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Imaginary parts and infrared divergences of two-loop vector boson self-energies in thermal QCD
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We calculate the imaginary part of the retarded two-loop self-energy of a static vector boson in a plasma of
quarks and gluons at a temperatiieusing the imaginary time formalism. We recombine the various cuts of
the self-energy to generate physical processes. We demonstrate how cuts containing loops may be reinterpreted
in terms of interference between tl «) tree diagrams and the Born term along with spectators from the
medium. We apply our results to the rate of dilepton production in the limit of dilepton invariant mass
E>T. We find that all infrared and collinear singularities cancel in the final result obtained in this limit.
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[. INTRODUCTION self-energy in the imaginary time formalism has yet to be
performed. This is the subject of this paper. The scalar boson
The imaginary parts of retarded self-energies represerself-energy was examined recenflyl]. There are various
extremely important quantities in thermal field theory. Theyadvantages to such a calculation: the basic Feynman rules are
provide information about various quantities of physical in-easily generalized from zero temperature, there is no dou-
terest in the medium. Primary among these are the decay arfding of degrees of freedom and no matrix structure of propa-
formation rates of particlegl]. Boson self-energies provide gators, multiple poles that lead to ill-defined products of
information about quantities lik& decay rate$2] and pro- delta functions in the real-time formalism are easily and
duction rates of dileptons and real phot¢8%from a quark-  haturally handled both in the Matsubara sums and in the
gluon plasma(QGP. The spectrum of lepton pairé.e., analytic continuation. The purpose of this calculation is thus
ete”, u"u) and real photons emanating from such amanifold. The first goal is to enumerate and interpret the
plasma has been considered as a promising signature of QAPous physical contributions contained in the imaginary

formation [4,5]. This owes to the fact that the photons or P&rt of the two-loop self-energies. In doing this, it shall then
dileptons suffer essentially no final state interaction. be shown that cuts containing loops may be reexpressed as

Some years ago the contribution to the rate of dilepton Eﬁ:;egfpncs dPue|~:1wseeenc:§§rdll?ngrg:{]:n?lnd tzeai%rgé?;? Wt'thta
produced at rest in the plasma at first order in the stron b - MP Y, W nstrate

. S . %ow double poles may be simply and elegantly dealt with, in
coupling constant was evaluatg@l. This included reactions the Matsubara sum and in the analytic continuation to real

like three particle fusiondag— y*), Compton scattering energies. We finally concentrate on the eventual collinear and
(gg—qgy* or qg—qvy*), pair annihilation ¢g—gvy*), infrared divergences in the ensuing rates. In this study, we
Born term with vertex correction, and Born term with quark focus on the singularity structure in the region of phase space
or antiquark self-energy correction. This calculation was perinvestigated by the authors of Ref2,8]. Even though we
formed in the real-time formalism, both in a Feynman dia-explicitly calculate the self-energies of static virtual photons,
gram approach in thermofield dynamics, and by taking théhe results may be easily applied to other vector bosons in-
imaginary part of the two-loop photon self-energy. In themedium, with the exception of the gluon, which admits other
case of massless QCD, each of the contributions mentionestlf-energies in a QGP.
above contain infrared or collinear singularities. These were The various sections are organized as follows. In Sec. Il
regulated at intermediate stages of the calculation by givingve begin by evaluating one of the self-energy diagrams of a
masses to the quarks and gluons. The combined rate from altatic photon with an imaginary energy at two looftise
these processes was then found to be free of all divergencéspatient reader may skip ahead to Sec. VI where the vari-
in the limit of vanishing masses. This calculation was alsoous cuts of the self-energy are recombined to provide physi-
performed simultaneously by another grdh, who dimen-  cal interpretations of the various terms obtained, following
sionally regularized the singularities at intermediate stages ofhich the infrared behavior of heavy photon production will
the calculation. The end result remained the same: when alfle discussedIn Sec. lll we analytically continue the photon
the different processes were summed, the divergences caenergy to real values and obtain the imaginary part of the
celed and dilepton rate at next-to-leading order remainedorresponding retarded self-energy. In Sec. IV we evaluate
finite. the other self-energy topology. In Sec. V we analytically con-
Recent calculations employing a multiple scattering ex-<inue this self-energy to real values of photon energy and find
pansion, however, have found a remnant collinear divergenciae retarded imaginary self-energy. In Sec. VI we combine
[2,8]. This result has been commented ug@), and the the treelike cuts and reinterpret them as physical processes
issue of divergences remained unresol{/&d]. In the wake  with thermal distributions on the phase space factors. In Sec.
of this strife, we revisit this problem in a systematic calcu-VIlI we attempt to interpret cuts containing loops in terms of
lation. Also, to the best of our knowledge, a complete calcuthe recently proposed spectator interpretafidg]. In Sec.
lation of the imaginary part of a heavy vector boson retarded/I1ll we take the limit of heavy photon productiorEé&T)
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and evaluate the various contributions. In Sec. IX we comwheree may be taken to be the electric charge of the quark.
bine all cuts, demonstrate the cancellation of the collineain standard notation, the expression for the effective vertex
and infrared divergences, and present our results. We presentFeynman gauge may be written down as

our conclusions and brief discussions in Sec. X. Two appen-

dixes follow. In the interest of quantitative accuracy and re- _ 5 ] b
peatability, we have presented many calculational details: the : F“—I— D d*q —ig,,6° 12 gy
issue being addressed here is technical and thus demands a '€ B 7 ) e ¢ (it5j97")

rigorous treatment.
xi(k—Q—b) i(k—d)

-
ka-p2 g

b
Il. THE SELF-ENERGY: TOPOLOGY | (it7,g7y?). (2.1

We evaluate the photon self-energy with a gluon running
across as shown in Fig. 1. To begin with, we derive the
expression for the effective quark photon vertex corrected b)év
a gluon running across, i.e.,

The Matsubara sum in the effective vertex may be simply
aluated using the method of PisarEkB]. In our notation
(see Appendix A, see aldd4]), this is given in the static

iel“=iey"+iesl'*, limit (p=0) as
J
5[‘#:92Cikf d3q (k_q)sz’y#(k_q)%
4 (277)3 $1,52.83 qququfk(po_[52_53]Eq7k)

x{ _33(31+sz)/2—slﬁ(Eq—k)+Szn(Q) vs (S1+55)/2—81N(Eq- 1) +S5n(q) | 2.2

2
ko_slq_SZEq—k ko_po_slq_s3Eq—k

wheres;,s,,s3 are sign factors, which are summed over the We note that the effective vertex may be written as
values of= 1. We may now use the above result to write the

full self-energy of the photon in the static limit as or#=yPyty7ol' ,,
i d3k to highlight the structure ofy matrices contained within it.
IHZ:E > f (=1 The trace of they matrices is straightforward. This gives the
K 7 (2m) full self-energy as
B T ~
V"S4Kp,s, YsKy s 3 i k
XTI’E ey, oi————F——¢€ !’“k—’ , _—4 d~k 2 Ska’S o 408,54
Sl T 2K0—pO—sk)  2(KO—sk) Hﬁ_?% PEE % e ko_skérﬁ O oSk
(2.3 (2.9
wherek, stands for the four component quantity For convenience we changg— —s3; ands;— —s,. To
evaluate the Matsubara sum we follow the method of Ref.
s ki ky kg _150.0.1 [15]. This method converts the Matsubara sum into a contour
"k'k’k e integration in the complex plain d®, i.e.,
— 46202 [in+e d3kd3 5 s} @-k<@-k?
IV Ak f 91 1o (k0| 2 %
2 J it m)° ssk®—sk| A(p®~[s,~S3]Eq 1)
(51-53)/2=SN(Eq ) —Ssn(Q) | (S1-5)2=siN(Eq ) —son(a) | | SaKess,
X1 s, 5 +5; 5 5 o : (2.9
SsK™ =510+ S3Eq P —ssk"+810—SEq S5k —p~—s4k

where @—K)s stands for the four component quantity

[ ax—kg ay—ky qz—kz’ gsiné cos¢ gsiné@sing gcosf—k
S! ’ ’ = S! ] y .
la—k| " |a—k| " |a—K| VKZ+ g% - 2kqcosé K2+ g2 —2kqcosh kZ+q2—2kqcosd
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k-p B. First order pole at k®=k+sgp°

This is the pole of the second outer propagator, it is a pole
for the entire self-energy expression. It gives the residue

[1/2-1(K)]

d’kd’q
I14(B)=4¢e? Zf
u(B)=4e7g (2

. [ @R @R
% ,
PO+ s4k—sk| q(p®—[s,~S5]Eq-k)

k %!s (31_53)/2_31F1(Eq—k)_53n((31)
. 2 PO+ s,k — 510+ S3Eq
FIG. 1. The first topology for the self-energy.

Thek? integration is from——c on the positive side of (51-52)/12—$1N(Eq_1) —Sn(q) | |SaKsss,
the real axis. We may thus close the contour on the positive S3 —S4K+5,0—SEq S,
side. Note that the function is vanishinglkfs— . The result
of this integration will simply be the sum of the residues at (2.7)

the corresponding poles. Looking at the above expression we
note that the pole structure is different depending on whether ote that thep® in the distribution function has been

the term being considered is the first one or the second one in . 0 . .
. B— 0
the curly brackets. We note the following poles: dropped. This may be done & "=1 (p” is a d|scr_ete
even frequency and also, as we are eventually going to

(i)  First order pole atk’=k, requiresss=s (in both  analytically continue the self-energy to complex values of

terms p°. The correct analytic continuation is given by that func-
(i)  First order pole ak®=k+ssp?, requiresss=s, (in  tion which has no nonanalytic behavior off the real 41i€].
both term$ One may easily check that the above function with%in
(iii) First order pole atkozssslq—sgsngq,k, requires  the distribution function will have poles g®=—k+i2(n
S5810— S5S3Eq— >0 (only in the first term +1)=7T. Note that in this pole we may switch

(iv)  First order pole ak®=s5p®—s5S,Eq_k+S55,q (only

in the second terjn S——S;, S4——S, Sy——Ss, Sz——S,5——S,

In the following, each of the poles are evaluated in a
separate subsection and then summed up. and noting thak_(q—K) _s =k(q—K)s., we find
2 2’

A. First order pole at k°=k

This is the pole of the first outer propagatée., not a I1(B)=TI,(A).
propagator in the effective vertgxt is a pole for the entire
self-energy expression. It has the obvious residue of C. First order pole at k9=s58,q— SsSsEq_
dkd3q sk, In the expression for the effective vertgxq. (2.2) or Eq.
(2m) (2.5], we note the presence of two terms inside the curly

7 brackets with different pole structures. This is a pole of the
[ (E\—k);ﬁ;\k)sﬁs first term, and is realized only 855,0—S5S3E4>0. Thus

I1%(A) = 4e%g? f [1/2—n(k)]

the residue is

X
Q(po_[sz_sﬂquk) 3

~ q ~
wls (81—53)/2—51N(Eq- ) —S3n(0)) H;(C)=4e292J‘ (275 [1/2= (55510~ S5S3Eq-k) ]
2 sk—510+S3Eq«

sk, @RL@ oL
S1—55)/2—3N(Eq_,) —Spn X g —eE —
+53( 17— S2) 1N(Eq-k) —s2n(q) $10—S3Eq_k— Sk q(po—[sz—ss]Eq_k)
p°—sk+ 50— S,E 4«
: (51—83)/2—51N(Eq-1) — 3n(q)
s4kﬁvS4 X { S, S d
X —. (2.6 5
sk—p®—s,k A
S4Kg s 0(S5510—S5S3E
Note that there is an extra negative sign in the residue as the X 4515, 055%107 5553 k). (2.9
contour is being taken in the clockwise sense. $10—S3Eq-«k— p°—s,k
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D. First order pole at k%=s5p®+s55,0—S55,E 4k S——S;, S4;——S.

