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Return of the EMC effect: Finite nuclei
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A light front formalism for deep inelastic lepton scattering from finite nuclei is developed. In particular, the
nucleon plus momentum distribution and a finite system analog of the Hugenholtz—van Hove theorem are
presented. Using a relativistic mean field model, numerical results for the plus momentum distribution and
ratio of bound to free nucleon structure functions for oxygen, calcium, and lead are given. We show that we can
incorporate light front physics with excellent accuracy while using easily computed equal time wave functions.
Assuming nucleon structure is not modified in-medium we find that the calculations are not consistent with the
binding effect apparent in the data not only in the magnitude of the effect, but also in the dependence on the
number of nucleons.
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[. INTRODUCTION the requirement that, in the nuclear rest frame, the expecta-

The nuclear structure functioR,5(x) is smaller thanA  tion values of the total plus and minus momentum are equal.
times the free nucleon structure functidr,y(x) for values  The original version of the theorem was obtained in a non-
of x in the regime where valence quarks are dominant. Thiselativistic theory in which nucleons are the only degrees of
phenomenon, known as the European Muon Collaboratiofreedom. Here, the mesons are important and the theory is
(EMC) effect[1], has been known for almost 20 years. Nev-relativistic, but the theorem still holds. This theorem can be
ertheless, the significance of this observation remains unrehown to restricf16] the plus momentum carried by nucle-
solved even though there is a clear interpretation within théns to be the mass of the nucleus, which in turn implies that
parton model: a valence quark in a bound nucleon carrief€ probability for a nucleon to have a plus momentimis
less momentum than a valence quark in a free one. There anarrowly peaked abolt™ =M ,/A=M. Thus the only bind-
many possible explanations, but no universally accepted onég effect arises from the average binding energy, which is
The underlying mechanism responsible for the transfer omuch smaller than the average separation energy. Therefore
momentum within the constituents of the nucleus has not yelynamics beyond the relativistic mean field approximation
been specified. One popular mechanism involves ordinar{nust be invoked to explain the EMC effect. This conclusion
nuclear binding which, in its simplest form, is represented byvas limited to the case of infinite nuclear matter, and the
evaluating the free nucleon structure function at a value of computed nuclear structure function could only be compared

increased by a factor of the average separation energy dyith data on finite nuclear targets extrapolated to the limit

ided by th | SM=0.04. Th liditv of thi A—o. The goal of the present work is to extend the results
vided by the nucieon ma =004, The valldity ot thiS v, finite nuclei; the main complication arises from the spatial
binding effect has been questioned; see the revi@a$)|.

. X : : dependence of the nucleon and meson fields.
The Bjorken variableis a fraction of the plus component \ye pyriefly outline our procedure. In Secs. I and il we

of momentum, and the desire to obtain a more precise evalysresent the covariant deep inelastic scattering formalism of
ation and understanding of the binding effect lead us to atref, [18] and derive its representation in terms of nucleon
tempt to obtain a nuclear wave function in which the mo-gingle particle wave functions. The plus momentum distribu-
mentum of the nucleons is expressed in terms of this samgon follows from this representation in Sec. IV where we
plus component. Therefore we applied light front dynamicsy|so derive new version of the Hugenholtz—van Hove theo-
to determine nuclear wave functiofi§]. In this formalism  rem. Then we present the results of analytic and numerical
one defmesr:xotx? and quantizes on equal” surfaces  cajculations in Sec. V, the latter giving @ dependence of
that have a constant light front time, The conjugate opera- the ratio function contrary to experimental results. This again
tor P~ acts as an evolution operator forThe plus momen-  gives the result that the use of the relativistic mean field
tum is canonically conjugate to the spatial variable. This  gpproximation, combined with the assumption that the
light front formalism has a variety of advantad@s-14 and  nuclear medium does not modify the structure of the
also entails complicationisl5]. nucleon, cannot describe the EMC effect. The reasons for the
Our most recent resultl6] is that the use of the relativ- sybtle differences between the results for finite nuclei and

