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Imaginary parts and infrared divergences of two-loop vector boson self-energies in thermal QCD

A. Majumder and C. Gale
Physics Department, McGill University, 3600 University Street, Montre´al, Quebec, Canada H3A 2T8

~Received 25 November 2001; published 1 May 2002!

We calculate the imaginary part of the retarded two-loop self-energy of a static vector boson in a plasma of
quarks and gluons at a temperatureT, using the imaginary time formalism. We recombine the various cuts of
the self-energy to generate physical processes. We demonstrate how cuts containing loops may be reinterpreted
in terms of interference between theO(a) tree diagrams and the Born term along with spectators from the
medium. We apply our results to the rate of dilepton production in the limit of dilepton invariant mass
E@T. We find that all infrared and collinear singularities cancel in the final result obtained in this limit.
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I. INTRODUCTION

The imaginary parts of retarded self-energies repres
extremely important quantities in thermal field theory. Th
provide information about various quantities of physical
terest in the medium. Primary among these are the decay
formation rates of particles@1#. Boson self-energies provid
information about quantities likeZ decay rates@2# and pro-
duction rates of dileptons and real photons@3# from a quark-
gluon plasma~QGP!. The spectrum of lepton pairs~i.e.,
e1e2, m1m2) and real photons emanating from such
plasma has been considered as a promising signature of
formation @4,5#. This owes to the fact that the photons
dileptons suffer essentially no final state interaction.

Some years ago the contribution to the rate of dilept
produced at rest in the plasma at first order in the str
coupling constant was evaluated@6#. This included reactions

like three particle fusion (qq̄g→g* ), Compton scattering

(qg→qg* or q̄g→q̄g* ), pair annihilation (qq̄→gg* ),
Born term with vertex correction, and Born term with qua
or antiquark self-energy correction. This calculation was p
formed in the real-time formalism, both in a Feynman d
gram approach in thermofield dynamics, and by taking
imaginary part of the two-loop photon self-energy. In t
case of massless QCD, each of the contributions mentio
above contain infrared or collinear singularities. These w
regulated at intermediate stages of the calculation by giv
masses to the quarks and gluons. The combined rate from
these processes was then found to be free of all diverge
in the limit of vanishing masses. This calculation was a
performed simultaneously by another group@7#, who dimen-
sionally regularized the singularities at intermediate stage
the calculation. The end result remained the same: when
the different processes were summed, the divergences
celed and dilepton rate at next-to-leading order remai
finite.

Recent calculations employing a multiple scattering
pansion, however, have found a remnant collinear diverge
@2,8#. This result has been commented upon@9#, and the
issue of divergences remained unresolved@10#. In the wake
of this strife, we revisit this problem in a systematic calc
lation. Also, to the best of our knowledge, a complete cal
lation of the imaginary part of a heavy vector boson retard
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self-energy in the imaginary time formalism has yet to
performed. This is the subject of this paper. The scalar bo
self-energy was examined recently@11#. There are various
advantages to such a calculation: the basic Feynman rule
easily generalized from zero temperature, there is no d
bling of degrees of freedom and no matrix structure of pro
gators, multiple poles that lead to ill-defined products
delta functions in the real-time formalism are easily a
naturally handled both in the Matsubara sums and in
analytic continuation. The purpose of this calculation is th
manifold. The first goal is to enumerate and interpret
various physical contributions contained in the imagina
part of the two-loop self-energies. In doing this, it shall th
be shown that cuts containing loops may be reexpresse
interference between tree diagrams and the Born term wi
thermal medium spectator. Importantly, we also demonst
how double poles may be simply and elegantly dealt with
the Matsubara sum and in the analytic continuation to r
energies. We finally concentrate on the eventual collinear
infrared divergences in the ensuing rates. In this study,
focus on the singularity structure in the region of phase sp
investigated by the authors of Refs.@2,8#. Even though we
explicitly calculate the self-energies of static virtual photon
the results may be easily applied to other vector bosons
medium, with the exception of the gluon, which admits oth
self-energies in a QGP.

The various sections are organized as follows. In Sec
we begin by evaluating one of the self-energy diagrams o
static photon with an imaginary energy at two loops~the
impatient reader may skip ahead to Sec. VI where the v
ous cuts of the self-energy are recombined to provide ph
cal interpretations of the various terms obtained, followi
which the infrared behavior of heavy photon production w
be discussed!. In Sec. III we analytically continue the photo
energy to real values and obtain the imaginary part of
corresponding retarded self-energy. In Sec. IV we evalu
the other self-energy topology. In Sec. V we analytically co
tinue this self-energy to real values of photon energy and
the retarded imaginary self-energy. In Sec. VI we comb
the treelike cuts and reinterpret them as physical proce
with thermal distributions on the phase space factors. In S
VII we attempt to interpret cuts containing loops in terms
the recently proposed spectator interpretation@12#. In Sec.
VIII we take the limit of heavy photon production (E@T)
©2002 The American Physical Society03-1
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and evaluate the various contributions. In Sec. IX we co
bine all cuts, demonstrate the cancellation of the collin
and infrared divergences, and present our results. We pre
our conclusions and brief discussions in Sec. X. Two app
dixes follow. In the interest of quantitative accuracy and
peatability, we have presented many calculational details:
issue being addressed here is technical and thus dema
rigorous treatment.

II. THE SELF-ENERGY: TOPOLOGY I

We evaluate the photon self-energy with a gluon runn
across as shown in Fig. 1. To begin with, we derive
expression for the effective quark photon vertex corrected
a gluon running across, i.e.,

ieGm5 iegm1 iedGm,
he
he
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wheree may be taken to be the electric charge of the qua
In standard notation, the expression for the effective ver
in Feynman gauge may be written down as

ieGm5
i

b (
q0

E d3q

~2p!3

2 igrsdab

q2
~ i t i , j

a ggr!

3
i ~k”2q”2p” !

~k2q2p!2
~ iegm!

i ~k”2q” !

~k2q!2
~ i t j ,k

b ggs!. ~2.1!

The Matsubara sum in the effective vertex may be sim
evaluated using the method of Pisarski@13#. In our notation
~see Appendix A, see also@14#!, this is given in the static
limit ( pW 50) as
dGm5
g2Cik

4 E d3q

~2p!3 (
s1 ,s2 ,s3

~k”2q” !s2
gm~k”2q” !s3

qEq2kEq2k~p02@s22s3#Eq2k!

3H 2s3

~s11s2!/22s1ñ~Eq2k!1s2n~q!

k02s1q2s2Eq2k

1s2

~s11s3!/22s1ñ~Eq2k!1s3n~q!

k02p02s1q2s3Eq2k
J , ~2.2!
e

ef.
our
wheres1 ,s2 ,s3 are sign factors, which are summed over t
values of61. We may now use the above result to write t
full self-energy of the photon in the static limit as

iPm
m5

i

b (
k0

E d3k

~2p!3
~21!

3Tr (
ss4

Fegmdki

gbs4k̂b,s4

2~k02p02s4k!
edG i ,k

m gask̂a,s

2~k02sk!
G ,

~2.3!

wherek̂s stands for the four component quantity

H s,
kx

k
,
ky

k
,
kz

k J 5$s,0,0,1%.
We note that the effective vertex may be written as

dGm5grgmgsdGrs

to highlight the structure ofg matrices contained within it.
The trace of theg matrices is straightforward. This gives th
full self-energy as

Pm
m5

24

b (
k0

E d3k

~2p!3 (
ss4

e2F sk̂a,s

k02sk
dGba

s4k̂b,s4

k02p02s4k
G .

~2.4!

For convenience we changes2→2s3 and s3→2s2. To
evaluate the Matsubara sum we follow the method of R
@15#. This method converts the Matsubara sum into a cont
integration in the complex plain ofk0, i.e.,
Pm
m5

24e2g2

2p i E
2 i`1e

i`1e

dk0E d3kd3q

~2p!6
@1/22ñ~k0!#

sk̂a,s

s5k02sk
F ~q2k!̂s2

a ~q2k!̂s3

b

q~p02@s22s3#Eq2k!

3H s2

~s12s3!/22s1ñ~Eq2k!2s3n~q!

s5k02s1q1s3Eq2k

1s3

~s12s2!/22s1ñ~Eq2k!2s2n~q!

p02s5k01s1q2s2Eq2k
J G s4k̂b,s4

s5k02p02s4k
, ~2.5!

where (q2k)̂s stands for the four component quantity

H s,
qx2kx

uq2ku
,
qy2ky

uq2ku
,
qz2kz

uq2ku J 5H s,
q sinu cosf

Ak21q222kq cosu
,

q sinu sinf

Ak21q222kq cosu
,

q cosu2k

Ak21q222kq cosu
J .
3-2
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IMAGINARY PARTS AND INFRARED DIVERGENCES OF . . . PHYSICAL REVIEW C65 055203
Thek0 integration is from2`→` on the positive side of
the real axis. We may thus close the contour on the posi
side. Note that the function is vanishing ask0→`. The result
of this integration will simply be the sum of the residues
the corresponding poles. Looking at the above expression
note that the pole structure is different depending on whe
the term being considered is the first one or the second on
the curly brackets. We note the following poles:

~i! First order pole atk05k, requiress55s ~in both
terms!

~ii ! First order pole atk05k1s5p0, requiress55s4 ~in
both terms!

~iii ! First order pole atk05s5s1q2s5s3Eq2k , requires
s5s1q2s5s3Eq2k.0 ~only in the first term!

~iv! First order pole atk05s5p02s5s2Eq2k1s5s1q ~only
in the second term!.

In the following, each of the poles are evaluated in
separate subsection and then summed up.

A. First order pole at k0Äk

This is the pole of the first outer propagator~i.e., not a
propagator in the effective vertex!, it is a pole for the entire
self-energy expression. It has the obvious residue of

Pm
m~A!54e2g2E d3kd3q

~2p!6
@1/22ñ~k!#

sk̂a,s

s

3F ~q2k!̂s2

a ~q2k!̂s3

b

q~p02@s22s3#Eq2k!

3H s2

~s12s3!/22s1ñ~Eq2k!2s3n~q!

sk2s1q1s3Eq2k

1s3

~s12s2!/22s1ñ~Eq2k!2s2n~q!

p02sk1s1q2s2Eq2k
J G

3
s4k̂b,s4

sk2p02s4k
. ~2.6!

Note that there is an extra negative sign in the residue as
contour is being taken in the clockwise sense.

FIG. 1. The first topology for the self-energy.
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B. First order pole at k0Äk¿s5p0

This is the pole of the second outer propagator, it is a p
for the entire self-energy expression. It gives the residue

Pm
m~B!54e2g2E d3kd3q

~2p!6
@1/22ñ~k!#

3
sk̂a,s

p01s4k2sk
F ~q2k!̂s2

a ~q2k!̂s3

b

q~p02@s22s3#Eq2k!

3H s2

~s12s3!/22s1ñ~Eq2k!2s3n~q!

p01s4k2s1q1s3Eq2k

1s3

~s12s2!/22s1ñ~Eq2k!2s2n~q!

2s4k1s1q2s2Eq2k
J Gs4k̂b,s4

s4
.

~2.7!