This is the pole of the second term in the curly bracketW
mentioned in the preceding section. It is realized only if
$5810— S58,E4—>0. The residue is M“(D)=TI*(C)

M M :

ith this operation, we find

3kd® Thus the full photon self-energy to second order in the

Hﬁ(D)=4ezng (2m)° [1/2= (85510~ S582E 1] coupling constant for the diagram of Fig. 1 is given by sum-
ming up the results of the preceding four subsections, i.e.,

» Ska,s I1%=2[1%(A) + 211%(C).
p°+s,0—S,Eq_k—sk
lIl. IMAGINARY PART

[ CRISSCRIN OF THE FIRST SELF-ENERGY TOPOLOGY
a(p°—[s,—S3]Eq—k) We now proceed with evaluating the discontinuity in the

_ first self-energy, ap® is analytically continued towards the
x{s (51—52)/2—31H(Eqk)—Szn(Q)H positive real axis from above, i.ep?— E+ie. Analytically
3

—sg continuing p® will give us the retarded self-energy of the
photon in real time in terms of a real continuous enepdy
S4R,B,s4‘9(5551q_5532Eq7k) =E. The expressions to be continued arE/(A) and
(2.9 114(D). The presence of the theta functionliff,(D) com-
plicates the pole structure that one would obtain during the

$10—SEq- =S4k

Note that in this pole we may switch analytic continuation of this expression. Using standard tech-
niques(outlined in Sec. IV D, we decompose the theta func-
S,——S3, S3——S,, S;——S;, Ss— —Ss, tion to obtain

[k (@—K) —s.I[ks, (@—K)s,J[1~N(Eq_ ) +n(a) [ /2= N(Eq-+0)]

[p°— (sk—S5Eq- =S50 1LP°— (— S5~ S3)EqI[Ss(Eq ) — Sak]
[ks: (@ K)s][ks, (@=K)s,I[N(Eq1) +N(q)][1/2-N(q—Eqy)]

- [P°— (sk S5Eq_— S50) 1T P°— (S5~ S5)Eq_iJ[Ss(a— Eq1) —Sak])

Analyzing the expressions fdi4,(A) andIl; (D), we note the following discontinuities.

(a) Poles of typep®= 2k.

(i) First order pole inll/ (A) at p®= 2k, requiress= —s,=1 [in both terms that make ud’ (A)].

(b) Poles of typep®=2E,_.

(i) First order pole inll% (A) at p°=2Eq_k, requiress,= —s3;=1 [in both terms that make ud’, (A)].

(ii) First order pole inll4(D) at p°=2Eq_k, requiresss=sz=—1 [only in the first term ofl1/(D)].

(iv) First order pole inll}(D) at p°=2Eq_k, requiresss= —sz=1 [only in the second term dfl%(D)].

(c) Poles of typep®=sk+s,q+S,E¢_q-

(v) First order pole inIl;(A) at p°=sk—slq+squ,k, requiressk—s;q+s,E4_ >0 [only in the second term of
I (A)].

#(vi) First order pole inll/;(B) at pO=sk— S50~ S5Eq—k, requiressk—ssq—ssEq_ >0 [only in the first term ofl1%,(B)].

(vii) First order pole inll%(B) at p°=sk—s5q+35Eq,k, requiressk—ssq+ssEq >0 [only in the second term of
11, (B)].

MWe may write down the expression fof12,(A) highlighting its real and imaginary parts pS—E+ie as

d®kd3q ss;53
(2m® 1

HZ(D)=—4e292J

(3.9

—

d3kd3q S4[Rs' (q_k)sz][R%' (q_k)s3][ (
P
(211')6 Eq+k

ZHZ(A)z—Sezng —iw&(E—[sz—s3]Eq_k)}

E- (32_33)Eqk)

X[82<s1—s3>/2— SIN(Eq_1) —S3n(Q)

~ 1
sk—s10+s3Eq +53[(Sl_52)/2_51n(Eqk)_szn(Q)][P( )

E—sk+s;0—SEq«

—iwé(E—[s—sﬂk)} (3.2

- 1
—im8(E—sk+ slq—squ_k)H[l/Z— n(k)][P( m)
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We now write down the various discontinuities as enumerated apuve that we are now looking atlB;(A) and
211%(D), so the overall factors have doubled

_ _ kg — 2K @RIk @ R)s)] (5, 59)/2- 517(Eq_ i)~ Son(@)
d'SqZHZ(A)]a:(—'—ZWI)8e292f (2m)® A(E—[s2—s3]Eq—x) 52 k—819+85Eq«

X [1/2-n(k)]8(E—2K). (3.3

S(E—2E;_q).

d3kdq Salks: (@—K) Ik, (@—K)_] [[1—zﬁ(Eqk)]zq] [1/2-T(K)]
(3.4

, “ _ 180202
disd 2IT(A)Jp=(+2mi)8e’g f (2m)® g (sk—Eq-1)?—q? | E=(s=Sa)k

disd 211%(D)]p=(+2i) 8e’g f

d3kd3q1 [ks- (q (@—K);Ilks: (—K)- ]+[Rs-ﬁ—\k)+][ﬁs-ﬁ—\k)+]
(2m)8 — (sk+q)? 9?—(Eq_k—sk?

x{[l—ﬁ<Eq_k)+n(q)][l/z—ﬁ<Eq_k+q)]—[ﬁ(Eq_k>+n(q)][l/z—ﬁm—Eq_kﬂ}a(E—qu_k).
(3.5

We now proceed to the evaluations of the discontinuities of the pfpesk+s,E q-k1S19. We first changes;— —s; in
211%(A) andss— —ss in the first part of 214(D). Hence the discontinuity occurs if;(A) atp®=sk+s,E q-k1S19 only
when sk+s;Eq+5:0>0. This may happen in only one of four instances: +,s,=+,5;=+; S=—,5=+,5;=+; S
=+4,5=—,5,=+; s=+,5,=+,5,=—. In 2[1};(D) the discontinuity occurs in the first term wherfr +,S5=+ or when
s=—,s;=+ and in the second term whes* +,s;=+ or whens= +,s5=—

Thus the discontinuity in B/,(A) occurs in four parts,

sk - (@=K) [k, (= K)s, ][~ 1+N(Eq 1) —n(a)]
[1/2_ k] [k+Qq+S3Eq_i][a+ Eq-k+Ssk] E-

disq 2IT4(A) ], (+2w|)8ezng

ssSal k- (=K Ik, (@R, ][~ 1+N(Eq ) —N(0)]

A (K 4 52Eq [0 Eq o 5iK] PET

seSal k. - (@=K) _1[ks, (@K, J[N(Eq-1) +n(a)]

[K+ 0+ S3Eq ][~ Eq 0+ S4K] OE-k+Eq—q)

+

sssalk - (@—K) 1 J[ks,  (@=K)s ][~ N(Eq- 1) —n(q)]
+ [K— G+ SoEq ] Eq_x— 0+ S:K] HE—K—Eq_kta)|. (3.6)

The discontinuity in 21/;(D) also occurs in four parts,

[1/2 NEq it )]

disq 211,(D)Jc=(— 27-r|)8egf

S(E—K—Eq (1)

|s3s4[R+-ﬁ+1[ﬁs4-<q—k)ss][1—ﬁ<Eqk>+n<q)]
X
[K+g+s3Eq «I[q+Eq_ktS4K]
sssalk_-(@=K); 1[ks, (@=K)s, ][ 1= N(Eq 1) +n(q)]
[_k+q+53Eq—k][q+ Eq—k+ S4k]
_ sssalk - (@—K) J[ks,- (@=K)s J[N(Eq-1) +n(0)]
FL2=n(@=Eq ]| — [K+ 0+ S3Eq [ — Eq it 0+ S4K]

S(E+k— Eqk—q)]

S(E—K+Eq —0)

SeSal K - (@K I[ks, (@K, I[N(Eq1) +n(q)]

[K— 0+ S5Eq J[Eq k—Q+SiK] 3.7

(E—k—Eq_k+q)} .
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IV. THE SELF-ENERGY: TOPOLOGY Il

We begin by evaluating the photon self-energy with one
quark line containing a gluon loop. The quark self-energy

may be written as

- S q , —io*
|E(k =(ie) qu j(z )3 |]7 2t] |7,u(k q)z
(4.1)

Using the identityy*dy,= — 24, q being the momentum

of the gluon, the Matsubara sum in the quark self-energy is

evaluated using the method of Pisargk3]. It is given in our
notation(Appendix A as

(51+ $2)/2— 1N, (Ey— q) TS2n(q)

923t 5P (k=d)s,

2

d3q

(277)35152

2(K)ik=

K° —SEr_q—s19
= ;},BEI kB (42)

where the self-energy has been written in the final form to
highlight its matrix structure. We may use this to write the !
full self-energy of the photon in the static limit as

1 f 'yaSSRa,sséj,i
Mme=— )Tr ey, — 3
=g 2 > 277)3( 51525235455 T (K= s3k)

7754R7,s45k Y S5k¢‘>‘s 4 i
X YB3 a(K .
Vs o 0 2 pr— sk
4.3

We choose the direction to be defined by the direction laf
Note thatks, - ks = —25;, _s.. Note also that the, ands;

dependence of the photon self-energy is identical. This al-
lows us to write down the self-energy as

x[

d3k
(277)3

2

2( _53)2“ : ng
(K%—s3K) (K°—s4k) (k°—

p°-+s4K)
2(—s5)3 -k,
—p°—ssk)[(k%)2—k?] ]’

4.9

(k°

where the summation is implied over all the sign variables

present, i.e.S;,S,,S3,S4,S5. Note that the double pole is
only present in the first term.

