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Return of the EMC effect: Finite nuclei
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A light front formalism for deep inelastic lepton scattering from finite nuclei is developed. In particular, the
nucleon plus momentum distribution and a finite system analog of the Hugenholtz–van Hove theorem are
presented. Using a relativistic mean field model, numerical results for the plus momentum distribution and
ratio of bound to free nucleon structure functions for oxygen, calcium, and lead are given. We show that we can
incorporate light front physics with excellent accuracy while using easily computed equal time wave functions.
Assuming nucleon structure is not modified in-medium we find that the calculations are not consistent with the
binding effect apparent in the data not only in the magnitude of the effect, but also in the dependence on the
number of nucleons.
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I. INTRODUCTION

The nuclear structure functionF2A(x) is smaller thanA
times the free nucleon structure functionAF2N(x) for values
of x in the regime where valence quarks are dominant. T
phenomenon, known as the European Muon Collabora
~EMC! effect @1#, has been known for almost 20 years. Ne
ertheless, the significance of this observation remains u
solved even though there is a clear interpretation within
parton model: a valence quark in a bound nucleon car
less momentum than a valence quark in a free one. There
many possible explanations, but no universally accepted
The underlying mechanism responsible for the transfer
momentum within the constituents of the nucleus has not
been specified. One popular mechanism involves ordin
nuclear binding which, in its simplest form, is represented
evaluating the free nucleon structure function at a value ox
increased by a factor of the average separation energy

vided by the nucleon massē/M.0.04. The validity of this
binding effect has been questioned; see the reviews@2–5#.

The Bjorken variablex is a fraction of the plus componen
of momentum, and the desire to obtain a more precise ev
ation and understanding of the binding effect lead us to
tempt to obtain a nuclear wave function in which the m
mentum of the nucleons is expressed in terms of this s
plus component. Therefore we applied light front dynam
to determine nuclear wave functions@6#. In this formalism
one definesx65x06x3 and quantizes on equalx1 surfaces
that have a constant light front time,t. The conjugate opera
tor P2 acts as an evolution operator fort. The plus momen-
tum is canonically conjugate to the spatialx2 variable. This
light front formalism has a variety of advantages@7–14# and
also entails complications@15#.

Our most recent result@16# is that the use of the relativ
istic mean field approximation, and the assumption that
structure of the nucleon is not modified by effects of t
medium, to describe infinite nuclear matter leads to no
preciable binding effect. The failure was encapsulated
terms of the Hugenholtz–van Hove theorem@17# that states
that the average nuclear binding energy per nucleon is e
to the binding energy of a nucleon at the top of the Fe
sea. The light front version of this theorem is obtained fro
0556-2813/2002/65~5!/055206~8!/$20.00 65 0552
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the requirement that, in the nuclear rest frame, the expe
tion values of the total plus and minus momentum are eq
The original version of the theorem was obtained in a n
relativistic theory in which nucleons are the only degrees
freedom. Here, the mesons are important and the theor
relativistic, but the theorem still holds. This theorem can
shown to restrict@16# the plus momentum carried by nucle
ons to be the mass of the nucleus, which in turn implies t
the probability for a nucleon to have a plus momentumk1 is
narrowly peaked aboutk15MA /A5M̄ . Thus the only bind-
ing effect arises from the average binding energy, which
much smaller than the average separation energy. There
dynamics beyond the relativistic mean field approximat
must be invoked to explain the EMC effect. This conclusi
was limited to the case of infinite nuclear matter, and
computed nuclear structure function could only be compa
with data on finite nuclear targets extrapolated to the lim
A→`. The goal of the present work is to extend the resu
to finite nuclei; the main complication arises from the spa
dependence of the nucleon and meson fields.