Note that thep0 in the distribution function has bee
dropped. This may be done asep0b51 (p0 is a discrete
even frequency!, and also, as we are eventually going
analytically continue the self-energy to complex values
p0. The correct analytic continuation is given by that fun
tion which has no nonanalytic behavior off the real axis@16#.
One may easily check that the above function with ap0 in
the distribution function will have poles atp052k1 i2(n
11)pT. Note that in this pole we may switch

s→2s4 , s4→2s, s2→2s3 , s3→2s2 ,s1→2s1 ,

and noting thatk̂2s(q2k)̂2s2
5 k̂s(q2k)̂s2

, we find

Pm
m~B!5Pm

m~A!.

C. First order pole at k0Äs5s1qÀs5s3EqÀk

In the expression for the effective vertex@Eq. ~2.2! or Eq.
~2.5!#, we note the presence of two terms inside the cu
brackets with different pole structures. This is a pole of t
first term, and is realized only ifs5s1q2s5s3Eq2k.0. Thus
the residue is

Pm
m~C!54e2g2E d3kd3q

~2p!6
@1/22ñ~s5s1q2s5s3Eq2k!#

3
sk̂a,s

s1q2s3Eq2k2skF ~q2k!̂s2

a ~q2k!̂s3

b

q~p02@s22s3#Eq2k!

3H s2

~s12s3!/22s1ñ~Eq2k!2s3n~q!

s5
J G

3
s4k̂b,s4

u~s5s1q2s5s3Eq2k!

s1q2s3Eq2k2p02s4k
. ~2.8!
3-3
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D. First order pole at k0Äs5p0¿s5s1qÀs5s2EqÀk

This is the pole of the second term in the curly brac
mentioned in the preceding section. It is realized only
s5s1q2s5s2Eq2k.0. The residue is

Pm
m~D !54e2g2E d3kd3q

~2p!6
@1/22ñ~s5s1q2s5s2Eq2k!#

3
sk̂a,s

p01s1q2s2Eq2k2sk

3F ~q2k!̂s2

a ~q2k!̂s3

b

q~p02@s22s3#Eq2k!

3H s3

~s12s2!/22s1ñ~Eq2k!2s2n~q!

2s5
J G

3
s4k̂b,s4

u~s5s1q2s5s2Eq2k!

s1q2s2Eq2k2s4k
. ~2.9!

Note that in this pole we may switch

s2→2s3 , s3→2s2 , s1→2s1 , s5→2s5 ,
05520
t
f

s→2s4 , s4→2s.

With this operation, we find

Pm
m~D !5Pm

m~C!.

Thus the full photon self-energy to second order in t
coupling constant for the diagram of Fig. 1 is given by su
ming up the results of the preceding four subsections, i.e

Pm
m52Pm

m~A!12Pm
m~C!.

III. IMAGINARY PART
OF THE FIRST SELF-ENERGY TOPOLOGY

We now proceed with evaluating the discontinuity in t
first self-energy, asp0 is analytically continued towards th
positive real axis from above, i.e.,p0→E1 i e. Analytically
continuing p0 will give us the retarded self-energy of th
photon in real time in terms of a real continuous energyp0

5E. The expressions to be continued arePm
m(A) and

Pm
m(D). The presence of the theta function inPm

m(D) com-
plicates the pole structure that one would obtain during
analytic continuation of this expression. Using standard te
niques~outlined in Sec. IV D!, we decompose the theta func
tion to obtain
f

f

Pm
m~D !524e2g2E d3kd3q

~2p!6

ss4s3

q H @ k̂s•~q2k!̂2s5
#@ k̂s4

•~q2k!̂s3
#@12ñ~Eq2k!1n~q!#@1/22ñ~Eq2k1q!#

@p02~sk2s5Eq2k2s5q!#@p02~2s52s3!Eq2k#@s5~Eq2k1q!2s4k#

2
@ k̂s•~q2k!̂s5

#@ k̂s4
•~q2k!̂s3

#@ ñ~Eq2k!1n~q!#@1/22ñ~q2Eq2k!#

@p02~sk1s5Eq2k2s5q!#@p02~s52s3!Eq2k#@s5~q2Eq2k!2s4k#
J . ~3.1!

Analyzing the expressions forPm
m(A) andPm

m(D), we note the following discontinuities.
~a! Poles of typep052k.
~i! First order pole inPm

m(A) at p052k, requiress52s451 @in both terms that make upPm
m(A)].

~b! Poles of typep052Eq2k .
~ii ! First order pole inPm

m(A) at p052Eq2k , requiress252s351 @in both terms that make upPm
m(A)].

~iii ! First order pole inPm
m(D) at p052Eq2k , requiress55s3521 @only in the first term ofPm

m(D)].
~iv! First order pole inPm

m(D) at p052Eq2k , requiress552s351 @only in the second term ofPm
m(D)].

~c! Poles of typep05sk1s1q1s2Ek2q .
~v! First order pole inPm

m(A) at p05sk2s1q1s2Eq2k , requiressk2s1q1s2Eq2k.0 @only in the second term o
Pm

m(A)].
~vi! First order pole inPm

m(B) at p05sk2s5q2s5Eq2k , requiressk2s5q2s5Eq2k.0 @only in the first term ofPm
m(B)].

~vii ! First order pole inPm
m(B) at p05sk2s5q1s5Eq2k , requiressk2s5q1s5Eq2k.0 @only in the second term o

Pm
m(B)].
We may write down the expression for 2Pm

m(A) highlighting its real and imaginary parts asp0→E1 i e as

2Pm
m~A!528e2g2E d3kd3q

~2p!6

s4@ k̂s•~q2k!̂s2
#@ k̂s4

•~q2k!̂s3
#

Eq1k
FPS 1

E2~s22s3!Eq2k
D2 ipd~E2@s22s3#Eq2k!G

3H s2

~s12s3!/22s1ñ~Eq2k!2s3n~q!

sk2s1q1s3Eq2k
1s3@~s12s2!/22s1ñ~Eq2k!2s2n~q!#FPS 1

E2sk1s1q2s2Eq2k
D

2 ipd~E2sk1s1q2s2Eq2k!G J @1/22ñ~k!#FPS 1

E2~s2s4!kD2 ipd~E2@s2s4#k!G . ~3.2!
3-4
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We now write down the various discontinuities as enumerated above@note that we are now looking at 2Pm
m(A) and

2Pm
m(D), so the overall factors have doubled#,

disc@2Pm
m~A!#a5~12p i !8e2g2E d3kd3q

~2p!6

22@ k̂1•~q2k!̂s2
#@ k̂2•~q2k!̂s3

#

q~E2@s22s3#Eq2k!
s2

~s12s3!/22s1ñ~Eq2k!2s3n~q!

k2s1q1s3Eq2k

3@1/22ñ~k!#d~E22k!. ~3.3!

disc@2Pm
m~A!#b5~12p i !8e2g2E d3kd3q

~2p!6

s4@ k̂s•~q2k!̂1#@ k̂s4
•~q2k!̂2#

q H @122ñ~Eq2k!#2q

~sk2Eq2k!
22q2 J @1/22ñ~k!#

E2~s2s4!k
d~E22Ek2q!.

~3.4!

disc@2Pm
m~D !#b5~12p i !8e2g2E d3kd3q

~2p!6

1

qH @ k̂s•~q2k!̂1#@ k̂s•~q2k!̂2#

Eq2k
2 2~sk1q!2

1
@ k̂s•~q2k!̂1#@ k̂s•~q2k!̂1#

q22~Eq2k2sk!2 J
3$@12ñ~Eq2k!1n~q!#@1/22ñ~Eq2k1q!#2@ ñ~Eq2k!1n~q!#@1/22ñ~q2Eq2k!#%d~E22Eq2k!.

~3.5!

We now proceed to the evaluations of the discontinuities of the typep05sk1s2Eq2k1s1q. We first changes1→2s1 in
2Pm

m(A) ands5→2s5 in the first part of 2Pm
m(D). Hence the discontinuity occurs in 2Pm

m(A) at p05sk1s2Eq2k1s1q only
when sk1s2Eq2k1s1q.0. This may happen in only one of four instances:s51,s251,s151; s52,s251,s151; s
51,s252,s151; s51,s251,s152. In 2Pm

m(D) the discontinuity occurs in the first term whens51,s551 or when
s52,s551 and in the second term whens51,s551 or whens51,s552.

Thus the discontinuity in 2Pm
m(A) occurs in four parts,

disc@2Pm
m~A!#c5~12p i !8e2g2E d3kd3q

~2p!6q
@1/22ñ~k!#H s3s4@ k̂1•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#@211ñ~Eq2k!2n~q!#

@k1q1s3Eq2k#@q1Eq2k1s4k#
d~E2k

2Eq2k2q!1
s3s4@ k̂2•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#@211ñ~Eq2k!2n~q!#

@2k1q1s3Eq2k#@q1Eq2k1s4k#
d~E1k2Eq2k2q!

1
s3s4@ k̂1•~q2k!̂2#@ k̂s4

•~q2k!̂s3
#@ ñ~Eq2k!1n~q!#

@k1q1s3Eq2k#@2Eq2k1q1s4k#
d~E2k1Eq2k2q!

1
s3s4@ k̂1•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#@2ñ~Eq2k!2n~q!#

@k2q1s3Eq2k#@Eq2k2q1s4k#
d~E2k2Eq2k1q!J . ~3.6!

The discontinuity in 2Pm
m(D) also occurs in four parts,

disc@2Pm
m~D !#c5~22p i !8e2g2E d3kd3q

~2p!6q
F @1/22ñ~Eq2k1q!#

3H s3s4@ k̂1•~q2k!̂1#@ k̂s4
•~q2k!̂s3

#@12ñ~Eq2k!1n~q!#

@k1q1s3Eq2k#@q1Eq2k1s4k#
d~E2k2Eq2k2q!

2
s3s4@ k̂2•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#@12ñ~Eq2k!1n~q!#

@2k1q1s3Eq2k#@q1Eq2k1s4k#
d~E1k2Eq2k2q!J

1@1/22ñ~q2Eq2k!#H 2
s3s4@ k̂1•~q2k!̂2#@ k̂s4

•~q2k!̂s3
#@ ñ~Eq2k!1n~q!#

@k1q1s3Eq2k#@2Eq2k1q1s4k#
d~E2k1Eq2k2q!

2
s3s4@ k̂1•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#@ ñ~Eq2k!1n~q!#

@k2q1s3Eq2k#@Eq2k2q1s4k#
d~E2k2Eq2k1q!J G . ~3.7!
055203-5
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IV. THE SELF-ENERGY: TOPOLOGY II

We begin by evaluating the photon self-energy with o
quark line containing a gluon loop. The quark self-ene
may be written as

2 iS~k! i ,k5~ ie!2
i

b (
q0

E d3q

~2p!3
t i , j
a gm

q”

q2
t j ,i
b gm

2 ida,b

~k2q!2
.

~4.1!

Using the identitygmq”gm522q” , q being the momentum
of the gluon, the Matsubara sum in the quark self-energ
evaluated using the method of Pisarski@13#. It is given in our
notation~Appendix A! as

S~k! i ,k5
g2t i , j

a t j ,k
b da,b

2 E d3q

~2p!3(s1s2

~k”2q” !ˆ s2

q

3
~s11s2!/22s1ñ1~Ek2q!1s2n~q!

k02s2Ek2q2s1q

5gbS i ,kb , ~4.2!

where the self-energy has been written in the final form
highlight its matrix structure. We may use this to write t
full self-energy of the photon in the static limit as

Pm
m5

1

b (
k0

E d3k

~2p!3
~21!Tr (

s1s2s3s4s5
Fegm

gas3k̂a,s3
d j ,i

2~k02s3k!