We now need to evaluate the Matsubara sum &eFor
this we follow the method of Ref15]. This method converts

the Matsubara sum into a contour integration in the complex

plain of k°. The color factor from the quark self-energy com-
bined with that from the rest of the diagram becomes
Tr[t?,t?]62P=4. Using this we obtain the self-energy of the
photon as

PHYSICAL REVIEW C65 055203

jo+e

d3kdq
(2m)°®

e?g?
2i

=

|

X[1/2—ﬁ<k°>][<s1+s2>/2—slﬁ(Ekﬂp+s2n<q>]

q[sK—s,Ex_q—51q]
X[
Ss(r_\q)sz' Rs5

 [sK—p°—ssk][(K)2—k?]

—ie+e

SS@SZ'RSS
[sK—s3k][sK—s,k][sK— p+s4K]

|

The k° integration is from—»—x on the positive side

of the real axis. We may thus close the contour on the posi-
tive side. Note that the function is vanishing ks—. The
result of this integration will simply be the sum of the resi-
dues at the corresponding poles. Looking at the above ex-
pression we note the following poles:

0]
i)

(4.5

Second order pole &=k, requiress;=s,=Ss (only
in the first term.

First order pole ak®=k, no requirementonly in the
second term requiressz=—S,=S Of —S3=5,=S
(only in the first tern.

(i) First order pole ak®=k+sp°, requiress,= —s (only
in first term), requiresss=s (only in the second terimn
(iv) First order pole atk’=ssE,_,+ss,0, requires

SSEq1+550>0.

In the following each of these poles will be evaluated in a
separate subsection and then summed up.

A. Second order pole atk®=k

We begin by evaluating the second order pole. The origin
of this pole can be traced back to the two propagators that
may go on-shell simultaneously. In the real-time formalism
this leads to the ill-defined square of the Dirac delta function.
In imaginary time, however, this pole is easily dealt with: the
residue of a functiori(k°) at a second order pole ki=k is
simply given as @/dk®) (k°—k)2f (k% |wo_,. Using this we
get the residue ofl at this pole as

3kd3
(2m)®

II4(A)= 8e292J
[(Sl+52)/2 SIN(Ey_q)+son(q)]

q q

s[1/2-n(k)]’

/k_ )52

[sk—S:Ex—q—51G][p°—25K]

1/2-"n(k)
[sk—S,Ex—q—5191°[ p°—25K]

1/2—n(k)
[Sk—S:E_q— s1q1[p°—

2] (4.6
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where the prime denotes derivation only with respeck.to C. First order pole at k°=k+sp’
Note that as in the case of the first self-energy topology there g gives the residue
is an extra negative sign in the residue as the contour is

closed in the clockwise sense. d3kd?
2~2 a
I17,(C)=—8e°g f
. (2m)°
B. First order pole at k°=k
This obvious residue may be easily evaluated using the X[(Sl+ $2)/12—81N(Ey—g) +s,n(q) ][1/2—n(k)]
methods outlined in the preceding section, q[p°— (S:Ex—q+ 19— SK) 1[p°+ 25K]
H‘“(B) - _ 8e292f dgkdgq % S3(T_\C])SZ' Rs3 (T_\Q)sz' Rs (4 8)
i 6 - -
(2m Sp°—(s—skl  p°
y [(1+52)/2—5N(Ey_g) +5,n(q)][1/2- (k)] Switchings— —s and summing oves;= +s we get
a[sk—s,E¢—q—s14] kg
— ~ ~ M —aQn2n2
_S(k_Q)sz'ks S@sz'kfs H“(C) 8eg f (277-)5
X +
2kp° 2k[ p°—2skK]

« [(s1+s)/2— Sl’ﬁ(Equ) +s,n(q)][1/2-n(k)]

ss(k—0)s, -k 0 ($,E4_q+519+sk)][p°—2sk
. = 5_2 55k | @7 /q[\p (A 2Ex—qtS10 )1[p ]
[p”—(s=s5)k] K=0)s, ks
X\ (- 4.9
In the above, we sum over the two possibilitiesgf *+s to (p"—2sk)
get the factor in the bracket as
D. First order pole at k°=ssZEk_q+sslq
—S(T—\q)Sz. Ks S(T—\q)SZ' k_s S(T—\q)Sz- ks This pole is realized only i§,E,_4+55,G>0. This con-
0 + 0 + 0 dition may be enforced with the following set of delta and
2kp 2k[p~—2sk] 2kp theta functions:
—s(k—q)52~ k_s] _ 55,5255,sl+ 55,5255,—51®(Ek—q_q)
0_
Zk[p ZSk] + 55,75255,316((]_ Equ)- (4-10)
Hence,I1/,(B)=0. We start with the second and third terms,
|
d3kd®q [1/2-N(E_q—q)][N(Ex_g) + N
HZ(D,z):Sezng q [1/2-N(Eyq— ) N(Ex_q) +n(q)]
(2m)® q
l 53(T_\Q)S'Rs3
X
[SEcq—SA~S3KI[SEcq—SA~S4kI[P°— (Ssk+SEy_q—5Q)]
KDk, 0(E ) (4.1
- k—q—d)- .
[P~ (SEk—q=SA=SsK) [ (Ex—q— )~ K’] !
Similarly we find for the third term
d3kd®q [1/2-n(q—Ex_ ) ][~ N(Ex_q)—N
(2m)8 q
[ 53(T_\q)7s’ks3
X
[—SEx_q+50—S3KI[ —SEx_q+ 50— SKI[p°— (Ssk—SE_q+50)]
55(T_\Q)73'R35
0(q_Ek—q)' (412)

[P~ (— SE_q+ 5q-sK) I[(Ey_q— )2 — K?]

055203-7
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Now, switchings— —s in the third term and noting that 1/2n(q— Ex-q)=— 1/2+ﬁ(Ek_q—Q), we observe that the second
and third terms can be combined to give

d*kd®q [1/2-N(Ey—q— @) I[N(Ex—q) +n(q)]
(2m)8 q

I14(D,2+ 3)=8ezng

[ S3(T_\q)S.RS3

X

[SEcq—5A~S3KI[SEc_q—SA~S4KI[P°— (Ssk+SEy_q—50)]
SS(T_\Q)S’RSS

 [pO— (SEy_q—5q— sk [ (Ey_q— 92— K?])

(4.13

Note the absence of the theta functions in the above equation. Now we may also write down the residue from the first set of
delta functions in Eq(4.10 as

d*kd®q [1/2-N(Ey—q+ Q[ 1-N(Ex_q) +n(q)]

Hﬁ(D,l)zSezng

(2m)8 q
l S3(T_\q)S.RS3
X
[SEq—qt S0~ SgKI[SEc—q+ 50— 54KI[P°— (S4k+SE¢_q+50)]

SS(T_\Q)S’ R55

_ ) (4.14
[P (SEq+sq—SsK) J[(Ex_q+q)2—k?]

The total expression obtained by summing up the resultsive real value, i.e.p’—E+ie. Analyzing the expressions
from the preceding four subsections will give us the full derived in the above sections we note the following discon-
self-energy of the photon to second order in the couplinginuities.
constant for the diagram of Fig. 2, i.e., (a) Poles of typep®=2k.

TT#=T1#(A)+TT#(B) +T14(C) + TT%(D,1) + TT%(D 2+ 3). (i) .First order pole inll%(A) at p°= 2k, requiress=1
(only in the first and second terms
V. IMAGINARY PART (i) Second order pole ill%(A) atp®=2k. This occurs in
OF THE SECOND SELF-ENERGY TOPOLOGY the third term in the bracket and requires 1.
) . ] o (iii) Second order pole il (C) at p°=2k, requiress

We now proceed W|th evalua_tlng the dl_scontmuny in t_he: 1 andss=1 (only in the first term,
second self-energy g¥ is analytically continued to a posi- (b) Poles of typep®=sk+ $10+S:E_q-

(iv) First order pole in II%(C) at p°=sk+syq
+SE g, requires s=s;=s,=1, —s=s;=5,=1, s=
—s$;=5,=1, ors=s;=—5s,=1 (in both terms.

(v) First order pole inll%(D,2+3) at p°=s,k+SE_g
—sq, requiress,=s=1 or s,=—s=1 (only in the first
term); at p°=—s5k+sEk_q—sq, requires —ss=s=1 or
ss=s=—1 (only in the second terjn

(vi) First order pole inll%(D,1) at p°=s4k+sEk_q
+sq, requiress,=s=1 or —s,=s=1 (only in the first
term); at p°=—ssk+sEk_q+sq, requires —ss;=s=1 or
ss=s=1 (only in the second terin

The discontinuity across a second order pole is derived in
Appendix B. We now write down the various discontinuities
FIG. 2. The second topology for the self-energy. as enumerated above,

055203-8
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diS([Hl’:(A)]a
dkded ¢ sind d3q
(2m)°q

KNS 1/2—-1(K)]’ -
[K—S:E¢—q—510]

=(—2wi)8e2g2f S(E—2K)

K2NS[1/2-n(k)]
[K—S:Ex—q— s19]°

1 K3(NS)'[1/2—n(K)]
2 [k=sE¢_q—s10]

1 2kNS[1/2-1(K)]
2 [k—s,Eq—s10]

1 KPNS[1/2-n(K)]’
2 [k—83E¢_q—5410]

1 K2NS[1/2-(K) ][~ 1+5,E; ]
2 [k_szEk—q_Slq]2

: (5.0

where the prime denotes derivation only with respeck.to
The symbol A stands for the factor [(sl+ S,)/2

—5N(Ey_ ¢) ts2n(q)], while the factor k— q) d)s, K+ Is rep-
resented by the symbdi,

dis T1%(C)1

dkded¢ sin6d3q
(2m)®

=(2wi)8e2g2f 6(E—2k)

. 1 2kNS[1/2-1(K)] +1
2 [E—sE¢_q—$19—K]

KA(NS)'[1/2-n(k)] 1
[E—S:Exq—s19—K]

KNS 1/2—n(K)]’
2 [E=sE¢ q—$10—K]

1 k2N8[1/2—ﬁ(k)][1+szE{(_q]]

5.2
2 [E_SzEqu_Slq_k]Z 52

The two terms above are the result of the discontinuities
at p>—=E=2k. In the following we shall enumerate those

terms that result as we take the discontinuitiesp®tE
=sk+s;0+SE g
disd IT,(C) ]
3kd3
(2m)8

L [L(s152)2=sN(E_g) +5,n(Q)][1/2-1(K)]
q[szEx—qt+S19—sK]
r s3(k—0)s, ks, (T—\q)sz-ﬁ_s]
S[SEx—qt+S10—S3K]  SEx_¢+S19+skK
X5(E_Sk_Slq_SZEqu)[‘Ssﬁ5sl,+532,+
+ 8 8, + O, 05105, Os, 4

+ 8485, 4 05, -]

=(—2mi)8e’g f

(5.3

PHYSICAL REVIEW ®5 055203

Recall that even though not explicitly mentioned, there is an
implied summation over all sign factors. We may now per-
form the sum ovesz= *s to get

disd I15,(C)]c
d3kdq
(2m)°

[(51+52)/2 SiN(Ey— ¢ ts2n(q)][1/2— n(k)]

q[sEx—qt+$10— sk]?