istic mean field approximation, and the assumption that they,clear matter are detailed in Sec. VI. Finally, we summarize
structure of the nucleon is not modified by effects of theand discuss possib]e imp“cations_

medium, to describe infinite nuclear matter leads to no ap-

preciable binding effect. The failure was encapsulated in

terms of the Hugenholtz—\{an. Hove theorgh?] that stqtes Il NUCLEON GREEN'S FUNCTION EOR EINITE NUCLEI

that the average nuclear binding energy per nucleon is equal

to the binding energy of a nucleon at the top of the Fermi We begin with the covariant plus momentum distribution
sea. The light front version of this theorem is obtained fromfunction
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light front mode equations in QHD-I are obtained by mini-
mizing the P~ operator(light front Hamiltoniar) with the
constrain21] thatP*=P~. The result is

—id,0, () =[a, - (p, — g,V )+ BM+0sh) 15 (X)
(2.6)

Pa ¥ () =[—1d,+29,V 1¢s () +[a -(p,—g,V,)

FIG. 1. Feynman diagram for deep inelastic scattering. A +B(M+gsd) 14, (X), 2.7
nucleus of momenturR is struck by a virtual photon of momentum
g. We label nucleon momentuky and quark momenturp. with
f d [ R e Astha=3Y" Y Y= s (28
n(Y) = Zr YT T My x"(k,P)], B
(2.2 A TVH=9TVH— VT, (2.9
where we identify Using standard manipulatiorj20] and definingeg as the

energy of the highest occupied state, we find the Green’s
XA(k,P)E—iJ d4xJ d*ye k- x-MGC(x,y), (2.2  function to be

whereG®(x,y) is the connected part of the nucleon Green’s G(x y)ZE " (X)E (y)e 9l A0 =AW
function ’ A

IG(x,Y)=(P|T {y' ()9 (y)}|P). 2.3 % f dZLefik‘(xﬂywz
o

This result is directly determined from the Feynman diagram
in Fig. 1 following Ref.[18], but with y having a different
normalization. So far this is independent of the particular
relativistic mean field model, but for concreteness we use a
qguantum hadrodynamid®QHD) Lagrangian 19,20, specifi- =GP(x,y)+GC(x,y), (2.10

cally QHD-I as in Ref.[21], where the nucleon fields)’

appearing in Eq(2.3) are those appearing in the Lagrangian.where the superscrip® and C represent the disconnected
Light front quantization requires that the plus component ofand connected parts of the nucleon Green's function, respec-
all vector potential fields vanishes, and this is obtained byjvely. The connected part is relevant to deep inelastic scat-
using the Soper-Yan transformatig22,23 tering and is given by

P (x)=e %A 0y(x), dTAX)=VT(x) (2.9

X —+2mi (K™ —p,)0(eg—e,)

km—p,tie

GC(x,y) =i LX) (y)e 19— AWIgmip (X" =y )2
to define the nucleon field operatgr for various models (x.y) EF Va(X)¥aly)

[16]. This transformation allows the use of the eigenmode (211
expansion for they fields obtained previously in Reff21]
where the sum is over occupied levelsn the Fermi sed.
We now substitute Eq2.11) into Eg. (2.2), first defining
_ t
‘ﬂ(x)_; [8atha(X) +Ba@a(X)] (k. ,k")=k where k-x=k, -x, +k*z=k, -x, —k"x7/2,
dx=d?x,dz, dk=d?k,dk" and

=2 [Baa(X)e PaX 21+ bl g, (x)ePaX 2],

siko= [ axe ey 0. (212
25

wherea, and b’ are (anti)nucleon annihilation operators We find
and we definee=—x"/2 with " =29_=—4, and , ,2)

=X, which allows us to treat the minus and perpendicular A _ 2 "N - -
coordinates on equal footing. The, and ¢, are r():ooprdinate x"(k,P)=(2m) ;E:F ValK) (k) Sk =pg).