3gbS i ,kb~k!
ggs4k̂g,s4

dk,l

2~k02s4k!
egm

gds5k̂d,s5
d l , j

2~k02p02s5k!
G .

~4.3!

We choose thez direction to be defined by the direction ofk.
Note thatk̂s4

• k̂s5
522ds4 ,2s5

. Note also that thes4 ands3

dependence of the photon self-energy is identical. This
lows us to write down the self-energy as

Pm
m5

21

b (
k0

E d3k

~2p!3
2e2

3F 2~2s3!S j j • k̂s3

~k02s3k!~k02s4k!~k02p01s4k!

2
2~2s5!S j j • k̂s5

~k02p02s5k!@~k0!22k2#
G , ~4.4!

where the summation is implied over all the sign variab
present, i.e.,s1 ,s2 ,s3 ,s4 ,s5. Note that the double pole i
only present in the first term.

We now need to evaluate the Matsubara sum overk0. For
this we follow the method of Ref.@15#. This method converts
the Matsubara sum into a contour integration in the comp
plain of k0. The color factor from the quark self-energy com
bined with that from the rest of the diagram becom
Tr@ ta,tb#dab54. Using this we obtain the self-energy of th
photon as
05520
e
y

is

o

l-

s

x

s

Pm
m5

8e2g2

2p i E2 i`1e

i`1e

dk0E d3kd3q

~2p!6

3
@1/22ñ~k0!#@~s11s2!/22s1ñ~Ek2q!1s2n~q!#

q@sk02s2Ek2q2s1q#

3H s3~k2q!̂s2
• k̂s3

@sk02s3k#@sk02s4k#@sk02p01s4k#

2
s5~k2q!̂s2

• k̂s5

@sk02p02s5k#@~k0!22k2#
J . ~4.5!

The k0 integration is from2`→` on the positive side
of the real axis. We may thus close the contour on the p
tive side. Note that the function is vanishing ask0→`. The
result of this integration will simply be the sum of the res
dues at the corresponding poles. Looking at the above
pression we note the following poles:

~i! Second order pole atk05k, requiress35s45s ~only
in the first term!.

~ii ! First order pole atk05k, no requirement~only in the
second term!, requiress352s45s or 2s35s45s
~only in the first term!.

~iii ! First order pole atk05k1sp0, requiress452s ~only
in first term!, requiress55s ~only in the second term!.

~iv! First order pole at k05ss2Ek2q1ss1q, requires
ss2Ek2q1ss1q.0.

In the following each of these poles will be evaluated in
separate subsection and then summed up.

A. Second order pole atk0Äk

We begin by evaluating the second order pole. The ori
of this pole can be traced back to the two propagators
may go on-shell simultaneously. In the real-time formalis
this leads to the ill-defined square of the Dirac delta functi
In imaginary time, however, this pole is easily dealt with: t
residue of a functionf (k0) at a second order pole atk05k is
simply given as (d/dk0)(k02k)2f (k0)uk05k . Using this we
get the residue ofP at this pole as

Pm
m~A!58e2g2E d3kd3q

~2p!6

3
@~s11s2!/22s1ñ~Ek2q!1s2n~q!#

q
~k2q!̂s2

• k̂s

3H s@1/22ñ~k!#8

@sk2s2Ek2q2s1q#@p022sk#

2
1/22ñ~k!

@sk2s2Ek2q2s1q#2@p022sk#

1
1/22ñ~k!

@sk2s2Ek2q2s1q#@p022sk#2J , ~4.6!
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where the prime denotes derivation only with respect tok.
Note that as in the case of the first self-energy topology th
is an extra negative sign in the residue as the contou
closed in the clockwise sense.

B. First order pole at k0Äk

This obvious residue may be easily evaluated using
methods outlined in the preceding section,

Pm
m~B!528e2g2E d3kd3q

~2p!6

3
@~s11s2!/22s1ñ~Ek2q!1s2n~q!#@1/22ñ~k!#

q@sk2s2Ek2q2s1q#

3H 2s~k2q!̂s2
• k̂s

2kp0
1

s~k2q!̂s2
• k̂2s

2k@p022sk#

1
s5~k2q!̂s2

• k̂s5

2k@p02~s2s5!k#
J . ~4.7!

In the above, we sum over the two possibilities ofs556s to
get the factor in the bracket as

H 2s~k2q!̂s2
• k̂s

2kp0
1

s~k2q!̂s2
• k̂2s

2k@p022sk#
1

s~k2q!̂s2
• k̂s

2kp0

1
2s~k2q!̂s2

• k̂2s

2k@p022sk#
J 50.

Hence,Pm
m(B)50.
05520
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C. First order pole at k0Äk¿sp0

This gives the residue

Pm
m~C!528e2g2E d3kd3q

~2p!6

3
@~s11s2!/22s1ñ~Ek2q!1s2n~q!#@1/22ñ~k!#

q@p02~s2Ek2q1s1q2sk!#@p012sk#

3H s3~k2q!̂s2
• k̂s3

s@p02~s32s!k#
2

~k2q!̂s2
• k̂s

p0 J . ~4.8!

Switchings→2s and summing overs356s we get

Pm
m~C!58e2g2E d3kd3q

~2p!6

3
@~s11s2!/22s1ñ~Ek2q!1s2n~q!#@1/22ñ~k!#

q@p02~s2Ek2q1s1q1sk!#@p022sk#

3H ~k2q!̂s2
• k̂s

~p022sk!
J . ~4.9!

D. First order pole at k0Äss2EkÀq¿ss1q

This pole is realized only ifss2Ek2q1ss1q.0. This con-
dition may be enforced with the following set of delta an
theta functions:

ds,s2
ds,s1

1ds,s2
ds,2s1

Q~Ek2q2q!

1ds,2s2
ds,s1

Q~q2Ek2q!. ~4.10!

We start with the second and third terms,
Pm
m~D,2!58e2g2E d3kd3q

~2p!6

@1/22ñ~Ek2q2q!#@ ñ~Ek2q!1n~q!#

q

3H s3~k2q!̂s• k̂s3

@sEk2q2sq2s3k#@sEk2q2sq2s4k#@p02~s4k1sEk2q2sq!#

2
s5~k2q!̂s• k̂s5

@p02~sEk2q2sq2s5k!#@~Ek2q2q!22k2#
J u~Ek2q2q!. ~4.11!

Similarly we find for the third term

Pm
m~D,3!58e2g2E d3kd3q

~2p!6

@1/22ñ~q2Ek2q!#@2ñ~Ek2q!2n~q!#

q

3H s3~k2q!̂2s• k̂s3

@2sEk2q1sq2s3k#@2sEk2q1sq2s4k#@p02~s4k2sEk2q1sq!#

2
s5~k2q!̂2s• k̂s5

@p02~2sEk2q1sq2s5k!#@~Ek2q2q!22k2#
J u~q2Ek2q!. ~4.12!
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Now, switchings→2s in the third term and noting that 1/22ñ(q2Ek2q)521/21ñ(Ek2q2q), we observe that the secon
and third terms can be combined to give

Pm
m~D,213!58e2g2E d3kd3q

~2p!6

@1/22ñ~Ek2q2q!#@ ñ~Ek2q!1n~q!#

q

3H s3~k2q!̂s• k̂s3

@sEk2q2sq2s3k#@sEk2q2sq2s4k#@p02~s4k1sEk2q2sq!#

2
s5~k2q!̂s• k̂s5

@p02~sEk2q2sq2s5k!#@~Ek2q2q!22k2#
J . ~4.13!

Note the absence of the theta functions in the above equation. Now we may also write down the residue from the fir
delta functions in Eq.~4.10! as

Pm
m~D,1!58e2g2E d3kd3q

~2p!6

@1/22ñ~Ek2q1q!#@12ñ~Ek2q!1n~q!#

q

3H s3~k2q!̂s• k̂s3

@sEk2q1sq2s3k#@sEk2q1sq2s4k#@p02~s4k1sEk2q1sq!#

2
s5~k2q!̂s• k̂s5

@p02~sEk2q1sq2s5k!#@~Ek2q1q!22k2#
J . ~4.14!
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The total expression obtained by summing up the res
from the preceding four subsections will give us the f
self-energy of the photon to second order in the coupl
constant for the diagram of Fig. 2, i.e.,

Pm
m5Pm

m~A!1Pm
m~B!1Pm

m~C!1Pm
m~D,1!1Pm

m~D,213!.

V. IMAGINARY PART
OF THE SECOND SELF-ENERGY TOPOLOGY

We now proceed with evaluating the discontinuity in t
second self-energy asp0 is analytically continued to a posi

FIG. 2. The second topology for the self-energy.
05520
ts
l
g

tive real value, i.e.,p0→E1 i e. Analyzing the expressions
derived in the above sections we note the following disc
tinuities.

~a! Poles of typep052k.
~i! First order pole inPm

m(A) at p052k, requiress51
~only in the first and second terms!.

~ii ! Second order pole inPm
m(A) at p052k. This occurs in

the third term in the bracket and requiress51.
~iii ! Second order pole inPm

m(C) at p052k, requiress
51 ands351 ~only in the first term!.

~b! Poles of typep05sk1s1q1s2Ek2q .
~iv! First order pole in Pm

m(C) at p05sk1s1q
1s2Ek2q , requires s5s15s251, 2s5s15s251, s5
2s15s251, or s5s152s251 ~in both terms!.

~v! First order pole inPm
m(D,213) at p05s4k1sEk2q

2sq, requiress45s51 or s452s51 ~only in the first
term!; at p052s5k1sEk2q2sq, requires 2s55s51 or
s55s521 ~only in the second term!.

~vi! First order pole inPm
m(D,1) at p05s4k1sEk2q

1sq, requiress45s51 or 2s45s51 ~only in the first
term!; at p052s5k1sEk2q1sq, requires 2s55s51 or
s55s51 ~only in the second term!.

The discontinuity across a second order pole is derive
Appendix B. We now write down the various discontinuitie
as enumerated above,
3-8
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disc@Pm
m~A!#a

5~22p i !8e2g2E dkdudf sinu d3q

~2p!6q
d~E22k!

3H k2NS@1/22ñ~k!#8

@k2s2Ek2q2s1q#
2

k2NS@1/22ñ~k!#

@k2s2Ek2q2s1q#2

2
1

2

2kNS@1/22ñ~k!#

@k2s2Ek2q2s1q#
2

1

2

k2~NS!8@1/22ñ~k!#

@k2s2Ek2q2s1q#

2
1

2

k2NS@1/22ñ~k!#8

@k2s2Ek2q2s1q#

2
1

2

k2NS@1/22ñ~k!#@211s2Ek2q8 #

@k2s2Ek2q2s1q#2 J , ~5.1!

where the prime denotes derivation only with respect tok.
The symbol N stands for the factor @(s11s2)/2
2s1ñ(Ek2q)1s2n(q)#, while the factor (k2q)̂s2

• k̂1 is rep-

resented by the symbolS,

disc@Pm
m~C!#a

5~2p i !8e2g2E dkdudf sinud3q

~2p!6
d~E22k!

3H 1

2

2kNS@1/22ñ~k!#

@E2s2Ek2q2s1q2k#
1

1

2

3
k2~NS!8@1/22ñ~k!#

@E2s2Ek2q2s1q2k#
1

1

2

k2NS@1/22ñ~k!#8

@E2s2Ek2q2s1q2k#

1
1

2

k2NS@1/22ñ~k!#@11s2Ek2q8 #

@E2s2Ek2q2s1q2k#2 J . ~5.2!