X(TLESZ-ksa(E—sk— $10—SEx—¢)
X[ 8+ 85, 1+ 05, ++ 85 s

+5S,+5sl,— 52,++5s,+5sl,+552,—]-

=(— 27r|)8e292j

52,+

(5.9

Finally, the discontinuity in parts D of the second self-energy
is given as

disq I1%(D,2+3)].

3kd3
=(— 2m)8eg f (271_)6
L [127N(Eq=D)IN(Exq) +n(0)]
q
So(K— s ks,
X[[sEk_q—sq—ssk][sEk_q—sq—s4k]

X[ 85, + 86+ S E—k—Ej_q+0)
+5S +5S,5(E—k+Ek,q—q)]
ss(k—q)s-k
(B i kz]

[8s,,— 35+ S(E—K—Ej_q+0)

+555,_55,_5(E—k+Ek_q—q)]]. (5.5

We may now sum oves;=*+1 to get

disd 114(D,2+3)]

Skd3

=(— 27r|)8e292f

y [1/2-N(E q— Q)][E(Ek—q) +n(g)]
q

{ (k=q)- -k,
X

m5(E—k+ Ek,q—C])
-q

(k=a)- -k

_— (5.6
[k+ q— Ek q]

6(E K—Ex_qta)(-
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d*kd®q[ /2= N(Ey_q+ [ 1-N(Ey_q) +n(q)]

diqul’j(D,l)]cz(—ZTri)8ezng 2
o

SS(T_\q)S'RS?’
[SEx—qtSq—S3KI[SEc_q+Sq—s4K]
S5ms'ks5
[(Ex—qta)*— k]

We may sum oves;= *1 to obtain

disd [14(D,1)],

dkdq
—(—2m)8egf (2m)°
><[1/2—?1(Ek_q+q)][l—ﬁ(Ek_q)Jrn(q>]
q
x[%ﬁm k—Ex—q—Q)
k=a), -k

—mﬁ(E‘l‘k—Ek,q—Q) . (58)
k—q

VI. PHYSICAL INTERPRETATION: TREELIKE CUTS

We now begin the process of combining terms from the

[654,+5s,+5(E_k_ Equ—CI)+ 534,75s,+5(E+k_Ek7q_q)]

[555,—5s,+ 5(E_k_ Ek—q_q)+ 555,+5s,+5(E+k_Ek—q_q)] . (57)

essentially a three step process: Collect together terms
that have the same energy conserving delta functi@ins,
reorganize the thermal distribution functions to express them
as a difference of the thermal weights for particle emission
and absorption(ii ) reorganize the remaining momentum de-
pendent part as the square of the amplitude of the process
hinted at by the previous two steps.

For easy identification we indicate the contribution from
the first self-energy topology byI! and from the second
topology bylII2. We begin with the discontinuities where no
loops are left in the final result. These are the discontinuities
given by Eqgs.(3.6) and(3.7) for the first self-energy topol-
ogy and Eqs(5.4), (5.6), and(5.8) for the second self-energy
topology. These discontinuities will result in physical ampli-
tudes for three kinds of processes: photon decay, Compton
scattering, and pair creation.

A. Photon decay and formation

discontinuities of the two self-energies to obtain the square We begin by analyzing the terms that containing the delta
of amplitudes of physical processes. Essentially we shall folfunction §(E—k—q—E,_g). The contributions to this from

low the method outlined by Weldofl]. Our method is

disq I1;*(A)J(E—K—Eq_—0) = (+2i) 8egf

1t are

[1/2 N(K)]S8(E—Kk—Eq ,—0q)

s3s4[R+-W—‘k>+][ks4~W—T)ss][—ﬂﬁ(Eq_k)—n(q)]

and

disd I11/(D)J(E—k—Eq-x—q)=(— 2m)8egf

x [K+ 0+ S3Eq_ [0+ Eq_ it Sak] ©.D
[1/2 n(E —kTD]I(E—K—E4_—Qq)
s3s4[R+-ﬁ—\m+][ks4~W—T)ss][l—ﬁwq_mn(q)]
(6.2

X

[k+q+S3Eq_k][q+ Eq

ikt s4K]

055203-10
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Note that

N(Eqk+ D[1-N(Eq_) +n(q)]=N(Eq_)N().

Using the above identity we may combine the two terms and
rewrite the distribution functions to give

disd I1;*](E—Kk—Eq_—0)

FIG. 3. Heavy-photon decay and formation.

_ d*kd®q -
=(—27T|)8€292f Y {{1-n(k)][1+n(q)] of photon decay, we need to generalize the delta function to
(2m)°q a four-delta function. We thus need to generalize the defini-
X[1=T(Eq-0 1= R(KIN(QR(Eq_ )} tion ofw,
w=p-k-—gq,

sssalk - (@K, ILks,- (Q—K)s,]
X
[k+0+s3Eq «I[a+Eq-ktSaK]

wherep=(E,0,0,0) is the mass of the off-shell photon. As
denoted by Fig. 3k, g, andw are all on-shell. The above
X S(E—k—Eq—x—0). (6.3 relation also impliesv=—k—q. We may sek®=k= k| and
. o q°=q=|q|. Now, requiring thatw be on-shell imposes the
We may combine the coefficients of the same delta funcegngition that

tion from the second self-energy to get

, (E—k—0q)2=k?+qg?+2kqcosé
disdIT*(E—k—q—Ey_q)

“ o —E(E—2k—2q)=—k-q,

3L 43
=2><(—27ri)8ezng d kdﬁq {[1-=nk)[1+n(q)] where 6 is the angle between the three-vectgrsand k.
(2m)°q Using the above relations we many now rewrite the discon-
><[1—?1(Eq,k)]—ﬁ(k)n(q)ﬁ(Eq,k)} tinuity gbtained fromﬂgn tkje numerator of the integrand

we notice the factorK—q) ., -k, , this may be changed ap-
y (k—=q) ;- ky SE—k—Ey_q—q). 6.4 wrlzitelyA by settingk< —k in the mtegrapd. ANotmg that
[Ex_qtq— k]2 (- k_)s— —k_g we get the ab_ove factor asw, -k_ . Intro-
ducing the standard denominators,2v, and factors of zr
The overall factor of 2 is the ratio of the symmetry factor we obtain Eq.(6.4) as
of this diagram to the denominator obtained from perturba- . 2
tion theory. Note that we obtain the same form of the distri- disd IT,*J(E=k=0q—Ex-q)
bution functions, this indicates the generic structure of heavy
photon decay and reformation. In the distribution function =—2j xge292f
factor, terms like #n(q) indicate Bose-Einstein enhance-
ment in the emission of a gluon. The 1 is from spontaneous ~
emission anah(q) represents stimulated emission of a boson x &' (p—k—g—w){[1-n(k)][1+n(q)]

into a thermal bath. Terms like-In(k) represent the “Pauli w. -k
blocked” emission of a quark of momentukninto the ther- X[1=n(w)]=n(k)n(g)n(w)} [+—I<]2
w+q—

mal bath. The product of the three factdrs—n(k)][1

+n(g)][1-N(Eq4,)] (along with the phase space integral (6.9
and delta functioncan thus be interpreted as the statistical : ; : :
factor associated with a heavy photon, outside a thermal We now split the above integrand into two parts and in

bath, decaying by emitting a quark, an antiquark, and a gluofn€ Of them switchw—k. Note that—w. -k_=wk+w-k
into a thermal bath. Subtracted from this is the factor™ (_tE_ZK)(E_ZW)/Z and we finally get the above disconti-
nuity as

d3kd3qdPw

AT gom)
2m 2qzkaw ")

n(k)n(a)n(E,-); this represents the formation of a heavy
photon from a quark, an antiquark, and a gluon, all three diSC[H,Zj‘](E—k—q—Ek_q)
emitted from the thermal battFig. 3). The photon subse-
quently escapes from the bath without further interaction. _ j d3kdqd3w
To convert the above expressions into cross sections for = ! | o9 —
heavy photon decay and reformation, we start by first defin- (2m)"2q2kaw
ing a new four-vectow= (w,w), such thatv=E—k—q (in X{[1-nK)[1+n(@)[1-n(wW)]
order to avoid confusion we introduce the notation of four-
vectors as boldface charactershis relation is indicated by
the one-dimensional delta function. To obtain the probability

(2m)*s*(p—k—q—w)

- - E-2k E-2w
—n(k)n(q)n(w)}32e?g? E—2w+m}' (6.6)
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We now perform the same procedure on the corresponding
discontinuity fromII?* to get

dis T/ ](E—k—q—Ey_q)

3

d°w
=—|><8e292f —qs(zw)4
(2m)°2g2k2w
% 54(p—k—q—w){[l—ﬁ(k)][1+n(q)] FIG. 4. Heavy-photon decay at first orderanand a.
X[1=n(w)]=n(k)n(gn(w)} (K-

— i(k=p) B
M’f=U(k)I67“(k_ p)zlgy”ep(Q)v(W).

sasalk W J[Kg, - W, ]
><[k+q+s3w][q+w+s4k] ‘

(6.7)

and for the second diagram as
The part of the integrand besides the distribution function _
part (depends on the angle betweknand ﬁ and will be Mﬂzmk)igype*(q)'('ﬁ
denoted as the matrix pannay be expanded by summing 2
OVver s3,S, as

)ziE‘y'”v(W).