space 4-component spinor solutions to the light front Dirac (2.13
equation with eigenvaluep,/2=M—¢,. To simplify the

analysis we will temporarily ignore electromagnetic effects,The motivation for the “double-prime” notation is the sub-
but we will include them in the final numerical results. The ject of the following section.
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IIl. WAVE FUNCTION SUBTLETIES

It would be useful to expresg”(k,P) in terms of solu-

tions of the ordinary Dirac equation, because one may use

standard computer prografi24]. If we use EQ.(2.12 we

PHYSICAL REVIEW ®5 055206

Equation (3.7) is the approximate relationship between
the s and ¢’ fields in Ref.[21]. We now are ready to derive
a representation of Eq2.1) in terms of these nucleon wave
finctions.

find that these “double-primed” fields satisfy another version

of the mode equation§2.6) and (2.7) following from an
application of the Soper-Yan transformation Eg.4), and
are given by

[—id,— g,V 19 (%)
=[a, - (p.—9,V. )+ BM+gsh) 142" (X)
(3.1
[i0,+9,V" =29,V +p, 14" (x)
=la, -(p.—9,V.)+B(M +gs¢)]’//¢;_(x)-
(3.2

If one multiplies Eq.(3.1) by y* and Eq.(3.2) by y~ and
adds the two equations, using" =V~ =V~ =V°, one ob-
tains

[=¥3(i0,4 P12+ ¥%(p, 12— g,V 1¢a(X)

=[y.-pL+M+gsp]¥ (%), (3.3

IV. DERIVATION OF THE PLUS MOMENTUM
DISTRIBUTION

In Ref. [21], it was determined that a plus momentum
distribution in QHD-I is given by

f<k+>=2EF d2x, [y (x, k|2 (4.2)

This distribution peaks ak'/M=y=0.8 for 10, (with
smaller values for heavier nuc)édut is not the distribution
obtained from the covariant formalism of Sec. Il. The con-
nection between thi§(y) and the covarianty(y) was made
in Ref. [16]; it was determined that, in the limit of infinite
nuclear matter, the relationship betwefty) and fy(y) is
simply a shift in the argument by the vector meson potential,
fy)=fn(y+9,V'IM). (4.2
This shift arises from the use of the Soper-Yan transforma-
tion Eq. (2.4) where they' fields are those appearing in the
Lagrangian and are used to determfpdy), whereas the)
fields are used to determirf€y). In finite nuclei, this rela-
tionship is somewhat more complicated since the vector me-

exception of they®p_ /2 term. To remove this term, we set

Pa(X)=€""Pa?2y/(x) (3.4
and substitute into Eq3.3), so that
Y(Pal2= 9, V)P0 =[y- P+ M +gs]thu(), s

which looks superficially like the ordinary Dirac equation for
the ¢ fields that appear in the Lagrangian. There is a subtle

difference; since the light front energy is given b@z(kf

+M?)/k*, Eq. (3.3 has support fok*>0. This means Eq.
(3.5) has support fok®> — p_, /2 which in turn implies that it
can only be considered the ordinary Dirac equation with
momentum cutoff ap, /2=M. This restriction is nearly su-

with Eq. (2.13, and see that
Tr wx’*(k,P):(zw)ZaEF Ty (K LK) 18k~ —py)
=82 EF [ (K)[28(k™—py)-

Substituting into Eq(2.1) we obtain

B 2
- (2m)?

>

aeF

dk 8(y—k /M|y F (k)|2.
(4.3

faly)

Use of Parseval’s identity and integrating oker gives us

%ur main result:

perfluous since the probability that a nucleon is carrying

|k3|>M is suppressed by a factor of order MR with R
being the nuclear radius. This allows us to effectively iden-

tify ¥,=¢' which gives the approximate relationships so the plus momentum distribution is related to Fourier trans-
among the(equal timé Lagrangian fields)’, the Soper-Yan form of they” wave functions. One can see the similarity to
transformed light front fields, and the untransformed light Eg. (4.1); the difference lies entirely in Eq2.12). It should
front fields ¢” that appear in Eq2.13. We have be emphasized that this result does not depend on the ap-
proximation in Sec. Ill.