We briefly outline our procedure. In Secs. II and III w
present the covariant deep inelastic scattering formalism
Ref. @18# and derive its representation in terms of nucle
single particle wave functions. The plus momentum distrib
tion follows from this representation in Sec. IV where w
also derive new version of the Hugenholtz–van Hove th
rem. Then we present the results of analytic and numer
calculations in Sec. V, the latter giving anA dependence of
the ratio function contrary to experimental results. This ag
gives the result that the use of the relativistic mean fi
approximation, combined with the assumption that t
nuclear medium does not modify the structure of t
nucleon, cannot describe the EMC effect. The reasons for
subtle differences between the results for finite nuclei a
nuclear matter are detailed in Sec. VI. Finally, we summar
and discuss possible implications.

II. NUCLEON GREEN’S FUNCTION FOR FINITE NUCLEI

We begin with the covariant plus momentum distributi
function
©2002 The American Physical Society06-1
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f N~y!5E d4k

~2p!4 dS y2
k01k3

M̄
D Tr@g1xA~k,P!#,

~2.1!

where we identify

xA~k,P![2 i E d4xE d4ye2 ik•(x2y)GC~x,y!, ~2.2!

whereGC(x,y) is the connected part of the nucleon Gree
function

iG~x,y![^PuT1$c8~x!c̄8~y!%uP&. ~2.3!

This result is directly determined from the Feynman diagr
in Fig. 1 following Ref.@18#, but with x having a different
normalization. So far this is independent of the particu
relativistic mean field model, but for concreteness we us
quantum hadrodynamics~QHD! Lagrangian@19,20#, specifi-
cally QHD-I as in Ref.@21#, where the nucleon fields,c8
appearing in Eq.~2.3! are those appearing in the Lagrangia
Light front quantization requires that the plus component
all vector potential fields vanishes, and this is obtained
using the Soper-Yan transformation@22,23#

c8~x![e2 igvL(x)c~x!, ]1L~x!5V1~x! ~2.4!

to define the nucleon field operatorc for various models
@16#. This transformation allows the use of the eigenmo
expansion for thec fields obtained previously in Ref.@21#

c~x!5(
a

@aaca~x!1ba
†wa~x!#

5(
a

@aaca~x!e2 ipa
2x1/21ba

†wa~x!eipa
2x1/2#,

~2.5!

where aa and ba
† are ~anti-!nucleon annihilation operator

and we definez[2x2/2 with ]152]252]z and (x' ,z)
[x, which allows us to treat the minus and perpendicu
coordinates on equal footing. Theca andwa are coordinate
space 4-component spinor solutions to the light front Di
equation with eigenvaluespa

2/25M2«a . To simplify the
analysis we will temporarily ignore electromagnetic effec
but we will include them in the final numerical results. Th

FIG. 1. Feynman diagram for deep inelastic scattering.
nucleus of momentumP is struck by a virtual photon of momentum
q. We label nucleon momentumk, and quark momentump.
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light front mode equations in QHD-I are obtained by min
mizing the P2 operator~light front Hamiltonian! with the
constraint@21# that P15P2. The result is

2 i ]zca
2~x!5@a'•~p'2gvV̄'!1b~M1gsf!#ca

1~x!
~2.6!

pa
2ca

1~x!5@2 i ]z12gvV̄2#ca
1~x!1@a'•~p'2gvV̄'!

1b~M1gsf!#ca
2~x!, ~2.7!

with

L6ca5 1
2 g0g6ca5ca

6 , ~2.8!

]1V̄m5]1Vm2]mV1. ~2.9!

Using standard manipulations@20# and defining«F as the
energy of the highest occupied state, we find the Gree
function to be

G~x,y!5(
a

ca~x!c̄a~y!e2 igv[L(x)2L(y)]

3E dk2

2p
e2 ik2(x12y1)/2

3F 1

k22pa
21 i«

12p id~k22pa
2!u~«F2«a!G

[GD~x,y!1GC~x,y!, ~2.10!

where the superscriptsD and C represent the disconnecte
and connected parts of the nucleon Green’s function, res
tively. The connected part is relevant to deep inelastic s
tering and is given by

GC~x,y!5 i (
aPF

ca~x!c̄a~y!e2 igv[L(x)2L(y)]e2 ipa
2(x12y1)/2,

~2.11!

where the sum is over occupied levelsa in the Fermi seaF.
We now substitute Eq.~2.11! into Eq. ~2.2!, first defining
(k' ,k1)[k where k•x5k'•x'1k1z5k'•x'2k1x2/2,
dx5d2x'dz, dk5d2k'dk1 and

ca9 ~k![E dxe2 ik•xe2 igvL(x)ca~x!. ~2.12!