Taking the produciM} # My, and summing over the spins

K-wl  ki-w, n Ky -w_ ko-wy and colors of the quark, the antiquark, and the gluon gives

+
kW | (k+g+w)?  (k+q)2—w? (gq+w)2—k?
E_
* R 2~2
N k_-w_ MTHMy, 32e°g E oKk (6.9
9°= (k=w)?
Similarly
Using the relations
E—2k
ky-w_=k_-w,=—(1/2[E—2K][E—2w], M§“M2M=—32e292E_2W. (6.10

ki -w,=k_-w_=(E2)[E—2q], L
Notice that as the three three-vectdsg,w form a tri-
and the relation imposed by the delta functiére., E=k  angle,E—2k=w+q—k is always positive. By the same ar-

+qg+w) we can simplify the matrix part to give gumentE—2w and E—2q are also positive. We thus note
that M7 #M,, and M3*M,, are negative. This is to be
E(E—2q) expected, as the square of the full matrix elemewt|? is
[E—2w][E—2k]" positive, where from the sum over the photon’s spin we get
substituting the above into the expression bt and then IM|P==g, M M= M**M,,.

combining the results fromil* andI12 we get

The cross term is
dist[H;’j](E—k—q— Ex—q)

2E(E—2q)
d*kd3qdPw su 32e%g? . (6.1
i | S am st p—k-g-w) MeE M= =32 uiE-2 O
(27)°202k2w
= = Comparing the above three equations with the result from the
X{[1=n(K)][1+n(@)][1—n(w)] loop calculationEqgs. (6.8) and (6.6)] gives us the relations
—n(k)n(g)n(w)}32e?g?
disd [T**](E—k—q—E,_
E-2k E-2w E(E—2q) ISqIITI 4~ E-a)

(6.9

“E-2w  E—2k  “[E—2w][E—2K]| _,f d3kd3qdiw

(2m)*s*(p—k—g—w){[1-n(k)]

Photon decay into a quark, an antiquark, and a gluon at (27)°2g2k2w
first order in the electromagnetic and strong coupling con-
stant can occur by two types of Feynman diagrddig as xX[1+ n(q)][l—ﬁ(w)]—ﬁ(k)n(q)ﬁ(w)}
shown in Fig. 4. The matrix element for the first diagram . .
may be written as\{y=M %¢,(p), where XIMIHMy,+ M3 HMa,], (6.12
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disd [T ](E—k—q—E_g)
f d3kdPqdiw

:| _—

(27)°202k2w

x{[1-n(K)][1+n(a)][1-n(w)]-n(k)n(g)n(w)}

X[ MEF My, + MEFM,,], (6.13

(2m)*s*(p—k—g—w)

and hence we get the relation written down by Weldibh
dis T4 1(E—k—q—Ey_q)

J dkd3qdiw
:l _—
(27)°2g2k2w

X{[1-n(K)][1+n(q)][1—n(w)]-n(k)n(g)n(w)}
X[M*#M,], (6.19

(2m)*8*(p—k—g—w)

where M= M*e, (p)=M;+ M, is the full matrix element
of heavy photon decay.

B. Compton scattering

The analysis for Compton scattering is slightly more

tricky. Note that there are two sets of terms from E@s6)
and (3.7) and Egs.(5.4), (5.6), and (5.8 that may lead to

Compton scattering. One appears with the delta functio

PHYSICAL REVIEW ®5 055203

FIG. 5. Quark Compton scattering.

+E;_q—k—0q) term, and in the second contribution change

k—k+q, followed byq— —q. This gives the total contribu-
tion from I12* as

dis 112 ](E+k—Eq_—Q)

Ok - F(E, 0]
n —-N _
(27‘[‘)6q{ ( ( q—k

X[1+n(q)]—[1-n(k) In(Eq)n(a)}

:(27ri)8e292f

k@R, k@K
[k+a+Eq-]® [k—aq+Eq_]?

X S(E+k—Eq-¢—0). (6.16
Notice that the combinations of distribution functions ap-
pearing in the curly brackets are identical to E815. The
roduct of the three factora(k)[1—n(Eq—,)1[1+n(q)]
as the interpretation of an incoming quddk an antiquark

S(E+k—q—E«_q) and the other with the delta function ., the medium fusing with a photon coming in from out-

O(E+Ex_q—k—0). The delta functions can be converted

into one another simply by replacirg—k+ ¢, followed by

side the bath, resulting in a gluon and a quésk an anti-
quark going into the medium. Subtracted from this is the

(i*) — ﬁ One notes on perform_ing this opgration that the TeSbroduct[1—ﬁ(k)]ﬁ(Eq,k)n(q), which has the interpreta-
of the integrand _Iooks rgther dlf_ferent. This happens as thergon of an incoming quarkantiquark from the medium fus-
are four topologically distinct diagrams that may fall undering with an incoming gluon from the medium, resulting in a

the category of Compton scatterifigis well known that for

quark (antiquark going back into the medium, and a virtual

a given in-state there are two diagrams that lead to Comptophoton that leaves the mediuffig. 5).
scattering; there are four here as we sum over the possibili- To convert the above expressions into cross sections for
ties of the incoming fermion being a quark or an antiqliark Compton scattering, we again define the new four-veator

Let us consider the contribution froifl}j‘,

disq IT*](E+k—Eq_x—0)

= (2i)8e%g? f {(n(K[1-N(Eq_)]

d3kdq
(2m)%q
X[1+n(q)]—[1-n(k) In(Eqi)n(a)}
sssalk_ - (A=K, ][ks,- (Q—K)s,]
X
[—K+g+s3Eq- ][+ Eq—«+S4K]

X S(E+K—Eq-k—0). (6.15
For the contribution froml'[fj’“, recall that we have an
overall factor of 2 in each of the results of Eg5.4), (5.6),
and (5.8) coming from the overall symmetry factor ﬁfj‘
being double that oﬂll[‘. We take half of the contribution
from the §(E+k—E,_4—q) term and half from thes(E

=(w,w), such thaw=E+k—q. This is generalized to
w=p+k—g,

as a resuliv=k—q. Now, requiring thawv be on-shell im-
poses the condition that

(E+k—0q)2=k?+qg?—2kqcosé
=E(E+2k—-2q)=k-q.

Using the above relations we many now rewrite the dis-
continuity obtained fronfI2. In the numerators of the inte-
grand we notice the factok(- ). - k_ , which may be writ-
ten as w,-k_=(E+2k)(E—2w)/2. We introduce the
standard denominatorsk2w, and factors of zr and per-
form a similar set of operations as for photon decay to obtain
the full result for Compton scattering as
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FIG. 7. Pair creation at first order i and a .

u—v. Taking the products and summing over spins and col-
ors (remember diagrams 1 and 2 interfere with each other,
and so do 3 and)4we get

MF#My,=32e%g? 1K (6.18

£ My, = 30627 o 6.1
FIG. 6. Compton scattering at first order dnand o . M Mo =320 g - 6.19
disd T4 (E+k—g—Ey_q) Once again, note thatMi*M,, and M3#M,, are

negative. This is becauge— 2w=q—k—w is always nega-
tive due to the triangle condition mentioned in the preceding

(2m)* 6% p+k—q—w)

_ f d3kd3qdiw

(27)°2q2k2w section. The cross term is
X {n(k)[1+n(@)][1-n(W)] g g ZE(E20) 620
~ ~ 1,=92e°g . .
—[1-R(k)In(q)n(w)}32e%g2 2o [E—2w][E+2K]
E+2k E-2w E(E—20q) Comparing the above three equations with the result from

X

E_ow  Ev2k E_2wjiE+2k &1
Recall that inHll[‘ there is another term, the coefficient of

the delta function §(E+E,_—k—q), which leads to diSd:HZ](E'F k—gq—Eyx_q)

Compton scattering. Also, in the Compton scattering contri-

butions fromII2, we only used a half of both the terms. [ d*kd*qdiw

Following almost the same method as above, one can dem- ' f m

onstrate that the form of the contribution from these terms is

the loop calculatioEq. (6.17)] gives us the relation

(2m)*6*(p+k—q—w)

almost the same as above wktandw interchanged. In it, <{NK)[1+n(q)[1—n(w)]—[1—n(K) In(q)n(w)}
one may interchange—k to get the same contribution as o o o
Eq.(6.17, hence doubling the total contribution from Comp- XIMT#My,+ MMy, +2 M54 My, ] (6.2D)

ton scattering.

Compton scattering by an incoming photon of a thermal Once again we note the interesting fact that in this gauge
medium of quarks and antiquarks, at first order in the electhe mixed termsM3# M, + M} #M,, are always given
tromagnetic and strong coupling constant, can occur as gy H;lf and the square terms}#M,,+ M3#M,, are
result of four processes as shown in Fig. 6. The matrix elefyinished byll12*

. . o “w Mmoo
ment for the diagrams may be written Ad,= M €, (p),

where ) )
C. Pair creation

T p o The analysis for pair creatigiften referred to as photon-
MI=u(w)igy’e, (9)i (p+k)2|ey e.(P)u(k), gluon fusion is almost identical to that done in the two
preceding sections. Its contribution is furnished by the only
remaining delta functions in Eq$3.6) and (3.7) in the first
M’2‘=U(W)iey'“eﬂ(p) B igypez(q)u(k)_ self-energy and Eqs5.4), (5.6), and (5.8) in the second

self-energy, i.e.6(E+q—k—E_4). We simply state the re-
sults here: pair creation can occur through two types of pro-
The amplitude for the third and fourth diagram can be ob-cesses(Fig. 7) and has the discontinuity in the total self-
tained from the two amplitudes above by simply changingenergy

(w—p)?
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k k k k
E E E E
k k k k

FIG. 8. Photon decay at one loop corresponding to the cut FIG. 9. Photon decay at one loop corresponding to the cut

S(E—-2E,_,). S(E—K).
disq I12*](E+q—k—Ey_g) disd 211%(A) ],
3 3 3. _(_ H 22
" S
emyzazkew o dkaPq [Ks - @R,k -[@=R),]
XALL= (k) I L—R(w)] ~[ 1+ n(a) TR R(w))} < 27 AE 5 SJEs 1)
E-2k E—2w E(E+2q) B B =
xagt £ ois £ oo EELED | X S(E—2K)(—s)[1- 2R(K) [ 1+ 2n(q) ]

(6.2 x— HEak 72
(k+33Ek—q)2_q2

VII. PHYSICAL INTERPRETATION:
LOOP-CONTAINING CUT .
co S In Eq. (7.2), if we replaces,— —s,, S3— —Ss, followed by

We now analyze the various discontinuities[éf* and  k—q—K we get
Hfﬂ that contain loops. We start with the discontinuities
of H,lﬂ. These are given by Eq$3.3—(3.5). We note that

there are two terms with the delta functiéifE—2E,_), disd 2[14(A) ]
these correspond to the cut of Fig. 8. There is also one term a
with the cut8(E— 2k), this corresponds to the cut of Fig. 9. =(+2mi)8e?g?