We shall use\(y) to compute the nuclear structure func-

fN<y>=2MaEF d2, [ (x,  My)|?, (4.9

’ ~a P Z2,n
ValX)=e ValX) 3.6 tion F,5(X) in Sec. V, but first we derive a version of the
o _ Hugenholtz—van Hove theorem valid for finite nuclei. To do
=e Pa?2e719uAMy, (x), (3.7 that, multiply Eq.(4.3) by y and integrate,
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2 k*
= | dyyf = f dk=| " " (k)|2.
% f yyfu(y) 2 2 = [ (W) 4
(4.9
Now remove the plus projections and reexprgésand its 3
complex conjugate in coordinate spaceandx’. One can  f
then integrate ovek yielding a delta functionS(x—x") that 5
allows integration ovek’ yielding
1 1
<Y>=ﬁ EF detIIQLT(X)VOfi&WZ(X)-

We wish to look at they fields in order to understand our
result in the context of Ref21], so we need to perform the

- T 0 .
Soper-Yan transformation E2.4) and use)(TyOEX FIG. 2. Plus momentum distribution§y(y), for “**Ca (solid),

160 (short dashes 2%%Pb (dot-dashes and nuclear matteflong
dashes

== 3 [ axp0y 1o+, (01p,0
y M acF Ny 9v “en will again be small. The vector operator “mixing” and the
scalar meson contribution will be elaborated on in a more
If we explicitly put in the the nuclear state vectors, we cangeneral context in Sec. VI.

perform the sum omx by inserting creation and annihilation It is also worthwhile to explicitly evaluate the expression
operators; we can add the time dependence for free since it (4.4) for fy(y) in the limit of infinite nuclear matter. In this
unaffected bys* and cancels with both fermion fields, and case,V°=V* =V~ are constant ant, =0, so we find

the vector potential is static. We have effectively undone the

substitution Eq(2.5 and now have an expectation value of Azx,) = f“dzfvo(z,’xl): —\VO2=-V*z, (4.8

an operator z

1 —— so that Eq.(2.12 becomes
W= | Xy Tio eV, @

. Vi o= [ e e 070 g
The second term of Eq4.6) was essentially included by
Birse [25] via a kinematic argument; here it follows from a =yt (k kT—g,V") (4.9
fully covariant light front treatment. Using the vector meson altthe v '
field equation in QHD-I Therefore Eq(4.4) becomes
N MVt =g,y o, _ _
: ’ iy fn(y)=2M EF d?x, |y (X, ,My—g,VH)|?,
integrating by parts, and antisymmetrizing one can re- o (4.10
express the second term of Hg.6) as
which is simply the expressiof.1) modified by a shift in
(y)= if dx(Jy*ia* v+ mﬁV*V*JrV*”V;} f[he argument ogvv+/|v|.. Thus.wg find Eq(4.2) is satisfied
Ma in the nuclear matter limit. It is important to stress that all
1 that is recovered here is the shift in the argument and not any
= _j dx(T =" ot @) particular form of the plus momentum distribution that arises
Ma from the specific model used.
+