The two terms above are the result of the discontinui
at p0→E52k. In the following we shall enumerate thos
terms that result as we take the discontinuities atp0→E
5sk1s1q1s2Ek2q :

disc@Pm
m~C!#c

5~22p i !8e2g2E d3kd3q

~2p!6

3
@~s11s2!/22s1ñ~Ek2q!1s2n~q!#@1/22ñ~k!#

q@s2Ek2q1s1q2sk#

3H s3~k2q!̂s2
• k̂s3

s@s2Ek2q1s1q2s3k#
2

~k2q!̂s2
• k̂2s

s2Ek2q1s1q1sk
J

3d~E2sk2s1q2s2Ek2q!@ds,1ds1 ,1ds2 ,1

1ds,2ds1 ,1ds2 ,11ds,1ds1 ,2ds2 ,1

1ds,1ds1 ,1ds2 ,2#. ~5.3!
05520
s

Recall that even though not explicitly mentioned, there is
implied summation over all sign factors. We may now p
form the sum overs356s to get

disc@Pm
m~C!#c

5~22p i !8e2g2E d3kd3q

~2p!6

3
@~s11s2!/22s1ñ~Ek2q!1s2n~q!#@1/22ñ~k!#

q@s2Ek2q1s1q2sk#2

3~k2q!̂s2
• k̂sd~E2sk2s1q2s2Ek2q!

3@ds,1ds1 ,1ds2 ,11ds,2ds1 ,1ds2 ,1

1ds,1ds1 ,2ds2 ,11ds,1ds1 ,1ds2 ,2#. ~5.4!

Finally, the discontinuity in parts D of the second self-ener
is given as

disc@Pm
m~D,213!#c

5~22p i !8e2g2E d3kd3q

~2p!6

3
@1/22ñ~Ek2q2q!#@ ñ~Ek2q!1n~q!#

q

3H s3~k2q!̂s• k̂s3

@sEk2q2sq2s3k#@sEk2q2sq2s4k#

3@ds4 ,1ds,1d~E2k2Ek2q1q!

1ds4 ,1ds,2d~E2k1Ek2q2q!#

2
s5~k2q!̂s• k̂s5

@~Ek2q2q!22k2#
@ds5 ,2ds,1d~E2k2Ek2q1q!

1ds5 ,2ds,2d~E2k1Ek2q2q!#J . ~5.5!

We may now sum overs3561 to get

disc@Pm
m~D,213!#c

5~22p i !8e2g2E d3kd3q

~2p!6

3
@1/22ñ~Ek2q2q!#@ ñ~Ek2q!1n~q!#

q

3H ~k2q!̂2• k̂1

@k1Ek2q2q#2
d~E2k1Ek2q2q!

1
~k2q!̂1• k̂1

@k1q2Ek2q#2
d~E2k2Ek2q1q!J . ~5.6!
3-9
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disc@Pm
m~D,1!#c5~22p i !8e2g2E d3kd3q

~2p!6

@1/22ñ~Ek2q1q!#@12ñ~Ek2q!1n~q!#

q

3H s3~k2q!̂s• k̂s3

@sEk2q1sq2s3k#@sEk2q1sq2s4k#
@ds4 ,1ds,1d~E2k2Ek2q2q!1ds4 ,2ds,1d~E1k2Ek2q2q!#

2
s5~k2q!̂s• k̂s5

@~Ek2q1q!22k2#
@ds5 ,2ds,1d~E2k2Ek2q2q!1ds5 ,1ds,1d~E1k2Ek2q2q!#J . ~5.7!
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We may sum overs3561 to obtain

disc@Pm
m~D,1!#c

5~22p i !8e2g2E d3kd3q

~2p!6

3
@1/22ñ~Ek2q1q!#@12ñ~Ek2q!1n~q!#

q

3H ~k2q!̂1• k̂1

@Ek2q1q2k#2
d~E2k2Ek2q2q!

2
~k2q!̂1• k̂2

@Ek2q1q1k#2
d~E1k2Ek2q2q!J . ~5.8!

VI. PHYSICAL INTERPRETATION: TREELIKE CUTS

We now begin the process of combining terms from
discontinuities of the two self-energies to obtain the squ
of amplitudes of physical processes. Essentially we shall
low the method outlined by Weldon@1#. Our method is
05520
e
e
l-

essentially a three step process:~i! Collect together terms
that have the same energy conserving delta functions,~ii !
reorganize the thermal distribution functions to express th
as a difference of the thermal weights for particle emiss
and absorption.~iii ! reorganize the remaining momentum d
pendent part as the square of the amplitude of the pro
hinted at by the previous two steps.

For easy identification we indicate the contribution fro
the first self-energy topology byP1 and from the second
topology byP2. We begin with the discontinuities where n
loops are left in the final result. These are the discontinui
given by Eqs.~3.6! and ~3.7! for the first self-energy topol-
ogy and Eqs.~5.4!, ~5.6!, and~5.8! for the second self-energ
topology. These discontinuities will result in physical amp
tudes for three kinds of processes: photon decay, Comp
scattering, and pair creation.

A. Photon decay and formation

We begin by analyzing the terms that containing the de
function d(E2k2q2Ek2q). The contributions to this from
P1 are
disc@Pm
1m~A!#~E2k2Eq2k2q!5~12p i !8e2g2E d3kd3q

~2p!6q
@1/22ñ~k!#d~E2k2Eq2k2q!

3
s3s4@ k̂1•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#@211ñ~Eq2k!2n~q!#

@k1q1s3Eq2k#@q1Eq2k1s4k#
~6.1!

and

disc@Pm
1m~D !#~E2k2Eq2k2q!5~22p i !8e2g2E d3kd3q

~2p!6q
@1/22ñ~Eq2k1q!#d~E2k2Eq2k2q!

3
s3s4@ k̂1•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#@12ñ~Eq2k!1n~q!#

@k1q1s3Eq2k#@q1Eq2k1s4k#
. ~6.2!
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Note that

ñ~Eq2k1q!@12ñ~Eq2k!1n~q!#5ñ~Eq2k!n~q!.

Using the above identity we may combine the two terms a
rewrite the distribution functions to give

disc@Pm
1m#~E2k2Eq2k2q!

5~22p i !8e2g2E d3kd3q

~2p!6q
$@12ñ~k!#@11n~q!#

3@12ñ~Eq2k!#2ñ~k!n~q!ñ~Eq2k!%

3
s3s4@ k̂1•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#

@k1q1s3Eq2k#@q1Eq2k1s4k#

3d~E2k2Eq2k2q!. ~6.3!

We may combine the coefficients of the same delta fu
tion from the second self-energy to get

disc@Pm
2m#~E2k2q2Ek2q!

523~22p i !8e2g2E d3kd3q

~2p!6q
$@12ñ~k!#@11n~q!#

3@12ñ~Eq2k!#2ñ~k!n~q!ñ~Eq2k!%

3
~k2q!̂1• k̂1

@Ek2q1q2k#2
d~E2k2Ek2q2q!. ~6.4!

The overall factor of 2 is the ratio of the symmetry fact
of this diagram to the denominator obtained from pertur
tion theory. Note that we obtain the same form of the dis
bution functions, this indicates the generic structure of he
photon decay and reformation. In the distribution functi
factor, terms like 11n(q) indicate Bose-Einstein enhanc
ment in the emission of a gluon. The 1 is from spontane
emission andn(q) represents stimulated emission of a bos
into a thermal bath. Terms like 12ñ(k) represent the ‘‘Pauli
blocked’’ emission of a quark of momentumk into the ther-
mal bath. The product of the three factors@12ñ(k)#@1
1n(q)#@12ñ(Eq2k)# ~along with the phase space integr
and delta function! can thus be interpreted as the statisti
factor associated with a heavy photon, outside a ther
bath, decaying by emitting a quark, an antiquark, and a gl
into a thermal bath. Subtracted from this is the fac
ñ(k)n(q)ñ(Eq2k); this represents the formation of a hea
photon from a quark, an antiquark, and a gluon, all th
emitted from the thermal bath~Fig. 3!. The photon subse
quently escapes from the bath without further interaction

To convert the above expressions into cross sections
heavy photon decay and reformation, we start by first de
ing a new four-vectorw5(w,wW ), such thatw5E2k2q ~in
order to avoid confusion we introduce the notation of fo
vectors as boldface characters!. This relation is indicated by
the one-dimensional delta function. To obtain the probabi
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of photon decay, we need to generalize the delta functio
a four-delta function. We thus need to generalize the defi
tion of w,

w5p2k2q,

wherep5(E,0,0,0) is the mass of the off-shell photon. A
denoted by Fig. 3,k, q, andw are all on-shell. The above
relation also implieswW 52kW2qW . We may setk05k5ukW u and
q05q5uqW u. Now, requiring thatw be on-shell imposes the
condition that

~E2k2q!25k21q212kq cosu

⇒E~E22k22q!52k•q,

where u is the angle between the three-vectorsqW and kW .
Using the above relations we many now rewrite the disc
tinuity obtained fromP2. In the numerator of the integran
we notice the factor (k2q)̂1• k̂1 , this may be changed ap
propriately by settingkW↔2kW in the integrand. Noting tha
(2k)̂s52 k̂2s we get the above factor as2ŵ1• k̂2 . Intro-
ducing the standard denominators 2k,2w, and factors of 2p
we obtain Eq.~6.4! as

disc@Pm
2m#~E2k2q2Ek2q!

522i 38e2g2E d3kd3qd3w

~2p!92q2k2w
8~2p!4

3d4~p2k2q2w!$@12ñ~k!#@11n~q!#

3@12ñ~w!#2ñ~k!n~q!ñ~w!%F2
w1•k2

@w1q2k#2G .

~6.5!

We now split the above integrand into two parts and
one of them switchw↔k. Note that2w1•k25wk1wW •kW
5(E22k)(E22w)/2 and we finally get the above discont
nuity as

disc@Pm
2m#~E2k2q2Ek2q!

52 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p2k2q2w!

3$@12ñ~k!#@11n~q!#@12ñ~w!#

2ñ~k!n~q!ñ~w!%32e2g2F E22k

E22w
1

E22w

E22k G . ~6.6!

FIG. 3. Heavy-photon decay and formation.
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We now perform the same procedure on the correspon
discontinuity fromP1 to get

disc@Pm
1m#~E2k2q2Ek2q!

52 i 38e2g2E d3kd3qd3w

~2p!92q2k2w
8~2p!4

3d4~p2k2q2w!$@12ñ~k!#@11n~q!#

3@12ñ~w!#2ñ~k!n~q!ñ~w!%

3
s3s4@k1•w1#@ k̂s4

•ŵs3
#

@k1q1s3w#@q1w1s4k#
. ~6.7!

The part of the integrand besides the distribution funct
part ~depends on the angle betweenkW and qW , and will be
denoted as the matrix part! may be expanded by summin
over s3 ,s4 as

k•w

kw F k1•w1

~k1q1w!2
1

k1•w2

~k1q!22w2
1

k2•w1

~q1w!22k2

1
k2•w2

q22~k2w!2G .

Using the relations

k1•w25k2•w152~1/2!@E22k#@E22w#,

k1•w15k2•w25~E/2!@E22q#,

and the relation imposed by the delta function~i.e., E5k
1q1w) we can simplify the matrix part to give

E~E22q!