We find

xA~k,P!5~2p!2 (
aPF

ca9 ~k!c̄a9 ~k!d~k22pa
2!.

~2.13!

The motivation for the ‘‘double-prime’’ notation is the sub
ject of the following section.
6-2
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III. WAVE FUNCTION SUBTLETIES

It would be useful to expressxA(k,P) in terms of solu-
tions of the ordinary Dirac equation, because one may u
standard computer program@24#. If we use Eq.~2.12! we
find that these ‘‘double-primed’’ fields satisfy another versi
of the mode equations~2.6! and ~2.7! following from an
application of the Soper-Yan transformation Eq.~2.4!, and
are given by

@2 i ]z2gvV1#ca9
2~x!

5@a'•~p'2gvV'!1b~M1gsf!#ca9
1~x!

~3.1!

@ i ]z1gvV122gvV̄21pa
2#ca9

1~x!

5@a'•~p'2gvV'!1b~M1gsf!#ca9
2~x!.

~3.2!

If one multiplies Eq.~3.1! by g1 and Eq.~3.2! by g2 and
adds the two equations, usingV15V25V̄25V0, one ob-
tains

@2g3~ i ]z1pa
2/2!1g0~pa

2/22gvV0!#ca9 ~x!

5@g'•p'1M1gsf#ca9 ~x!, ~3.3!

which looks nearly like the ordinary Dirac equation with th
exception of theg3pa

2/2 term. To remove this term, we se

c̃a~x![e2 ipa
2z/2ca9 ~x! ~3.4!

and substitute into Eq.~3.3!, so that

g0~pa
2/22gvV0!c̃a~x!5@g•p1M1gsf#c̃a~x!,

~3.5!

which looks superficially like the ordinary Dirac equation f
thec8 fields that appear in the Lagrangian. There is a su
difference; since the light front energy is given byk25(k'

2

1M2)/k1, Eq. ~3.3! has support fork1.0. This means Eq
~3.5! has support fork3.2pa

2/2 which in turn implies that it
can only be considered the ordinary Dirac equation wit
momentum cutoff atpa

2/2.M . This restriction is nearly su
perfluous since the probability that a nucleon is carry
uk3u.M is suppressed by a factor of ordere2M2R2

with R
being the nuclear radius. This allows us to effectively ide
tify c̃a.c8 which gives the approximate relationship
among the~equal time! Lagrangian fieldsc8, the Soper-Yan
transformed light front fieldsc, and the untransformed ligh
front fieldsc9 that appear in Eq.~2.13!. We have

ca8 ~x!.e2 ipa
2z/2ca9 ~x! ~3.6!

5e2 ipa
2z/2e2 igvL(x)ca~x!. ~3.7!
05520
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Equation ~3.7! is the approximate relationship betwee
thec andc8 fields in Ref.@21#. We now are ready to derive
a representation of Eq.~2.1! in terms of these nucleon wav
functions.

IV. DERIVATION OF THE PLUS MOMENTUM
DISTRIBUTION

In Ref. @21#, it was determined that a plus momentu
distribution in QHD-I is given by

f ~k1!52 (
aPF

E d2x'uca
1~x' ,k1!u2. ~4.1!

This distribution peaks atk1/M̄[y.0.8 for 16O, ~with
smaller values for heavier nuclei! but is not the distribution
obtained from the covariant formalism of Sec. II. The co
nection between thisf (y) and the covariantf N(y) was made
in Ref. @16#; it was determined that, in the limit of infinite
nuclear matter, the relationship betweenf (y) and f N(y) is
simply a shift in the argument by the vector meson potent

f ~y!5 f N~y1gvV1/M̄ !. ~4.2!