1 P
= M_A( Pt— P;) =1- M—SA: 1, 4.7 V. NUCLEAR STRUCTURE FUNCTIONS

We determine the wave functions appearing in Eg4)
where T is one component of the canonical energy mo-numerically from a relativistic self-consistent treatment fol-
mentum tensorP_ is the plus momentum of the scalar me- lowing Horowitz and Serdi26] using the same prograf@4]
son fields, andP™ is the total nuclear plus momentum. The that includes electromagnetic effects. The plus momentum
result Eq.(4.7) constitutes an analog of the Hugenholtz—vandistribution follows and is given in Fig. 2 fot°0, “°Ca,
Hove theoren{17] for finite systems; the equality becomes 2°%Pb and in the nuclear matter linithe 1O calculation is
exact in the nuclear matter limit, where the scalar mesomlso shown in Fig. # One can see that the peaks appear near
contribution vanishes, as shown in our previous widk€].  y=1 as required by the Hugenholtz—van Hove theorem Eq.
This means that we may anticipate that the binding effect4.7).
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FIG. 3. f(y) distributions for *0 (solid) and nuclear matter
(long dashers after application of the Soper-Yan transformation
along with the®0 distribution from Ref[21] (short dashés Note
that the peaks occur < 1.

It is worth noting that application of the Soper-Yan trans-

formation Eq.(2.4) to the " wave functions obtained from

the equal time wave functions reproduces the plus momen-
tum distributions, including the correct asymmetry, of the

light front calculations in Ref[21], which did not use the
approximation(3.6). We show the comparison of our oxygen
calculation to that of Ref[21] in Fig. 3; the agreement of

PHYSICAL REVIEW ®5 055206

mate in the sense of Sec. lll, closed form of the plus momen-
tum distribution for *60:

fo(v)= e~ E(ms—y)?
2 N2
+2{1+ E(myp—y)?e ™7, (5.
with  7y=M+w(2(—1)+1+3/2)-v, where v

=50 MeV, andé=Mb whereb=(mw) *?>=1.6 fm is the
oscillator length that is fit to the root mean square radius of
oxygen(R?)Y2=2.7 fm. The distribution Eq(5.1) narrows
for larger ¢ that corresponds to an increasing root mean
square radius. This distribution is plotted in Fig. 4 where one
can see that it peaks nepr1 like the relativistic Hartree
calculation, but appears to have a smaller valu¢yof It is
worth noting that the Hartree calculations are in the relativ-
istic equal time framework and put into our relativistic light
front formalism, while the harmonic oscillator calculations
are nonrelativistic and put into our relativistic formalism.
The structure function is given by the convolution

A

Fanlw) _ f dy fu(y) Fan(Xaly),
XA

A (5.2

with xAEQzAIZP-q=xM/|\7. The assumption that nuclear

these two curves demonstrates the excellence of the approx@ffects do not modify the structure of the nucleon is embod-

mation relating the light front and equal time wave functions

ded in Eq.(5.2) by the use of the structure function of a free

One can see that the effect in finite nuclei of the Soper-Yarucleon; we use the parametrizati@v]
transformation is to shift and broaden the plus momentum

distribution, while in nuclear mattérlso shown in Fig. Bit

is just a shift. If these distributions were to be used in the

nuclear structure function Ed5.2) though, sincey)=0.8
for oxygen, the ratio functiofEq. (5.4) discussed latér
would fall precipitously to nearly zero at=0.6 in stark
contradiction with experiment.

We also evaluated the plus momentum distribution Eq.

(4.4) with the simple nonrelativistic harmonic oscillator shell
model as an additional check on our method. Thesgpial
time) wave functions give us an explicit, although approxi-

FIG. 4. Plus momentum distribution fol?O calculated with
harmonic oscillator(solid curvg and relativistic Hartregdashed
curve wave functions.

(X)=0.58//x(1—X)%8+0.33/X(1—x)38+0.49 1 —x)8.
(5.3

FZN

The experiments measure the ratio function, defined as

Faa(Xa)
R(x) AF(X) (5.9
The results of our calculations are plotted f§i0, “°Ca,
208pp and in the nuclear matter limit in Fig. 5 showing data
for carbon, calcium, and gold from SLAC-E1828] and an
extrapolation[29] for the nuclear matter calculation. The
most striking result is that these calculations fail to reproduce
the EMC effect; the curves consistently miss the minima in
the data, and the agreement gets worse with increasing
Another important result is that the ratio function does not
fall to zero as would be the case if the small effective mass
(~0.56M for nuclear matter in QHDjlwere the relevant
parameter describing the binding effect that would follow
from using Eq.(4.1) instead of Eq.(4.4). The results also
show a minimum neax=0.6 for oxygen and nuclear matter
that is deeper than the calcium and lead calculations. This is
a curious feature that contradicts the trend in experimental
data, and is due to the effects of two parameters.

