given by
the following normalizatiorN and HamiltoniarH:
with
Hx=ENy,
n—1
f(k)=k >, k2™, (A3) N=1-aP,
m=0
H=T—a(PT+TP)+aPTP,
n
g(k)= E gmk®™. (A4)  whereT is the kinetic energy operatdg,is the energy eigen-
m=0

value, anda is a parameter which is smaller than 1. When
a=1, the state 8 is called the forbidden state, anddf is
The parameters, {f}, and{g,,} are determined so that this close to 1, the statesis called the almost-forbidden state.
S matrix gives the given phase shii(k) up to about Introducing the projection operat@=1— P, we rewrite the
15 fm~ 1. Moreover, we use the conditiom,=1, f(k,) N andH as follows:
=0 at (ko) =0, etc., andf, is determined to give the Born
term, N=Q+(1—-a)P,
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H=QTQ+(1-a)(QTP+PTQ+PTP). 1 1
—H-—==QTQ+PTP+J1—a(PTQ+QTP).
This shows that the © state in the normalizatiolN is re- \/N \/N

duced by a factor of (+ @) and the matrix elements of the
HamiltonianH between the § andns states are also reduced
by the factor of (- «). Now let us calculate thel/N. When  This tells us that only the nondiagonal matrix elements be-

a<1, 1NN is given by tween the 8 and ns (n#0) are reduced by a factor of
1 1 J1— a. Therefore the state which contains a large part of the
\/_N =Q+ T P. 0s component, namely, the low-energy scattering state, feels
effectively a repulsion when the factafl—« is smaller
Then we obtain than 1.
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