This shift arises from the use of the Soper-Yan transform
tion Eq. ~2.4! where thec8 fields are those appearing in th
Lagrangian and are used to determinef N(y), whereas thec
fields are used to determinef (y). In finite nuclei, this rela-
tionship is somewhat more complicated since the vector
son potential is no longer a constant over all space. We s
with Eq. ~2.13!, and see that

Tr g1xA~k,P!5~2p!2 (
aPF

Tr@g1ca9 ~k!c̄a9 ~k!#d~k22pa
2!

58p2 (
aPF

uca9
1~k!u2d~k22pa

2!.

Substituting into Eq.~2.1! we obtain

f N~y!5
2

~2p!2 (
aPF

E dk d~y2k1/M̄ !uca9
1~k!u2.

~4.3!

Use of Parseval’s identity and integrating overk1 gives us
our main result:

f N~y!52M̄ (
aPF

E d2x'uca9
1~x' ,M̄y!u2, ~4.4!

so the plus momentum distribution is related to Fourier tra
form of thec9 wave functions. One can see the similarity
Eq. ~4.1!; the difference lies entirely in Eq.~2.12!. It should
be emphasized that this result does not depend on the
proximation in Sec. III.

We shall usef N(y) to compute the nuclear structure fun
tion F2A(x) in Sec. V, but first we derive a version of th
Hugenholtz–van Hove theorem valid for finite nuclei. To d
that, multiply Eq.~4.3! by y and integrate,
6-3
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^y&[E dyy fN~y!5
2

~2p!2 (
aPF

E dk
k1

M̄
uca9

1~k!u2.

~4.5!

Now remove the plus projections and reexpressc9 and its
complex conjugate in coordinate spacesx and x8. One can
then integrate overk yielding a delta functiond(x2x8) that
allows integration overx8 yielding

^y&5
1

M̄
(

aPF
E dxca9

†~x!g0g1i ]1ca9 ~x!.

We wish to look at thec fields in order to understand ou
result in the context of Ref.@21#, so we need to perform th
Soper-Yan transformation Eq.~2.4! and useX†g0[X̄

^y&5
1

M̄
(

aPF
E dxc̄a~x!g1@ i ]11gvV1~x!#ca~x!.

If we explicitly put in the the nuclear state vectors, we c
perform the sum ona by inserting creation and annihilatio
operators; we can add the time dependence for free since
unaffected by]1 and cancels with both fermion fields, an
the vector potential is static. We have effectively undone
substitution Eq.~2.5! and now have an expectation value
an operator

^y&5
1

MA
E dx^c̄g1@ i ]11gvV1#c&. ~4.6!

The second term of Eq.~4.6! was essentially included b
Birse @25# via a kinematic argument; here it follows from
fully covariant light front treatment. Using the vector mes
field equation in QHD-I

]mVm11mv
2V15gvc̄g1c,

integrating by parts, and antisymmetrizing one can
express the second term of Eq.~4.6! as

^y&5
1

MA
E dx^c̄g1i ]1c1mv

2V1V11V1mVm
1&

5
1

MA
E dx^T112]1f]1f&

5
1

MA
~P12Ps

1!512
Ps

1

MA
.1, ~4.7!

whereT11 is one component of the canonical energy m
mentum tensor,Ps

1 is the plus momentum of the scalar m
son fields, andP1 is the total nuclear plus momentum. Th
result Eq.~4.7! constitutes an analog of the Hugenholtz–v
Hove theorem@17# for finite systems; the equality become
exact in the nuclear matter limit, where the scalar me
contribution vanishes, as shown in our previous work@16#.
This means that we may anticipate that the binding eff
05520
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will again be small. The vector operator ‘‘mixing’’ and th
scalar meson contribution will be elaborated on in a m
general context in Sec. VI.

It is also worthwhile to explicitly evaluate the expressio
~4.4! for f N(y) in the limit of infinite nuclear matter. In this
case,V05V15V2 are constant andV'50, so we find

L~z,x'!5E
z

`

dz8V0~z8,x'!52V0z52V1z, ~4.8!

so that Eq.~2.12! becomes

ca9
1~k!5E dxe2 ik'•x'e2 i (k12gvV1)zca

1~x!