The first, and most important, is that of the location of the
peak of the plus momentum distribution given by E4.7),
which gradually approachgs=1 as the nuclear matter limit
is reached. This is due to the fact that scalar mesons carry a
small amount of plus momentufi21] that vanishes a#\
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Oxygen Calcium
1.1 } 1.1
toot
1 E E E E 1 E
R ity R
g
0.9 0.9 [
it it f

0.8 0.8
0.7 0.7

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

X X
Lead Nuclear Matter
1.1 1.1
: it {
; ; ;
R L] i3 . R E
0.9 iy E 0.9 E E
[

0.8 By ' 0.8 i i f
0.7 0.7

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

X X

FIG. 5. Ratio functions fort®0, 4°Ca and?°®b showing data for carbon, calcium and gold, respectively, from SLAC-EA39 The
nuclear matter calculation shows extrapolated §2€a.

—o, The closer toy=1 the peak is in Fig. 2, the less pro- The motivation for the use of Gaussian plus momentum dis-
nounced the minimum in Fig. 5 will be all else remaining tributions is based on the expansidi]

constant. The second effect is due Nb which reaches a ,

minimum at**Fe corresponding to a more pronounced mini- Faa(Xa) =Fan(Xa) + €XaF2n(Xa)

mum of the ratio function than foh<<56 or A>56, keeping / 2

the scalar meson contribution constant. FAZAF W) FXEFon ()] (59
Using a Gaussian parametrization of the plus momentunyhere

distribution and the experimental binding energy per nucleon

via the semiempirical mass formula, we have modeled the

dependence of the minimum of the ratio functioR(x le—J dyyfn(y) (5.9

=0.72), on the number of nucleons in the nucleus in Fig. 6.

yzf dy(y—1)fn(y). (5.7
1.05
; The Gaussian parametrization uses the peak location and
width, (y) and (y?)—(y)?)*? respectively, from the rela-
0.95 tivistic Hartree calculations in Fig. 2, and is normalized to
Ro.72 unity. This allows us to obtain a plus momentum distribution
0.9 for any A with minimal effort. We show the combined effect
% of scalar mesons and binding energy per nucleon on the ratio
0.85 L % function along with the effect of scalar mesons alone using a
0.8 . constant binding energy per nucleon-e8.5 MeV indepen-
' dent of A. It can be seen that a changiiy with A has the
0 50 10}2 150 200 most effect for nuclei much larger than iron, but does not

change the general trend that the minimum of the ratio func-
FIG. 6. R(x=0.72) as a function oA including scalar meson tion becomes less pronounced/gcreases due to the van-
and binding effects(solid line), and leaving binding energy per ishing scalar meson contribution and the peak of the plus
nucleon constant at 8.5 MeV (dashed ling The data are from momentum distribution approaching unity. This dependence
SLAC-E139[28]. of the binding effect oA is quite different, both in magni-
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tude and shape, than the trend in experimental data summazesonic degrees of freedom for nucleons by replacing me-
rized in Ref.[29], which satisfieR(x=0.72)~ A" so that  sonic vertices with nucleon point couplings, for example, in
the minimum becomes more pronouncediascreases. This line with the general concept of effective field theory. In our
fully demonstrates the inadequacy of conventional nucleonease the first three terms are related by the vector meson field

meson dynamics to explain the EMC effect. equation, but the fourth is left out since the scalar mesons
couple to the scalar densityys, which is not present in Eq.
VI. SCALAR MESON CONTRIBUTION TO PLUS (6.1). Therefore the scalar mesofend pion$ contribute a
MOMENTUM AND MORE GENERAL CONSIDERATIONS well defined fraction of plus momentum. These explicit me-

son contributions create an EMC binding effect, but the pi-
onic contributions are also limited by nuclear Drell-Yan ex-
erimentq 32] to carrying about 2% of the plus momentum,
vhich is insufficient to account for the entire EMC effect that
corresponds to about 5% of the plus momentum for iron.