@E22w#@E22k#
,

substituting the above into the expression forP1 and then
combining the results fromP1 andP2 we get

disc@Pm
m#~E2k2q2Ek2q!

52 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p2k2q2w!

3$@12ñ~k!#@11n~q!#@12ñ~w!#

2ñ~k!n~q!ñ~w!%32e2g2

3F E22k

E22w
1

E22w

E22k
12

E~E22q!

@E22w#@E22k#G . ~6.8!

Photon decay into a quark, an antiquark, and a gluon
first order in the electromagnetic and strong coupling c
stant can occur by two types of Feynman diagrams@17# as
shown in Fig. 4. The matrix element for the first diagra
may be written asM15M 1

mem(p), where
05520
g

n

at
-

M 1
m5ū~k!iegm

i ~k”2p” !

~k2p!2
iggrer* ~q!v~w!,

and for the second diagram as

M 2
m5ū~k!iggrer* ~q!

i ~p”2w” !

~p2w!2
iegmv~w!.

Taking the productM1*
mM1m and summing over the spin

and colors of the quark, the antiquark, and the gluon giv

M1*
mM1m5232e2g2

E22w

E22k
. ~6.9!

Similarly

M2*
mM2m5232e2g2

E22k

E22w
. ~6.10!

Notice that as the three three-vectorskW ,qW ,wW form a tri-
angle,E22k5w1q2k is always positive. By the same a
gumentE22w and E22q are also positive. We thus not
that M1*

mM1m and M2*
mM2m are negative. This is to be

expected, as the square of the full matrix elementuMu2 is
positive, where from the sum over the photon’s spin we

uMu252gm,nM* mMn52M* mMm .

The cross term is

M2*
mM1m5232e2g2

2E~E22q!

@E22w#@E22k#
. ~6.11!

Comparing the above three equations with the result from
loop calculation@Eqs.~6.8! and ~6.6!# gives us the relations

disc@P2
m
m#~E2k2q2Ek2q!

5 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p2k2q2w!$@12ñ~k!#

3@11n~q!#@12ñ~w!#2ñ~k!n~q!ñ~w!%

3@M1*
mM1m1M2*

mM2m#, ~6.12!

FIG. 4. Heavy-photon decay at first order ina andas .
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disc@P1
m
m#~E2k2q2Ek2q!

5 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p2k2q2w!

3$@12ñ~k!#@11n~q!#@12ñ~w!#2ñ~k!n~q!ñ~w!%

3@M2*
mM1m1M1*

mM2m#, ~6.13!

and hence we get the relation written down by Weldon@1#,

disc@Pm
m#~E2k2q2Ek2q!

5 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p2k2q2w!

3$@12ñ~k!#@11n~q!#@12ñ~w!#2ñ~k!n~q!ñ~w!%

3@M* mMm#, ~6.14!

whereM5M mem(p)5M11M2 is the full matrix element
of heavy photon decay.

B. Compton scattering

The analysis for Compton scattering is slightly mo
tricky. Note that there are two sets of terms from Eqs.~3.6!
and ~3.7! and Eqs.~5.4!, ~5.6!, and ~5.8! that may lead to
Compton scattering. One appears with the delta func
d(E1k2q2Ek2q) and the other with the delta functio
d(E1Ek2q2k2q). The delta functions can be converte
into one another simply by replacingkW→kW1qW , followed by
qW→2qW . One notes on performing this operation that the r
of the integrand looks rather different. This happens as th
are four topologically distinct diagrams that may fall und
the category of Compton scattering~it is well known that for
a given in-state there are two diagrams that lead to Comp
scattering; there are four here as we sum over the poss
ties of the incoming fermion being a quark or an antiquar!.
Let us consider the contribution fromPm

1m,

disc@Pm
1m#~E1k2Eq2k2q!

5~2p i !8e2g2E d3kd3q

~2p!6q
$ñ~k!@12ñ~Eq2k!#

3@11n~q!#2@12ñ~k!#ñ~Eq2k!n~q!%

3
s3s4@ k̂2•~q2k!̂1#@ k̂s4

•~q2k!̂s3
#

@2k1q1s3Eq2k#@q1Eq2k1s4k#

3d~E1k2Eq2k2q!. ~6.15!

For the contribution fromPm
2m, recall that we have an

overall factor of 2 in each of the results of Eqs.~5.4!, ~5.6!,
and ~5.8! coming from the overall symmetry factor ofPm

2m

being double that ofPm
1m. We take half of the contribution

from the d(E1k2Ek2q2q) term and half from thed(E
05520
n

t
re
r

n
ili-

1Ek2q2k2q) term, and in the second contribution chan
kW→kW1qW , followed byqW→2qW . This gives the total contribu-
tion from Pm

2m as

disc@Pm
2m#~E1k2Eq2k2q!

5~2p i !8e2g2E d3kd3q

~2p!6q
$ñ~k!@12ñ~Eq2k!#

3@11n~q!#2@12ñ~k!#ñ~Eq2k!n~q!%

3F k̂2•~q2k!̂1

@k1q1Eq2k#
2

1
k̂2•~q2k!̂1

@k2q1Eq2k#
2G

3d~E1k2Eq2k2q!. ~6.16!

Notice that the combinations of distribution functions a
pearing in the curly brackets are identical to Eq.~6.15!. The
product of the three factorsñ(k)@12ñ(Eq2k)#@11n(q)#
has the interpretation of an incoming quark~or an antiquark!
from the medium fusing with a photon coming in from ou
side the bath, resulting in a gluon and a quark~or an anti-
quark! going into the medium. Subtracted from this is th
product @12ñ(k)#ñ(Eq2k)n(q), which has the interpreta
tion of an incoming quark~antiquark! from the medium fus-
ing with an incoming gluon from the medium, resulting in
quark~antiquark! going back into the medium, and a virtua
photon that leaves the medium~Fig. 5!.

To convert the above expressions into cross sections
Compton scattering, we again define the new four-vectow
5(w,wW ), such thatw5E1k2q. This is generalized to

w5p1k2q,

as a resultwW 5kW2qW . Now, requiring thatw be on-shell im-
poses the condition that

~E1k2q!25k21q222kq cosu

⇒E~E12k22q!5k•q.

Using the above relations we many now rewrite the d
continuity obtained fromP2. In the numerators of the inte
grand we notice the factor (k2q)̂1• k̂2 , which may be writ-
ten as ŵ1• k̂25(E12k)(E22w)/2. We introduce the
standard denominators 2k,2w, and factors of 2p and per-
form a similar set of operations as for photon decay to obt
the full result for Compton scattering as

FIG. 5. Quark Compton scattering.
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disc@Pm
m#~E1k2q2Ek2q!

5 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p1k2q2w!

3$ñ~k!@11n~q!#@12ñ~w!#

2@12ñ~k!#n~q!ñ~w!%32e2g2

3F E12k

E22w
1

E22w

E12k
12

E~E22q!

@E22w#@E12k#G . ~6.17!

Recall that inPm
1m there is another term, the coefficient

the delta function d(E1Eq2k2k2q), which leads to
Compton scattering. Also, in the Compton scattering con
butions fromP2, we only used a half of both the term
Following almost the same method as above, one can d
onstrate that the form of the contribution from these term
almost the same as above withk and w interchanged. In it,
one may interchangewW →kW to get the same contribution a
Eq. ~6.17!, hence doubling the total contribution from Com
ton scattering.

Compton scattering by an incoming photon of a therm
medium of quarks and antiquarks, at first order in the el
tromagnetic and strong coupling constant, can occur a
result of four processes as shown in Fig. 6. The matrix e
ment for the diagrams may be written asMn5M n

mem(p),
where

M 1
m5ū~w!iggrer* ~q!i

p”1k”

~p1k!2
iegmem~p!u~k!,

M 2
m5ū~w!iegmem~p!

w”2p”

~w2p!2
iggrer* ~q!u~k!.

The amplitude for the third and fourth diagram can be o
tained from the two amplitudes above by simply chang

FIG. 6. Compton scattering at first order ina andas .
05520
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u→v. Taking the products and summing over spins and c
ors ~remember diagrams 1 and 2 interfere with each oth
and so do 3 and 4!, we get

M1*
mM1m532e2g2

E22w

E12k
, ~6.18!

M2*
mM2m532e2g2

E12k

E22w
. ~6.19!

Once again, note thatM1*
mM1m and M2*

mM2m are
negative. This is becauseE22w5q2k2w is always nega-
tive due to the triangle condition mentioned in the preced
section. The cross term is

M2*
mM1m532e2g2

2E~E22q!

@E22w#@E12k#
. ~6.20!

Comparing the above three equations with the result fr
the loop calculation@Eq. ~6.17!# gives us the relation

disc@Pm
m#~E1k2q2Ek2q!

5 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p1k2q2w!

3$ñ~k!@11n~q!#@12ñ~w!#2@12ñ~k!#n~q!ñ~w!%

3@M1*
mM1m1M2*

mM2m12M2*
mM1m#. ~6.21!

Once again we note the interesting fact that in this ga
the mixed termsM2*

mM1m1M1*
mM2m are always given

by Pm
1m and the square termsM1*

mM1m1M2*
mM2m are

furnished byPm
2m.

C. Pair creation

The analysis for pair creation~often referred to as photon
gluon fusion! is almost identical to that done in the tw
preceding sections. Its contribution is furnished by the o
remaining delta functions in Eqs.~3.6! and ~3.7! in the first
self-energy and Eqs.~5.4!, ~5.6!, and ~5.8! in the second
self-energy, i.e.,d(E1q2k2Ek2q). We simply state the re-
sults here: pair creation can occur through two types of p
cesses~Fig. 7! and has the discontinuity in the total sel
energy

FIG. 7. Pair creation at first order ina andas .
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disc@Pm
2m#~E1q2k2Ek2q!

52 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p2k1q2w!

3$@12ñ~k!#n~q!@12ñ~w!#2@11n~q!#ñ~k!ñ~w!%

332e2g2F E22k

E22w
1

E22w

E22k
12

E~E12q!

@E22w#@E22k#G .
~6.22!

VII. PHYSICAL INTERPRETATION:
LOOP-CONTAINING CUTS

We now analyze the various discontinuities ofPm
1m and

Pm
2m that contain loops. We start with the discontinuiti

of Pm
1m. These are given by Eqs.~3.3!–~3.5!. We note that

there are two terms with the delta functiond(E22Ek2q),
these correspond to the cut of Fig. 8. There is also one t
with the cutd(E22k), this corresponds to the cut of Fig. 9

One may be satisfied with this interpretation of the c
diagrams and not proceed further. A recent paper@12#, how-
ever, has drawn attention to the fact that one can obta
somewhat different interpretation of these diagrams, in te
of interference between simple treelike diagrams and
grams containing particles called ‘‘spectators.’’ Spectat
are essentially on-shell particles from the heat bath that e
with the ‘‘in’’ state and leave with the ‘‘out’’ state withou
having interacted with the the rest of the ‘‘participants.’’

We start by summing over the variables1 in Eq. ~3.3!.
This immediately gives two terms, distinguished by the co
bination of distribution functions they carry,

disc@2Pm
m~A!#a1

5~22p i !8e2g2

3E d3kd3q

~2p!6

@ k̂1•~q2k!̂s2
#@ k̂2•~q2k!̂s3

#

q~E2@s22s3#Eq2k!