5ca
1~k' ,k12gvV1!. ~4.9!

Therefore Eq.~4.4! becomes

f N~y!52M̄ (
aPF

E d2x'uca
1~x' ,M̄y2gvV1!u2,

~4.10!

which is simply the expression~4.1! modified by a shift in
the argument ofgvV1/M̄ . Thus we find Eq.~4.2! is satisfied
in the nuclear matter limit. It is important to stress that
that is recovered here is the shift in the argument and not
particular form of the plus momentum distribution that aris
from the specific model used.

V. NUCLEAR STRUCTURE FUNCTIONS

We determine the wave functions appearing in Eq.~4.4!
numerically from a relativistic self-consistent treatment fo
lowing Horowitz and Serot@26# using the same program@24#
that includes electromagnetic effects. The plus momen
distribution follows and is given in Fig. 2 for16O, 40Ca,
208Pb and in the nuclear matter limit~the 16O calculation is
also shown in Fig. 4!. One can see that the peaks appear n
y51 as required by the Hugenholtz–van Hove theorem
~4.7!.

FIG. 2. Plus momentum distributions,f N(y), for 40Ca ~solid!,
16O ~short dashes!, 208Pb ~dot-dashes!, and nuclear matter~long
dashes!.
6-4
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It is worth noting that application of the Soper-Yan tran
formation Eq.~2.4! to thec9 wave functions obtained from
the equal time wave functions reproduces the plus mom
tum distributions, including the correct asymmetry, of t
light front calculations in Ref.@21#, which did not use the
approximation~3.6!. We show the comparison of our oxyge
calculation to that of Ref.@21# in Fig. 3; the agreement o
these two curves demonstrates the excellence of the app
mation relating the light front and equal time wave function
One can see that the effect in finite nuclei of the Soper-Y
transformation is to shift and broaden the plus moment
distribution, while in nuclear matter~also shown in Fig. 3! it
is just a shift. If these distributions were to be used in
nuclear structure function Eq.~5.2! though, sincê y&.0.8
for oxygen, the ratio function@Eq. ~5.4! discussed later#
would fall precipitously to nearly zero atx.0.6 in stark
contradiction with experiment.

We also evaluated the plus momentum distribution E
~4.4! with the simple nonrelativistic harmonic oscillator she
model as an additional check on our method. These~equal
time! wave functions give us an explicit, although appro

FIG. 3. f (y) distributions for 16O ~solid! and nuclear matter
~long dashes! after application of the Soper-Yan transformatio
along with the16O distribution from Ref.@21# ~short dashes!. Note
that the peaks occur aty,1.

FIG. 4. Plus momentum distribution for16O calculated with
harmonic oscillator~solid curve! and relativistic Hartree~dashed
curve! wave functions.
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mate in the sense of Sec. III, closed form of the plus mom
tum distribution for 16O:

f N~y!.
j

A16p
@e2j2(h1s2y)2

12$11j2~h1p2y!2%e2j2(h1p2y)2
#, ~5.1!

with hnl5M1v(2(n21)1 l 13/2)2v0 where v0

.50 MeV, andj[M̄b whereb5(mv)21/2.1.6 fm is the
oscillator length that is fit to the root mean square radius
oxygen^R2&1/2.2.7 fm. The distribution Eq.~5.1! narrows
for larger j that corresponds to an increasing root me
square radius. This distribution is plotted in Fig. 4 where o
can see that it peaks neary51 like the relativistic Hartree
calculation, but appears to have a smaller value of^y&. It is
worth noting that the Hartree calculations are in the rela
istic equal time framework and put into our relativistic lig
front formalism, while the harmonic oscillator calculation
are nonrelativistic and put into our relativistic formalism.

The structure function is given by the convolution

F2A~xA!