One may be satisfied with this interpretation of the cut A A
diagrams and not proceed further. A recent pdfét, how- d3kdq [ﬁ—\k)_ . ks4][(F\_I()+ -Ks]
ever, has drawn attention to the fact that one can obtain a Xj 5 (E—[s-S4]Ean)
somewhat different interpretation of these diagrams, in terms (2) q 47=a-k
of interference between simple treelike diagrams and dia- ~ ~
grams containing particles called “spectators.” Spectators s [1-2n(k)][1-2n(Eq-K]q S(E—2E, )
are essentially on-shell particles from the heat bath that enter 4 (Eq_k—sk)z—qz a-k
with the “in” state and leave with the “out” state without 73

having interacted with the the rest of the “participants.”
We start by summing over the varialbdg in Eq. (3.3).
This immediately gives two terms, distinguished by the com-

bination of distribution functions they carry, The above is exactly the same as Ej4). This is to be

expected as the two cuts should, in principle, represent the
same diagram up to a shift in momenta. We thus double this

disq 2117,(A) Ja1 contribution and focus on it. It represents photon decay into
— (— 271186292 two quarks with quark emission and absorption from the
=(~2m7i)8eg final state quarks. The other part from E@.2) along with
R ~si 2 U | =2 Eq. (3.5 will represent photon decay with gluon emission
B q3n [k - k k_- K
XJ dkd’q LK+ - (A=K, Ik~ (A~ k)s,] and absorption off the external quarks.
(2m)° q(E—[s;—s3]Eq-k)
[1-2n(K)][1-2n(Eq_W)]q A. Photon decay with quark emission absorption off vertex
Sz : o(E—-2k) (7.1) and final state

(k+S3E¢_q)2—0?
We begin by summing over the remaining sign variables
and S2,S3 in disq 2115 (A) 4, to get
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d3kd®q ~ momentumw][absorb the same fermion of four-momentum
diquHﬁ]4=2x(—Zwi)8engJ - [1-2n(k)] w— ][absorb fermion of four-momentuw][emit the same
(2m) fermion of four-momentunw].

The process of emission of a fermion of four-momentum
w into a bath followed by its reabsorption is formally
achieved by the action of creation and annihilation operators

on the bath statfn,), i.e.,

X[1-2n(Eq_)]8(E—2Kk)

{[hﬁ—\kmm_ﬁ—‘km
X
E[(K+E_g)2— 2]

Tk GRL aa'[n,)=(1-n,)[Ny). (75
_Learo- el 5 +2 The reverse process, i.e., the absorption of a fermion from

(E4+2Eq- W[ (K+Ex_q)*—0q°] the bath and its subsequent reemission into the bath is for-

A mally achieved by the action of annihilation and creation

N [ky-(q—K)+I[k--(q—k)_] operators on the bath state, i.e.,

E-2E,_ k—E,_4)?—¢? ~ ~ o~

(B2 Wl Bea=d] a'alfi,) = (F) ). )
[ke-(g—-k)-I[k--(@—k)-] _ (7.4 The discontinuity of the self-energy will represent the am-

E[(k—Ek_q)z—qz] plitu_de of a particular process multiplied with the complex
conjugate of another. In one of these processes the above-
As in the preceding section, the distribution functions will mentioned fermion will perform the emission and absorption
be reorganized to allow for an interpretation in terms of therpr_ocedure referrgd to above. In the other amp!ltude, as we
mal weights for particle emission and absorption. In the firstVill Show shortly, it will simply enter and leave without hav-

two terms we define the new lightlike four-vectorsuch that "9 Interacted with the rest of the particles. Due to this
reason, it has been referred to previoudge[12,8)) as a

w=q—k. In the last two terms we define such thatw= spectator.
—q-+k. This allows us to change the variable of integration ~ We introduce the usual denominators of,2k to get
d3g—d®w, ask is a constant as far as thpintegration is . u
concerned. We may also redefine the distribution functions adlisq 1T, 14
- - =2X(—2i)8e’g?
[1-2n(k)][1—2n(w)]

~ ~ ~ o~ d*kdPw ~
={[1-n(kK)1[1=n(k)]=n(k)n(k)} Xf—é’(E—Zk){[l—n(k)]

(27)%kwkw
X{[1=n(w)]=[n(w)]}. e ~ ~
X[1=n(k)]=n(kK)n(K)H[L-n(w)]=[n(w)]}
The first set of factors in the curly brackets has the usual
interpretation[1] of the thermal factors that are associated %
with the probability of particle emission into a heat bath or
particle absorbtion from a heat bath. In this case they carry

[k+'W+][k—'W+]_ [ky-w_][k--w,]
E[(k+w)*=g*]  (E+2w)[(k+w)?—0]

the obvious meaning dgemit fermion of energk][emit fer- N (ke woJ[k—-wi ] [ke-wi ][k -wy]
mion of energyk— J[absorb fermion of energy][absorb fer- (E—2w)[(k—w)2—q?] E[(k—w)2—q?] |
mion of energyk]. The reader will note that unlike the self-

energy cuts considered ifil] or those of the preceding (7.7)

section, the two cut diagrams that will result from this imagi-

nary part of the self-energy will not be symmetric, in the

sense that it will be the interference between a diagram witlg

a loop and a simple tree diagram. The thermal factors dis-

cussed above will be the same for either diagram as they - d3kadBwdk,
i8e“g J'

We now introduce the new four-vectdxb;,:(k,—IZ) and
eneralize the delta function to a four-delta function. We then
ombine the first two terms and the last two terms to write

pertain to the quark and antiquark that emanate from thelisd11%],= 9—16(277-)4
decay of the photofor those that combine to form the pho- (27m) 8kwk,
ton). Both amplitudes that result from this imaginary part ~ ~
contain this process and thus have identical thermal factors. X 8 (p+w—k—kp=w{[1-n()J[1-n(kp)]
The second set of thermal factors has a new interpretation. =T =~ o
These thermal factors pertain to the particles in the remain- n(kin(kp) HIL=n(w) 1 =[n(w) ]}
ing loop and thus are germane to only one of the two inter-
fering amplitudes. We will demonstrate that these signal the
difference of two amplitudes: that for the emission of a quark
or an antiquark into the bath and its subsequent absorption
from the bath, and vice versa. Thus the second set of distri- + [ka-wilky- (W=p)] _ 7.9
bution functions is to be understood[asnit fermion of four- [(Ww—E)?—w?][(k—w)?—g?]

[kp-Wi[Ka-(p+wW)]
[(E+w)?=w?][(k+w)?—q?]

055203-16



IMAGINARY PARTS AND INFRARED DIVERGENCES OF ... PHYSICAL REVIEW ®5 055203

"""""""" w, w,
FIG. 11. Photon decay with spectator glugime Born term with
spectator gluon is implied, see Fig.)10

B. Photon decay with gluon emission absorption
from final state quarks

This term receives contributions from digtl,(A) ]z
% and dis@ZHZ(D)]b. The fate of this discontinuity is essen-
tially similar to that in the preceding section and results once
--------------- again in the interference of tree-level diagrams of different
order. There are two sets of diagrams with two propagators
here as well, the difference being that the incoming and out-
going particle with the same set of quantum numbers, or in

: - . other words the spectator, is a gluon. We once again intro-
The diagrams on the left indicate—23 reactions such agQ P g g

— - = ) duce the on-shell four-vectav, such thaw=k—q. We use
—qqQ (whereQ indicates that the incoming and outgoing quarks . . . —
are identicgl. The diagrams on the right indicate the complex con- this to change the variable of integration in @@H (D)o -
jugate of the Born term photon decay with a comoving quark spectn disd 21T (A) Ja2, we relabel the dummy variable—w.
tator, i.e., ¢—qq) ®(Q—Q). Both dlscontmumes give essentially the same contribution,
thus the total discontinuity from such processery. 11) is

The above has the interpretation of Fig. 10. This indicate$!VeN as
the interference between two diagrams of different order in
coupling constants. Let the matrix elements of the two tree- disq I1%]s=i8e%g?

FIG. 10. Interference between diagrams of different ordergin

d3wdiqdw
f A8 o 2yt (p+ q—w

Ievel diagrams with two propagators be denoted.alg (27)°8kwk,
M¢ie,(p) and My=M%e,(p). The matrix element of - -
the term in brackets is simply denoted m&e,(p). Where —Wy—{[1—=n(w)][1—n(wp)]
the dotted line called the spectator is simply a product of ~ o~
Dirac delta functions over four-momenta and Kronecker —n(wn(wy) {{1+n(q)]+[n(a) ]}

delta functions over the spins and colors of the incoming and
outgoing fermions denoted by, andw, (here, for brevity

we indicate all the different quantum numbers, both continu-
ous and discreet, of the incoming and outgoing particles by a

[Wo- (4—W)I[Wa- (q—Wp)]
[(q—w)2—K2][(q+w)2—k?]]’

(7.10

single label. which is once again equal to
It is now simple to verify that the result obtained in Eq. dPwdqdiw
(7.8) can be written as disd TT# :if—b 21454 D+ g— W— W —
qIyls (2w)98kwkb( m)* &' (p+q b=}
d3kdPwdik -7 -7 R W
dis 114],= i J FHEWTKs )2+ w—k—ky—w) X[1=n(w)][1~"N(wp)]=N(W)N(W,)}
(2m) Bkl X{[1+ () ]+ [N(a) M M-+ mes M4,
X{[1-"N(K) ][ 1= n(kp)]=N(k)N(kp) {1 (7.11)
—ﬁ(w)}—ﬁ(w)][Zm“*M‘f+2mf‘*M’2‘], where m represents the same process as in the preceding

section. The amplitudes1, and M, represent the processes
of Fig. 11. The interpretation of the first set of distribution
functions is the same as before, i.e., emission and absorption
where the Kronecker and Dirac delta functions over theof two particles of energk. The second term has the inter-
fermions w, and w, have been used to set,=w,=w.  pretation of a gluon spectator exactly identical to that of the
The factor of 2 preceding the interference matrix elements igjuark spectator in the earlier section, but with the Pauli fac-
due to the fact that a similar process may be obtained byors replaced with Bose factors. Note that, unlike in the pre-
replacing an incomming quark spectator with an antiquarkceding section, there is no factor of 2 preceding the matrix
spectator. elements, as the spectators are gluons.