3s2

@122ñ~k!#@122ñ~Eq2k!#q

~k1s3Ek2q!22q2
d~E22k! ~7.1!

and

FIG. 8. Photon decay at one loop corresponding to the
d(E22Ek2q).
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disc@2Pm
m~A!#a2

5~22p i !8e2g2

3E d3kd3q

~2p!6

@ k̂1•~q2k!̂s2
#@ k̂2•~q2k!̂s3

#

q~E2@s22s3#Eq2k!

3d~E22k!~2s2!@122ñ~k!#@112n~q!#

3
s3k1Eq2k

~k1s3Ek2q!22q2
. ~7.2!

In Eq. ~7.1!, if we replaces2→2s4 , s3→2s, followed by

kW→qW 2kW we get

disc@2Pm
m~A!#a1

5~12p i !8e2g2

3E d3kd3q

~2p!6

@~q2k!̂2• k̂s4
#@~q2k!̂1• k̂s#

q~E2@s2s4#Eq2k!

3s4

@122ñ~k!#@122ñ~Eq2k!#q

~Eq2k2sk!22q2
d~E22Eq2k!.

~7.3!

The above is exactly the same as Eq.~3.4!. This is to be
expected as the two cuts should, in principle, represent
same diagram up to a shift in momenta. We thus double
contribution and focus on it. It represents photon decay i
two quarks with quark emission and absorption from t
final state quarks. The other part from Eq.~7.2! along with
Eq. ~3.5! will represent photon decay with gluon emissio
and absorption off the external quarks.

A. Photon decay with quark emission absorption off vertex
and final state

We begin by summing over the remaining sign variab
s2 ,s3 in disc@2Pm

m(A)#a1 to get

FIG. 9. Photon decay at one loop corresponding to the
d(E2k).
t
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disc@2Pm
m#4523~22p i !8e2g2E d3kd3q

~2p!6
@122ñ~k!#

3@122ñ~Eq2k!#d~E22k!

3F @ k̂1•~q2k!̂1#@ k̂2•~q2k!̂1#

E@~k1Ek2q!22q2#

2
@ k̂1•~q2k!̂2#@ k̂2•~q2k!̂1#

~E12Eq2k!@~k1Ek2q!22q2#

1
@ k̂1•~q2k!̂1#@ k̂2•~q2k!̂2#

~E22Eq2k!@~k2Ek2q!22q2#

2
@ k̂1•~q2k!̂2#@ k̂2•~q2k!̂2#

E@~k2Ek2q!22q2#
G . ~7.4!

As in the preceding section, the distribution functions w
be reorganized to allow for an interpretation in terms of th
mal weights for particle emission and absorption. In the fi
two terms we define the new lightlike four-vectorw such that
wW 5qW 2kW . In the last two terms we definew such thatwW 5

2qW 1kW . This allows us to change the variable of integrati
d3q→d3w, as k is a constant as far as theq integration is
concerned. We may also redefine the distribution function

@122ñ~k!#@122ñ~w!#

5$@12ñ~k!#@12ñ~k!#2ñ~k!ñ~k!%

3$@12ñ~w!#2@ ñ~w!#%.

The first set of factors in the curly brackets has the us
interpretation@1# of the thermal factors that are associat
with the probability of particle emission into a heat bath
particle absorbtion from a heat bath. In this case they ca
the obvious meaning of@emit fermion of energyk#@emit fer-
mion of energyk2#@absorb fermion of energyk#@absorb fer-
mion of energyk#. The reader will note that unlike the sel
energy cuts considered in@1# or those of the preceding
section, the two cut diagrams that will result from this ima
nary part of the self-energy will not be symmetric, in th
sense that it will be the interference between a diagram w
a loop and a simple tree diagram. The thermal factors
cussed above will be the same for either diagram as t
pertain to the quark and antiquark that emanate from
decay of the photon~or those that combine to form the pho
ton!. Both amplitudes that result from this imaginary pa
contain this process and thus have identical thermal fact

The second set of thermal factors has a new interpreta
These thermal factors pertain to the particles in the rem
ing loop and thus are germane to only one of the two in
fering amplitudes. We will demonstrate that these signal
difference of two amplitudes: that for the emission of a qu
or an antiquark into the bath and its subsequent absorp
from the bath, and vice versa. Thus the second set of di
bution functions is to be understood as@emit fermion of four-
05520
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momentumw#@absorb the same fermion of four-momentu
w2#@absorb fermion of four-momentumw#@emit the same
fermion of four-momentumw#.

The process of emission of a fermion of four-momentu
w into a bath followed by its reabsorption is formal
achieved by the action of creation and annihilation opera
on the bath stateuñw&, i.e.,

aa†uñw&5~12ñw!uñw&. ~7.5!

The reverse process, i.e., the absorption of a fermion fr
the bath and its subsequent reemission into the bath is
mally achieved by the action of annihilation and creati
operators on the bath state, i.e.,

a†auñw&5~ ñw!uñw&. ~7.6!

The discontinuity of the self-energy will represent the a
plitude of a particular process multiplied with the compl
conjugate of another. In one of these processes the ab
mentioned fermion will perform the emission and absorpt
procedure referred to above. In the other amplitude, as
will show shortly, it will simply enter and leave without hav
ing interacted with the rest of the particles. Due to th
reason, it has been referred to previously~see@12,8#! as a
spectator.

We introduce the usual denominators of 2w,2k to get

disc@Pm
m#4

523~22p i !8e2g2

3E d3kd3v

~2p!6kwkw
d~E22k!$@12ñ~k!#

3@12ñ~k!#2ñ~k!ñ~k!%$@12ñ~w!#2@ ñ~w!#%

3F @k1•w1#@k2•w1#

E@~k1w!22q2#
2

@k1•w2#@k2•w1#

~E12w!@~k1w!22q2#

1
@k1•w2#@k2•w1#

~E22w!@~k2w!22q2#
2

@k1•w1#@k2•w1#

E@~k2w!22q2#
G .

~7.7!

We now introduce the new four-vectorkb5(k,2kW ) and
generalize the delta function to a four-delta function. We th
combine the first two terms and the last two terms to wri

disc@Pm
m#45 i8e2g2E d3kd3wd3kb

~2p!98kwkb

16~2p!4

3d4~p1w2k2kb2w!$@12ñ~k!#@12ñ~kb!#

2ñ~k!ñ~kb!%$@12ñ~w!#2@ ñ~w!#%

3F @kb•w#@ka•~p1w!#

@~E1w!22w2#@~k1w!22q2#

1
@ka•w#@kb•~w2p!#

@~w2E!22w2#@~k2w!22q2#
G . ~7.8!
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IMAGINARY PARTS AND INFRARED DIVERGENCES OF . . . PHYSICAL REVIEW C65 055203
The above has the interpretation of Fig. 10. This indica
the interference between two diagrams of different orde
coupling constants. Let the matrix elements of the two tr
level diagrams with two propagators be denoted asM1

5M 1
mem(p) and M25M 2

mem(p). The matrix element of
the term in brackets is simply denoted asmmem(p). Where
the dotted line called the spectator is simply a product
Dirac delta functions over four-momenta and Kroneck
delta functions over the spins and colors of the incoming
outgoing fermions denoted bywa andwb ~here, for brevity
we indicate all the different quantum numbers, both conti
ous and discreet, of the incoming and outgoing particles b
single label!.

It is now simple to verify that the result obtained in E
~7.8! can be written as

disc@Pm
m#45 i E d3kd3wd3kb

~2p!98kwkb

~2p!4d4~p1w2k2kb2w!

3$@12ñ~k!#@12ñ~kb!#2ñ~k!ñ~kb!%@$1

2ñ~w!%2ñ~w!#@2mm* M 1
m12mm* M 2

m#,

~7.9!

where the Kronecker and Dirac delta functions over
fermions wa and wb have been used to setwa5wb5w.
The factor of 2 preceding the interference matrix element
due to the fact that a similar process may be obtained
replacing an incomming quark spectator with an antiqu
spectator.

FIG. 10. Interference between diagrams of different order inas .
The diagrams on the left indicate 2→3 reactions such asgQ

→qq̄Q ~whereQ indicates that the incoming and outgoing quar
are identical!. The diagrams on the right indicate the complex co
jugate of the Born term photon decay with a comoving quark sp

tator, i.e., (g→qq̄) ^ (Q→Q).
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B. Photon decay with gluon emission absorption
from final state quarks

This term receives contributions from disc@2Pm
m(A)#a2

and disc@2Pm
m(D)#b . The fate of this discontinuity is essen

tially similar to that in the preceding section and results on
again in the interference of tree-level diagrams of differe
order. There are two sets of diagrams with two propaga
here as well, the difference being that the incoming and o
going particle with the same set of quantum numbers, o
other words the spectator, is a gluon. We once again in
duce the on-shell four-vectorw, such thatwW 5kW2qW . We use
this to change the variable of integration in disc@2Pm

m(D)#b .

In disc@2Pm
m(A)#a2, we relabel the dummy variablekW→wW .

Both discontinuities give essentially the same contributi
thus the total discontinuity from such processes~Fig. 11! is
given as

disc@Pm
m#55 i8e2g2E d3wd3qd3wb

~2p!98kwkb

32~2p!4d4~p1q2w

2wb2q!$@12ñ~w!#@12ñ~wb!#

2ñ~w!ñ~wb!%$@11n~q!#1@n~q!#%

3F @wb•~q2w!#@wa•~q2wb!#

@~q2w!22k2#@~q1w!22k2#
G , ~7.10!

which is once again equal to

disc@Pm
m#55 i E d3wd3qd3wb

~2p!98kwkb

~2p!4d4~p1q2w2wb2q!%

3@12ñ~w!#@12ñ~wb!#2ñ~w!ñ~wb!%

3$@11n~q!#1@n~q!#%@mm* M 1
m1mm* M 2

m#.

~7.11!

where m represents the same process as in the prece
section. The amplitudesM1 andM2 represent the processe
of Fig. 11. The interpretation of the first set of distributio
functions is the same as before, i.e., emission and absorp
of two particles of energyk. The second term has the inte
pretation of a gluon spectator exactly identical to that of
quark spectator in the earlier section, but with the Pauli f
tors replaced with Bose factors. Note that, unlike in the p
ceding section, there is no factor of 2 preceding the ma
elements, as the spectators are gluons.

-
c-

FIG. 11. Photon decay with spectator gluon~the Born term with
spectator gluon is implied, see Fig. 10!.
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A. MAJUMDER AND C. GALE PHYSICAL REVIEW C65 055203
C. Photon decay with quark and gluon emission absorption
off the same quark line

We now begin the analysis of the last loop-containing c
This is essentially given by the discontinuities of Eqs.~5.1!
and ~5.2!. Combining these two discontinuities and writin
k5E2k in the denominators of the terms from
disc@Pm

m(A)#a ~note that we have to double this contributio
as it emanates from the second self-energy diagram, w
has a symmetry factor of 2 more than the first self-ene
diagram!, we get

disc@Pm
m#6

5~2p i !8e2g2E dkdudf sinud3q

~2p!6q
d~E22k!

3@122ñ~k!#H 2kNS
@E2s2Ek2q2s1q2k#

1
k2~NS!8

@E2s2Ek2q2s1q2k#
1

k2NS@11s2Ek2q8 #

@E2s2Ek2q2s1q2k#2J
5~2p i !8e2g2E dkdudf sinud3q

~2p!6q
d~E22k!

3@122ñ~k!#
d

dk H k2NS
@E2s2Ek2q2s1q2k#J . ~7.12!