A
5E

xA

A

dy fN~y!F2N~xA /y!, ~5.2!

with xA[Q2A/2P•q5xM/M̄ . The assumption that nuclea
effects do not modify the structure of the nucleon is emb
ied in Eq.~5.2! by the use of the structure function of a fre
nucleon; we use the parametrization@27#

F2N~x!50.58Ax~12x!2.810.33Ax~12x!3.810.49~12x!8.
~5.3!

The experiments measure the ratio function, defined as

R~x!5
F2A~xA!

AF2N~x!
. ~5.4!

The results of our calculations are plotted for16O, 40Ca,
208Pb and in the nuclear matter limit in Fig. 5 showing da
for carbon, calcium, and gold from SLAC-E139@28# and an
extrapolation@29# for the nuclear matter calculation. Th
most striking result is that these calculations fail to reprodu
the EMC effect; the curves consistently miss the minima
the data, and the agreement gets worse with increasinA.
Another important result is that the ratio function does n
fall to zero as would be the case if the small effective m
(;0.56M for nuclear matter in QHD-I! were the relevant
parameter describing the binding effect that would follo
from using Eq.~4.1! instead of Eq.~4.4!. The results also
show a minimum nearx.0.6 for oxygen and nuclear matte
that is deeper than the calcium and lead calculations. Th
a curious feature that contradicts the trend in experime
data, and is due to the effects of two parameters.

The first, and most important, is that of the location of t
peak of the plus momentum distribution given by Eq.~4.7!,
which gradually approachesy51 as the nuclear matter limi
is reached. This is due to the fact that scalar mesons ca
small amount of plus momentum@21# that vanishes asA
6-5
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FIG. 5. Ratio functions for16O, 40Ca and208Pb showing data for carbon, calcium and gold, respectively, from SLAC-E139@28#. The
nuclear matter calculation shows extrapolated data@29#.
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→`. The closer toy51 the peak is in Fig. 2, the less pro
nounced the minimum in Fig. 5 will be all else remainin
constant. The second effect is due toM̄ , which reaches a
minimum at 56Fe corresponding to a more pronounced mi
mum of the ratio function than forA,56 orA.56, keeping
the scalar meson contribution constant.

Using a Gaussian parametrization of the plus momen
distribution and the experimental binding energy per nucle
via the semiempirical mass formula, we have modeled
dependence of the minimum of the ratio function,R(x
.0.72), on the number of nucleons in the nucleus in Fig

FIG. 6. R(x50.72) as a function ofA including scalar meson
and binding effects~solid line!, and leaving binding energy pe
nucleon constant at28.5 MeV ~dashed line!. The data are from
SLAC-E139@28#.
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The motivation for the use of Gaussian plus momentum d
tributions is based on the expansion@5#

F2A~xA!5F2N~xA!1exAF2N8 ~xA!

1g@2xAF2N8 ~xA!1xA
2F2N9 ~xA!#, ~5.5!

where

e[12E dyy fN~y! ~5.6!

g[E dy~y21!2f N~y!. ~5.7!

The Gaussian parametrization uses the peak location
width, ^y& and (̂ y2&2^y&2)1/2, respectively, from the rela
tivistic Hartree calculations in Fig. 2, and is normalized
unity. This allows us to obtain a plus momentum distributi
for anyA with minimal effort. We show the combined effec
of scalar mesons and binding energy per nucleon on the r
function along with the effect of scalar mesons alone usin
constant binding energy per nucleon of28.5 MeV indepen-
dent ofA. It can be seen that a changingM̄ with A has the
most effect for nuclei much larger than iron, but does n
change the general trend that the minimum of the ratio fu
tion becomes less pronounced asA increases due to the van
ishing scalar meson contribution and the peak of the p
momentum distribution approaching unity. This depende
of the binding effect onA is quite different, both in magni-
6-6
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tude and shape, than the trend in experimental data sum
rized in Ref.@29#, which satisfiesR(x.0.72);A21/3, so that
the minimum becomes more pronounced asA increases. This
fully demonstrates the inadequacy of conventional nucle
meson dynamics to explain the EMC effect.