(7.9
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C. Photon decay with quark and gluon emission absorption where we have used the property that
off the same quark line

. . - dé(E—2k dé(E—2k
We now begin the analysis of the last loop-containing cut. ( ) = ( )

This is essentially given by the discontinuities of E¢s1) dk d(2k)
and (5.2). Combining these two discontinuities and writing dé(E—2k) ,
k=E—k in the denominators of the terms from =- WZ—&S (E—2Kk).

disd I1/;(A) ] (note that we have to double this contribution

as it emanates from the second self-energy diagram, which Interestingly, as an aside, we note that one may still obtain
has a symmetry factor of 2 more than the first self-energya physical interpretation of the above term in terms of spec-
diagram, we get tators with retarded propagators. To obtain this, we expand
the factorNS/(k—s,E¢_q—519) by summing overs; and

disd 114 ]6 s,. Here, as expected, we will obtain a part dependent on
dkdéd ¢ sin8d3q Bose distribution functions and a part dependent on Fermi
=(27-ri)8e2g2f 5 S(E—2K) distribution functions. We will illustrate the physical inter-
(2m)°q pretation using the part containing the Bose distribution
KNS functions. We begin by writing thé function in Eq.(7.13
x1—2n(k using the following regulator:
L=2nd ”|[E—s2Ekq—s1q—k]
CNS) KNS+ sE ] 50 =lim ——. (7.14
e—0 Xt
[E—S:Exq—819=K]  [E—s,E\—5,0—K]? 0XTe
dkdad ¢ sin 6d3q In this regulation scheme, we obtain
(2m)8e292f 2 S(E—2k) .
q , X) .
NS 8(X)=-2 m+|7T§2(x) . (7.15
X[1-2n(k)]=o { ] (7.12
dk{[E—SEx—q—$:19—K] Substituting the above relation in E(.13 we get
The above term does not readily admit a physical inter-
pretation, however, the infrared limit will be evaluated with dlsc[H”]G—(Zm)lGezgz
the above expression as the starting point as it is formally
correct. To try and obtain a physical interpretation from the S
expression given above, an integration by parts is performed X[1-2n(E/2)]
to obtain the discontinuity as [E—S2Ek—q—5:10—K]
1
H M — H 22 i _
disd 1% ]¢=(2mi)8e"g X((E—Zk)-l—ie—HTré(E 2k)]. (7.1
dkdéd e singd3q [ dS(E—2k) _ o _
Xf - We now write unity in the form of an integral as
(2m)°q dk
= KNS = dew‘)l{a‘(w% k)+ 8 +k)}
><[1—2n(E/2)][E_S Er g 5:0—K] " 2
3 3 0
= (27i)8e?g f kd*q NS =j dw’k8(w?%—K>?). (7.17
(21)8q [K—S2E¢—q—514] °°
x{26'(E—2k)[1—2n(E/2)]}, (7.13  Substituting Eq(7.17) in Eq. (7.16, we obtain

disd I14]g=(21ri) 16e2ng dw®(Ef2) 8(w®?—[E/2]

NS
“[E—;Ex_q—510—K] | (E-2K)+ie

+27in(w®) 8(E—2k) — 2 i [ﬁ(wo)—l/z]a(E—zk)]

3
=(2mi)(— de® i (02— [E/2]%) 8(E—2K)[1—2n(E/2)]

y ENS
[E—SoEx q—s19—K] [(E—2k)+ie

+2min(w®) 8(E—2k)—27i[n(w®) — 0(—w°)]5(E—2k)) . (7.18
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In the above we have simply added and subtracted the faeton(2°) S(E— 2k) inside the curly brackets and rewritten
1/2 asé(— ?), as the rest of the integrand is an even functionwdf
We now introduce the three-vector part ofas

8(w 2~ [E/2]?) S(E—k—k) = f dPw (02— (E/2)%) 8(E—k—k) 8*(—K—w)

=f dBw (0% |0|?) S(E—k—|w]) 3(—k— o). (7.19

As stated previously we now concentrate on the pa/6i[k—s,Ey_4—s;q], which depends on the Bose distribution
function. This gives

4 3 3
T J 4k 82— |w|?)(2m)* s (p—k—w)[{1-n(k)H1-N(0®)}—NK)N(w]

disc[ng]ﬁzif(zw)4 (277)62q2k277
k(E—k—q)—E-(E—a>+k(E—k+q)—|2-<|2—<i)

X[{1+n(q)}+n —64e?g?)E? — —
[{ (q)} (CI)]( g ) (E_k_q)z_lk_q|2 (E_k+q)2_|k_q|2

{ZR(“’)}

o d4w d3kd3q 02 12 4 ~ 0 - 0 oo 0
_|f(277)4f (ZW)62q2k2775(w lo|?)(2m)*8* (p—k—w)[{1—n(K)H1-n(w?)}—nkO)N(w?)]

X [{L+n(a)}+ (@) TM My, +m* M, ], (7.20

whereidAg(w) is the retarded propagator. One may note VIl INFRARED BEHAVIOR

that the integrand in the above equation is simply the inter- e now examine closely the infrared and collinear singu-
ference matrix elements of the fifsM; = e*(p) My ,] and  larity structure of the terms enumerated in the two sections
second diagrarhM, = €(p) M, ] of Fig. 12 and the Born  above. We will examine the infrared behavior in the limit of
term[m=e,(p)m*] with a gluon spectator. A similar inter- heavy dilepton production from a plasma of massless quarks,
pretation may be obtained for the the third and fourth diad-€., E>T. There are essentially five terms.

grams of Fig. 12 in terms of quark spectators. However, a
the above equation is not mathematically well defined, it will
not be used in evaluating the infrared limit. Equati@ml2
will be used instead.

E: photon gluon production denotes the reactiqr-q
—g+y.
: Compton-like reaction between a gluon and quark/
antiquarkg+q—q-+ 7.
D: denotes the three-body fusion to form the photphq
+q—7.
V: denotes photon formation from vertex corrected quarks/
antiquarks.
S denotes photon formation from self-energy corrected
guarks/antiquarks.

The full imaginary part of the two loop self-energy may be
schematically written as

8e292
(2m)°

21Imlly=— dwi{n(w)[F(w)+Dg4(w)

+ V(W) + Sy(w) ]+ n(W)[ C(W) +Dy(w)
+ V(W) + Sq(w) ]} (8.0

The first four terms represent the part of the terms men-
tioned above that are proportional to the gluon distribution
function. The last four terms are those proportional to the
- quark/antiquark distribution function. This is essentially the

FIG. 12. Photon decay into @q pair. The quark then emits or same notation as used by the authorg2jf We now com-
absorbs a quark or a gluon. pute these contributions in turn.
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A. Self energy correctionSy and S

The self-energy correction is essentially given by Eq.

(7.12, i.e.,
dkdéd ¢ sin 6d®
diSd:HZ]ez(ZWi)Sezng ¢ 5 q¢‘>‘(E—2k)
(27)°q
X[1—2n(k d > NS
[ I’l( )]dk S1,S [E_SZEk—q_Slq_k]'

(8.2

We concentrate, first, on the sud=3 ¢ k’NS/(E
—S;E_q—s10—K). This may be expanded as

k | [1/2—n(w)+ 1/2+n(q) Jw. - k.
Tw E-k—-w—q

[1/2—"n(w) —{1/2+n(q)} Tw, - k_
+
E-k+w—q

—{1/2—n(w)}+1/2+n(q)w, -k
E-k—w+q

[ {1/2—n(w)}—{1/2+n(q)} w, -k
E-k+w+q

. (8.3

PHYSICAL REVIEW C65 055203

The limits of they integration are the locations for the onset
of collinear singularities, these are shielded by removing a
small part of phase space i.e., they integration is per-
formed within the limits —1+e—1—e. The results will
now depend ore. This gives the result as

8 2 2
(27 )sf dan(q)Sy(a)
_ —8e’g’? 2
(27 qun(q —4q9-— 4q|n( ” (8.7

In the above, the termr{E/2) has been dropped, as we are
interested in the heavy dilepton limit, whelee>T and as a

resultn(E/2)—0. Thus, we get

2
Sy(w)= —4W—4W|n(z>. (8.8

We now concentrate on the terms, in E§.3), which are

proportional to the factor 1/2n(w). Following a similar
procedure as above we obtain

882 2

f dwn(w Sy(w)

822

fdwn(w) —4w— 4wln(2”, (8.9

(2

We now concentrate on the terms proportional to 1/2thus, giving us the relation

+n(q), i.e.,

2k(E—k—q)—2w-k
(E-k—q)*—

Sy +n(q)}

. 2k(E—k+q)—2w-k
(E—k+q)°—

(8.9

Introducing the variablesy=E—2k—2q, S=E—2k+2q,
and y=cos# (where 6 is the angle betweek and ﬁ), we
obtain

(2k—E)a

Sg=K T Eat2kq1ty)

(2k—E)B }
EB—2ka(1-y)]
(8.9

Dropping the: ahead of the gluon distribution function
we obtain the matter part afy. Using only this part we
obtain (performing the unimportant angle integratipns

1
§+n(q)

2~2

- (zjsf dan(q)Sy(q)

8eg

Jdk[l 2n(k)18(k—E/2)

d
xf dqqf dyd—kSgymat. (8.6

2
Sy(w) = —4w— 4wln(;> . (8.10
Note that in both the expressions 8 andS; there is a

In(%) term, which diverges as—0. This is a collinear sin-
gularity. We shall allowe to vanish only when all the differ-
ent contributions to the dilepton rate have been added to-
gether.

B. Vertex correction Vg and Vq

We concentrate first on the term proportional to the fer-
mionic frequency, i.e.V. This vertex correction is essen-
tially given by Eqs(7.2), (7.3), and(7.4). The first two need
to be doubled, as mentioned before in Sec. VI. Extracting
only the part proportional to the fermionic distribution func-

tion n(w), we obtain thev,, integral as

(W)

d3kdPw

=2(—2i)8e?g?
m{[l 2n(k)J[—2n(w)]}

<
(k+ 'WSZ)(k— 'W53)32
X
[E—(sp—s3)W][ (K+s3w)?—g?]

S(E—2K).

(8.1)
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Performing the sum 08,,s; and settingy =cosé (where
6 is the angle betweek andw), we can perform one of the

PHYSICAL REVIEW ®5 055203

disd TT2J(E—k—q—E;_q)

integrati ith the help of a delta function to get [ dkd®qd*w
integrations wi e help of a delta function to ge :_'f(z = 2k2W(27T)454(p_k_q_W)
8e?g? ~ :T q B 5 B
T 2n) f Awn(w)Vg(w) *{[1=n()][1+n(a)J[1=n(w)]=n(k)n(a)n(w)}
E-2k E-2w E(E—2q)
32e%9? ~ 1-e 1 E x 32e%g? + + :
220 gww—Fw ]|y 9lE—2w " E-2k T[E-2w][E—2K]
(2m)3 ~1+e " 2[[E+2w .16
E 1+y w w
TEow 1—y NETow  E—ow (1+y)]. In the above equatjon, naoteéthat if three of the delta func-
(8.12 tions are used to sett=—k—q, then the remaining delta

function imposes the condition that

Note, once again, that the limits of the final angular inte-
grationy signal the onset of collinear singularities. These are,
once again, regulated by removing the small part of phase
spacee. At this point we introduce the condition that the = As mentioned before, we work in the limi#>T; in this
limit of interest is, for dilepton mass, much larger than thecase the delta function can be satisfied by the following re-
temperature, i.e.E>T. The presence of the distribution gions of phase space.

functionn(w), depending on the energy severely restricts (@ k~E, q~E, and hencew~E; in this case all the
the contribution from regions whene>T to the integral. distribution functionsn(q),n(k),n(w)—0 and, thus, so do
Thus, the dominant contribution to the integral is from theproducts of distribution functions.

regions wherav<T or w~T. Hence, in the integral we may (b) k~T<E, q~E, and hencev~E; in this casen(k)

make the approximation that<E and expand the factorsin _ 4 Howevern(q),n(w)—0, and so do products of distri-
the square brackets to linear powemrE. This finally gives 5 tion functions.