The above term does not readily admit a physical int
pretation, however, the infrared limit will be evaluated wi
the above expression as the starting point as it is form
correct. To try and obtain a physical interpretation from t
expression given above, an integration by parts is perform
to obtain the discontinuity as

disc@Pm
m#65~2p i !8e2g2

3E dkdudf sinud3q

~2p!6q
H 2

dd~E22k!

dk J
3@122ñ~E/2!#

k2NS
@E2s2Ek2q2s1q2k#

5~2p i !8e2g2E d3kd3q

~2p!6q

NS
@k2s2Ek2q2s1q#

3$2d8~E22k!@122ñ~E/2!#%, ~7.13!
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where we have used the property that

dd~E22k!

dk
52

dd~E22k!

d~2k!

522
dd~E22k!

d~E!
522d8~E22k!.

Interestingly, as an aside, we note that one may still ob
a physical interpretation of the above term in terms of sp
tators with retarded propagators. To obtain this, we exp
the factorNS/(k2s2Ek2q2s1q) by summing overs1 and
s2. Here, as expected, we will obtain a part dependent
Bose distribution functions and a part dependent on Fe
distribution functions. We will illustrate the physical inte
pretation using the part containing the Bose distribut
functions. We begin by writing thed function in Eq.~7.13!
using the following regulator:

d~x!5 lim
e→0

e

x21e2
. ~7.14!

In this regulation scheme, we obtain

d8~x!522F d~x!

x1 i e
1 ipd2~x!G . ~7.15!

Substituting the above relation in Eq.~7.13! we get

disc@Pm
m#65~2p i !16e2g2E d3kd3q

~2p!6q
~22!d~E22k!

3@122ñ~E/2!#
NS

@E2s2Ek2q2s1q2k#

3H 1

~E22k!1 i e
1 ipd~E22k!J . ~7.16!

We now write unity in the form of an integral as

15 È`

dv0
1

2
$d~v01k!1d~v01k!%

5 È`

dv0kd~v022k2!. ~7.17!

Substituting Eq.~7.17! in Eq. ~7.16!, we obtain
disc@Pm
m#65~2p i !16e2g2E dv0~E/2!d~v022@E/2#2!E d3kd3q

~2p!6q
~22!d~E22k!@122ñ~E/2!#

3
NS

@E2s2Ek2q2s1q2k# H 1

~E22k!1 i e
12p i ñ~v0!d~E22k!22p i @ ñ~v0!21/2#d~E22k!J

5~2p i !~216e2g2!E dv0E d3kd3q

~2p!6q
d~v022@E/2#2!d~E22k!@122ñ~E/2!#

3
ENS

@E2s2Ek2q2s1q2k# H 1

~E22k!1 i e
12p i ñ~v0!d~E22k!22p i @ ñ~v0!2u~2v0!#d~E22k!J . ~7.18!
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In the above we have simply added and subtracted the factor 2p i ñ(v0)d(E22k) inside the curly brackets and rewritte
1/2 asu(2v0), as the rest of the integrand is an even function ofv0.

We now introduce the three-vector part ofv as

d~v022@E/2#2!d~E2k2k!5E d3vd~v022~E/2!2!d~E2k2k!d3~2kW2vW !

5E d3vd~v022uvW u2!d~E2k2uvW u!d3~2kW2vW !. ~7.19!

As stated previously we now concentrate on the part ofNS/@k2s2Ek2q2s1q#, which depends on the Bose distributio
function. This gives

disc@Pm
m#65 i E d4v

~2p!4E d3kd3q

~2p!62q2k
2pd~v022uvW u2!~2p!4d4~p2k2w!@$12ñ~k0!%$12ñ~v0!%2ñ~k0!ñ~v0!#

3@$11n~q!%1n~q!#~264e2g2!E2Fk~E2k2q!2kW•~kW2qW !

~E2k2q!22ukW2qW u2
1

k~E2k1q!2kW•~kW2qW !

~E2k1q!22ukW2qW u2
G $D̃R~v!%

5 i E d4v

~2p!4E d3kd3q

~2p!62q2k
2pd~v022uvW u2!~2p!4d4~p2k2w!@$12ñ~k0!%$12ñ~v0!%2ñ~k0!ñ~v0!#

3@$11n~q!%1n~q!#@mm* M1,m1mm* M2,m#, ~7.20!
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where iv” D̃R(v) is the retarded propagator. One may no
that the integrand in the above equation is simply the in
ference matrix elements of the first@M15em(p)M1,m# and
second diagram@M25em(p)M2,m# of Fig. 12 and the Born
term @m5em(p)mm# with a gluon spectator. A similar inter
pretation may be obtained for the the third and fourth d
grams of Fig. 12 in terms of quark spectators. However
the above equation is not mathematically well defined, it w
not be used in evaluating the infrared limit. Equation~7.12!
will be used instead.

FIG. 12. Photon decay into aqq̄ pair. The quark then emits o
absorbs a quark or a gluon.
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VIII. INFRARED BEHAVIOR

We now examine closely the infrared and collinear sing
larity structure of the terms enumerated in the two secti
above. We will examine the infrared behavior in the limit
heavy dilepton production from a plasma of massless qua
i.e., E@T. There are essentially five terms.

F: photon gluon production denotes the reactionq1q̄
→g1g.

C: Compton-like reaction between a gluon and qua
antiquarkg1q→q̄1g.

D: denotes the three-body fusion to form the photong1q
1q̄→g.

V: denotes photon formation from vertex corrected quar
antiquarks.

S: denotes photon formation from self-energy correc
quarks/antiquarks.

The full imaginary part of the two loop self-energy may b
schematically written as

2 ImPm
m52

8e2g2

~2p!3E dw$n~w!@F~w!1Dg~w!

1Vg~w!1Sg~w!#1ñ~w!@C~w!1Dq~w!

1Vq~w!1Sq~w!#%. ~8.1!

The first four terms represent the part of the terms m
tioned above that are proportional to the gluon distribut
function. The last four terms are those proportional to
quark/antiquark distribution function. This is essentially t
same notation as used by the authors of@2#. We now com-
pute these contributions in turn.
3-19
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A. MAJUMDER AND C. GALE PHYSICAL REVIEW C65 055203
A. Self energy correctionSg and Sq

The self-energy correction is essentially given by E
~7.12!, i.e.,

disc@Pm
m#65~2p i !8e2g2E dkdudf sinud3q

~2p!6q
d~E22k!

3@122ñ~k!#
d

dk (
s1 ,s2

k2NS
@E2s2Ek2q2s1q2k#

.

~8.2!

We concentrate, first, on the sumS5(s1 ,s2
k2NS/(E

2s2Ek2q2s1q2k). This may be expanded as

S5
k

w
F @1/22ñ~w!11/21n~q!#w1•k1

E2k2w2q

1
@1/22ñ~w!2$1/21n~q!%#w1•k2

E2k1w2q

1
@2$1/22ñ~w!%11/21n~q!#w1•k1

E2k2w1q

1
@2$1/22ñ~w!%2$1/21n~q!%#w1•k2

E2k1w1q
G . ~8.3!

We now concentrate on the terms proportional to
1n(q), i.e.,

Sg5kF1

2
1n~q!GF2k~E2k2q!22wW •kW

~E2k2q!22w2

1
2k~E2k1q!22wW •kW

~E2k1q!22w2 G . ~8.4!

Introducing the variablesa5E22k22q, b5E22k12q,
and y5cosu ~whereu is the angle betweenkW and qW ), we
obtain

Sg5kF1

2
1n~q!GF21

~2k2E!a

Ea12kq~11y!
1

~2k2E!b

Eb22kq~12y!G .
~8.5!

Dropping the1
2 ahead of the gluon distribution functio

we obtain the matter part ofSg . Using only this part we
obtain ~performing the unimportant angle integrations!

2
8e2g2

~2p!3E dqn~q!Sg~q!

5
8e2g2

~2p!3E dk@122ñ~k!#d~k2E/2!

3E dqqE dy
d

dk
Sg,mat . ~8.6!
05520
.

2

The limits of they integration are the locations for the ons
of collinear singularities, these are shielded by removin
small part of phase spacee, i.e., they integration is per-
formed within the limits 211e→12e. The results will
now depend one. This gives the result as

2
8e2g2

~2p!3E dqn~q!Sg~q!

5
28e2g2

~2p!3 E dqn~q!F24q24qlnS 2

e D G . ~8.7!

In the above, the term 2ñ(E/2) has been dropped, as we a
interested in the heavy dilepton limit, whereE@T and as a
result ñ(E/2)→0. Thus, we get

Sg~w!524w24wlnS 2

e D . ~8.8!

We now concentrate on the terms, in Eq.~8.3!, which are
proportional to the factor 1/22ñ(w). Following a similar
procedure as above we obtain

2
8e2g2

~2p!3E dwñ~w!Sq~w!

5
28e2g2

~2p!3 E dwñ~w!F24w24wlnS 2

e D G , ~8.9!

thus, giving us the relation

Sq~w!524w24wlnS 2

e D . ~8.10!

Note that in both the expressions forSq andSg there is a
ln(2

e) term, which diverges ase→0. This is a collinear sin-
gularity. We shall allowe to vanish only when all the differ-
ent contributions to the dilepton rate have been added
gether.

B. Vertex correction Vg and Vq

We concentrate first on the term proportional to the f
mionic frequency, i.e.,Vq . This vertex correction is essen
tially given by Eqs.~7.1!, ~7.3!, and~7.4!. The first two need
to be doubled, as mentioned before in Sec. VI. Extract
only the part proportional to the fermionic distribution fun
tion ñ(w), we obtain theVq integral as

2
8e2g2

~2p!3E dwñ~w!Vq~w!

52~22p i !8e2g2

3E d3kd3w

~2p!6k2w2
$@122ñ~k!#@22ñ~w!#%

3F ~k1•ws2
!~k2•ws3

!s2

@E2~s22s3!w#@~k1s3w!22q2#
Gd~E22k!.

~8.11!
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IMAGINARY PARTS AND INFRARED DIVERGENCES OF . . . PHYSICAL REVIEW C65 055203
Performing the sum ons2 ,s3 and settingy5cosu ~where
u is the angle betweenkW andwW ), we can perform one of the
integrations with the help of a delta function to get

2
8e2g2

~2p!3E dwñ~w!Vq~w!

5
32e2g2

~2p!3 E dww@2ñ~w!#E
211e

12e

dy
1

2 F H E

E12w

1
E

E22wJ 11y

12y
1H w

E12w
2

w

E22wJ ~11y!G .
~8.12!

Note, once again, that the limits of the final angular in
grationy signal the onset of collinear singularities. These a
once again, regulated by removing the small part of ph
spacee. At this point we introduce the condition that th
limit of interest is, for dilepton mass, much larger than t
temperature, i.e.,E@T. The presence of the distributio
function ñ(w), depending on the energyw severely restricts
the contribution from regions wherew@T to the integral.
Thus, the dominant contribution to the integral is from t
regions wherew!T or w;T. Hence, in the integral we ma
make the approximation thatw!E and expand the factors i
the square brackets to linear power inw/E. This finally gives

2
8e2g2

~2p!3E dwñ~w!Vq~w!

52
8e2g2

~2p!3E dwñ~w!F28w18wlnS 2

e D G . ~8.13!

Thus we obtain that

Vq~w!528w18wlnS 2

e D . ~8.14!