VI. SCALAR MESON CONTRIBUTION TO PLUS
MOMENTUM AND MORE GENERAL CONSIDERATIONS

The average value ofy, given by Eq.~4.7!, yields the
nucleon contribution to the plus momentum, and is less t
1, which can be seen in Fig. 2. We now address the rem
ing plus momentum in finite nuclei. Previous results@21#
show that a small fraction (dy;0.005) of the plus momen
tum is carried by the scalar mesons, which vanishes as
nuclear matter limit is approached. This is due to the fact t
scalar mesons couple to gradients in the scalar density~aris-
ing mainly from the surface of finite nuclei!, which vanish as
A→`. The question is: why are scalar mesons allowed
carry plus momentum and not vector mesons?

The simplest answer lies in the Dirac structure of E
~2.1!; theg1 in the trace picks out terms in the full interac
ing Green’s function with an odd number ofg matrices,
which includes all Lorentz vector interactions and exclud
Lorentz scalar interactions. The Dirac structure off N(y) is
directly related to the Dirac structure of the energy mom
tum tensor, so the answer also lies there and illuminate
problem with conventional nucleon-meson dynamics. T
component of the energy momentum tensor relevant to
plus momentum, from a chiral Lagrangian containing isos
lar vector mesons, scalar mesons and pions, is given
@30,31#

T115V1mVm
11mv

2V1V11c̄g1i ]1c1]1f]1f

1]1p•]1p1p•]1p
p•]1p

p2 S 12
f 2

p2
sin2

p

f D .

~6.1!

Since each of the terms in Eq.~6.1! involves one of the
fields, it is natural to associate each term with a particu
contribution to the plus momentum. This decompositio
though, is not well defined; field equations relate vario
components. We see the first three terms of Eq.~6.1! appear
in ^y&, which defines the nucleon contribution to the to
nuclear plus momentum, in the derivation of th
Hugenholtz–van Hove theorem Eq.~4.7!; we are not allowed
to have the vector mesons contribute a well defined frac
of plus momentum. This means that one could trade cer
tt.

ev
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mesonic degrees of freedom for nucleons by replacing
sonic vertices with nucleon point couplings, for example,
line with the general concept of effective field theory. In o
case the first three terms are related by the vector meson
equation, but the fourth is left out since the scalar mes
couple to the scalar densityc̄c, which is not present in Eq
~6.1!. Therefore the scalar mesons~and pions! contribute a
well defined fraction of plus momentum. These explicit m
son contributions create an EMC binding effect, but the
onic contributions are also limited by nuclear Drell-Yan e
periments@32# to carrying about 2% of the plus momentum
which is insufficient to account for the entire EMC effect th
corresponds to about 5% of the plus momentum for iron

VII. SUMMARY AND DISCUSSION

The depth of the minimum in the EMC effect is known
have a monotonically increasing behavior withA, which has
been studied in Refs.@28,29# among others. Our presen
theory is defined by the use of the mean-field approximati
along with the assumption that nuclear effects do not mod
the structure of the nucleon. This theory leads to results
severe disagreement with experiment. Not only do we fi
that the depth of the minimum is monotonically decreas
with A, but it has a smaller magnitude than experime
These results, which fail to capture any of the importa
features of the experiments, represent a failure of relativi
mean field theory. Furthermore, the plus momentum dis
butions we compute givêy&.1, which indicates that nearly
all of the plus momentum is carried by the nucleons. In or
to reproduce the data, the nucleon plus momentum mus
decreased by some mechanism that becomes more impo
at largerA. Nucleon-nucleon correlations cannot take pl
momentum from nucleons, and explicit mesonic compone
in the nuclear Fock state wave function carrying plus m
mentum are limited@33–35# by Drell-Yan experiments@32#.
Thus it appears that the EMC effect may be due to someth
outside of conventional nucleon-meson dynamics. For
ample, true modifications to nucleon structure caused
nuclear interactions could be important, in which case o
would need to use models such as the mini-delocaliza
model@5#, quark-meson coupling model@36–38# or the chi-
ral quark soliton model reviewed in@39# to include those
effects.
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