(c) w~T<E, q~E, and hence&~E; in this casen(w)
~1. Howevern(q),n(k)—0, and so do products of distri-
bution functions.
(d) g~T<E, k~E, and hencev~E; in this casen(q)
8w+ SWm(E” 813  ~1. Howevern(w),n(k)—0, and so do products of distri-
€ bution functions.
Contributions from(b) and (c) will give us Dy, (d) will
give usDg, while the contribution from(a) is negligible in
comparison. We begin by calculatiiy, from the regiongb)
and(c) of the phase space. Here we can ignore all combina-
tions of distribution functions containing(q). As before, we
also ignore the vacuum term, concentrating only on the mat-

Following almost a similar method as above we may ob-t€r contribution. Noting the symmetry in the matrix element

tain V, from Eq.(7.2) (with an overall factor of 2, as there is under interchange dt andw, we may change variables
another cut that gives an identical contribufi@s —k in the part of the integrand proportional to the distribu-

E=k+q+ Vk?+q°+ 2kq cosé.

86292
(2m)°

f dwn(w)Vy(w)

8e’g? -
=— dwn(w)
(2m)®

Thus we obtain that

2
Vg(w)=—8w+ 8wln( -

. (8.19

- 2E? (2)
Vg(w)=4w— —In ik (8.15

w

Once again, note that both expressions demonstrate a collin-

ear divergence as—0. The termV, also displays an infra-
red divergence ag—0.

C. Photon formation from quark, antiquark
and gluon D4 and D

tion functionn(w) to get

8e292
(2m)°

f dkn(k)D (k)

_f d%kdlq
(27)°292k2w
E-2k E-2w
“lE—ow T E—2k

S(E—k—q—w){2n(k)}32e%g?

E(E-2q)
[E—2w][E—2kK]|’

(8.17

The reverse reaction to this process represents heavy-
photon “decay” into aqqy. Due to this reason, the process The argument of the delta function is the equatmpg)

is denoted by the lettdD [2]. The full decay contribution is
given by Eq.(6.8) as

=k+qg+w(q)—E=0. The solution of this equation is gt
=0ds(k,E),

055203-21



A. MAJUMDER AND C. GALE PHYSICAL REVIEW C65 055203

1 E(E—2k) IX. RESULTS
® 2E—-k(1-y)’ ®.19 In the first seven sections we evaluated the two different
self-energies of the photon at two loops, then evaluated the
The delta function can be written as various cuts of the self-energies that constituted its imaginary
part; we then recombined the various cuts and reinterpreted
5(g(q)= o(q—0as) them as physical processes and finally evaluated these terms
lg’(qs)| in the limit of heavy photon emission. In Sec. VIII we have

concentrated solely on the thermal or matter part of these
Substituting this back into the equation fr,, we can do  expressions. The vacuum part is well known. All the expres-
the dg integration with the above-mentioned delta function.sions contain collinear singulariti¢éas e—0), which for the
We can then perform the remaining angular integration bynoment have been shielded by removing the small part of
removing the small part of phase spac¢o shield the col- phase spacee] where these singularities occur. Some of the
linear singularities. Now expanding up to linear ordekias  expressions also display infrared singularities vas-0.

k<E, we get Hence, the final integrations overare yet to be performed.
In the following we will combine all these terms and perform
8e%g? _ this integration.
T 2n) dkn(k)Dy(k) We now resubstitute the ternfs C, D, V, andS back in

Eq. (8.1 to get the coefficients of the bosonic and fermionic
distribution functions as

2k+(—2k—E)In(2H. (8.19

8e%g? ~
(277)3J dien(l) 5 N(W)(F+Dg+Vg+S)=n(w)(—4w), (9.1

Thus we get N(W)(C+Dg+V+S)=n(w)(—8w). (9.2

2 Thus, we find that when all the cuts are summed, the

Dg(w)=2w+(—2w— E)In(z). (8.20  collinear and infrared singularities cancel. This is in contra-
distinction with the results of Ref$8,2], where the infrared

singularities cancel but the collinear singularities persist.

We can now obtaiD 4 by concentrating on regiofd) of , . :
the phase space and ignoring all combinations of distributior\;\gth these, we get the full imaginary part of the self-energy

functions containingi(k) or n(w), this gives us

) 4e’g?[  4m®T?| 8ePa,T?
E 2 Im IT# =— - = :
Dy(w)=—2w+| 2w—2E+ — In| —1. (82]) Htwo loop,thermal (277.)3 3 3
9 w €
9.3
D. Pair annihilation F and Compton scatteringC We may also derive the Born term and quote the two-loop
. . ) ~yacuum contributior{from [17]) as
The procedure to obtain these is almost exactly identical
to the two terms of the preceding section. The total Compton —3e2 ) g
scattering contribution can be obtained from E§.17) by Im Hﬁoneloo W = B 1+—
. e . . . X p two loop,vacuum 24T T
doubling it, as mentioned in the paragraph immediately fol- (9.4)

lowing Eq. (6.17). We may, once again, from phase space
considerations show that the dominant contribution to Comp-
ton scattering occurs from a region whéee T<E(k is the

incoming quark or antiquark energyThe leading term of In this paper, we have calculated the imaginary part of the
Compton scattering is, thus, proportional to the quark or anyyo-loop heavy boson retarded self-energy in the imaginary
tiquark distribution function. From similar ConSiderationS, time formalism. We also elucidate the ana|ytic structure of
the Ieading term of pair annihilation can be demonstrated t@he Se]f-energy by recombining and reinterpreting various
be proportional to the outgoing gluon distribution function. cyts of the self-energy as physical processes that occur in the
Expanding them up to linear order in the quark or gluonthe medium. Cuts with loops have been interpreted as inter-

X. DISCUSSIONS AND CONCLUSIONS

energyw, we get ference terms betwee@(a) tree scattering amplitudes and
5 the Born term with spectators. At each stage the results from
C(w)=2w+(—2w+ E)In(—) (8.22  the self-energy cuts were matched py reder.iving the gmpli-
€ tudes of the tree-level diagrams. This constitutes an impor-

tant check of each of the contributions from the self-energy.

and Each of the contributions contain infrared and collinear
£2 ) singularities. In the interest of simplicity, we analyzed this

F(w)=—2w+ | 2w+2E+ —|In| 2. (8.23 singular behavior in the region whe're the dilepton mass is far

w € greater than the temperature. This allows us to neglect a
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series of terms that appear subdominant. In each case wehere Ac(w,,q) is the familiar Euclidean propagator pre-
retained terms only up to ord@?/E?. One might argue that sented in the literaturgl 3], [15]. One may immediately sur-

this represents a considerable approximation of the resulijse the form of the noncovariant propagatqq|,x°), the

However the resulting simplification allows us to analyze farFourier transform of which is the covariant propagator
simpler and analytically integrable expressions. We would

point out that this was precisely the approximation used in

[2,8] where a remnant collinear divergence was deduced at A(g,9%=— deTe_i‘””TAe(HLT)

O(T?/E?). When all the contributions were summed, all in- 0

frared and collinear divergences canceled, leaving a finite .

resultO(T%/E?). In this sense our results differ slightly from _ _if ¥ 1x0ait®p (I, )

those of Ref[7] who find a remnan©(T*/E*) result. The 0 B

possible reasons for this discrepancy are many. For example, _ip

the authors of Refl7] use a complicated finite temperature = _iJ dee‘qoon(Ml,xO). (A3)
remormalization prescription, ours is the same prescription 0

as at zero temperature; they apply finite self-energy correc-

tions on the outer legs of all their processes and we do NOtha full fermionic propagators are

However, both calculationgsas well as those of Ref6)])
yield the consistent result that all collinear and infrared di- ”
vergences cancel in the final rate expression. This is consis- 0y _ [T 0igO0 > L0

tent with the Kinoshita-Lee-Nauenberg theordit8,19, (4,97 = (v"a,)( I)fo dxe" AM(|q|,x ),
even though a formal proof of the theorem at finite tempera- (A4)
ture is still elusive. We leave this and other extensions for

future investigations. where
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- 1 :
A#(|q|,x0): E Es: fs(Eq)eilsxo(Eq)- (A5)
q

Imagine we have a function of a complex variabléz)
and it is given to be in the form

. f(z,x Z,X
APPENDIX A: NOTATION F(Z):f dx ( )+ 9(z,x) (B1)

. . . . Z—X (Z— X)2 !
Our notation is categorized by the explicit presence of an

apparent Minkowski timex°=—ir and a momentuny®

=i2n#T or i(2n+1)#T for bosons or fermions, respec- wherex is a real variable, integrated on the real axis. Most of
tively. Our metric is (1;-1,—1,—1). For the case of zero the discontinuities that we evaluate can be cast in this gen-
chemical potential our bosonic propagators have the sameral form. This can be rewritten as

appearance as at zero temperature, i.e.,

X) _9(zx)
Z  (x—2)?

f(z,
i —F(z)= | dx (B2)
iIA(Q)= ———. (A1) X—
(99%-ql?

The functionsf(z,x) andg(z,x) are analytic inx and hence
The Feynman rules are also the same as at zero temperatugg, . o Taylor(exp)ansioa( ) y
with the understanding that we replace the zeroth component
of the momentum by(2n+1)=#T for a fermion and by an
even frequency in the case of a boson. One may, in the case
of zero chemical potential, relate this to the familiar case of

Ref.[13] by noting that

f
f(z,x)=f(z,x=2)+ j—x(z,xzz)[x—z]

1 d?f )
. +§ﬁ(z,x=z)[x—z] +.- (B3)
@ JaP (wpirlgp Eend
(A2) Substituting Eq(B3) in Eq. (B2) we get

A(g)=
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f(zx=2) df d2f Recqlling that onl_y the pure first order poles deve_lop a dis-
-F(2)= f dx +—(z,x=2)+—(z2,x=2) continuity or imaginary part at the pole, we get the imaginary
X~z dx dx? part of Eq.(B4) as
X[X—Z]+. .. _Q(LZ)_@(Z,X:Z)
(X— 2)2 dx
. . dg
1 1 d?%g d|sc[—F(z)]=f dx27i §(x—2) f(z,x)——(z,x)}.
—— > —(z,x=2) - (B9 dx
X=2 2 dx? (x—12)2 (BS)
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