The average value of, given by Eq.(4.7), yields the
nucleon contribution to the plus momentum, and is less tha
1, which can be seen in Fig. 2. We now address the remai
ing plus momentum in finite nuclei. Previous resylgi]
show that a small fraction&y~0.005) of the plus momen-
tum is carried by the scalar mesons, which vanishes as the
nuclear matter limit is approached. This is due to the fact that VII. SUMMARY AND DISCUSSION
scalar mesons couple to gradients in the scalar de(eiis-

ing mainly from the surface of finite nuc)eiwhich vanish as The depth of the minimum in the EMC effect is known to

have a monotonically increasing behavior withwhich has
%een studied in Refg28,29 among others. Our present
theory is defined by the use of the mean-field approximation,
"along with the assumption that nuclear effects do not modify
the structure of the nucleon. This theory leads to results in
severe disagreement with experiment. Not only do we find
Shat the depth of the minimum is monotonically decreasing
. : with A, but it has a smaller magnitude than experiment.
directly related to the Dirac structure of the energy Momen-rpese results, which fail to capture any of the important
tum tensor, so the answer also lies there and illuminates gov reg of the experiments, represent a failure of relativistic
problem with conventional nucleon-meson dynamics. Th&yoap field theory. Furthermore, the plus momentum distri-

component of the energy _momentum _tensor re_Ie_van_t to thButions we compute givgy)=1, which indicates that nearly
plus momentum, from a chiral Lagrangian containing isoscay| ot the plus momentum is carried by the nucleons. In order

. LY al
Izro \éector mesons, scalar mesons and pions, is given By, onroqyce the data, the nucleon plus momentum must be
(30,31 decreased by some mechanism that becomes more important
gt 2 T 4 4 ‘4 at largerA. Nucleon-nucleon correlations cannot take plus
T VIV MV T+ gy Ti0T gt 07 o ¢ momentum from nucleons, and explicit mesonic components
o0t £2 . in the nuclear Fock state wave function carrying plus mo-
”27 :

carry plus momentum and not vector mesons?

The simplest answer lies in the Dirac structure of Eq
(2.1); the y™ in the trace picks out terms in the full interact-
ing Green’'s function with an odd number gf matrices,
which includes all Lorentz vector interactions and exclude
Lorentz scalar interactions. The Dirac structurefgfy) is

+9tm T m—m— | 1— —si mentum are limited33—35 by Drell-Yan experiment§32].
? m? Thus it appears that the EMC effect may be due to something
(6.1) outside of conventional nucleon-meson dynamics. For ex-
ample, true modifications to nucleon structure caused by
Since each of the terms in E@6.1) involves one of the nuclear interactions could be important, in which case one
fields, it is natural to associate each term with a particulawould need to use models such as the mini-delocalization
contribution to the plus momentum. This decomposition,model[5], quark-meson coupling modg36—39 or the chi-
though, is not well defined; field equations relate variousrtal quark soliton model reviewed if89] to include those
components. We see the first three terms of Bdl) appear effects.
in {y), which defines the nucleon contribution to the total
nuclear plus momentum, in the derivation of the ACKNOWLEDGMENT
Hugenholtz—van Hove theorem Ed.7); we are not allowed
to have the vector mesons contribute a well defined fraction We would like to thank the U.S. DOE for partial support
of plus momentum. This means that one could trade certainf this work.
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