Following almost a similar method as above we may o
tain Vg from Eq.~7.2! ~with an overall factor of 2, as there i
another cut that gives an identical contribution! as

Vg~w!54w2
2E2

w
lnS 2

e D . ~8.15!

Once again, note that both expressions demonstrate a co
ear divergence ase→0. The termVg also displays an infra-
red divergence asw→0.

C. Photon formation from quark, antiquark
and gluon Dg and Dq

The reverse reaction to this process represents he
photon ‘‘decay’’ into aqq̄g. Due to this reason, the proce
is denoted by the letterD @2#. The full decay contribution is
given by Eq.~6.8! as
05520
-
,
e

-
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y-

disc@P2#~E2k2q2Ek2q!

52 i E d3kd3qd3w

~2p!92q2k2w
~2p!4d4~p2k2q2w!

3$@12ñ~k!#@11n~q!#@12ñ~w!#2ñ~k!n~q!ñ~w!%

332e2g2F E22k

E22w
1

E22w

E22k
12

E~E22q!

@E22w#@E22k#G .
~8.16!

In the above equation, note that if three of the delta fu
tions are used to setwW 52kW2qW , then the remaining delta
function imposes the condition that

E5k1q1Ak21q212kq cosu.

As mentioned before, we work in the limitE@T; in this
case the delta function can be satisfied by the following
gions of phase space.

~a! k;E, q;E, and hencew;E; in this case all the
distribution functionsn(q),ñ(k),ñ(w)→0 and, thus, so do
products of distribution functions.

~b! k;T!E, q;E, and hencew;E; in this caseñ(k)
;1. Howevern(q),ñ(w)→0, and so do products of distri
bution functions.

~c! w;T!E, q;E, and hencek;E; in this caseñ(w)
;1. Howevern(q),ñ(k)→0, and so do products of distri
bution functions.

~d! q;T!E, k;E, and hencew;E; in this casen(q)
;1. Howeverñ(w),ñ(k)→0, and so do products of distri
bution functions.

Contributions from~b! and ~c! will give us Dq , ~d! will
give usDg , while the contribution from~a! is negligible in
comparison. We begin by calculatingDq from the regions~b!
and~c! of the phase space. Here we can ignore all combi
tions of distribution functions containingn(q). As before, we
also ignore the vacuum term, concentrating only on the m
ter contribution. Noting the symmetry in the matrix eleme
under interchange ofk and w, we may change variablesw
→k in the part of the integrand proportional to the distrib
tion function ñ(w) to get

2
8e2g2

~2p!3E dkñ~k!Dq~k!

5E d3kd3q

~2p!52q2k2w
d~E2k2q2w!$2ñ~k!%32e2g2

3F E22k

E22w
1

E22w

E22k
12

E~E22q!

@E22w#@E22k#G . ~8.17!

The argument of the delta function is the equationg(q)
5k1q1w(q)2E50. The solution of this equation is atq
5qs(k,E),
3-21
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A. MAJUMDER AND C. GALE PHYSICAL REVIEW C65 055203
qs5
1

2

E~E22k!

E2k~12y!
. ~8.18!

The delta function can be written as

d„g~q!…5
d~q2qs!

ug8~qs!u
.

Substituting this back into the equation forDq , we can do
the dq integration with the above-mentioned delta functio
We can then perform the remaining angular integration
removing the small part of phase spacee to shield the col-
linear singularities. Now expanding up to linear order ink as
k!E, we get

2
8e2g2

~2p!3E dkñ~k!Dq~k!

52
8e2g2

~2p!3E dkñ~k!F2k1~22k2E!lnS 2

e D G . ~8.19!

Thus we get

Dq~w!52w1~22w2E!lnS 2

e D . ~8.20!

We can now obtainDg by concentrating on region~d! of
the phase space and ignoring all combinations of distribu
functions containingñ(k) or ñ(w), this gives us

Dg~w!522w1S 2w22E1
E2

w D lnS 2

e D . ~8.21!

D. Pair annihilation F and Compton scatteringC

The procedure to obtain these is almost exactly ident
to the two terms of the preceding section. The total Comp
scattering contribution can be obtained from Eq.~6.17! by
doubling it, as mentioned in the paragraph immediately f
lowing Eq. ~6.17!. We may, once again, from phase spa
considerations show that the dominant contribution to Com
ton scattering occurs from a region wherek;T!E(k is the
incoming quark or antiquark energy!. The leading term of
Compton scattering is, thus, proportional to the quark or
tiquark distribution function. From similar consideration
the leading term of pair annihilation can be demonstrated
be proportional to the outgoing gluon distribution functio
Expanding them up to linear order in the quark or glu
energyw, we get

C~w!52w1~22w1E!lnS 2

e D ~8.22!

and

F~w!522w1S 2w12E1
E2

w D lnS 2

e D . ~8.23!
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IX. RESULTS

In the first seven sections we evaluated the two differ
self-energies of the photon at two loops, then evaluated
various cuts of the self-energies that constituted its imagin
part; we then recombined the various cuts and reinterpre
them as physical processes and finally evaluated these t
in the limit of heavy photon emission. In Sec. VIII we hav
concentrated solely on the thermal or matter part of th
expressions. The vacuum part is well known. All the expr
sions contain collinear singularities~ase→0), which for the
moment have been shielded by removing the small par
phase space (e) where these singularities occur. Some of t
expressions also display infrared singularities asw→0.
Hence, the final integrations overw are yet to be performed
In the following we will combine all these terms and perfor
this integration.

We now resubstitute the termsF, C, D, V, andS back in
Eq. ~8.1! to get the coefficients of the bosonic and fermion
distribution functions as

n~w!~F1Dg1Vg1Sg!5n~w!~24w!, ~9.1!

ñ~w!~C1Dq1Vq1Sq!5ñ~w!~28w!. ~9.2!

Thus, we find that when all the cuts are summed,
collinear and infrared singularities cancel. This is in cont
distinction with the results of Refs.@8,2#, where the infrared
singularities cancel but the collinear singularities pers
With these, we get the full imaginary part of the self-ener
as

Im Pm two loop,thermal

m 52
4e2g2

~2p!3 F2
4p2T2

3 G5
8e2asT

2

3
.

~9.3!

We may also derive the Born term and quote the two-lo
vacuum contribution~from @17#! as

Im Pmone loop

m 1Im Pm two loop,vacuum

m 5
23e2

2p
E2S 11

as

p D .

~9.4!

X. DISCUSSIONS AND CONCLUSIONS

In this paper, we have calculated the imaginary part of
two-loop heavy boson retarded self-energy in the imagin
time formalism. We also elucidate the analytic structure
the self-energy by recombining and reinterpreting vario
cuts of the self-energy as physical processes that occur in
the medium. Cuts with loops have been interpreted as in
ference terms betweenO(a) tree scattering amplitudes an
the Born term with spectators. At each stage the results f
the self-energy cuts were matched by rederiving the am
tudes of the tree-level diagrams. This constitutes an imp
tant check of each of the contributions from the self-ener

Each of the contributions contain infrared and colline
singularities. In the interest of simplicity, we analyzed th
singular behavior in the region where the dilepton mass is
greater than the temperature. This allows us to neglec
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series of terms that appear subdominant. In each case
retained terms only up to orderT2/E2. One might argue tha
this represents a considerable approximation of the re
However the resulting simplification allows us to analyze
simpler and analytically integrable expressions. We wo
point out that this was precisely the approximation used
@2,8# where a remnant collinear divergence was deduce
O(T2/E2). When all the contributions were summed, all i
frared and collinear divergences canceled, leaving a fi
resultO(T2/E2). In this sense our results differ slightly from
those of Ref.@7# who find a remnantO(T4/E4) result. The
possible reasons for this discrepancy are many. For exam
the authors of Ref.@7# use a complicated finite temperatu
remormalization prescription, ours is the same prescrip
as at zero temperature; they apply finite self-energy cor
tions on the outer legs of all their processes and we do
However, both calculations~as well as those of Ref.@6#!
yield the consistent result that all collinear and infrared
vergences cancel in the final rate expression. This is con
tent with the Kinoshita-Lee-Nauenberg theorem@18,19#,
even though a formal proof of the theorem at finite tempe
ture is still elusive. We leave this and other extensions
future investigations.
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APPENDIX A: NOTATION

Our notation is categorized by the explicit presence of
apparent Minkowski timex052 i t and a momentumq0

5 i2npT or i (2n11)pT for bosons or fermions, respec
tively. Our metric is (1,21,21,21). For the case of zero
chemical potential our bosonic propagators have the s
appearance as at zero temperature, i.e.,

iD~q!5
i

~q0!22uqu2
. ~A1!

The Feynman rules are also the same as at zero tempera
with the understanding that we replace the zeroth compo
of the momentum byi (2n11)pT for a fermion and by an
even frequency in the case of a boson. One may, in the
of zero chemical potential, relate this to the familiar case
Ref. @13# by noting that

D~q!5
1

~q0!22uqu2
5

21

~vn!21uqu2
52DE~vn ,q!,

~A2!
05520
we

lt.
r
d
n
at

te

le,

n
c-
t.

-
is-

-
r

.
G.

m

of

n

e

ure,
nt

se
f

whereDE(vn ,q) is the familiar Euclidean propagator pre
sented in the literature@13#, @15#. One may immediately sur
mise the form of the noncovariant propagatorD(uqW u,x0), the
Fourier transform of which is the covariant propagator

D~q,q0!52E
0

b

dte2 ivntDE~ uqW u,t!

52 i E
0

2 ib

dx0eiq0x0
DE~ uqW u,t!

52 i E
0

2 ib

dx0eiq0x0
D~ uqW u,x0!. ~A3!

The full fermionic propagators are

S~q,q0!5~gmqm!~2 i !E
0

2 ib

dx0eiq0x0
Dm~ uqW u,x0!,

~A4!

where

Dm~ uqW u,x0!5
1

2Eq
(

s
f s~Eq!e2 isx0(Eq). ~A5!

APPENDIX B:
DISCONTINUITY ACROSS A SECOND ORDER POLE

Imagine we have a function of a complex variableF(z)
and it is given to be in the form

F~z!5E dx
f ~z,x!

z2x
1

g~z,x!

~z2x!2
, ~B1!

wherex is a real variable, integrated on the real axis. Most
the discontinuities that we evaluate can be cast in this g
eral form. This can be rewritten as

2F~z!5E dx
f ~z,x!

x2z
2

g~z,x!

~x2z!2
. ~B2!

The functionsf (z,x) andg(z,x) are analytic inx and hence
admit a Taylor expansion

f ~z,x!5 f ~z,x5z!1
d f

dx
~z,x5z!@x2z#

1
1

2

d2f

dx2
~z,x5z!@x2z#21•••. ~B3!

Substituting Eq.~B3! in Eq. ~B2! we get
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2F~z!5E dx
f ~z,x5z!

x2z
1

d f

dx
~z,x5z!1

d2f

dx2
~z,x5z!

3@x2z#1•••2
g~z,x5z!

~x2z!2
2

dg

dx
~z,x5z!

3
1

x2z
2

1

2

d2g

dx2
~z,x5z!

1

~x2z!2
2•••. ~B4!
s.

05520
Recalling that only the pure first order poles develop a d
continuity or imaginary part at the pole, we get the imagina
part of Eq.~B4! as

disc@2F~z!#5E dx2p id~x2z!F f ~z,x!2
dg

dx
~z,x!G .

~B5!
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